JP2014061778A - Air-conditioning control device for vehicle - Google Patents

Air-conditioning control device for vehicle Download PDF

Info

Publication number
JP2014061778A
JP2014061778A JP2012207805A JP2012207805A JP2014061778A JP 2014061778 A JP2014061778 A JP 2014061778A JP 2012207805 A JP2012207805 A JP 2012207805A JP 2012207805 A JP2012207805 A JP 2012207805A JP 2014061778 A JP2014061778 A JP 2014061778A
Authority
JP
Japan
Prior art keywords
air
vehicle
outside air
glass
inside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207805A
Other languages
Japanese (ja)
Other versions
JP6036081B2 (en
Inventor
Takuo Hirano
拓男 平野
Makoto Yoshida
真 吉田
Takashi Matsubara
孝志 松原
Keigo Shimizu
圭吾 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2012207805A priority Critical patent/JP6036081B2/en
Publication of JP2014061778A publication Critical patent/JP2014061778A/en
Application granted granted Critical
Publication of JP6036081B2 publication Critical patent/JP6036081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-conditioning control device for a vehicle enabling improvement of vehicle fuel economy while securing front visibility of an occupant.SOLUTION: An air-conditioning control device for a vehicle includes: a window glass 1 having an inner surface to which hydrophilic treatment or water-absorbing treatment is applied; a first damper 11 that can switch a mixing ratio between inside air and outside air by opening/closing an inside air introduction port 3b and an outside air introduction port 3a; a blower fan 4 that sends inside air and outside air to the inner surface of the window glass 1; and a control unit 7 that controls the first damper 11 and the blower fan 4. The air-conditioning control device for the vehicle further includes freezing risk determination means 9 for determining a possibility of freezing of moisture on the inner surface of the window glass 1 at least on the basis of a vehicle driving state and a vehicle interior state. When the possibility of the freezing is determined to exist, the control unit 7 executes inside air increase control for increasing a ratio of inside air sent to the inner surface of the window glass 1 as a vehicle speed decreases.

Description

本発明は、車両用空調制御装置に関し、特に内面に親水性処理又は吸水性処理が施されたウインドガラスを備えた車両用空調制御装置に関する。   The present invention relates to a vehicle air-conditioning control device, and more particularly to a vehicle air-conditioning control device including a window glass having an inner surface subjected to hydrophilic treatment or water absorption treatment.

従来より、ガソリン車では、ウインドガラスに結露等によって曇りが発生した場合、乗員はデフロスタモードを選択してウインドガラス内面に付着した水分の除去を行なっている。このデフロスタモードが選択されたとき、エンジンによって空調ユニットのコンプレッサが駆動されてエバポレータによる除湿機能が作動を開始するため、低湿度の空調風がデフロスタ吹出口からウインドガラス内面に送風され、ウインドガラス内面に付着した水分を気化してウインドガラスの曇りを解消している。   Conventionally, in a gasoline vehicle, when the wind glass is fogged due to condensation or the like, the occupant selects the defroster mode to remove moisture adhering to the inner surface of the wind glass. When this defroster mode is selected, the compressor of the air conditioning unit is driven by the engine and the dehumidifying function by the evaporator starts to operate, so low-humidity conditioned air is blown from the defroster outlet to the inside of the wind glass, Moisture adhering to the glass is vaporized to eliminate fogging of the wind glass.

近年、二酸化炭素の排出規制や低燃費化等の要求から、電気自動車や電動走行可能なハイブリッド車の需要が高まっている。これらの電気自動車等は、駆動機構の構造上、ガソリン車に比べて熱源が不足している。それ故、乗員の体温等によって暖められた車室内の空気(所謂内気)を循環させることによって、空調の暖房効率を高めている。
しかし、内気は、その内部に含有する水分が多いため、内気循環を多用した場合、車室内の湿度が上昇し、ウインドガラスの曇り発生頻度が高くなる問題がある。
そこで、ガラス表面に防曇処理が施されたウインドガラスが提案されている。この防曇ガラスは、例えば、ガラス表面に親水性又は吸水性の被膜が形成され、曇りの原因である結露が発生し難いように構成されている。
In recent years, demands for electric vehicles and hybrid vehicles that can be electrically driven have been increasing due to requirements such as carbon dioxide emission regulations and fuel efficiency reduction. These electric vehicles and the like lack a heat source compared to gasoline vehicles due to the structure of the drive mechanism. Therefore, the heating efficiency of the air conditioning is increased by circulating the air in the passenger compartment (so-called inside air) warmed by the body temperature of the occupant.
However, since the inside air contains a lot of moisture, there is a problem that when the inside air circulation is frequently used, the humidity in the passenger compartment increases and the fogging frequency of the wind glass increases.
Accordingly, a window glass having a glass surface subjected to an antifogging treatment has been proposed. This anti-fogging glass is configured such that, for example, a hydrophilic or water-absorbing film is formed on the glass surface, and condensation that causes fogging is unlikely to occur.

ガラス表面に親水性処理が施された防曇ガラスは、その表面に付着した水分を一様に拡がる薄い水膜に形成する防曇機能によって結露の発生を抑制している。
しかし、ガラス表面に付着した水分が親水性被膜の飽和水分量を超えたとき、親水性被膜が保持できる水分量が飽和するため、過剰水分が出現し、この過剰水分によってガラス表面に液滴や氷結による曇りが発生する。また、飽和水分量を超えない場合でも、親水性被膜中に含まれる水分により氷結が発生し、ガラス表面に曇りが発生する虞がある。
ガラス表面に吸水性処理を施した場合には、吸水性被膜に保持された水分の氷結により組織破壊を生じ、結果的にガラス表面に曇りが発生する虞がある。
The antifogging glass whose surface has been subjected to hydrophilic treatment suppresses the occurrence of condensation due to an antifogging function that forms a thin water film that uniformly spreads moisture adhering to the surface.
However, when the amount of moisture adhering to the glass surface exceeds the saturated moisture content of the hydrophilic coating, the amount of moisture that can be retained by the hydrophilic coating is saturated, so that excess moisture appears. Cloudiness due to freezing occurs. Even when the saturated moisture content is not exceeded, there is a possibility that icing will occur due to the moisture contained in the hydrophilic coating, and the glass surface will become cloudy.
When the water absorption treatment is performed on the glass surface, there is a possibility that the structure is destroyed due to freezing of water held in the water absorbing film, and as a result, the glass surface may be clouded.

特許文献1の自動車用ガラス防曇装置は、ガラス表面に親水性処理や吸水性処理が施された防曇ガラスではないが、ウインドガラス内部にガラス加熱装置が配設された防曇ガラスと、ウインドガラスの内面を除湿する防曇用空調装置と、ウインドガラス外面の氷結状態を検知する氷結センサと、ウインドガラス内面の結露状態を検知する結露センサとを備え、ウインドガラスが氷結又は結露したとき、ガラス加熱装置と防曇用空調装置によってウインドガラスを加熱して氷結又は結露を除去している。   The glass antifogging device for automobiles of Patent Document 1 is not an antifogging glass in which a hydrophilic treatment or a water absorbing treatment is performed on the glass surface, but an antifogging glass in which a glass heating device is disposed inside the window glass, When the window glass is frozen or condensed, it is equipped with an anti-fog air conditioner that dehumidifies the inner surface of the wind glass, an icing sensor that detects the icing state of the outer surface of the wind glass, and a dew sensor that detects the dew state of the inner surface of the wind glass. The window glass is heated by a glass heating device and an anti-fogging air conditioner to remove icing or condensation.

実開平1−125717号公報Japanese Utility Model Publication No. 1-125717

特許文献1の自動車用ガラス防曇装置は、氷結センサと結露センサとを夫々備えているため、ウインドガラスに実際に生じている氷結状態と結露状態とに応じてウインドガラスの氷結や結露を除去し、ウインドガラスの曇り解消を効率的に行なうことができる。
しかし、特許文献1では、夫々のセンサによってウインドガラスの氷結状態や結露状態を検知するため、ウインドガラスの状態を検知してからガラス加熱装置や防曇用空調装置が作動を開始するまでの間、ウインドガラスには氷結や結露による曇りが発生している。つまり、ガラス加熱装置等が作動開始するまでの間は、乗員の前方視認性が低下し、安全性の悪化を招く虞がある。また、特許文献1では、ガラス加熱装置等によって、ウインドガラスの氷結や結露を除去しているため、寒冷時には、暖房用電力に加えてガラス加熱装置等を作動させるための電力が必要になり、燃費悪化を招く虞もある。
Since the glass anti-fogging device for automobiles of Patent Document 1 is provided with an icing sensor and a dew condensation sensor, frost and dew on the wind glass are removed depending on the icing state and the dew condensation state actually generated on the wind glass. In addition, it is possible to efficiently remove the fogging of the window glass.
However, in Patent Document 1, since the icing state and the dew condensation state of the wind glass are detected by the respective sensors, the period from the detection of the state of the wind glass to the start of the operation of the glass heating device and the antifogging air conditioner. The wind glass is clouded by freezing and condensation. That is, until the start of the operation of the glass heating device or the like, the forward visibility of the occupant may be reduced, and the safety may be deteriorated. Moreover, in patent document 1, since the freezing and dew condensation of wind glass are removed by the glass heating apparatus etc., the electric power for operating a glass heating apparatus etc. in addition to the electric power for heating is needed at the time of cold, There is also a risk of deteriorating fuel consumption.

特許文献1の技術と親水性被膜が形成された防曇ガラスとを併用した場合、親水性被膜に保持された水分量が飽和水分量を超えるまではウインドガラス内面の結露を効率的に抑制することができる。しかし、水分量が飽和水分量を超えた場合、親水性被膜表面の氷結を検知した後でなければガラス加熱装置等が作動しない。
即ち、ウインドガラスの氷結状態を検知してからガラス加熱装置等が作動を開始するまで、前述と同様に、ウインドガラスに氷結による曇りが発生し、乗員の前方視認性低下を避けることができない。しかも、ガラス加熱装置等を用いて防曇ガラスの水分除去(除湿)を行った場合、その防曇機能上、水分除去に伴ってガラス表面の水膜が全体的に薄くなるため、ウインドガラスを伝播した外気温度によって水膜が再氷結する虞がある。
吸水性被膜が形成された防曇ガラスを併用した場合にも、同様に氷結を検知した後でなければ、ガラス加熱装置等が作動しない。
When the technique of Patent Document 1 is used in combination with the antifogging glass on which a hydrophilic coating is formed, the condensation on the inner surface of the wind glass is efficiently suppressed until the amount of water retained in the hydrophilic coating exceeds the saturated moisture content. be able to. However, when the water content exceeds the saturated water content, the glass heating device or the like does not operate unless after the freezing of the hydrophilic coating surface is detected.
That is, until the glass heating device or the like starts to operate after detecting the icing state of the wind glass, the wind glass is fogged due to icing as described above, and it is impossible to avoid a decrease in front visibility of the occupant. Moreover, when moisture removal (dehumidification) of the antifogging glass is performed using a glass heating device or the like, the water film on the surface of the glass becomes thinner as a result of moisture removal due to its antifogging function. There is a risk that the water film will re-freeze due to the propagated outside air temperature.
Even when antifogging glass having a water-absorbing film is used in combination, the glass heating device or the like does not operate unless icing is detected.

本発明の目的は、乗員の前方視認性を確保しつつ、車両の燃費改善を図ることができる車両用空調制御装置等を提供することである。   An object of the present invention is to provide a vehicle air-conditioning control device and the like that can improve the fuel efficiency of a vehicle while ensuring forward visibility of an occupant.

請求項1の車両用空調制御装置は、内面に親水性処理又は吸水性処理が施されたウインドガラスと、内気導入口と外気導入口とを開閉して内気と外気との混合比率を切り替え可能な内外気切替手段と、内気及び外気を前記ウインドガラス内面に送風する送風手段と、前記内外気切替手段と送風手段を制御する制御手段とを備えた車両用空調制御装置において、前記ウインドガラス内面の水分が氷結する可能性を少なくとも車両運転状態及び車内状態に基づいて判定する氷結リスク判定手段を備え、前記制御手段は、氷結する可能性があると判定されたとき、前記ウインドガラス内面に送風する内気の比率を車速が低い程増加する内気増量制御を行なうことを特徴としている。   The vehicle air-conditioning control device according to claim 1 is capable of switching the mixing ratio of the inside air and the outside air by opening and closing the window glass whose inner surface is subjected to hydrophilic treatment or water absorption treatment, and the inside air introduction port and the outside air introduction port. In the vehicle air-conditioning control apparatus comprising: an inside / outside air switching means; a blowing means for blowing the inside air and the outside air to the inner surface of the window glass; and a control means for controlling the inside / outside air switching means and the blowing means. Icing risk determination means for determining the possibility of water icing based on at least the vehicle operating state and the in-vehicle state, and when the control means determines that there is a possibility of icing, it blows air to the inner surface of the window glass. The inside air increase control is performed such that the ratio of the inside air to be increased increases as the vehicle speed decreases.

この請求項1の車両用空調制御装置では、内面に親水性処理が施されたウインドガラスを備えている場合、ガラス表面に付着した水分を一様に拡がる水膜に形成することによってウインドガラス内面の結露の発生を抑制することができ、内面に吸水性処理が施されたウインドガラスを備えている場合、被膜中に水分を取り込むことによってウインドガラス内面の結露の発生を抑制することができる。
また、ウインドガラス内面の水分が氷結する可能性を少なくとも車両運転状態及び車内状態に基づいて判定する氷結リスク判定手段を備えているため、ウインドガラス内面の氷結リスクを事前に検知することができ、ウインドガラス内面に氷結に起因した曇りを発生させる前に、ウインドガラス内面に送風する高温高湿の内気の比率を車速が低い程増加することができる。
In the vehicle air conditioning control device according to claim 1, when the inner surface is provided with a window glass that has been subjected to hydrophilic treatment, the inner surface of the wind glass is formed by forming a water film that uniformly spreads moisture adhering to the glass surface. In the case where the inner surface is provided with a window glass that has been subjected to water absorption treatment, the occurrence of condensation on the inner surface of the wind glass can be suppressed by incorporating moisture into the coating.
In addition, since it is equipped with an icing risk determination means for determining the possibility of moisture on the inner surface of the wind glass based on at least the vehicle operating state and the in-vehicle state, the icing risk on the inner surface of the wind glass can be detected in advance. Before the fogging due to freezing is generated on the inner surface of the wind glass, the ratio of the high-temperature and high-humidity air blown to the inner surface of the wind glass can be increased as the vehicle speed decreases.

請求項2の発明は、請求項1の発明において、前記制御手段は、前記内気増量制御の直後において、内気と外気の比率を複数回交互に増加する内外気切替制御を行なうことを特徴としている。   According to a second aspect of the present invention, in the first aspect of the invention, the control means performs an internal / external air switching control that alternately increases the ratio of the internal air and the external air a plurality of times immediately after the internal air amount increase control. .

請求項1の発明によれば、ウインドガラス内面に氷結に起因した曇りを発生させる前に、ウインドガラス内面に送風する内気の比率を車速が低い程増加するため、氷結リスクの低い低車速状態においてウインドガラス内面の水膜を厚膜化できると共にウインドガラスを昇温でき、ウインドガラスを伝播した外気温度による水膜の氷結を抑制してウインドガラスの曇り発生を未然に防止することができる。
また、内気循環によってウインドガラス内面の水膜の厚膜化とウインドガラスの昇温とを行なっているため、新たにガラス加熱装置等の別機構を設ける必要がなく、別機構を作動させるための消費電力を抑制することができる。それ故、乗員の前方視認性を確保しつつ、車両の燃費改善を図ることができる。
According to the first aspect of the present invention, the ratio of the inside air blown to the inner surface of the wind glass is increased as the vehicle speed is lowered before the fogging due to freezing is generated on the inner surface of the wind glass. Therefore, in the low vehicle speed state where the risk of freezing is low. It is possible to increase the thickness of the water film on the inner surface of the wind glass and to raise the temperature of the wind glass, and to prevent frosting of the water film due to the outside air temperature propagated through the wind glass, thereby preventing the wind glass from being fogged.
In addition, since the water film on the inner surface of the wind glass is thickened and the temperature of the wind glass is increased by circulating the inside air, there is no need to newly provide another mechanism such as a glass heating device. Power consumption can be suppressed. Therefore, it is possible to improve the fuel efficiency of the vehicle while ensuring the forward visibility of the occupant.

請求項2の発明によれば、内気循環によって暖房性能を維持しつつ、低湿度の外気導入によってウインドガラス内面を除湿できるため、暖房機能とウインドガラス内面の除湿機能とを両立することができる。   According to the second aspect of the present invention, since the inner surface of the wind glass can be dehumidified by introducing the low-humidity outside air while maintaining the heating performance by the internal air circulation, both the heating function and the dehumidifying function of the inner surface of the wind glass can be achieved.

本発明の実施例1に係る車両用空調制御装置の全体構成を示した模式図である。It is the schematic diagram which showed the whole structure of the vehicle air conditioner control apparatus which concerns on Example 1 of this invention. 車両用空調制御装置の制御系のブロック図である。It is a block diagram of a control system of a vehicle air-conditioning control device. 車速と外気温度と氷結リスク判定値との相関関係を示す氷結リスク判定マップである。It is an icing risk judgment map which shows correlation with vehicle speed, outside temperature, and icing risk judgment value. 車速と内気比率との相関関係を示す内気比率マップである。It is an inside air ratio map which shows correlation with a vehicle speed and inside air ratio. 内気増量制御における車速と内気混合比率との関係を示すグラフである。It is a graph which shows the relationship between the vehicle speed and internal air mixing ratio in internal air increase control. コントロールユニットによる制御処理のフローチャートである。It is a flowchart of the control processing by a control unit. 内気と外気との混合比率の切り替えを説明するタイムチャートである。It is a time chart explaining switching of the mixing ratio of inside air and outside air. 氷結リスクの補正マップである。It is a correction map of freezing risk.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

以下、本発明の実施例1について図1〜図7に基づいて説明する。
図1に示すように、本実施例では、ウインドガラス1と、空調装置2と、走行用モータ(図示略)等を備えた電気自動車Vの空調制御装置を例として説明する。
尚、本発明は、電気自動車V以外にガソリンエンジン車に適用しても良く、特に、ディーゼルエンジン車やハイブリッド車のようなガソリンエンジン車に比べてエンジン冷却水温度が上昇し難い車両に対して有効である。
Embodiment 1 of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, in the present embodiment, an air conditioning control device for an electric vehicle V including a window glass 1, an air conditioner 2, a travel motor (not shown), and the like will be described as an example.
The present invention may be applied to a gasoline engine vehicle other than the electric vehicle V, and particularly to a vehicle in which the engine coolant temperature is unlikely to rise as compared with a gasoline engine vehicle such as a diesel engine vehicle or a hybrid vehicle. It is valid.

ウインドガラス1は、車室内側表面に親水性処理が施された防曇ガラスである。
具体的には、ウインドガラス1の内面に親水層としての防曇性被膜1aが積層され、この防曇性被膜1aが親水性を付与する材料、例えば界面活性剤を含有している。
このウインドガラス1は、防曇性被膜1aがウインドガラス1内面に付着した水分を水膜に形成することによって防曇機能を発現している。
The wind glass 1 is an anti-fogging glass in which a hydrophilic treatment is applied to the vehicle interior side surface.
Specifically, an antifogging coating 1a as a hydrophilic layer is laminated on the inner surface of the window glass 1, and the antifogging coating 1a contains a material imparting hydrophilicity, for example, a surfactant.
This window glass 1 expresses the anti-fogging function by forming the water | moisture content which the anti-fogging film 1a adhered to the inner surface of the window glass 1 in a water film.

次に、空調装置2について説明する。
図1に示すように、空調装置2は、空調ダクト3と、ブロアファン4(送風手段)と、エバポレータ5と、ヒータ6と、コントロールユニット7(制御手段)等を備えている。
この空調装置2は、空調風の温度、風量及び吹出方向等を乗員が設定した設定温度(例えば25℃)、設定風量(例えば中風量)及び設定方向(例えばデフロスタモード)に応じて制御し、車室内温度を自動制御可能なオートエアコンである。空調装置2の空調風は、外気又は内気、或いは外気と内気の混合気によって形成されている。
Next, the air conditioner 2 will be described.
As shown in FIG. 1, the air conditioner 2 includes an air conditioning duct 3, a blower fan 4 (blower unit), an evaporator 5, a heater 6, a control unit 7 (control unit), and the like.
The air conditioner 2 controls the temperature, air volume, and blowing direction of the conditioned air according to a set temperature (for example, 25 ° C.), a set air volume (for example, medium air volume), and a set direction (for example, defroster mode) set by the occupant. This is an auto air conditioner that can automatically control the cabin temperature. The conditioned air of the air conditioner 2 is formed by outside air or inside air, or a mixture of outside air and inside air.

空調ダクト3は、車室内に空調風を導くための通路を形成し、車外から外気を導入する外気導入口3aと、車室内から内気を導入する内気導入口3bと、ウインドガラス1の内面に空調風を吹き出すデフロスタ吹出口3cと、乗員の頭胸部に空調風を吹き出すフェイス吹出口3dと、乗員の脚部に空調風を吹き出すフット吹出口3e等を備えている。   The air-conditioning duct 3 forms a passage for introducing conditioned air into the vehicle interior. The outside air introduction port 3 a for introducing outside air from the outside of the vehicle, the inside air introduction port 3 b for introducing inside air from the inside of the vehicle interior, and the inner surface of the wind glass 1. A defroster outlet 3c for blowing conditioned air, a face outlet 3d for blowing conditioned air to the head and chest of the occupant, a foot outlet 3e for blowing conditioned air to the legs of the occupant, and the like are provided.

外気導入口3aと内気導入口3bとの中間位置には、外気導入口3aと内気導入口3bとの開度を調節して内気と外気との混合比率を切り替え可能な第1ダンパ11(内外気切替手段)が設けられている。エバポレータ5とヒータ6との途中位置には、ヒータ6を通過する空調風(温風)とヒータ6をバイパスする空調風(冷風)との比率を調節可能な第2ダンパ12が設けられている。デフロスタ吹出口3cとフェイス吹出口3dとの中間位置には、デフロスタ吹出口3cとフェイス吹出口3dとの開度を調節して空調風の吹出方向を変更可能な第3ダンパ13が設けられ、フェイス吹出口3dとフット吹出口3eとの中間位置には、フェイス吹出口3dとフット吹出口3eとの開度を調節して空調風の吹出方向を変更可能な第4ダンパ14が設けられている。   A first damper 11 (inside / outside) capable of switching the mixing ratio between the inside air and the outside air by adjusting the opening degree of the outside air introduction port 3a and the inside air introduction port 3b at an intermediate position between the outside air introduction port 3a and the inside air introduction port 3b. Air switching means) is provided. A second damper 12 capable of adjusting the ratio of the conditioned air (warm air) passing through the heater 6 and the conditioned air (cold air) bypassing the heater 6 is provided at an intermediate position between the evaporator 5 and the heater 6. . A third damper 13 is provided at an intermediate position between the defroster air outlet 3c and the face air outlet 3d, and the opening degree of the defroster air outlet 3c and the face air outlet 3d can be adjusted to change the blowing direction of the conditioned air. A fourth damper 14 is provided at an intermediate position between the face air outlet 3d and the foot air outlet 3e to adjust the opening degree of the face air outlet 3d and the foot air outlet 3e to change the air blowing direction. Yes.

図2に示すように、第1〜第4ダンパ11〜14は、第1〜第4アクチュエータ11a〜14aによって夫々回転駆動され、空調風の流量や方向を調節可能に構成されている。
遠心式ブロアファン4は、外気導入口3aと内気導入口3bとの下流側且つエバポレータ5の上流側に配設され、所定風量の空調風を車室内へ送風可能に構成されている。このブロアファン4は、ファンモータ4aによって回転駆動される。
As shown in FIG. 2, the 1st-4th dampers 11-14 are each rotationally driven by the 1st-4th actuators 11a-14a, and are comprised so that the flow volume and direction of an air conditioning wind can be adjusted.
The centrifugal blower fan 4 is disposed downstream of the outside air introduction port 3a and the inside air introduction port 3b and upstream of the evaporator 5, and is configured to blow a predetermined amount of conditioned air into the vehicle interior. The blower fan 4 is rotationally driven by a fan motor 4a.

エバポレータ5は、ブロアファン4の下流側通路の全域を横切るように配設されている。
このエバポレータ5は、コンプレッサ(図示略)に連結され、冷媒の蒸発潜熱を用いて空調風を冷却する冷房用熱交換器である。尚、コンプレッサは、冷媒の粘性を考慮して、外気温度が0℃以下のとき、強制停止するように設定されている。
The evaporator 5 is disposed so as to cross the entire downstream passage of the blower fan 4.
The evaporator 5 is a cooling heat exchanger that is connected to a compressor (not shown) and cools the conditioned air using latent heat of vaporization of the refrigerant. The compressor is set so as to be forcibly stopped when the outside air temperature is 0 ° C. or lower in consideration of the viscosity of the refrigerant.

ヒータ6は、エバポレータ5の下流側に所定間隔離隔して配設されている。
このヒータ6は、バッテリ(図示略)に接族され、エバポレータ5を通過した空調風(冷風)を再加熱する暖房用熱交換器である。以上により、第2ダンパ12の回転動作によって、ヒータ6を通過する空調風(温風)とヒータ6をバイパスする空調風(冷風)との混合比率が調整され、車室内へ供給される空調風温度が調節されている。
The heater 6 is disposed on the downstream side of the evaporator 5 with a predetermined interval.
The heater 6 is a heat exchanger for heating that is in contact with a battery (not shown) and reheats the conditioned air (cold air) that has passed through the evaporator 5. As described above, the mixing ratio of the conditioned air passing through the heater 6 (warm air) and the conditioned air passing through the heater 6 (cold air) is adjusted by the rotating operation of the second damper 12, and the conditioned air supplied to the passenger compartment. The temperature is adjusted.

図2に示すように、コントロールユニット7は、CPU、ROM、RAM等によって構成され(何れも図示略)、空調制御手段8と、氷結リスク判定手段9とを備えている。
図3に示すように、ROMには、車速と外気温度と氷結リスク判定値Aとの相関関係を車速に応じて予め設定された氷結リスク判定マップが格納されている。この氷結リスク判定マップは、実験或いはシミュレーション等に基づいて予め設定され、車速が高い程、また、外気温度が高い程、氷結リスク判定値Aが高くなる特性に設定されている。
As shown in FIG. 2, the control unit 7 includes a CPU, a ROM, a RAM, and the like (all not shown), and includes an air conditioning control means 8 and an icing risk determination means 9.
As shown in FIG. 3, the ROM stores an icing risk determination map in which the correlation between the vehicle speed, the outside air temperature, and the icing risk determination value A is preset according to the vehicle speed. The icing risk determination map is set in advance based on experiments or simulations, and is set to have a characteristic that the icing risk determination value A increases as the vehicle speed increases and the outside air temperature increases.

図1,図2に示すように、コントロールユニット7は、外気温センサ21と、車室温センサ22と、乗車している乗員数を把握するためにシート毎に設けられた乗員の着座有無を検出する複数のシートセンサ23と、ウインドガラス1内面近傍の温度及び湿度を検出する温湿度センサ24と、電気自動車Vの走行速度を検出する車輪速センサ25と、温度設定スイッチや風量設定スイッチ等各種設定スイッチを備えた操作パネル26と、電気自動車Vのレンジ状態を検知可能なインヒビタスイッチに電気的に接続されている。   As shown in FIGS. 1 and 2, the control unit 7 detects the presence / absence of an occupant seated for each seat in order to grasp the outside air temperature sensor 21, the vehicle room temperature sensor 22, and the number of passengers on the vehicle. A plurality of sheet sensors 23, a temperature / humidity sensor 24 for detecting the temperature and humidity in the vicinity of the inner surface of the window glass 1, a wheel speed sensor 25 for detecting the traveling speed of the electric vehicle V, a temperature setting switch, an air volume setting switch, and the like. An operation panel 26 having a setting switch and an inhibitor switch capable of detecting the range state of the electric vehicle V are electrically connected.

コントロールユニット7は、内気増量制御と内外気切替制御とが通常のオートエアコン制御と並行して実行可能に構成されている。
これら内気増量制御及び内外気切替制御では、ウインドガラス1内面が氷結する可能性があると判定されたとき、第3ダンパ13及び第4ダンパ14を回転動作させてデフロスタ吹出口3cからウインドガラス1内面に空調風を送風している。
The control unit 7 is configured such that the inside air increase control and the inside / outside air switching control can be executed in parallel with the normal auto air conditioner control.
In these inside air increase control and inside / outside air switching control, when it is determined that there is a possibility that the inner surface of the wind glass 1 is frozen, the third damper 13 and the fourth damper 14 are rotated to operate the wind glass 1 from the defroster outlet 3c. Air conditioned air is blown on the inner surface.

コントロールユニット7は、デフロスタ吹出口3cからウインドガラス1内面に送風する内気の比率を車速が低い程増加する内気増量制御を実行している。
防曇性被膜1aの表面に付着した水膜は、車速の増加によって外気温度の伝播量が大きなとき或いは除湿によって水膜が薄膜化されたとき、ウインドガラス1を伝播した外気温度によって氷結し易くなっているため、この内気増量制御では、ウインドガラス1内面が氷結する前段階において、外気に比べて内気の比率を増加した高温高湿の空調風をウインドガラス1内面に吹き出している。これによって、防曇性被膜1aの表面に付着した水膜を厚膜化すると共にウインドガラス1を昇温している。
The control unit 7 executes an inside air increase control that increases the ratio of the inside air that is blown from the defroster outlet 3c to the inner surface of the wind glass 1 as the vehicle speed decreases.
The water film adhering to the surface of the anti-fogging coating 1a is easily frozen by the outside air temperature propagated through the wind glass 1 when the propagation amount of the outside air temperature is large due to an increase in vehicle speed or when the water film is thinned by dehumidification. Therefore, in this inside air volume increase control, high-temperature and high-humidity conditioned air in which the ratio of the inside air is increased as compared with the outside air is blown out to the inside surface of the wind glass 1 before the inside surface of the wind glass 1 is frozen. As a result, the water film adhering to the surface of the antifogging coating 1a is thickened and the window glass 1 is heated.

図4に示すように、ROMには、車速と内気比率との相関関係が予め設定された内気比率マップが格納されている。この内気比率マップは、第1の所定速度、例えば30km/h以下では、車速が低い程階段状に増加し、第1の所定速度超では、車速が低い程緩湾曲状に増加し、第2の所定速度、例えば80km/h以上では、所定の比率値、例えば10%に収束する内気混合比率が設定されている。尚、図5は、内気増量制御における車速と内気比率との相関関係の1例を示している。   As shown in FIG. 4, the ROM stores an inside air ratio map in which the correlation between the vehicle speed and the inside air ratio is preset. The inside air ratio map increases stepwise as the vehicle speed decreases at a first predetermined speed, for example, 30 km / h or less, and increases gradually in a curved shape as the vehicle speed decreases above the first predetermined speed. At a predetermined speed of, for example, 80 km / h or more, a predetermined ratio value, for example, an inside air mixing ratio that converges to 10% is set. FIG. 5 shows an example of the correlation between the vehicle speed and the inside air ratio in the inside air increase control.

コントロールユニット7は、内気増量制御の直後において、内気と外気の比率を複数回連続して交互に増加する内外気切替制御を実行している。
内気増量制御は防曇性被膜1aの表面に付着した水膜を厚膜化できるものの、内気増量制御を実行しないときに比べて防曇性被膜1aの表面に付着した水分量が増加し、防曇性被膜1aに保持された水分量が飽和水分量を超える虞がある。そこで、外気導入割合を増加した外気増量行程を複数回繰り返すことによって、防曇性被膜1aを除湿することができる。また、内気増量制御に連続して内気循環割合を増加した内気増量行程を複数回繰り返すことによって、車室内温度を上昇することができ、暖房機能を高めることができる。
Immediately after the inside air increase control, the control unit 7 performs inside / outside air switching control in which the ratio of the inside air to the outside air is alternately increased continuously several times.
Although the inside air volume increase control can thicken the water film attached to the surface of the antifogging coating 1a, the amount of moisture attached to the surface of the antifogging coating 1a is increased compared with the case where the inside air volume increase control is not executed, thereby preventing There is a possibility that the water content retained in the cloudy film 1a may exceed the saturated water content. Therefore, the antifogging coating 1a can be dehumidified by repeating the outside air increasing process in which the outside air introduction ratio is increased a plurality of times. Moreover, the vehicle interior temperature can be raised and the heating function can be enhanced by repeating the internal air increase process in which the internal air circulation rate is increased continuously several times after the internal air increase control.

空調制御手段8は、各センサ21〜25,27及び操作パネル26から入力された入力信号と予め格納されている制御プログラムとに基づいてブロアモータ4aと、第1〜第4アクチュエータ11a〜14aと、ヒータ6等の作動状態を制御し、乗員によって設定された所望の温度、風量及び吹出方向の空調風を車室内へ供給可能に構成されている。   The air conditioning control means 8 includes a blower motor 4a, first to fourth actuators 11a to 14a based on input signals input from the sensors 21 to 25 and 27 and the operation panel 26 and a control program stored in advance. The operation state of the heater 6 or the like is controlled, and a desired temperature, air volume, and conditioned air in the blowing direction set by the occupant can be supplied to the vehicle interior.

氷結リスク判定手段9は、防曇性被膜1aの表面の水分が氷結する可能性、所謂氷結リスクを少なくとも車両運転状態及び車内状態に基づいて判定可能に構成されている。
本実施例では、次式(1)によって氷結リスク値Rを演算し、氷結リスク値Rが所定値、例えば40以上のとき、ウインドガラス1の氷結リスクがあると判定している。
R=A+k1×T+k2×M+k3×P …(1)
尚、Aは氷結リスク判定値、Tは車室内温度、Mはウインドガラス1内面近傍の湿度、Pは乗員数、k1〜k3は夫々補正係数である。
The icing risk determination means 9 is configured to be able to determine the possibility that the moisture on the surface of the anti-fogging coating 1a freezes, that is, the so-called icing risk based on at least the vehicle operating state and the in-vehicle state.
In this embodiment, the icing risk value R is calculated by the following equation (1), and when the icing risk value R is a predetermined value, for example, 40 or more, it is determined that there is an icing risk of the wind glass 1.
R = A + k1 * T + k2 * M + k3 * P (1)
Here, A is the icing risk judgment value, T is the passenger compartment temperature, M is the humidity near the inner surface of the wind glass 1, P is the number of passengers, and k1 to k3 are correction coefficients.

次に、図6のフローチャートに基づき、コントロールユニット7による制御処理を説明する。
まず、各センサ21〜25,27及び操作パネル26から入力された入力信号を読込み(S1)、空調装置2が起動されているか否か判定する(S2)。S2の判定の結果、空調装置2が起動されていない場合、リターンする。
Next, control processing by the control unit 7 will be described based on the flowchart of FIG.
First, input signals input from the sensors 21 to 25 and 27 and the operation panel 26 are read (S1), and it is determined whether or not the air conditioner 2 is activated (S2). If the result of the determination in S2 is that the air conditioner 2 has not been activated, the process returns.

S2の判定の結果、空調装置2が起動されている場合、S3へ移行し、環境把握を行なう。環境把握では、各センサからの出力を受け、外気温度、車室内温度、ウインドガラス1内面近傍の湿度、乗員数、設定空調温度、設定風量、空調風の吹出方向等を検知する。
次に、S4にて、電気自動車Vのレンジ状態に基づいて走行中か否か判定する。S4の判定の結果、N,Pシンジ等走行中ではない場合、リターンする。
As a result of the determination in S2, if the air conditioner 2 is activated, the process proceeds to S3 and the environment is grasped. In grasping the environment, the output from each sensor is received, and the outside air temperature, the passenger compartment temperature, the humidity in the vicinity of the inner surface of the wind glass 1, the number of passengers, the set air conditioning temperature, the set air volume, the air blowing direction, and the like are detected.
Next, in S4, it is determined whether or not the vehicle is traveling based on the range state of the electric vehicle V. As a result of the determination in S4, if the vehicle is not traveling such as N, P Shinji, the process returns.

S4の判定の結果、走行中の場合、S5へ移行し、氷結リスク値Rを演算する。
氷結リスク値Rは、氷結リスク判定値A、車室内温度T、湿度M、乗員数Pに基づいて式(1)により演算する。次に、ウインドガラス1内面の氷結リスクの有無を判定する(S6)。S6では、S5で演算した氷結リスク値Rが40以上の場合、氷結リスク有り、氷結リスク値Rが40未満の場合、氷結リスク無しと判定する。
As a result of the determination in S4, when the vehicle is traveling, the process proceeds to S5, and the icing risk value R is calculated.
The icing risk value R is calculated by the formula (1) based on the icing risk judgment value A, the passenger compartment temperature T, the humidity M, and the number of passengers P. Next, it is determined whether or not there is a risk of freezing on the inner surface of the window glass 1 (S6). In S6, if the freezing risk value R calculated in S5 is 40 or more, it is determined that there is freezing risk, and if the freezing risk value R is less than 40, it is determined that there is no freezing risk.

S6の判定の結果、氷結リスク有り(40≦R)の場合、S7へ移行し、内気比率マップに基いてウインドガラス1内面に送風する内気の比率を車速が低い程増加する内気増量制御を所定時間実行し、防曇性被膜1aの表面に付着した水膜を厚膜化する。これにより、暖房効果を促進しつつ、ウインドガラス1の昇温を図っている。
S7の後、内外気切替制御を所定時間(例えば2分)実行して防曇性被膜1a表面の除湿と暖房促進を行った後、リターンする。
If the result of determination in S6 is that there is a risk of icing (40 ≦ R), the process proceeds to S7, and the inside air volume increase control that increases the ratio of the inside air blown to the inner surface of the wind glass 1 based on the inside air ratio map as the vehicle speed decreases is predetermined. The water film adhering to the surface of the anti-fogging coating 1a is thickened for a long time. Thereby, the temperature rise of the window glass 1 is aimed at, promoting the heating effect.
After S7, the inside / outside air switching control is executed for a predetermined time (for example, 2 minutes) to dehumidify the surface of the antifogging coating 1a and promote heating, and then return.

次に、図7のタイムチャートに基づき、電気自動車Vの走行中におけるコントロールユニット7の制御処理を説明する。
キーが操作された時刻t0において、電気自動車Vの走行が開始され、空調装置2に車載電源(図示略)から電力が供給される。空調装置2の作動開始直後は、ウインドガラス1を昇温するため、既知の防曇性被膜1aの飽和水分量に基づく安全域(例えば、内気比率90%)に強制増加し、車室内温度が目標温度(25℃)に達した時刻t1において強制増加を停止する。これにより、内気比率は、オートエアコン機能によって設定された内気比率(例えば30%)に調節される。
Next, based on the time chart of FIG. 7, the control process of the control unit 7 during the traveling of the electric vehicle V will be described.
At time t0 when the key is operated, the electric vehicle V starts to travel, and power is supplied to the air conditioner 2 from an in-vehicle power source (not shown). Immediately after the start of the operation of the air conditioner 2, the window glass 1 is heated, so that it is forcibly increased to a safe range (for example, an inside air ratio of 90%) based on the saturated moisture content of the known anti-fogging coating 1 a, and the cabin temperature is increased. The forced increase is stopped at time t1 when the target temperature (25 ° C.) is reached. Thereby, the inside air ratio is adjusted to the inside air ratio (for example, 30%) set by the automatic air conditioner function.

防曇性被膜1aの表面の水分が氷結する可能性が生じた時刻t2において、内気比率を50%に増加して所定時間内気増量制御を行なう。車室内温度はウインドガラス1の昇温に伴い目標温度よりも上昇し、防曇性被膜1aの表面に付着した水膜は厚膜化する。尚、電気自動車Vは、40km/hで低速走行している。   At the time t2 when the water on the surface of the anti-fogging coating 1a is likely to freeze, the inside air ratio is increased to 50% and the inside air volume increase control is performed for a predetermined time. The vehicle interior temperature rises above the target temperature as the window glass 1 rises, and the water film adhering to the surface of the antifogging coating 1a becomes thicker. The electric vehicle V is traveling at a low speed of 40 km / h.

内気増量制御に連続した時刻t3〜t4の間において、内外気切替制御を行なう。内気循環割合を増加するときは、内気増量制御と同様に内気比率を50%に設定し、外気導入割合を増加するときは、外気比率を100%に設定している。本実施例では、内気循環割合増加行程と外気導入割合増加行程とを1サイクルとしたサイクルを3回実行している。これにより、ウインドガラス1は除湿され、車室内温度は緩やかに低下する。
内外気切替制御を終了した時刻t4において、制御開始前と同様に内気比率を30%に設定し、車室内温度は25℃に維持される。
Inside / outside air switching control is performed between times t3 and t4 that are continuous with the inside air increasing control. When the inside air circulation ratio is increased, the inside air ratio is set to 50% as in the inside air increase control, and when the outside air introduction ratio is increased, the outside air ratio is set to 100%. In the present embodiment, a cycle in which the inside air circulation ratio increasing process and the outside air introduction ratio increasing process are performed as one cycle is executed three times. As a result, the window glass 1 is dehumidified, and the temperature in the passenger compartment gradually decreases.
At time t4 when the inside / outside air switching control is finished, the inside air ratio is set to 30% as before the control start, and the vehicle interior temperature is maintained at 25 ° C.

次に、実施例1に係る車両用空調制御装置の作用・効果について説明する。
この車両用空調制御装置によれば、ウインドガラス1内面に氷結に起因した曇りを発生させる前に、ウインドガラス1内面に送風する内気の比率を車速が低い程増加するため、氷結リスクの低い低車速状態においてウインドガラス1内面の水膜を厚膜化できると共にウインドガラス1を昇温でき、ウインドガラス1を伝播した外気温度による水膜の氷結を抑制してウインドガラス1の曇り発生を未然に防止することができる。また、内気循環によってウインドガラス1内面の水膜の厚膜化とウインドガラス1の昇温とを行なっているため、新たにガラス加熱装置等の別機構を設ける必要がなく、別機構を作動させるための消費電力を抑制することができる。それ故、乗員の前方視認性を確保しつつ、車両の燃費改善を図ることができる。
Next, functions and effects of the vehicle air conditioning control device according to the first embodiment will be described.
According to this vehicle air-conditioning control device, the ratio of the inside air blown to the inner surface of the wind glass 1 increases as the vehicle speed decreases before the fogging due to freezing occurs on the inner surface of the wind glass 1, so that the risk of freezing is low. In the vehicle speed state, the water film on the inner surface of the wind glass 1 can be thickened and the temperature of the wind glass 1 can be raised, so that the freezing of the water film due to the outside air temperature propagated through the wind glass 1 can be suppressed to prevent the wind glass 1 from being fogged. Can be prevented. Further, since the water film on the inner surface of the wind glass 1 is thickened and the temperature of the wind glass 1 is increased by circulating the inside air, there is no need to newly provide another mechanism such as a glass heating device, and the other mechanism is activated. Power consumption can be suppressed. Therefore, it is possible to improve the fuel efficiency of the vehicle while ensuring the forward visibility of the occupant.

内気増量制御の直後において、内気と外気の比率を複数回交互に増加する内外気切替制御を行なっている。これにより、内気循環によって暖房性能を維持しつつ、低湿度の外気導入によってウインドガラス内面を除湿できるため、暖房機能とウインドガラス内面の除湿機能とを両立することができる。   Immediately after the inside air increase control, the inside / outside air switching control for alternately increasing the ratio of the inside air and the outside air a plurality of times is performed. Thereby, since the inner surface of the wind glass can be dehumidified by introducing the outside air of low humidity while maintaining the heating performance by the internal air circulation, both the heating function and the dehumidifying function of the inner surface of the wind glass can be achieved.

次に、前記実施例を部分的に変更した変形例について説明する。
1〕前記実施例においては、ウインドガラス内面に防曇性被膜として親水性被膜が形成された例を説明したが、ウインドガラス内面に親水性と吸水性との両方又は吸水性のみの機能を備えた防曇性被膜を設けることも可能である。
Next, a modification in which the above embodiment is partially changed will be described.
1) In the above embodiment, an example in which a hydrophilic film is formed as an antifogging film on the inner surface of the wind glass has been described. However, the inner surface of the wind glass has functions of both hydrophilicity and water absorption or only water absorption. It is also possible to provide an anti-fogging coating.

2〕前記実施例においては、ウインドガラス内面が氷結する可能性があるとき、内気増量制御及び内外気切替制御を所定時間実行する例を説明したが、夫々の制御について、氷結リスク値が大きい程、実行時間を長く設定した制御マップを設けても良い。また、任意の制御のみ実行時間を変更可能に構成し、制御マップを設けても良い。これにより、制御の簡単化を図ることができる。 2] In the above-described embodiment, the example in which the inside air increase control and the inside / outside air switching control are executed for a predetermined time when there is a possibility that the inner surface of the wind glass is frozen has been explained. A control map in which the execution time is set long may be provided. Further, the execution time may be changed only for arbitrary control, and a control map may be provided. Thereby, simplification of control can be achieved.

3〕前記実施例においては、内外気切替制御の外気増量行程において、外気比率を固定値(100%)に設定した例を説明したが、氷結リスク値に応じて設定することも可能である。これにより、ウインドガラスの除湿効果と車室内の暖房効果との一層の両立を図ることができる。 3) In the above embodiment, the example in which the outside air ratio is set to a fixed value (100%) in the outside air increasing process of the inside / outside air switching control has been described. However, it is also possible to set the outside air ratio according to the icing risk value. Thereby, the coexistence with the dehumidification effect of a window glass and the heating effect of a vehicle interior can be aimed at.

4〕前記実施例においては、車室内の湿度のみを検出した例を説明したが、外気湿度センサを設け、車室内外の湿度差が小さい程、内外気切替制御の外気増量行程において外気比率を大きくしても良い。これにより、ウインドガラスの除湿効果を大きくすることができる。 4) In the above embodiment, an example in which only the humidity inside the vehicle interior is detected has been described. However, an outside air humidity sensor is provided, and the outside air ratio in the outside air increasing process of the inside / outside air switching control is reduced as the humidity difference between the inside and outside of the vehicle is small. You may enlarge it. Thereby, the dehumidification effect of a wind glass can be enlarged.

5〕前記実施例においては、氷結リスク判定値と車室内温度とウインドガラス内面近傍の湿度と乗員数とによって氷結リスク値を演算した例を説明したが、更に外気温度と内気温度との温度差を前記要件に追加して氷結リスク値を演算しても良い。この場合、図8に示す補正マップを設け、前記氷結リスク値を補正マップの補正値に応じて補正する。 5) In the above-described embodiment, the example in which the icing risk value is calculated based on the icing risk judgment value, the passenger compartment temperature, the humidity in the vicinity of the inner surface of the windshield, and the number of passengers has been described. Further, the temperature difference between the outside air temperature and the inside air temperature May be added to the above requirement to calculate an ice risk value. In this case, the correction map shown in FIG. 8 is provided, and the icing risk value is corrected according to the correction value of the correction map.

6〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。 6) In addition, those skilled in the art can implement the present invention in various forms added with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

本発明は、内面に親水性処理又は吸水性処理が施されたウインドガラスを備えた車両用空調制御装置において、氷結リスク判定手段を備え、氷結する可能性があると判定されたとき、ウインドガラス内面に送風する内気の比率を車速が低い程増加することにより、乗員の前方視認性を確保しつつ、車両の燃費改善を図ることができる。   The present invention provides an air conditioning control device for a vehicle that includes a wind glass having a hydrophilic treatment or a water absorption treatment on its inner surface, and is provided with icing risk determination means, and when it is determined that there is a possibility of icing, the wind glass By increasing the ratio of the inside air blown to the inner surface as the vehicle speed is lower, the fuel efficiency of the vehicle can be improved while ensuring the forward visibility of the occupant.

1 ウインドガラス
1a 防曇性被膜
2 空調装置
3a 外気導入口
3b 内気導入口
3c デフロスタ吹出口
4 ブロアファン
7 コントロールユニット
9 氷結リスク判定手段
11 第1ダンパ
V 電気自動車
DESCRIPTION OF SYMBOLS 1 Wind glass 1a Anti-fogging film 2 Air conditioner 3a Outside air inlet 3b Inside air inlet 3c Defroster outlet 4 Blower fan 7 Control unit 9 Freezing risk judgment means 11 1st damper V Electric vehicle

Claims (2)

内面に親水性処理又は吸水性処理が施されたウインドガラスと、内気導入口と外気導入口とを開閉して内気と外気との混合比率を切り替え可能な内外気切替手段と、内気及び外気を前記ウインドガラス内面に送風する送風手段と、前記内外気切替手段と送風手段を制御する制御手段とを備えた車両用空調制御装置において、
前記ウインドガラス内面の水分が氷結する可能性を少なくとも車両運転状態及び車内状態に基づいて判定する氷結リスク判定手段を備え、
前記制御手段は、氷結する可能性があると判定されたとき、前記ウインドガラス内面に送風する内気の比率を車速が低い程増加する内気増量制御を行なうことを特徴とする車両用空調制御装置。
A window glass having a hydrophilic treatment or a water absorption treatment on the inner surface, an inside / outside air switching means capable of switching a mixing ratio between the inside air and the outside air by opening and closing the inside air introduction port and the outside air introduction port; In a vehicle air-conditioning control apparatus comprising a blowing means for blowing air to the inner surface of the window glass, a control means for controlling the inside / outside air switching means and the blowing means,
Freezing risk determination means for determining the possibility that the moisture on the inner surface of the window glass freezes based on at least the vehicle operating state and the in-vehicle state,
An air conditioning control device for a vehicle, wherein when it is determined that there is a possibility of icing, the control means performs an inside air increase control that increases a ratio of inside air blown to the inner surface of the window glass as the vehicle speed decreases.
前記制御手段は、前記内気増量制御の直後において、内気と外気の比率を複数回交互に増加する内外気切替制御を行なうことを特徴とする請求項1に記載の車両用空調制御装置。   2. The vehicle air conditioning control device according to claim 1, wherein the control unit performs an inside / outside air switching control for alternately increasing the ratio of the inside air and the outside air a plurality of times immediately after the inside air increase control.
JP2012207805A 2012-09-21 2012-09-21 Air conditioning control device for vehicles Expired - Fee Related JP6036081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207805A JP6036081B2 (en) 2012-09-21 2012-09-21 Air conditioning control device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207805A JP6036081B2 (en) 2012-09-21 2012-09-21 Air conditioning control device for vehicles

Publications (2)

Publication Number Publication Date
JP2014061778A true JP2014061778A (en) 2014-04-10
JP6036081B2 JP6036081B2 (en) 2016-11-30

Family

ID=50617465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207805A Expired - Fee Related JP6036081B2 (en) 2012-09-21 2012-09-21 Air conditioning control device for vehicles

Country Status (1)

Country Link
JP (1) JP6036081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152623A (en) * 2020-01-19 2020-05-15 恒大新能源汽车科技(广东)有限公司 Vehicle-mounted air conditioner control method, vehicle-mounted air conditioner control system and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156194A (en) * 1992-11-30 1994-06-03 Nippondenso Co Ltd Vehicle air conditioner
JP2003326938A (en) * 2002-05-15 2003-11-19 Denso Corp Air-conditioning defogging control device for vehicle
JP2008260427A (en) * 2007-04-12 2008-10-30 Toyota Motor Corp Vehicle air-conditioner
JP2009190640A (en) * 2008-02-15 2009-08-27 Toyota Motor Corp Water-retaining amount control device, air conditioner for vehicle, and program for controlling water-retaining amount
JP2012035689A (en) * 2010-08-05 2012-02-23 Nissan Motor Co Ltd Air conditioner for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156194A (en) * 1992-11-30 1994-06-03 Nippondenso Co Ltd Vehicle air conditioner
JP2003326938A (en) * 2002-05-15 2003-11-19 Denso Corp Air-conditioning defogging control device for vehicle
JP2008260427A (en) * 2007-04-12 2008-10-30 Toyota Motor Corp Vehicle air-conditioner
JP2009190640A (en) * 2008-02-15 2009-08-27 Toyota Motor Corp Water-retaining amount control device, air conditioner for vehicle, and program for controlling water-retaining amount
JP2012035689A (en) * 2010-08-05 2012-02-23 Nissan Motor Co Ltd Air conditioner for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152623A (en) * 2020-01-19 2020-05-15 恒大新能源汽车科技(广东)有限公司 Vehicle-mounted air conditioner control method, vehicle-mounted air conditioner control system and device

Also Published As

Publication number Publication date
JP6036081B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP5254634B2 (en) Air conditioner for vehicles
JP5640536B2 (en) Air conditioner for vehicles
JP5594281B2 (en) Air conditioner for vehicles
JP5125985B2 (en) Air conditioning control device for vehicles
WO2011048982A1 (en) Idling stop control unit and idling stop method
JP5533637B2 (en) Air conditioner for vehicles
JP2002213270A (en) Hybrid vehicle and its air conditioner
JP2011246083A (en) Vehicle air-conditioning device
JP2013208938A (en) Frost formation prevention device of vehicle exterior heat exchanger, and vehicular air conditioner
JP2009208620A (en) Vehicle air conditioner
JP5928274B2 (en) Air conditioning control device for vehicles
JP5083099B2 (en) VEHICLE AIR CONDITIONING CONTROL DEVICE, VEHICLE AIR CONDITIONING CONTROL METHOD, AND VEHICLE AIR CONDITIONING CONTROL PROGRAM
CN112428779A (en) Control method and device of vehicle air conditioning system
JP2008184103A (en) Vehicular air conditioner
JP2010030435A (en) Air conditioner for vehicle
JP6083329B2 (en) Air conditioning control device for vehicles
JP4403652B2 (en) Air conditioner for vehicles
JP6036081B2 (en) Air conditioning control device for vehicles
JP4147650B2 (en) Air conditioning control device for vehicles
JP3812412B2 (en) Air conditioner for vehicles
JP2009190640A (en) Water-retaining amount control device, air conditioner for vehicle, and program for controlling water-retaining amount
JP5245537B2 (en) Air conditioner for vehicles
JP4899821B2 (en) Anti-fogging device for vehicles
JP2008260427A (en) Vehicle air-conditioner
JP5582118B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees