JP2014059439A - Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof - Google Patents

Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof Download PDF

Info

Publication number
JP2014059439A
JP2014059439A JP2012204267A JP2012204267A JP2014059439A JP 2014059439 A JP2014059439 A JP 2014059439A JP 2012204267 A JP2012204267 A JP 2012204267A JP 2012204267 A JP2012204267 A JP 2012204267A JP 2014059439 A JP2014059439 A JP 2014059439A
Authority
JP
Japan
Prior art keywords
workpiece
cylindrical electrophotographic
electrophotographic photosensitive
temperature
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204267A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawai
康裕 川井
Koji Takahashi
孝治 高橋
Naoaki Ichihashi
直晃 市橋
Hidenori Ogawa
英紀 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012204267A priority Critical patent/JP2014059439A/en
Publication of JP2014059439A publication Critical patent/JP2014059439A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming an uneven shape on a surface of a cylindrical electrophotographic photoreceptor, in which when forming an uneven shape on the surface of the cylindrical electrophotographic photoreceptor by mass production, a lead time is shortened, accuracy of processing various conditions are secured, and influence of minute foreign matter is small.SOLUTION: A method of forming uneven shapes on a surface of a cylindrical electrophotographic photoreceptor, includes at least: a step of washing a surface of a surface layer of a cylindrical electrophotographic photoreceptor; a step of adjusting to a prescribed temperature; a step of adjusting an insertion member to be inserted into the cylindrical electrophotographic photoreceptor to a prescribed temperature; a step of inserting the insertion member; a step of bringing, while maintaining a prescribed temperature, a mold member having a surface shape corresponding to an uneven shape on a surface thereof into contact with a surface of a surface layer of the cylindrical electrophotographic photoreceptor so as to transfer the surface shape on the surface of the mold member to a surface of the surface layer of the cylindrical electrophotographic photoreceptor; a step of taking the insertion member out of the cylindrical electrophotographic photoreceptor; and a step of lowering the temperature of the taken-out insertion member to a prescribed temperature.

Description

本発明は、円筒状電子写真感光体の表面に凸凹形状を形成する方法、および、表面に凸凹形状が形成された円筒状電子写真感光体を製造する方法に関する。   The present invention relates to a method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member, and a method for producing a cylindrical electrophotographic photosensitive member having an uneven shape formed on the surface.

電子写真感光体としては、感光層を円筒状基体上に設けてなる円筒状電子写真感光体(以下、単に「電子写真感光体」ともいう。)が一般的である。また、電子写真感光体の中でも、光導電性物質(電荷発生物質や電荷輸送物質)として有機材料を用いた感光層(有機感光層)を設けてなる有機電子写真感光体が広く普及している。有機電子写真感光体としては、高感度および材料設計の多様性の利点から、電荷発生物質を含有する電荷発生層と、電荷輸送物質を含有する電荷輸送層とを積層してなる積層型感光層を有する電子写真感光体が主流である。   As an electrophotographic photosensitive member, a cylindrical electrophotographic photosensitive member (hereinafter also simply referred to as “electrophotographic photosensitive member”) in which a photosensitive layer is provided on a cylindrical substrate is generally used. Among electrophotographic photoreceptors, organic electrophotographic photoreceptors having a photosensitive layer (organic photosensitive layer) using an organic material as a photoconductive substance (charge generating substance or charge transporting substance) are widely used. . As an organic electrophotographic photoreceptor, a laminated photosensitive layer comprising a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material, because of the advantages of high sensitivity and diversity of material design The electrophotographic photosensitive member having the above is the mainstream.

電子写真感光体は、画像形成プロセスにおいて、帯電、露光、現像、転写、クリーニングおよび除電の各工程の繰り返しサイクルにおいて用いられる。特に、転写工程後の電子写真感光体の表面に存在する残存トナーを除去するクリーニング工程は、鮮明な画像を得るうえで重要な工程である。このクリーニングの方法としては、ゴム製のクリーニングブレードを電子写真感光体に圧接し、残存トナーを掻き取る方法が一般的である。
しかしながら、優れたクリーニング性を示すクリーニングブレードは、電子写真感光体の表面との摩擦力が大きいため、駆動トルクの増大や、クリーニングブレードの微小な振動によるトナーのすり抜けや、クリーニングブレードの反転の問題が発生しやすい。また、近年の画像の高画質化の流れを受けたトナーの小粒径化および高機能化によるクリーニング性能への影響も、問題点として取り上げられている。
The electrophotographic photosensitive member is used in a repeating cycle of charging, exposure, development, transfer, cleaning, and charge removal in the image forming process. In particular, the cleaning process for removing the residual toner present on the surface of the electrophotographic photosensitive member after the transfer process is an important process for obtaining a clear image. As a cleaning method, a method is generally used in which a rubber cleaning blade is pressed against an electrophotographic photosensitive member and the remaining toner is scraped off.
However, a cleaning blade that exhibits excellent cleaning properties has a large frictional force with the surface of the electrophotographic photosensitive member, so that there are problems of increased driving torque, slipping of toner due to minute vibration of the cleaning blade, and reversal of the cleaning blade. Is likely to occur. In addition, the influence on the cleaning performance due to the smaller particle size and higher functionality of the toner in response to the recent trend toward higher image quality of images has been taken up as a problem.

上述した問題点を解決する方法として、電子写真感光体の表面を適度に粗面化する方法がある。この方法は、電子写真感光体の表面とクリーニングブレードとの接触面積を減少させ、摩擦力を低減することに有効である。
そして、このような電子写真感光体の表面の粗面化に関しては種々の方法が知られているが、特に効果的に摩擦力を低減する方法として、電子写真感光体の表面形状を凸凹形状とする方法がある。
As a method of solving the above-described problems, there is a method of appropriately roughening the surface of the electrophotographic photosensitive member. This method is effective in reducing the contact area between the surface of the electrophotographic photosensitive member and the cleaning blade and reducing the frictional force.
Various methods are known for roughening the surface of such an electrophotographic photosensitive member. As a method for reducing the frictional force particularly effectively, the surface shape of the electrophotographic photosensitive member is made uneven. There is a way to do it.

一般に、樹脂フィルムや樹脂成形品の表面に凸凹加工を施す従来技術は、特許文献1に記載されているように、以下のような工程によって行われており、この方法を電子写真感光体に応用することができる。
(1) 加工される樹脂を、樹脂のガラス転移温度以上に加熱する(該樹脂が熱変形しやすいように軟化させる工程)、
(2) 型部材(金型)を、前記樹脂のガラス転移温度以上に加熱し、加圧接触させる(該樹脂が型部材の微細形状内に侵入する工程)、
(3) 一定時間経過後、樹脂および型部材をガラス転移温度以下に冷却する(微細形状を固定化する工程)、
(4) 型部材を樹脂から離間する。
In general, as described in Patent Document 1, a conventional technique for performing uneven processing on the surface of a resin film or a resin molded product is performed by the following steps, and this method is applied to an electrophotographic photosensitive member. can do.
(1) The resin to be processed is heated to a temperature equal to or higher than the glass transition temperature of the resin (step of softening the resin so that it is easily thermally deformed).
(2) A mold member (mold) is heated to a temperature higher than the glass transition temperature of the resin and brought into pressure contact (step of the resin entering the fine shape of the mold member).
(3) After a certain period of time, the resin and the mold member are cooled to below the glass transition temperature (step of fixing the fine shape),
(4) The mold member is separated from the resin.

上記工程によれば、型部材の表面(円筒状電子写真感光体の表面に形成する凸凹形状に対応する表面形状(凹凸形状)の面)の面積に対応して微細形状の一括転写が可能であり、種々の被加工物を上記工程に従い、個別に加工する(バッチ方式)ことが可能である。また、シート状の被加工物においては、被加工物を移動させながら、型部材の表面(凹凸形状の面)の面積分の形状転写を繰り返し行うこと(ステップアンドリピート方式)が可能である。上記工程において、加熱および冷却工程は重要である。加熱温度が低い場合には、十分な形状転写ができなかったり、冷却が不十分な場合には、転写された形状が崩れたりする問題が発生しやすい。したがって、加熱および冷却工程における制御条件は、樹脂の諸特性に応じて詳細な最適化がなされることが好ましい。   According to the above process, it is possible to perform batch transfer of fine shapes corresponding to the area of the surface of the mold member (surface of the surface shape (uneven shape) corresponding to the uneven shape formed on the surface of the cylindrical electrophotographic photosensitive member). Yes, various workpieces can be individually processed (batch method) according to the above-described steps. In addition, in a sheet-like workpiece, it is possible to repeatedly perform shape transfer for the area of the surface of the mold member (uneven surface) while moving the workpiece (step-and-repeat method). In the above steps, the heating and cooling steps are important. If the heating temperature is low, sufficient shape transfer cannot be performed, and if the cooling is insufficient, the transferred shape is liable to break down. Therefore, it is preferable that the control conditions in the heating and cooling steps are optimized in detail according to various characteristics of the resin.

また、型部材の表面(凹凸形状の面)の全面を被加工物に対して加圧するに際し、型部材の表面(凹凸形状の面)の面積内の当接圧力の均一化も重要な要素の1つである。円筒状電子写真感光体は、被加工面が曲率を有している。そして、弾性変形量が比較的小さく、かつ硬度のある円筒状基体上に形成された数μmから数十μmの厚さの樹脂層(表面層)を加工対象としている。したがって、そのような表面と型部材の接触を精度よく行うことは難しい。   In addition, when pressing the entire surface of the mold member (uneven surface) against the workpiece, it is also important to make the contact pressure uniform within the area of the surface of the mold member (uneven surface). One. The cylindrical electrophotographic photosensitive member has a curved surface to be processed. A resin layer (surface layer) having a thickness of several μm to several tens of μm formed on a cylindrical substrate having a relatively small amount of elastic deformation and hardness is a processing target. Therefore, it is difficult to accurately contact such a surface with the mold member.

これについて、従来から、種々の工夫や改良がなされてきている。その方法の1つは、図5に示すような、平板状の支持部材12の上に板状の型部材5を貼り付け、被加工物である円筒状電子写真感光体1の内部に円柱形状である挿入体11を挿入する(挿通させる)方法である。この方法では、該挿入体の軸方向両端部に対して何らかの手段で型部材に向かう力(圧力)を加えることによって、円筒状電子写真感光体1の円筒状基体2の上の表面層3の軸方向全体を型部材5に押し付けて加圧する。
円筒状電子写真感光体に挿入する挿入体の外径寸法は、被加工物である円筒状電子写真感光体の円筒状基体の内径寸法より小さくなくてはならない。そして、挿入体の円筒状基体に当接する部分の長さは、およそ円筒状電子写真感光体の円筒状基体の軸方向の長さに相当する長さが必要である。そのような条件を満たす挿入体の形状は細長くなる場合が多い。例えば、外径寸法が30mm程度の一般的な円筒状電子写真感光体の円筒状基体の内径寸法は28.5mm程度であり、かつA3用であれば全長が360mm程度になる。
こうした細長い挿入体の軸方向両端部に力を加えて、円筒状電子写真感光体の表面(外周面)を型部材に押し付けるような圧力を発生させると、その圧力は両端部付近に偏る傾向がある。その結果、円筒状電子写真感光体の表面に形成された凸凹形状の深さが、例えば、軸方向の中央部付近と端部付近とで差が生じることとなる。こうした圧力の端部への偏りを抑え、円筒状電子写真感光体の軸方向において均一な圧力を発生させるためには、挿入体は非常に強固な部材を用いることが好ましい。そして、挿入体を強固に構成するためには、鉄系の合金、ステンレス鋼、タングステンといった弾性係数や硬度の高い金属材料を用いることができる。さらに、挿入体の形状としては、より強度を確保するために、中空でない中実の円柱形状とするのが一般的である。
Conventionally, various ideas and improvements have been made. As one of the methods, as shown in FIG. 5, a plate-shaped mold member 5 is attached on a flat support member 12, and a cylindrical shape is formed inside a cylindrical electrophotographic photosensitive member 1 which is a workpiece. This is a method of inserting (inserting) the insert 11. In this method, the surface layer 3 on the cylindrical substrate 2 of the cylindrical electrophotographic photoreceptor 1 is applied by applying a force (pressure) toward the mold member to the both ends in the axial direction of the insert by some means. The entire axial direction is pressed against the mold member 5 and pressurized.
The outer diameter of the insert inserted into the cylindrical electrophotographic photosensitive member must be smaller than the inner diameter of the cylindrical substrate of the cylindrical electrophotographic photosensitive member that is the workpiece. The length of the portion of the insert that contacts the cylindrical substrate needs to be approximately the length corresponding to the axial length of the cylindrical substrate of the cylindrical electrophotographic photosensitive member. The shape of the insert that satisfies such conditions is often elongated. For example, the cylindrical body of a general cylindrical electrophotographic photosensitive member having an outer diameter of about 30 mm has an inner diameter of about 28.5 mm, and for A3, the total length is about 360 mm.
When a force is applied to both ends of the elongated insert in the axial direction to press the surface (outer peripheral surface) of the cylindrical electrophotographic photosensitive member against the mold member, the pressure tends to be biased near both ends. is there. As a result, the depth of the uneven shape formed on the surface of the cylindrical electrophotographic photosensitive member is different between, for example, the vicinity of the central portion and the vicinity of the end portion in the axial direction. In order to suppress such a bias to the end of the pressure and generate a uniform pressure in the axial direction of the cylindrical electrophotographic photosensitive member, it is preferable to use a very strong member for the insert. And in order to comprise an insertion body firmly, metal materials with high elastic modulus and hardness, such as an iron-type alloy, stainless steel, and tungsten, can be used. Furthermore, the shape of the insert is generally a solid cylindrical shape that is not hollow in order to ensure higher strength.

特開2004−288784号公報JP 2004-288784 A

被加工物としての円筒状電子写真感光体の表面に凸凹形状を形成する技術としては、先に述べたように被加工物の温度や型部材の温度、さらには型部材に円筒状電子写真感光体を押しつける圧力等の条件が重要である。しかしながら、大量生産として多数本の円筒状電子写真感光体を連続的に加工する生産活動を行う際には、これらの加工条件を短いリードタイムで、かつ正確に満たす状態を確保することが必要となる。加えて、設備投資を最小限に抑えることも重要である。さらに、円筒状電子写真感光体のような電子写真用部品に必要とされる、微細かつ正確に連続する表面形状を形成する上で、微小な異物等の混入を防止することも必要不可欠である。   As described above, the technology for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member as a workpiece includes the temperature of the workpiece, the temperature of the mold member, and the cylindrical electrophotographic photosensitive member on the mold member. Conditions such as pressure to press the body are important. However, when carrying out production activities that continuously process a large number of cylindrical electrophotographic photoreceptors for mass production, it is necessary to ensure that these processing conditions are accurately met with a short lead time. Become. In addition, it is important to minimize capital investment. Furthermore, in order to form a fine and accurate continuous surface shape required for electrophotographic parts such as a cylindrical electrophotographic photosensitive member, it is indispensable to prevent the entry of minute foreign matters and the like. .

本発明は、上記の課題を解決すべく検討してなされたものである。本発明の目的は、大量生産として円筒状電子写真感光体の表面に凸凹形状を形成する方法であって、リードタイムの短縮と、加工諸条件の正確性を確保し、かつ設備投資を抑え、かつ微小異物等の影響のない方法を提供することにある。
また、本発明の目的は、表面に凸凹形状が形成された円筒状電子写真感光体を製造する方法であって、リードタイムの短縮と、加工諸条件の正確性を確保し、かつ設備投資を抑え、かつ微小異物等の影響のない方法を提供することにある。
The present invention has been made in order to solve the above problems. The object of the present invention is a method of forming a concave-convex shape on the surface of a cylindrical electrophotographic photosensitive member for mass production, shortening the lead time, ensuring the accuracy of processing conditions, and suppressing the capital investment, Another object of the present invention is to provide a method free from the influence of minute foreign matters.
Another object of the present invention is a method of manufacturing a cylindrical electrophotographic photosensitive member having an uneven shape on the surface, which shortens the lead time, ensures the accuracy of processing conditions, and invests in equipment. An object of the present invention is to provide a method that suppresses and does not have the influence of minute foreign matters.

本発明は、円筒状基体および表面層を有する円筒状電子写真感光体の表面に凸凹形状を形成する方法であって、該方法が、
(A)該円筒状電子写真感光体の表面層の表面を洗浄する工程と、
(B)該円筒状電子写真感光体を所定の温度に調整する工程と、
(C)該円筒状電子写真感光体に挿入する挿入体を所定の温度に調整する工程と、
(D)該円筒状電子写真感光体に該挿入体を挿入する工程と、
(E)該凸凹形状に対応する表面形状を表面に有する型部材を所定の温度に維持した状態で、該円筒状電子写真感光体の表面層の表面に接触させ、該型部材の表面の該表面形状を該円筒状電子写真感光体の表面層の表面に転写する工程と、
(F)該円筒状電子写真感光体から該挿入体を抜き取る工程と、
(G)該円筒状電子写真感光体から抜き取られた挿入体の温度を所定の温度に下げる工程
を少なくとも有することを特徴とする、円筒状電子写真感光体の表面に凸凹形状を形成する方法に関する。
また、本発明は、上記の方法により円筒状電子写真感光体の表面に凸凹形状を形成することによって、表面に凸凹形状が形成された円筒状電子写真感光体を製造する方法に関する。
The present invention is a method of forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member having a cylindrical substrate and a surface layer, the method comprising:
(A) cleaning the surface of the surface layer of the cylindrical electrophotographic photosensitive member;
(B) adjusting the cylindrical electrophotographic photosensitive member to a predetermined temperature;
(C) adjusting the insert inserted into the cylindrical electrophotographic photosensitive member to a predetermined temperature;
(D) inserting the insert into the cylindrical electrophotographic photosensitive member;
(E) In a state where a mold member having a surface shape corresponding to the uneven shape is maintained at a predetermined temperature, the mold member is brought into contact with the surface of the surface layer of the cylindrical electrophotographic photosensitive member, and the surface of the mold member is Transferring the surface shape to the surface of the surface layer of the cylindrical electrophotographic photosensitive member;
(F) extracting the insert from the cylindrical electrophotographic photosensitive member;
(G) The present invention relates to a method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member, comprising at least a step of lowering the temperature of the inserted body extracted from the cylindrical electrophotographic photosensitive member to a predetermined temperature. .
The present invention also relates to a method for producing a cylindrical electrophotographic photosensitive member having a concavo-convex shape formed on the surface thereof by forming a concavo-convex shape on the surface of the cylindrical electrophotographic photosensitive member by the above method.

本発明によれば、大量生産として円筒状電子写真感光体の表面に凸凹形状を形成するに際し、リードタイムを短縮し、かつ加工諸条件の正確性を確保し、かつ設備投資を抑え、かつ微小異物等の影響のない加工を行うことができる。   According to the present invention, when forming an uneven shape on the surface of a cylindrical electrophotographic photoreceptor for mass production, the lead time is shortened, the accuracy of processing conditions is ensured, the equipment investment is suppressed, and the minute Processing without the influence of foreign matter and the like can be performed.

円筒状電子写真感光体の表面に凸凹形状を形成する方法のフローチャートである。It is a flowchart of the method of forming uneven shape on the surface of a cylindrical electrophotographic photosensitive member. 円筒状電子写真感光体の表面に凸凹形状を形成する方法の一例として挿入体の形状とその効果を説明するための図である。It is a figure for demonstrating the shape of an insertion body, and its effect as an example of the method of forming uneven shape on the surface of a cylindrical electrophotographic photosensitive member. 円筒状電子写真感光体の表面に凸凹形状を形成する方法の一例として弾性部材及びサポート部材とその効果を説明するための図である。It is a figure for demonstrating an elastic member and a support member, and its effect as an example of the method of forming uneven shape on the surface of a cylindrical electrophotographic photosensitive member. 実施例で用いた型部材の表面(凹凸形状の面)の図である。It is a figure of the surface (surface of unevenness | corrugation shape) of the type | mold member used in the Example. 円筒状電子写真感光体の表面に凸凹形状を形成する方法について従来技術を説明するための図である。It is a figure for demonstrating a prior art about the method of forming an uneven shape on the surface of a cylindrical electrophotographic photoreceptor.

以下、本発明の円筒状電子写真感光体(以下単に「ワーク」ともいう。)の表面(円筒状電子写真感光体の表面層の表面を意味する。)に凸凹形状を形成する方法(以下単に「凸凹形状形成方法」ともいう。)について、図を用いて説明する。
図1は、凸凹形状形成方法のフローチャートである。
ワーク投入工程は、図1にて図示しない前工程において、被加工物であるワークすなわち円筒状電子写真感光体を形成した後に、そのワークを図1に示す工程に投入する工程である。ワーク洗浄工程は、ワークの表面に付着している物質を除去する工程である。ワーク温調工程は、ワークの温度を所定の温度に調整する工程である。挿入体温調工程は、ワークに挿入する挿入体の温度を所定の温度に調整する工程である。挿入体挿入工程は、円筒体であるワークに前記挿入体を挿入する工程である。転写工程は、表面に凹凸形状を有する型部材(以下単に「型部材」ともいう。)の温度を所定の温度に調整した状態で、この型部材を、挿入体が挿入されて支持されたワークの表面に押し当て、型部材の凹凸形状をワークの表面に転写する工程である。挿入体離脱工程は、ワークから挿入体を抜き取って離脱させる工程である。挿入体冷却工程は、挿入体の温度を所定の温度に下げる工程である。ワーク排出工程は、図1に示す工程で加工されたワークを、図示しない後工程に向けて排出する工程である。
Hereinafter, a method of forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member (hereinafter, also simply referred to as “work”) of the present invention (which means the surface of the surface layer of the cylindrical electrophotographic photosensitive member) (hereinafter simply referred to as “uneven”). (It is also referred to as “uneven shape forming method”).
FIG. 1 is a flowchart of an uneven shape forming method.
The workpiece loading process is a process in which, in a previous process (not shown in FIG. 1), a workpiece, that is, a cylindrical electrophotographic photosensitive member is formed, and then the workpiece is loaded into the process shown in FIG. The workpiece cleaning step is a step of removing substances adhering to the surface of the workpiece. The workpiece temperature adjusting step is a step of adjusting the workpiece temperature to a predetermined temperature. The inserted body temperature adjusting step is a step of adjusting the temperature of the inserted body inserted into the workpiece to a predetermined temperature. The insert insertion step is a step of inserting the insert into a workpiece that is a cylindrical body. In the transfer step, a mold member having an uneven shape on the surface (hereinafter also simply referred to as “mold member”) is adjusted to a predetermined temperature, and the mold member is supported by inserting an insert. And pressing the surface of the mold member to transfer the uneven shape of the mold member to the surface of the workpiece. The insertion body detachment process is a process in which the insertion body is removed from the workpiece and removed. The insert cooling process is a process of lowering the temperature of the insert to a predetermined temperature. The workpiece discharging step is a step of discharging the workpiece processed in the step shown in FIG. 1 toward a subsequent step (not shown).

(1)円筒状電子写真感光体を投入する工程(ワーク投入工程)
図1で示すワーク投入工程で投入されるワークは、前記のように前工程で円筒状電子写真感光体として形成されるが、その材料及び形成形態は、既に一般に知られている種々の材料及び形成形態を適用することができる。一般的には、円筒状基体としてはアルミニウム等の金属材料を用いることが多く、また導電性を付与した樹脂材料やガラス等の材料を用いることも知られている。さらに、円筒状基体上に形成する層としては、酸化被膜層、下引き層、電荷発生層、電荷輸送層、表面保護層等々が広く知られており、本発明は、これら円筒状基体及びその上に形成される各層のどれを用いてワークとしても効果を得ることができる。
(1) A process of feeding a cylindrical electrophotographic photosensitive member (work feeding process)
The workpiece input in the workpiece input step shown in FIG. 1 is formed as a cylindrical electrophotographic photosensitive member in the previous step as described above. Forms can be applied. In general, a metal material such as aluminum is often used for the cylindrical substrate, and it is also known to use a material such as a resin material or glass imparted with conductivity. Furthermore, as the layer formed on the cylindrical substrate, an oxide film layer, an undercoat layer, a charge generation layer, a charge transport layer, a surface protective layer, and the like are widely known. Any of the layers formed above can be used as a work.

(2)円筒状電子写真感光体の表面層の表面を洗浄する工程(ワーク洗浄工程)
ワーク洗浄工程は、後続する工程にワークを供給するに際し、ワークの表面を洗浄するものである。ここで洗浄の対象とするのは、主にワークの表面に付着している、電子写真機能に寄与しない物質(以下単に「付着物質」ともいう。)であり、この付着物質をワーク表面から除去することを目的としている。付着物質としては、一般には微小な繊維や粉体等の固形物、あるいはオイル等の液体などである。これらの付着物質がワークの表面に付着している状態では、後続する各工程において汚染等の悪影響が生じる。例えば、ワーク温調工程においては、昇温方法として何らかの熱媒体をワークに接触させて熱交換する方法を用いた場合は、付着物質が熱媒体に移動又は転写することで、次に処理するワークに移動又は転写してしまうことがある。また、先に述べた転写工程においてもワーク表面の付着物質が型部材に移動又は転写することで、次に処理するワークに移動又は転写してしまうことがある。その付着物質がある程度以上の固さを有していた場合は、その付着物質の形状がワーク表面に転写形成されてしまうことがある。
(2) Cleaning the surface of the surface layer of the cylindrical electrophotographic photosensitive member (work cleaning process)
The workpiece cleaning process is to clean the surface of the workpiece when supplying the workpiece to a subsequent process. The object to be cleaned here is a substance that does not contribute to the electrophotographic function (hereinafter also simply referred to as “adhesive substance”) that adheres mainly to the surface of the workpiece, and removes the adhered substance from the workpiece surface. The purpose is to do. The adhering substance is generally a solid such as fine fibers or powder, or a liquid such as oil. In the state where these adhered substances are adhered to the surface of the workpiece, adverse effects such as contamination occur in each subsequent process. For example, in the work temperature adjustment process, when a heat exchange method is used in which a heat medium is brought into contact with the work as a method of raising the temperature, the attached substance moves or transfers to the heat medium, so that the work to be processed next is processed. May move or transfer. In the transfer step described above, the adhered substance on the workpiece surface may move or transfer to the workpiece to be processed next by moving or transferring to the mold member. If the adhered substance has a certain degree of hardness, the shape of the adhered substance may be transferred and formed on the workpiece surface.

続いてワーク洗浄工程におけるワークの洗浄方法について述べる。例えばエアーブローによってワーク表面から付着物質を離脱させる方法や、粘着性を有するロール部材をワークと同期回転させて互いに当接させることで、付着物質をワーク表面から前記ロール部材に移動させる方法などが有効である。また、前記ロール部材に変えてブラシ又は布等を用いて付着物質を掻き取る方法も有効である。また、布をワーク表面に当接させた状態でワークを回転させ、その布のワークに当接した面と反対側の面に除電エアーを吹き付け、その除電エアーの風圧で布をワークに押し当てるようにして付着物質をワーク表面から布に移動させる方法も有効である。この除電エアーを用いる方法は、布とワーク表面との摩擦によって生じる静電気によって付着物質がワーク表面から離脱しにくくなることを防止する効果がある。   Next, a workpiece cleaning method in the workpiece cleaning process will be described. For example, there are a method for removing the adhered substance from the work surface by air blow, a method for moving the adhered substance from the work surface to the roll member by causing the adhesive roll member to rotate synchronously with the work and contact each other. It is valid. In addition, a method of scraping the adhering substance using a brush or cloth instead of the roll member is also effective. In addition, the work is rotated while the cloth is in contact with the work surface, the static elimination air is blown onto the surface of the cloth opposite to the surface in contact with the work, and the cloth is pressed against the work with the wind pressure of the static elimination air. Thus, a method of moving the adhered substance from the work surface to the cloth is also effective. This method of using static elimination air has an effect of preventing the adhering substance from becoming difficult to separate from the work surface due to static electricity generated by friction between the cloth and the work surface.

(3)円筒状電子写真感光体を所定の温度に調整する工程(ワーク温調工程)
ワーク温調工程は、転写工程にてワーク表面に型部材が押しあてられる直前でのワーク温度(以下単に「転写ワーク温度」ともいう。)を所定の温度に調整する工程である。
続いてワーク温調工程における、ワークの温調方法について述べる。ワークの温調方法としては、熱媒体をワークに当接させるか又は近接させて熱交換する方法や、温調された風を吹き付ける方法などが有効である。また、ワークの温度を上昇させる方向で温調する場合は、円筒状基体が金属の場合は、ワーク近傍に誘導電流を印加したコイルを設置して誘導加熱する方法も有効である。
(3) Step of adjusting the cylindrical electrophotographic photosensitive member to a predetermined temperature (work temperature adjustment step)
The workpiece temperature adjusting step is a step of adjusting the workpiece temperature (hereinafter also simply referred to as “transfer workpiece temperature”) immediately before the mold member is pressed against the workpiece surface in the transfer step to a predetermined temperature.
Next, a method for adjusting the workpiece temperature in the workpiece temperature adjustment step will be described. As a method for adjusting the temperature of the workpiece, a method of exchanging heat by bringing a heat medium into contact with or close to the workpiece, a method of blowing a temperature-controlled wind, and the like are effective. In the case of adjusting the temperature in the direction in which the temperature of the workpiece is increased, if the cylindrical substrate is made of metal, a method in which induction heating is performed by installing a coil to which an induction current is applied in the vicinity of the workpiece is also effective.

(4)挿入体を所定の温度に調整する工程(挿入体温調工程)
挿入体とは、前記転写工程にてワーク表面に型部材を押し当てるにあたり、ワークに挿入してワークを支持する部材である。材質としては特に限定されることはないが、変形を避ける目的から比較的強度の高い部材であることが好ましく、例えば鉄やステンレスを用いた金属、また、炭化タングステンやコバルトなどを含有して構成した超硬合金などを用いるのが好ましい。さらには複数の部材を複合させて形成することも好ましい。
そして、この挿入体をワークに挿入して用いるに際して、前記のようにワーク温度を転写工程において転写ワーク温度にする目的から、挿入体も適切な温度に調整しておく必要がある。その温度は、ワーク温調工程で調整するワーク温度を、予め転写ワーク温度に対して転写工程までの雰囲気温度によって変化する分を見込んで設定している場合は、挿入体温調工程での設定温度はワーク温調工程でのワーク温度に近い温度を設定することが好ましい。そして、このようなワーク温調工程や挿入体温調工程での各温度設定は、ワークや挿入体をハンドリングする機構や形態によって生じる温度影響に合わせて適宜設定するべきである。
(4) Step of adjusting the insert to a predetermined temperature (insert body temperature adjustment step)
An insert is a member that supports a workpiece by inserting it into the workpiece when the mold member is pressed against the workpiece surface in the transfer step. The material is not particularly limited, but is preferably a member having a relatively high strength for the purpose of avoiding deformation, for example, a metal using iron or stainless steel, or containing tungsten carbide or cobalt. It is preferable to use a cemented carbide or the like. Furthermore, it is also preferable to form a composite of a plurality of members.
When the insert is inserted into a workpiece, the insert needs to be adjusted to an appropriate temperature for the purpose of setting the workpiece temperature to the transfer workpiece temperature in the transfer step as described above. If the workpiece temperature to be adjusted in the workpiece temperature adjustment process is set in advance in consideration of the change in the ambient temperature until the transfer process with respect to the transfer workpiece temperature, the set temperature in the insertion body temperature adjustment process It is preferable to set a temperature close to the workpiece temperature in the workpiece temperature adjusting step. And each temperature setting in such a workpiece | work temperature adjustment process or an insertion body temperature adjustment process should be suitably set according to the temperature influence which arises with the mechanism and form which handle a workpiece | work or an insertion body.

続いて、挿入体温調工程における、挿入体の温調方法について述べる。挿入体温調方法としては、熱媒体を挿入体に当接させるか又は近接させて熱交換する方法や、温調された風を吹き付ける方法などが有効である。また、挿入体の温度を上昇させる方向で温調する場合は、挿入体が金属の場合は、挿入体近傍に誘導電流を印加したコイルを設置して誘導加熱する方法も有効である。   Then, the temperature control method of an insert body in an insert body temperature control process is described. As a method for controlling the temperature of the inserted body, a method of exchanging heat by bringing the heat medium into contact with or close to the inserted body, a method of blowing a temperature-controlled wind, and the like are effective. In addition, in the case of adjusting the temperature in the direction of increasing the temperature of the insert, if the insert is a metal, a method of inductively heating by installing a coil to which an induction current is applied in the vicinity of the insert is also effective.

(5)円筒状電子写真感光体に該挿入体を挿入する工程(挿入体挿入工程)
挿入体挿入工程は、円筒体であるワークに挿入体を挿入する工程である。挿入に際しては、ワークを固定部材で固定しておき、挿入体をワークの円筒軸方向に移動させて挿入してもよいし、挿入体を固定しておき、ワークを挿入体の円筒軸方向に移動させて挿入してもよい。さらには双方を互いに移動させるようにしてもよい。ただし、挿入体は前記のように強度の高い部材として構成することが好ましく、そのためには、形状としてワークに挿入可能な範囲でできるだけ太く設定することが多い。この場合、ワークの内径部分との隙間距離が短くなることで、挿入体とワーク内径部分の擦れによるキズの発生や切り子などの発塵を生じやすくなる。そしてこうした切り子などの発塵は前記の付着物質と同じ弊害をもたらすことになる。そのようなことを避けるためには、挿入機構の精度を高めるか、またはワークと挿入体の互いのズレ方向を検知して修正するような軌道修正機構を搭載することが有効である。
(5) Step of inserting the insert into the cylindrical electrophotographic photosensitive member (insert insert step)
An insertion body insertion process is a process of inserting an insertion body into the workpiece | work which is a cylindrical body. When inserting, the workpiece may be fixed with a fixing member, and the insert may be moved in the cylindrical axis direction of the workpiece, or the insert may be fixed, and the workpiece may be fixed in the cylindrical axis direction of the insert. It may be moved and inserted. Furthermore, both may be moved relative to each other. However, the insert is preferably configured as a high-strength member as described above, and for that purpose, the insert is often set as thick as possible within the range that can be inserted into the workpiece. In this case, the gap distance between the inner diameter portion of the workpiece is shortened, so that scratches due to rubbing between the insert and the inner diameter portion of the workpiece and generation of dust such as facets are likely to occur. And dust generation such as a facet brings about the same harmful effect as the adhering substance. In order to avoid such a situation, it is effective to increase the accuracy of the insertion mechanism or mount a trajectory correction mechanism that detects and corrects the misalignment direction of the workpiece and the insert.

(6)型部材の表面の表面形状を円筒状電子写真感光体の表面層の表面に転写する工程(転写工程)
転写工程は、型部材の温度を所定の温度に調整した状態で、この型部材を、挿入体が挿入されて支持されたワークの表面に押し当て、型部材の凹凸形状をワークの表面に転写する工程である。
ここで、転写工程においてワークと型部材を互いに押し当てるにあたり、挿入体と押しつけ力の印加の方法について、好ましい構成として一例をあげ、その作用について述べる。
(6) Step of transferring the surface shape of the surface of the mold member to the surface of the surface layer of the cylindrical electrophotographic photosensitive member (transfer step)
In the transfer process, with the temperature of the mold member adjusted to a predetermined temperature, the mold member is pressed against the surface of the workpiece supported by the insertion body, and the uneven shape of the mold member is transferred to the surface of the workpiece. It is a process to do.
Here, when the workpiece and the mold member are pressed against each other in the transfer step, an example of a preferable configuration of the insertion body and the method of applying the pressing force will be described and its operation will be described.

(6−1)挿入体
図2において、挿入体4は円筒状電子写真感光体(ワーク)1の円筒状基体2の内部に挿入して用いる部材(器具)である。挿入体4は、軸部7と、軸部7の径方向外側に位置し、挿入体4を円筒状基体2に挿入したときに円筒状基体2の内周面に接触する外周面を有する当接部6と、軸部7と当接部6を繋ぐ繋部8とを有する。そして、当接部6は、その軸方向両端部に軸部7の外周面と隙間10を介して対向する内周面を有している。また、繋部8は、当接部6および軸部7の軸方向の略中央に位置している。また、軸部7は、その軸方向両端部に当接部6の内周面と隙間10を介して対向する外周面を有している。
(6-1) Insert In FIG. 2, the insert 4 is a member (tool) that is used by being inserted into the cylindrical base 2 of the cylindrical electrophotographic photosensitive member (work) 1. The insert 4 is positioned on the outer side in the radial direction of the shaft 7 and has an outer peripheral surface that comes into contact with the inner peripheral surface of the cylindrical base 2 when the insert 4 is inserted into the cylindrical base 2. It has the contact part 6, and the connection part 8 which connects the axial part 7 and the contact part 6. FIG. The abutting portion 6 has an inner peripheral surface facing the outer peripheral surface of the shaft portion 7 with a gap 10 at both ends in the axial direction. Further, the connecting portion 8 is located at the approximate center in the axial direction of the contact portion 6 and the shaft portion 7. Further, the shaft portion 7 has outer peripheral surfaces opposed to the inner peripheral surface of the contact portion 6 through the gap 10 at both axial ends.

(6−2)型部材
また、型部材5は、その表面(凹凸形状の面)がワーク1の表面(被加工面)に向かうように配置される。型部材5は、十分な厚みを有する変形しにくい強固な部材であることが好ましい。あるいは、型部材5がシート状であって比較的変形しやすい部材であれば、型部材5の裏面(凹凸形状の面でない側の面)を平板状の支持部材(不図示)で支持してもよい。この平板状の支持部材は、金属などの変形しにくい強固な部材であることが好ましい。また、ヒーターで型部材5を加熱するようにしてもよい。
なお、転写工程においては、軸部7と型部材5とが近づくように、軸部7の軸方向両端部および型部材5の少なくとも一方に、当接部6の外周面と円筒状基体2の内周面とが押し付けられる力(圧力)が加えられる。この力は、ワーク1の表面層3の表面(被加工面)と型部材5の表面(凹凸形状の面)とを互いに押し付けて(圧接させて)、型部材5の表面形状(凹凸形状)をワーク1の表面層3の表面(被加工面)に転写することを目的とする力である。したがって、例えば、型部材5が平板状の支持部材上に支持され、固定されている状態で、この力を軸部7の軸方向両端部に加えてもよい。逆に、軸部7を固定しておき、型部材5が支持部材上に支持されている状態で、この力を(支持部材を介して)型部材に加えてもよい。また、軸部7と型部材5の双方に力を加えてもよい。この力を軸部7の軸方向両端部や型部材5などのいずれの箇所に加えるかは、本発明の効果に影響を生じさせるものではないため、説明の便宜上、以後の説明においては、型部材5が固定されている状態で、力を軸部7の軸方向両端部に加える場合を例に挙げて行う。
(6-2) Mold Member The mold member 5 is disposed such that the surface (uneven surface) faces the surface (work surface) of the workpiece 1. The mold member 5 is preferably a strong member that has a sufficient thickness and is difficult to deform. Alternatively, if the mold member 5 is a sheet-like member that is relatively easily deformed, the back surface of the mold member 5 (the surface that is not the uneven surface) is supported by a flat support member (not shown). Also good. The flat support member is preferably a strong member that is difficult to deform, such as metal. Further, the mold member 5 may be heated with a heater.
In the transfer step, the outer peripheral surface of the abutting portion 6 and the cylindrical base body 2 are placed on at least one of the axial end portions of the shaft portion 7 and the mold member 5 so that the shaft portion 7 and the mold member 5 approach each other. A force (pressure) is pressed against the inner peripheral surface. This force presses the surface (surface to be processed) of the surface layer 3 of the workpiece 1 and the surface of the mold member 5 (surfaces with concaves and convexes) against each other (pressure contact) to form the surface shape of the mold member 5 (concave and convex shapes). Is a force intended to transfer to the surface (surface to be processed) of the surface layer 3 of the workpiece 1. Therefore, for example, this force may be applied to both axial ends of the shaft portion 7 in a state where the mold member 5 is supported and fixed on the flat support member. Conversely, this force may be applied to the mold member (via the support member) while the shaft portion 7 is fixed and the mold member 5 is supported on the support member. Further, a force may be applied to both the shaft portion 7 and the mold member 5. Whether the force is applied to both ends of the shaft portion 7 in the axial direction or the mold member 5 does not affect the effect of the present invention. A case where force is applied to both axial ends of the shaft portion 7 while the member 5 is fixed will be described as an example.

(6−3)当接部
当接部6には、軸方向の繋部8の端部に対応する位置から当接部6の端部までの部分として、上記のように軸部7の軸方向両端部に力が加えられた状態でも軸部7と接することがない部分が存在する。この部分は当接部6の一部であり、繋部8の位置と長さによって位置が特定される部分である。以下、この当接部6の軸方向の、繋部8の端部に対応する位置から当接部6の端部までの部分を、説明の便宜上、部分9ともいう。
まず、挿入体4において、上記力が軸方向両端部に加えられた軸部7が、その力を繋部8に伝達する。次に、繋部8に伝達された力は、当接部6の部分9に分散されて伝達される。これにより、軸部7の軸方向両端部に加えられた力は、当接部6の全体に均一に伝達されることになる。また、軸部7の軸方向両端部に力が加えられた際、部分9は軸部7と接触しないので、軸部7の軸方向両端部に力が加えられている間、部分9と軸部7との間には隙間10が維持される。ここで、軸部7の外径寸法は、軸部7の軸方向両端部に力が加えられる際に、軸部7の外周面と当接部6の部分9の内周面とが接触しないように設定される。
(6-3) Abutting portion The abutting portion 6 includes a shaft from the position corresponding to the end of the connecting portion 8 in the axial direction to the end of the abutting portion 6 as described above. There is a portion that does not contact the shaft portion 7 even when a force is applied to both ends in the direction. This part is a part of the contact part 6 and is a part whose position is specified by the position and length of the connecting part 8. Hereinafter, the portion from the position corresponding to the end portion of the connecting portion 8 in the axial direction of the contact portion 6 to the end portion of the contact portion 6 is also referred to as a portion 9 for convenience of explanation.
First, in the insert 4, the shaft portion 7 to which the force is applied to both ends in the axial direction transmits the force to the connecting portion 8. Next, the force transmitted to the connecting portion 8 is distributed and transmitted to the portion 9 of the contact portion 6. Thereby, the force applied to both axial ends of the shaft portion 7 is uniformly transmitted to the entire contact portion 6. Further, when a force is applied to both axial ends of the shaft portion 7, the portion 9 does not come into contact with the shaft portion 7. Therefore, while the force is applied to both axial ends of the shaft portion 7, the portion 9 and the shaft A gap 10 is maintained between the portion 7. Here, the outer diameter of the shaft portion 7 is such that the outer peripheral surface of the shaft portion 7 does not contact the inner peripheral surface of the portion 9 of the contact portion 6 when a force is applied to both axial end portions of the shaft portion 7. Is set as follows.

多数本のワークを連続的に加工する際、個々のワークの円筒状基体の肉厚のばらつきが加工結果に影響しないようにするための要件は、次の2点である。1点目の要件は、挿入体が個々の円筒状基体の肉厚のばらつきを吸収しながら加える圧力をワークに伝達することであり、挿入体にはある程度の柔軟性が求められるという点である。2点目の要件は、加える圧力をワークの軸方向において均一に保つことである。   When machining a large number of workpieces continuously, the following two points are required to prevent the variation in the thickness of the cylindrical base of each workpiece from affecting the machining results. The first requirement is that the insert transmits pressure applied to the workpiece while absorbing variations in the thickness of individual cylindrical substrates, and the insert needs to have a certain degree of flexibility. . The second requirement is to keep the applied pressure uniform in the axial direction of the workpiece.

まず、1点目の要件について述べる。図2に示す構成では、挿入体4に隙間10が設けられているので、軸部7が弾性的に屈曲することが可能である。軸部7が弾性的に屈曲することによって、挿入体4は、個々のワーク1の円筒状基体2の肉厚のばらつきを許容した状態で、ワーク1に対して圧力を加えることができる。例えば、多数本のワークを加工する中で、円筒状基体の肉厚が、所定のものよりも厚いワークを加工するときには、軸部7がそれに応じた屈曲をすることにより、圧力がより高くなることを抑える。   First, the first requirement will be described. In the configuration shown in FIG. 2, since the gap 10 is provided in the insert 4, the shaft portion 7 can be bent elastically. When the shaft portion 7 is elastically bent, the insert 4 can apply pressure to the workpiece 1 in a state where variation in the thickness of the cylindrical base 2 of each workpiece 1 is allowed. For example, when machining a large number of workpieces, when machining a workpiece having a cylindrical substrate thickness greater than a predetermined thickness, the shaft portion 7 bends accordingly, thereby increasing the pressure. Suppress it.

次に、2点目の要件について述べる。図2に示す構成では、挿入体4は、当接部6と軸部7の間に隙間10を有しているため、軸部7の軸方向両端部に加えられた力が当接部6に伝達されるのは、当接部6の端部ではなく、繋部8の位置となる。より詳しくは、繋部8のうち、軸方向の最も当接部6の端部に近い位置である。そして、この力が伝達される位置から、ワーク1の軸方向における表面層3の塗布領域の端部に対応する位置までには、部分9が存在している。部分9は、隙間10によって軸部7からの力の伝達を直接は受けないから、上記位置(繋部8のうち、軸方向の最も当接部6の端部に近い位置)に伝達された軸部7からの力を、効果的に分散させることができる。これによって、当接部6は、ワーク1に加える圧力の特定の部位への集中を緩和させることができる。   Next, the second requirement will be described. In the configuration shown in FIG. 2, the insert 4 has a gap 10 between the abutting portion 6 and the shaft portion 7, so that the force applied to both axial ends of the shaft portion 7 is applied to the abutting portion 6. It is not the end of the contact part 6 but the position of the connecting part 8 that is transmitted to. More specifically, the position of the connecting portion 8 is closest to the end of the contact portion 6 in the axial direction. And the part 9 exists from the position corresponding to the edge part of the application | coating area | region of the surface layer 3 in the axial direction of the workpiece | work 1 from the position where this force is transmitted. Since the portion 9 does not directly receive the transmission of force from the shaft portion 7 by the gap 10, it is transmitted to the above position (the position of the connecting portion 8 closest to the end portion of the contact portion 6 in the axial direction). The force from the shaft portion 7 can be effectively dispersed. Thereby, the contact part 6 can relieve | moderate the concentration to the specific site | part of the pressure applied to the workpiece | work 1. FIG.

また、隙間10は、軸部7の弾性的な屈曲を可能にすることを目的としているので、必ずしも空間である必要はない。例えば、樹脂やゴムやスポンジといった、軸部7および当接部6の材料よりも弾性係数や硬度が十分に小さい部材を隙間10に配置しても、軸部7の弾性的な屈曲が可能であれば、本発明の効果を得ることができる。軸部7および当接部6の材料よりも弾性係数や硬度が十分に小さい部材を隙間10に配置することは、不要なゴミなどの侵入を抑えるなどの効果が期待できる。さらに、軸部7の弾性的な屈曲を可能にする目的から、隙間10の軸方向の距離や径方向の寸法は、上記力の強弱などから効果を維持できる範囲において適宜設定されるものである。   Further, the gap 10 is intended to enable elastic bending of the shaft portion 7, and therefore does not necessarily have to be a space. For example, even if a member such as resin, rubber, or sponge, whose elastic coefficient or hardness is sufficiently smaller than the material of the shaft portion 7 and the contact portion 6 is disposed in the gap 10, the shaft portion 7 can be elastically bent. If it exists, the effect of this invention can be acquired. Arranging a member having a sufficiently smaller elastic coefficient and hardness than the material of the shaft portion 7 and the contact portion 6 in the gap 10 can be expected to have an effect of suppressing the entry of unnecessary dust and the like. Furthermore, for the purpose of enabling elastic bending of the shaft portion 7, the axial distance and the radial dimension of the gap 10 are appropriately set within a range in which the effect can be maintained due to the strength of the force. .

(6−4)型部材の支持
次に、型部材の支持について述べる。型部材の形態は、平面形状であってもよく、あるいはロール形状であってもよい。
転写工程において平面状の型部材を使用する場合の支持について好ましい構成の一例をあげ、その作用について述べる。図3において、ベース部材15を設け、その上に弾性部材14を配設する。その弾性部材14の上にサポート部材13を配設し、その上に型部材5を配設する。弾性部材14を配設する目的は、ワーク1の長手方向の押しつけ力を中央部分から端部部分にわたってより均一に分散させることである。弾性部材14の材料としては、硬度の低い金属やゴム、スポンジなどが好ましい。サポート部材13を配設する目的は、型部材5と弾性部材14のみを配設するだけでは、押しつけによる圧力がワーク1の表面と型部材5とが当接する線上に集中するため、型部材5及び弾性部材14が大きく変形してしまうことを防ぐことである。サポート部材13の材料は、金属や強度の高い樹脂材料のような比較的硬い部材を用いることが好ましい。
そして、型部材5を支持し、回転自在に支持したワーク1と型部材5を互いに押しあてた状態で、ベース部材15又はワーク1の少なくともどちらか一方をワーク1の円筒軸に直交する方向に移動させる。このようにして、ワーク1の表面全周にわたって型部材5の表面の凹凸形状を転写することができる。
(6-4) Support of mold member Next, support of the mold member will be described. The form of the mold member may be a planar shape or a roll shape.
An example of a preferable configuration for supporting when a planar mold member is used in the transfer step will be given and its operation will be described. In FIG. 3, a base member 15 is provided, and an elastic member 14 is disposed thereon. The support member 13 is disposed on the elastic member 14, and the mold member 5 is disposed thereon. The purpose of disposing the elastic member 14 is to more uniformly disperse the pressing force in the longitudinal direction of the work 1 from the central portion to the end portion. As a material of the elastic member 14, a metal, rubber, sponge, or the like having low hardness is preferable. The purpose of disposing the support member 13 is to dispose only the mold member 5 and the elastic member 14, and the pressure due to pressing is concentrated on the line where the surface of the workpiece 1 and the mold member 5 come into contact with each other. The elastic member 14 is prevented from being greatly deformed. The material of the support member 13 is preferably a relatively hard member such as a metal or a high-strength resin material.
Then, in a state where the mold member 5 is supported and the work 1 and the mold member 5 that are rotatably supported are pressed against each other, at least one of the base member 15 and the work 1 is set in a direction perpendicular to the cylindrical axis of the work 1. Move. In this way, the concavo-convex shape on the surface of the mold member 5 can be transferred over the entire surface of the workpiece 1.

(6−5)温度調節
また、型部材の温度調整方法としては、図3に示すベース部材15に棒状あるいは面状のヒーター、又は温調流体の循環系統を埋設させるなどの方法を用いることができる。
ここで、ワーク及び型部材の温度について必要な点について述べる。型部材の凹凸形状をワークに押し付けてその形状を転写する際に重要な温度は、ワーク表面に形成された層のうち、型部材の凹凸形状に従って変形を生じさせる層の温度である。その層は電子写真機能を満足させる限り特に限定されるものではないが、説明の便宜上、ここでは変形層と呼ぶこととする。また、ワークの表面に型部材の凹凸形状が押しつけられている時点の変形層の温度を変形到達温度と呼ぶこととする。そして、この変形層の変形到達温度は、変形層のガラス転移点以上、融点未満になるようにして加工することが好ましい。それは、転写工程において変形層の変形到達温度が変形層のガラス転移点以上であれば、押しつけの圧力を緩和することができ、また、ワークに形成した各層とその各接合面に対する不要なストレスを緩和することができる。この各層とその各接合面にストレスが生じた場合は、各層間の剥がれや、帯電における電位影響を引き起こすことがある。さらに、変形層の変形到達温度が変形層の融点未満であれば、型部材がワーク表面から離脱する時点で変形層に転写形成された凸凹形状が消失することを防止することができる。さらに、変形層の温度は、転写工程を終了した後にはガラス転移点未満に下がっていることが必要である。その理由は、変形層の温度がガラス転移点以上の状態では変形層の形状維持性が低く、次第に凸凹形状形成前の状態に戻ることがあるからである。
(6-5) Temperature Adjustment As a method for adjusting the temperature of the mold member, a method of embedding a rod-shaped or planar heater or a temperature control fluid circulation system in the base member 15 shown in FIG. it can.
Here, points necessary for the temperature of the workpiece and the mold member will be described. An important temperature when the uneven shape of the mold member is pressed against the workpiece and transferred is the temperature of the layer that causes deformation in accordance with the uneven shape of the mold member among the layers formed on the surface of the workpiece. The layer is not particularly limited as long as it satisfies the electrophotographic function, but for convenience of explanation, it is referred to as a deformation layer here. In addition, the temperature of the deformation layer at the time when the uneven shape of the mold member is pressed against the surface of the workpiece is referred to as a deformation reaching temperature. And it is preferable to process so that the deformation | transformation ultimate temperature of this deformation layer may become more than the glass transition point of a deformation layer, and less than melting | fusing point. If the temperature at which the deformed layer reaches the deformation temperature is higher than the glass transition point of the deformed layer in the transfer process, the pressing pressure can be relieved, and unnecessary stress is applied to each layer formed on the workpiece and its joint surface. Can be relaxed. When stress is generated on each layer and each joint surface, peeling between layers or potential influence on charging may be caused. Furthermore, if the deformation attainment temperature of the deformable layer is lower than the melting point of the deformable layer, it is possible to prevent the uneven shape transferred and formed on the deformable layer from disappearing when the mold member is detached from the workpiece surface. Furthermore, the temperature of the deformed layer needs to drop below the glass transition point after the transfer process is completed. The reason is that when the temperature of the deformable layer is at or above the glass transition point, the shape maintainability of the deformable layer is low and may gradually return to the state before forming the irregular shape.

このような理由から、ワークの転写ワーク温度は変形層のガラス転移点未満で、かつ型部材の温度は、転写時点で変形層の温度を一時的に変形層のガラス転移点以上かつ融点未満にまで引き上げるに十分な温度に調整する必要がある。
なお、前記のようにワーク温調工程で調整するワーク温度は、前記のように転写工程にてワーク表面に型部材が押しあてられる直前での転写ワーク温度が所定の温度になるように調整するべきである。したがって、もし工程内の雰囲気温度が所定の転写ワーク温度よりも低い場合は、このワーク温調工程で調整する温度を、ワークの工程間の移動に際して損失する温度分を予め加えて設定するべきである。また、ワーク温度及び挿入体の温度は転写時点で型部材とワークが当接することで型部材からの熱移動が生じ、転写前よりも僅かに上昇することがある。この場合、前記のように転写後における変形層の温度がガラス転移点以上になることで形状維持性の低い状態を引き起こすことのないように、ワークの転写ワーク温度を、前記熱移動分を考慮して低めに設定することが必要である。
For these reasons, the workpiece transfer temperature is lower than the glass transition point of the deformation layer, and the temperature of the mold member is temporarily above the glass transition point of the deformation layer and below the melting point at the time of transfer. It is necessary to adjust the temperature to a temperature sufficient to raise the temperature.
Note that the workpiece temperature adjusted in the workpiece temperature adjustment step as described above is adjusted so that the transfer workpiece temperature immediately before the mold member is pressed against the workpiece surface in the transfer step as described above becomes a predetermined temperature. Should. Therefore, if the atmospheric temperature in the process is lower than the predetermined transfer work temperature, the temperature adjusted in the work temperature adjustment process should be set in advance by adding the temperature lost during movement of the work between processes. is there. Also, the workpiece temperature and the temperature of the insert may cause heat transfer from the mold member due to the contact between the mold member and the workpiece at the time of transfer, and may be slightly higher than before the transfer. In this case, the transfer work temperature of the work is considered in consideration of the heat transfer so that the deformed layer temperature after the transfer is not lower than the glass transition point as described above, so as not to cause a low shape maintainability state. Therefore, it is necessary to set it low.

(7)挿入体を抜き取る工程(挿入体離脱工程)
挿入体離脱工程は、ワークから挿入体を離脱、すなわち抜き取る工程である。離脱に際しては、ワークを固定部材で固定しておき、挿入体をワークの円筒軸方向に移動させて離脱してもよいし、挿入体を固定しておき、ワークを挿入体の円筒軸方向に移動させて離脱してもよい。さらには双方を互いに移動させるようにしてもよい。ただし、挿入体は前記のように強度の高い部材として構成することが好ましく、そのためには、形状としてワークに挿入可能な範囲でできるだけ太く設定することが多い。この場合、ワークの内径部分との隙間距離が短くなることで、挿入体とワーク内径部分の擦れによるキズの発生や切り子などの発塵を生じやすくなる。そしてこうした切り子などの発塵は前記の付着物質と同じ弊害をもたらすことになる。そのようなことを避けるためには、挿入機構の精度を高めるか、またはワークと挿入体の互いのズレ方向を検知して修正する様な軌道修正機構を搭載することが有効である。
なお、ワークは前記挿入体離脱工程で挿入体と離脱した後に、図1に示すワーク排出工程から排出される。一方、挿入体は図1に示す挿入体冷却工程に移動する。
(7) Step of removing the insert (insert removal step)
The insertion body detachment process is a process of detaching the insertion body from the workpiece, that is, extracting the insertion body. At the time of detachment, the workpiece may be fixed with a fixing member and the insert may be moved in the direction of the cylindrical axis of the workpiece, or the insert may be fixed and the workpiece may be fixed in the direction of the cylindrical axis of the insert. It may be moved away. Furthermore, both may be moved relative to each other. However, the insert is preferably configured as a high-strength member as described above, and for that purpose, the insert is often set as thick as possible within the range that can be inserted into the workpiece. In this case, the gap distance between the inner diameter portion of the workpiece is shortened, so that scratches due to rubbing between the insert and the inner diameter portion of the workpiece and generation of dust such as facets are likely to occur. And dust generation such as a facet brings about the same harmful effect as the adhering substance. In order to avoid such a situation, it is effective to increase the accuracy of the insertion mechanism or mount a trajectory correction mechanism that detects and corrects the misalignment direction of the workpiece and the insert.
The workpiece is discharged from the workpiece discharge step shown in FIG. 1 after being separated from the insert in the insert removal step. On the other hand, the insert moves to the insert cooling process shown in FIG.

(8)挿入体の温度を所定の温度に下げる工程(挿入体冷却工程)
挿入体冷却工程は、前記のようにワーク及び挿入体が転写時に型部材からの熱移動によって温度上昇が起こることに対し、挿入体の温度上昇分について冷却するものである。そして挿入体冷却方法としては、冷却媒体を挿入体に当接させるか又は近接させて熱交換する方法や、温調された風を吹き付ける方法などが有効である。なお、挿入体冷却工程で冷却された挿入体は、図1に示す挿入体温調工程に移動する。
(8) Step of lowering the temperature of the insert to a predetermined temperature (insert cooling step)
In the insert cooling process, as described above, the temperature of the work and the insert rises due to heat transfer from the mold member during transfer, and the temperature rise of the insert is cooled. As a method for cooling the insert, a method of exchanging heat by bringing a cooling medium into contact with or close to the insert and a method of blowing a temperature-controlled wind are effective. The inserted body cooled in the inserted body cooling process moves to the inserted body temperature adjusting process shown in FIG.

(9)表面に凸凹形状が形成された円筒状電子写真感光体を排出する工程(ワーク排出工程)
ワーク排出工程は、前記のようにして挿入体離脱工程で挿入体と離脱したワークを、後工程に向けて排出する工程である。
(10)雰囲気環境
次に、これまで述べてきた図1に示す各工程の雰囲気環境について述べる。雰囲気中に微小な繊維や粉体等の浮遊粒子が存在すると、特に転写工程では、浮遊粒子がある程度以上の固さを有していた場合は、その浮遊粒子の形状がワーク表面に転写形成されてしまうことがある。こうしたことから、凸凹形状を形成する方法の工程は、浮遊粒子濃度が制限された雰囲気環境中で実行されることが好ましい。そして浮遊粒子濃度が制限された環境を維持するためには、工程全体をブース化して囲い、HEPAフィルター等の塵埃除去機能のあるフィルターを通した空気を導入するなどの方法を用いることができる。
(9) A step of discharging the cylindrical electrophotographic photosensitive member having an uneven surface formed thereon (work discharge step)
The work discharging process is a process of discharging the work detached from the insert in the insert removing process as described above to a subsequent process.
(10) Atmospheric Environment Next, the atmospheric environment of each process shown in FIG. 1 described so far will be described. If airborne particles such as fine fibers or powder exist in the atmosphere, especially in the transfer process, if the airborne particles have a certain degree of hardness, the shape of the airborne particles is transferred and formed on the workpiece surface. May end up. For these reasons, it is preferable that the steps of the method for forming the uneven shape be performed in an atmospheric environment in which the concentration of suspended particles is limited. In order to maintain an environment where the concentration of suspended particles is limited, a method can be used in which the entire process is boothed and air is introduced through a filter having a dust removing function such as a HEPA filter.

以下に、具体的な実施例を挙げて本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。
(円筒状電子写真感光体の製造)
外径30mm、長さ357.5mm、肉厚0.7mmのアルミニウム合金(A3003)製のシリンダーを円筒状基体とした。
次に、表1に記載の材料をボールミルに入れて20時間分散処理することによって、導電層用塗布液を調製した。
Hereinafter, the present invention will be described in more detail with reference to specific examples. In the examples, “part” means “part by mass”.
(Manufacture of cylindrical electrophotographic photoreceptor)
A cylinder made of an aluminum alloy (A3003) having an outer diameter of 30 mm, a length of 357.5 mm, and a thickness of 0.7 mm was used as a cylindrical substrate.
Next, the materials shown in Table 1 were placed in a ball mill and dispersed for 20 hours to prepare a coating solution for a conductive layer.

Figure 2014059439
Figure 2014059439

この導電層用塗布液を円筒状基体上に浸漬塗布し、得られた塗膜を温度140℃で1時間熱硬化させることによって、膜厚が15μmの導電層を形成した。
次に、共重合ナイロン(商品名:アミランCM8000、東レ(株)製)10部、および、メトキシメチル化6ナイロン(商品名:トレジンEF−30T、帝国化学(株)製)30部を、メタノール400部およびn−ブタノール200部の混合溶剤に溶解させることによって、下引き層(中間層)用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、得られた塗膜を温度100℃で30分間乾燥させることによって、膜厚が0.45μmの下引き層(中間層)を形成した。
The conductive layer coating solution was dip-coated on a cylindrical substrate, and the resulting coating film was thermally cured at a temperature of 140 ° C. for 1 hour to form a conductive layer having a thickness of 15 μm.
Next, 10 parts of copolymer nylon (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 30 parts of methoxymethylated 6 nylon (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) are mixed with methanol. A coating solution for an undercoat layer (intermediate layer) was prepared by dissolving in 400 parts of a mixed solvent of 200 parts and n-butanol. The undercoat layer coating solution was dip-coated on the conductive layer, and the resulting coating film was dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer (intermediate layer) having a thickness of 0.45 μm. .

次に、CuKα特性X線回折のブラック角2θ±0.2°の7.3°および28.1°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、下記構造式(1)で示されるカリックスアレーン化合物0.2部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学(株)製)10部、および、シクロヘキサノン600部を、直径1mmガラスビーズを用いたサンドミルに入れて4時間分散処理した後、これに酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。   Next, 20 parts of a crystalline hydroxygallium phthalocyanine crystal (charge generation material) having strong peaks at 7.3 ° and 28.1 ° of black angle 2θ ± 0.2 ° of CuKα characteristic X-ray diffraction, the following structural formula A sand mill using glass beads having a diameter of 1 mm, 0.2 part of the calixarene compound represented by (1), 10 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone. The dispersion was treated for 4 hours and then 700 parts of ethyl acetate was added thereto to prepare a coating solution for charge generation layer.

Figure 2014059439
Figure 2014059439

この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を温度80℃で15分間乾燥させることによって、膜厚が0.17μmの電荷発生層を形成した。
次に、下記構造式(2)で示される化合物(電荷輸送物質(正孔輸送性化合物))70部、および、ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)100部を、モノクロロベンゼン600部およびメチラール200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。
This charge generation layer coating solution was dip-coated on the undercoat layer, and the resulting coating film was dried at a temperature of 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm.
Next, 70 parts of a compound represented by the following structural formula (2) (charge transporting substance (hole transporting compound)) and 100 parts of a polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) Was dissolved in a mixed solvent of 600 parts of monochlorobenzene and 200 parts of methylal to prepare a coating solution for charge transport layer.

Figure 2014059439
Figure 2014059439

この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を温度100℃で30分間乾燥させることによって、膜厚が15μmの電荷輸送層を形成した。なお、この浸漬塗布に際して、円筒状基体に対する塗布上端の未塗布幅を1.5mmとした。また、浸漬塗布後、塗膜乾燥前に塗布下端をフッ素ゴムブレードで円筒状基体端から1.5mmの幅で剥離した。   This charge transport layer coating solution was dip-coated on the charge generation layer, and the resulting coating film was dried at a temperature of 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 15 μm. In this dip coating, the uncoated width at the upper end of the coating on the cylindrical substrate was 1.5 mm. Further, after the dip coating, the lower end of the coating was peeled off from the end of the cylindrical substrate with a width of 1.5 mm with a fluoro rubber blade before the coating film was dried.

次に、潤滑剤用の分散剤としてのフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)製)0.5部を、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)社製)30部および1−プロパノール30部の混合溶剤に溶解させた後、これに潤滑剤としてのポリテトラフルオロエチレン粒子(商品名:ルブロンL−2、ダイキン工業(株)製)10部を加え、これらを高圧分散機(商品名:マイクロフルイダイザーM−110EH、米Microfluidics社製)に入れ、600kgf/cmの圧力で4回の分散処理を施した。これをポリフロンフィルター(商品名PF−040、アドバンテック東洋(株)製)で濾過することによって、潤滑剤分散液を得た。その後、得られた潤滑剤分散液に下記構造式(3)で示される化合物(正孔輸送性化合物)90部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン60部および1−プロパノール60部を加え、これをポリフロンフィルター(商品名:PF−020、アドバンテック東洋(株)製)で濾過することによって、保護層用塗布液を調製した。 Next, 0.5 part of fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) as a dispersant for the lubricant is added to 1,1,2,2,3,3,4- After being dissolved in a mixed solvent of 30 parts of heptafluorocyclopentane (trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd.) and 30 parts of 1-propanol, polytetrafluoroethylene particles (trade name) as a lubricant are added thereto. : Lubron L-2, manufactured by Daikin Industries, Ltd.) 10 parts, these were put into a high-pressure disperser (trade name: Microfluidizer M-110EH, manufactured by Microfluidics, USA), and 4 at a pressure of 600 kgf / cm 2. The dispersion process was performed once. This was filtered through a polyflon filter (trade name: PF-040, manufactured by Advantech Toyo Co., Ltd.) to obtain a lubricant dispersion. Thereafter, 90 parts of a compound represented by the following structural formula (3) (hole transporting compound) and 60 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane are obtained in the obtained lubricant dispersion. Then, 60 parts of 1-propanol was added, and this was filtered with a polyflon filter (trade name: PF-020, manufactured by Advantech Toyo Co., Ltd.) to prepare a coating solution for a protective layer.

Figure 2014059439
Figure 2014059439

この保護層用塗布液を電荷輸送層上に浸漬塗布した。なお、この浸漬塗布に際して、円筒状基体に対する塗布上端の未塗布幅を1.5mmとした。また、浸漬塗布後、塗膜乾燥前に塗布下端をフッ素ゴムブレードで円筒状基体端から1.5mmの幅で剥離した。
その後、得られた塗膜を、大気中において、温度50℃で10分間乾燥させた。その後、窒素中において、加速電圧150kV、ビーム電流3.0mAの条件で円筒状基体を200rpmで回転させながら1.6秒間塗膜に電子線を照射した。引き続いて窒素中において塗膜の温度を25℃から125℃まで30秒かけて昇温させながら塗膜の硬化反応を行った。なお、このときの電子線の吸収線量を測定したところ、15kGyであった。また、電子線照射および加熱硬化反応雰囲気の酸素濃度は15ppm以下であった。その後、大気中において、塗膜の温度が25℃になるまで自然冷却した。その後、大気中において、塗膜を温度100℃で30分間加熱処理することによって、膜厚が5μmの保護層を形成した。
このようにして、表面層が保護層である円筒状電子写真感光体(表面層(保護層)の表面に凸凹形状が形成される前の円筒状電子写真感光体)を製造した。
以上の方法で、合計1000本の円筒状電子写真感光体、すなわちワークを製造した。
This protective layer coating solution was dip coated on the charge transport layer. In this dip coating, the uncoated width at the upper end of the coating on the cylindrical substrate was 1.5 mm. Further, after the dip coating, the lower end of the coating was peeled off from the end of the cylindrical substrate with a width of 1.5 mm with a fluoro rubber blade before the coating film was dried.
Thereafter, the obtained coating film was dried in the air at a temperature of 50 ° C. for 10 minutes. Thereafter, the coating film was irradiated with an electron beam for 1.6 seconds in nitrogen while rotating the cylindrical substrate at 200 rpm under the conditions of an acceleration voltage of 150 kV and a beam current of 3.0 mA. Subsequently, the coating film was cured in nitrogen while the temperature of the coating film was raised from 25 ° C. to 125 ° C. over 30 seconds. In addition, when the absorbed dose of the electron beam at this time was measured, it was 15 kGy. The oxygen concentration in the electron beam irradiation and heat curing reaction atmosphere was 15 ppm or less. Thereafter, in the air, it was naturally cooled until the temperature of the coating film reached 25 ° C. Thereafter, the protective film having a thickness of 5 μm was formed by heat-treating the coating film at a temperature of 100 ° C. for 30 minutes in the air.
In this way, a cylindrical electrophotographic photosensitive member (cylindrical electrophotographic photosensitive member before an uneven shape was formed on the surface of the surface layer (protective layer)) having a protective layer as a surface layer was produced.
A total of 1000 cylindrical electrophotographic photosensitive members, that is, workpieces were manufactured by the above method.

(実施例1)
このようにして得られたワークを、図1に示す工程に従って順次加工を施した。以下、それぞれの工程での加工について述べる。
<洗浄工程>
先ず、洗浄工程ではワークを回転させた状態で、ワークの表面に東レ社製のトレシーを押し当て、ワーク表面の付着物質を拭き取るようにした。押し当てるに際しては、トレシーのワークに触れる面の反対側から3M社製イオナイズドエアーブロアーを用いて除電エアーをワーク方向に吹き付けることによる風圧で押し当てるようにした。
Example 1
The workpiece thus obtained was sequentially processed according to the steps shown in FIG. Hereinafter, processing in each step will be described.
<Washing process>
First, in the cleaning process, with the workpiece rotated, a Toray-made Toraysee was pressed against the surface of the workpiece to wipe off the adhered substances on the workpiece surface. When pressing, it was made to press by the wind pressure by spraying static elimination air in the direction of a workpiece | work using the ionized air blower made from 3M from the opposite side to the surface which touches the workpiece | work of Toraysee.

<ワーク温調工程>
次に、ワーク温調工程では、ワークを回転させた状態でワーク近傍に誘導電流を印加したコイルを設置して誘導加熱するようにした。ワークの温度は、このワーク温調工程での処理を行う前ではおよそ23℃であり、誘導加熱を行った直後ではおよそ55℃になるようにした。
<Work temperature control process>
Next, in the workpiece temperature adjusting step, a coil to which an induction current is applied is installed in the vicinity of the workpiece while the workpiece is rotated, and induction heating is performed. The temperature of the workpiece was about 23 ° C. before the processing in the workpiece temperature adjustment step, and about 55 ° C. immediately after induction heating.

<挿入体温調工程>
次に、挿入体として、外径38mmの図2に示すような断面形状の超硬合金を準備した。そして、挿入体温調工程では、熱媒体を挿入体に当接させて熱交換する方法を用いた。熱媒体はシリコンゴムブロックを用い、そのシリコンゴムブロックの中に温水を循環させることでシリコンゴムブロックの温度をおよそ90℃に保つようにした。このシリコンゴムブロックを挿入体に当接させ、挿入体の温度がおよそ57℃になった時点で挿入体からシリコンゴムブロックを離した。
<Insertion body temperature adjustment process>
Next, a cemented carbide having a sectional shape as shown in FIG. 2 having an outer diameter of 38 mm was prepared as an insert. In the inserted body temperature adjusting step, a method of exchanging heat by bringing the heat medium into contact with the inserted body was used. A silicon rubber block was used as the heat medium, and the temperature of the silicon rubber block was maintained at about 90 ° C. by circulating hot water through the silicon rubber block. The silicon rubber block was brought into contact with the insert, and when the temperature of the insert reached approximately 57 ° C., the silicon rubber block was separated from the insert.

<挿入体挿入工程>
次に挿入体挿入工程では、挿入体を円筒軸方向の鉛直方向に固定しておき、ワークを挿入体に向けて円筒軸方向に移動させてワークの内部に挿入体を挿入させた。このとき、挿入の擦れを避ける目的での挿入精度を確保するため、ワークと挿入体の互いのズレ方向を検知して修正するような軌道修正機構を用いた。この機構は、予めワークの内部に挿入体が挿入される直前の、挿入体に対するワークの水平方向の位置の変位量をレーザー変位センサーで検知しておき、この変位量と同じ分だけ挿入体を水平方向に移動させるような機構を用いた。
<Insert body insertion process>
Next, in the insert insertion process, the insert was fixed in the vertical direction in the cylindrical axis direction, and the workpiece was moved in the cylindrical axis direction toward the insert to insert the insert into the workpiece. At this time, in order to ensure the insertion accuracy for the purpose of avoiding rubbing of the insertion, a trajectory correction mechanism that detects and corrects the misalignment direction of the workpiece and the insert was used. This mechanism uses a laser displacement sensor to detect the amount of displacement in the horizontal position of the workpiece relative to the insert immediately before the insert is inserted into the workpiece, and the insert is moved by the same amount as this displacement. A mechanism that moves in the horizontal direction was used.

<転写工程>
次に、転写工程では、図3に示すような構成を用いた。ベース部材15は、枠体材質をSUS304製とし、内部に加熱用のヒーターを設置し、上面が略水平になるように設置した。ベース部材15の上には弾性部材14として厚さ6mmのシリコンゴム製の板を載置した。弾性部材14の上にはサポート部材13として厚さ1mmのSUS304製の板を載置した。型部材5は、図4の(A)、(B)および(C)に示したような円柱形状を有する厚さ300μmのニッケル材質のモールドを使用し、円柱の直径Yは50μm、高さZは6μm、ピッチXは50μmとした。この型部材をサポート部材13の上面に固定した。この状態でヒーターを昇温させ、型部材5の表面が温度150℃になるようにした。このように型部材5を支持し、挿入体4を回転自在に支持し、ワーク1と型部材5を互いに押しあてた状態で、ベース部材15をワーク1の円筒軸に直交する方向に移動させることで、ワーク1の表面全周にわたって型部材5の表面の凹凸形状を転写した。このとき、挿入体4を型部材5に向けて押しつける力は、6kNを維持するようにし、ベース部材15をワーク1の円筒軸に直交する方向に移動させる速度は、10mm/secとした。
<Transfer process>
Next, the structure shown in FIG. 3 was used in the transfer process. The base member 15 is made of SUS304, and a heater for heating is installed inside the base member 15 so that the upper surface is substantially horizontal. On the base member 15, a silicon rubber plate having a thickness of 6 mm was placed as the elastic member 14. A plate made of SUS304 having a thickness of 1 mm was placed on the elastic member 14 as the support member 13. The mold member 5 uses a 300 μm-thick nickel mold having a cylindrical shape as shown in FIGS. 4A, 4B, and 4C, and the diameter Y of the cylinder is 50 μm and the height Z Was 6 μm, and the pitch X was 50 μm. This mold member was fixed to the upper surface of the support member 13. In this state, the temperature of the heater was raised so that the surface of the mold member 5 became 150 ° C. In this way, the mold member 5 is supported, the insert 4 is rotatably supported, and the base member 15 is moved in a direction perpendicular to the cylindrical axis of the work 1 while the work 1 and the mold member 5 are pressed against each other. Thus, the uneven shape on the surface of the mold member 5 was transferred over the entire surface of the workpiece 1. At this time, the force for pressing the insert 4 toward the mold member 5 was maintained at 6 kN, and the speed for moving the base member 15 in the direction perpendicular to the cylindrical axis of the workpiece 1 was 10 mm / sec.

<挿入体離脱工程>
次に、挿入体離脱工程では、挿入体を円筒軸方向の鉛直方向に固定しておき、ワークを挿入体から離れる方向にかつ円筒軸方向に移動させて離脱させた。
このようにして、ワークすなわち円筒状電子写真感光体の表面に凸凹形状を形成した。
なお、挿入体離脱工程を終了した5秒後のワーク温度は、およそ60℃であり、挿入体の温度はおよそ64℃であった。
<Insert body removal process>
Next, in the insertion body detachment step, the insertion body was fixed in the vertical direction in the cylindrical axis direction, and the workpiece was moved away in the direction away from the insertion body and in the cylindrical axis direction.
In this way, an uneven shape was formed on the surface of the workpiece, that is, the cylindrical electrophotographic photosensitive member.
In addition, the workpiece | work temperature 5 seconds after finishing the insertion body detachment | leave process was about 60 degreeC, and the temperature of the insertion body was about 64 degreeC.

<挿入体冷却工程>
そして挿入体冷却工程では、冷却媒体を挿入体に当接させて熱交換する方法を用いた。冷却媒体はシリコンゴムブロックを用い、そのシリコンゴムブロックの中に水を循環させることでシリコンゴムブロックの温度をおよそ13℃に保つようにした。このシリコンブゴムロックを挿入体に当接させ、挿入体の温度がおよそ55℃になった時点で挿入体からシリコンゴムブロックを離した。その後、挿入体は挿入体温調工程に移動させた。
<Insert body cooling process>
In the insert cooling process, a method of exchanging heat by bringing the cooling medium into contact with the insert was used. A silicon rubber block was used as the cooling medium, and the temperature of the silicon rubber block was maintained at about 13 ° C. by circulating water through the silicon rubber block. The silicone rubber lock was brought into contact with the insert, and when the temperature of the insert reached approximately 55 ° C., the silicone rubber block was separated from the insert. Thereafter, the insert was moved to the insert temperature control step.

以下、同様にして合計1000本のワークすなわち円筒状電子写真感光体の表面に凸凹形状を形成した。
なお、図1に示す工程を用いて1000本の円筒状電子写真感光体の表面に凸凹形状を付けるために要した時間は、660分であった。また、加工済みの円筒状電子写真感光体の表面を観察し、転写に使用した型部材の表面形状と違う形状が転写された部分がある円筒状電子写真感光体の本数をカウントしたところ、4本の円筒状電子写真感光体の表面に型部材の形状以外の転写の痕跡が認められた。
Thereafter, a total of 1000 workpieces, that is, a cylindrical electrophotographic photosensitive member, was formed with uneven shapes in the same manner.
Note that the time required for forming the uneven shape on the surface of 1000 cylindrical electrophotographic photosensitive members using the process shown in FIG. 1 was 660 minutes. Further, the surface of the processed cylindrical electrophotographic photosensitive member was observed, and the number of cylindrical electrophotographic photosensitive members having a portion to which a shape different from the surface shape of the mold member used for transfer was transferred was counted. Transfer traces other than the shape of the mold member were observed on the surface of the cylindrical electrophotographic photosensitive member.

(実施例2)
図1に示す工程のうち、転写工程をブースで囲うようにした。ブースは、転写工程の側面及び天井面を透明な塩化ビニールのパネルで囲うような構造とした。また、ブース天井面の、型部材が設置された位置のほぼ真上に位置する部分にHEPAフィルターおよびファンユニットを設置し、ブース内にHEPAフィルターを通した風を流入させるようにした。そして、ブース側面の前記パネルの下方の床近傍に隙間を設け、流入させた風をブース外に放出させるようにした。このようにして、ブース内の雰囲気をパーティクルカウンター(浮遊粒子濃度を測定する装置)で測定したところ、浮遊粒子濃度は1立方メートルあたり1万個であった。
(Example 2)
Among the steps shown in FIG. 1, the transfer step is surrounded by a booth. The booth was structured so that the side of the transfer process and the ceiling were surrounded by transparent vinyl chloride panels. In addition, a HEPA filter and a fan unit were installed in a portion of the booth ceiling surface located almost directly above the position where the mold member was installed, and the wind that passed through the HEPA filter was allowed to flow into the booth. And the clearance gap was provided in the floor vicinity of the lower part of the said panel of the booth side surface, and the inflowed wind was discharged | emitted out of the booth. Thus, when the atmosphere in a booth was measured with the particle counter (apparatus which measures a suspended particle density | concentration), the suspended particle density | concentration was 10,000 per cubic meter.

このように転写工程を浮遊粒子濃度が制限された環境に保った以外は、全て実施例1と同様にして、1000本の円筒状電子写真感光体の表面に凸凹形状を形成した。
なお、実施例2において図1に示す工程を用いて1000本の円筒状電子写真感光体の表面に凸凹形状を付けるために要した時間は、660分であった。また、加工済みの円筒状電子写真感光体の表面を観察し、転写に使用した型部材の表面形状と違う形状が転写された部分がある円筒状電子写真感光体の本数をカウントしたところ、2本の円筒状電子写真感光体の表面に型部材の形状以外の転写の痕跡が認められた。
As described above, except that the transfer step was maintained in an environment where the suspended particle concentration was limited, the uneven shape was formed on the surface of 1000 cylindrical electrophotographic photosensitive members in the same manner as in Example 1.
In Example 2, it took 660 minutes to apply the uneven shape to the surface of 1000 cylindrical electrophotographic photosensitive members using the process shown in FIG. Further, the surface of the processed cylindrical electrophotographic photosensitive member was observed, and the number of cylindrical electrophotographic photosensitive members having a portion to which a shape different from the surface shape of the mold member used for transfer was transferred was counted. Transfer traces other than the shape of the mold member were observed on the surface of the cylindrical electrophotographic photosensitive member.

(実施例3)
図1に示す工程のうち、ワーク投入工程とワーク排出工程以外の全ての工程を、実施例2と同様なブースで囲うようにした。それ以外はすべて実施例2と同様にして1000本の円筒状電子写真感光体の表面に凸凹形状を形成した。
なお、実施例3において図1に示す工程を用いて1000本の円筒状電子写真感光体の表面に凸凹形状を付けるために要した時間は、660分であった。また、加工済みの円筒状電子写真感光体の表面を観察し、転写に使用した型部材の表面形状と違う形状が転写された部分がある円筒状電子写真感光体の本数をカウントしたところ、全ての円筒状電子写真感光体の表面に型部材の形状以外の転写の痕跡が認められなかった。
(Example 3)
Of the steps shown in FIG. 1, all steps other than the workpiece input step and the workpiece discharge step are surrounded by the same booth as in the second embodiment. Except for this, an uneven shape was formed on the surface of 1000 cylindrical electrophotographic photosensitive members in the same manner as in Example 2.
In Example 3, it took 660 minutes to apply the uneven shape to the surface of 1000 cylindrical electrophotographic photosensitive members using the process shown in FIG. In addition, the surface of the processed cylindrical electrophotographic photosensitive member was observed, and when the number of cylindrical electrophotographic photosensitive members having a portion transferred with a shape different from the surface shape of the mold member used for transfer was counted, No trace of transfer other than the shape of the mold member was observed on the surface of the cylindrical electrophotographic photosensitive member.

1 円筒状電子写真感光体(ワーク)
2 円筒状基体
3 表面層
4 挿入体
5 型部材
6 当接部
7 軸部
8 繋部
9 当接部6の軸方向の、繋部8の端部に対向する位置から当接部6の端部までの部分
10 隙間
11 従来方法での挿入体
12 従来方法での支持部材
13 サポート部材
14 弾性部材 15 ベース部材
1 Cylindrical electrophotographic photosensitive member (work)
2 Cylindrical base body 3 Surface layer 4 Insert 5 Mold member 6 Abutting portion 7 Shaft portion 8 Connecting portion 9 The end of the abutting portion 6 from the position facing the end portion of the connecting portion 8 in the axial direction of the abutting portion 6 Part to part 10 Gap 11 Insert body in conventional method 12 Support member in conventional method 13 Support member 14 Elastic member 15 Base member

Claims (3)

円筒状基体および表面層を有する円筒状電子写真感光体の表面に凸凹形状を形成する方法であって、
該方法が、
(A)該円筒状電子写真感光体の表面層の表面を洗浄する工程と、
(B)該円筒状電子写真感光体を所定の温度に調整する工程と、
(C)該円筒状電子写真感光体に挿入する挿入体を所定の温度に調整する工程と、
(D)該円筒状電子写真感光体に該挿入体を挿入する工程と、
(E)該凸凹形状に対応する表面形状を表面に有する型部材を所定の温度に維持した状態で、該円筒状電子写真感光体の表面層の表面に接触させ、該型部材の表面の該表面形状を該円筒状電子写真感光体の表面層の表面に転写する工程と、
(F)該円筒状電子写真感光体から該挿入体を抜き取る工程と、
(G)該円筒状電子写真感光体から抜き取られた挿入体の温度を所定の温度に下げる工程
を少なくとも有することを特徴とする、円筒状電子写真感光体の表面に凸凹形状を形成する方法。
A method of forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member having a cylindrical substrate and a surface layer,
The method is
(A) cleaning the surface of the surface layer of the cylindrical electrophotographic photosensitive member;
(B) adjusting the cylindrical electrophotographic photosensitive member to a predetermined temperature;
(C) adjusting the insert inserted into the cylindrical electrophotographic photosensitive member to a predetermined temperature;
(D) inserting the insert into the cylindrical electrophotographic photosensitive member;
(E) In a state where a mold member having a surface shape corresponding to the uneven shape is maintained at a predetermined temperature, the mold member is brought into contact with the surface of the surface layer of the cylindrical electrophotographic photosensitive member, and the surface of the mold member is Transferring the surface shape to the surface of the surface layer of the cylindrical electrophotographic photosensitive member;
(F) extracting the insert from the cylindrical electrophotographic photosensitive member;
(G) A method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member, comprising at least a step of lowering the temperature of the inserted body extracted from the cylindrical electrophotographic photosensitive member to a predetermined temperature.
前記工程のうち、少なくとも該(E)の工程を浮遊粒子濃度が制限された雰囲気環境中で実行する請求項1に記載の円筒状電子写真感光体の表面に凸凹形状を形成する方法。   2. The method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member according to claim 1, wherein at least the step (E) is performed in an atmosphere environment in which the suspended particle concentration is limited. 請求項1または2に記載の方法により円筒状電子写真感光体の表面に凸凹形状を形成することを特徴とする、表面に凸凹形状が形成された円筒状電子写真感光体を製造する方法。


A method for producing a cylindrical electrophotographic photosensitive member having an uneven surface formed thereon, wherein the surface of the cylindrical electrophotographic photosensitive member is formed with an uneven shape by the method according to claim 1.


JP2012204267A 2012-09-18 2012-09-18 Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof Pending JP2014059439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204267A JP2014059439A (en) 2012-09-18 2012-09-18 Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204267A JP2014059439A (en) 2012-09-18 2012-09-18 Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof

Publications (1)

Publication Number Publication Date
JP2014059439A true JP2014059439A (en) 2014-04-03

Family

ID=50615963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204267A Pending JP2014059439A (en) 2012-09-18 2012-09-18 Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof

Country Status (1)

Country Link
JP (1) JP2014059439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227871A (en) * 2016-06-17 2017-12-28 キヤノン株式会社 Surface processing method of cylindrical electrophotographic photoreceptor and manufacturing method of cylindrical electrophotographic photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227871A (en) * 2016-06-17 2017-12-28 キヤノン株式会社 Surface processing method of cylindrical electrophotographic photoreceptor and manufacturing method of cylindrical electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JP4975185B1 (en) Method for forming uneven shape on surface of surface layer of cylindrical electrophotographic photoreceptor, and method for producing cylindrical electrophotographic photoreceptor having uneven surface formed on surface of surface layer
JP4059518B2 (en) Method for producing electrophotographic photosensitive member
CN1320412C (en) Picture heating apparatus
JP2016197236A (en) Charging member, process cartridge, and electrophotographic device
JP2018194591A (en) Method for producing electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and electrophotographic device
CN1495573A (en) Image heating device and heating roller for the same
JP2019074735A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
CN101379437B (en) Method for manufacturing electronic photographing photosensitive component
CN1485698A (en) Wireless network connecting method and computer equipment
EP3451067A1 (en) Electrophotographic photosensitive body, method for producing electrophotographic photosensitive body, process cartridge and electrophotographic apparatus
JP2006201505A (en) Developing roller and manufacturing method therefor
JP2021157031A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2014059439A (en) Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof
JPH08305044A (en) Electrophotographic photoreceptor and its production
JP5921355B2 (en) Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface
JP5697527B2 (en) Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP6842984B2 (en) Surface processing method for cylindrical electrophotographic photosensitive member and manufacturing method for cylindrical electrophotographic photosensitive member
JP6282130B2 (en) Method for forming uneven shape on surface of electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member having uneven shape on surface
JPH08314159A (en) Electrophotographic organic photoreceptor and its production
JP2000056558A (en) Manufacture of developing sleeve
JP2018205700A (en) Electrophotographic roller, process cartridge, and electrophotographic device
JP6818624B2 (en) A method for forming an uneven shape on an electrophotographic photosensitive member, and a method for manufacturing an electrophotographic photosensitive member using this method.
JP2006071781A (en) Conductive member and manufacturing method of conductive member
JP2019066818A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2006337926A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus