JP6842984B2 - Surface processing method for cylindrical electrophotographic photosensitive member and manufacturing method for cylindrical electrophotographic photosensitive member - Google Patents

Surface processing method for cylindrical electrophotographic photosensitive member and manufacturing method for cylindrical electrophotographic photosensitive member Download PDF

Info

Publication number
JP6842984B2
JP6842984B2 JP2017088787A JP2017088787A JP6842984B2 JP 6842984 B2 JP6842984 B2 JP 6842984B2 JP 2017088787 A JP2017088787 A JP 2017088787A JP 2017088787 A JP2017088787 A JP 2017088787A JP 6842984 B2 JP6842984 B2 JP 6842984B2
Authority
JP
Japan
Prior art keywords
electrophotographic photosensitive
cylindrical electrophotographic
photosensitive member
metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017088787A
Other languages
Japanese (ja)
Other versions
JP2017227871A (en
Inventor
川井 康裕
康裕 川井
直晃 市橋
直晃 市橋
健一 怒
健一 怒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2017227871A publication Critical patent/JP2017227871A/en
Application granted granted Critical
Publication of JP6842984B2 publication Critical patent/JP6842984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、円筒状基体を有する電子写真感光体の表面を加工する方法、及びその電子写真感光体の製造方法に関する。 The present invention relates to a method for processing the surface of an electrophotographic photosensitive member having a cylindrical substrate, and a method for producing the electrophotographic photosensitive member.

有機光導電性物質(電荷発生物質)を含有する円筒状電子写真感光体に関し、その耐久性(耐摩耗性など)を向上させることを目的として、円筒状電子写真感光体の表面層に硬化性樹脂を含有させる技術がある。しかしながら、この技術によって円筒状電子写真感光体の耐摩耗性を向上させると、円筒状電子写真感光体のクリーニング性能への影響が発生しやすくなると共に画像流れも発生しやすくなる。クリーニング性能への影響とは、円筒状電子写真感光体の耐摩耗性の高い表面とクリーニングブレードとの摩擦力が大きくなることにより発生する、駆動トルクの増大、クリーニングブレードの微小な振動によるトナーのすり抜け、及びクリーニングブレードの反転等の問題である。また、画像流れとは、円筒状電子写真感光体を帯電させることによって生じるオゾンや窒素酸化物などの酸性ガスによって、円筒状電子写真感光体の表面層に用いられている材料が劣化することで生じる問題である。また、このように生じた酸性ガスの一部が水分の吸着によって硝酸となって、円筒状電子写真感光体の表面抵抗が低下することで、画像流れが発生することもある。 Regarding a cylindrical electrophotographic photosensitive member containing an organic photoconducting substance (charge generating substance), the surface layer of the cylindrical electrophotographic photosensitive member is curable for the purpose of improving its durability (wear resistance, etc.). There is a technique for containing a resin. However, if the wear resistance of the cylindrical electrophotographic photosensitive member is improved by this technique, the cleaning performance of the cylindrical electrophotographic photosensitive member is likely to be affected and image flow is likely to occur. The effects on the cleaning performance are the increase in driving torque and the minute vibration of the cleaning blade, which are caused by the increased frictional force between the highly wear-resistant surface of the cylindrical electrophotographic photosensitive member and the cleaning blade. Problems such as slip-through and reversal of the cleaning blade. Image flow means that the material used for the surface layer of the cylindrical electrophotographic photosensitive member is deteriorated by acid gas such as ozone and nitrogen oxides generated by charging the cylindrical electrophotographic photosensitive member. This is a problem that arises. In addition, a part of the acid gas generated in this way becomes nitric acid due to the adsorption of water, and the surface resistance of the cylindrical electrophotographic photosensitive member is lowered, so that image flow may occur.

これらの課題を改善するために、表面に凹凸形状を有する型部材を円筒状電子写真感光体に押し付けた状態で円筒状電子写真感光体の表面に型部材の凹凸形状を転写することで、凹凸形状を形成する技術がある。特許文献1には、円筒状電子写真感光体の表面に型部材の凹凸形状を転写する際に、型部材と円筒状電子写真感光体の支持体との温度を制御して凹凸形状再現性が高く、さらに画像流れとクリーニング性能をより改善する技術が開示されている。 In order to improve these problems, the uneven shape of the mold member is transferred to the surface of the cylindrical electrophotographic photosensitive member while the mold member having the uneven shape on the surface is pressed against the cylindrical electrophotographic photosensitive member. There is a technique for forming a shape. Patent Document 1 states that when the concave-convex shape of a mold member is transferred to the surface of a cylindrical electrophotographic photosensitive member, the temperature between the mold member and the support of the cylindrical electrophotographic photosensitive member is controlled to improve the concave-convex shape reproducibility. Technology is disclosed that is expensive and further improves image flow and cleaning performance.

一方、円筒状電子写真感光体の表面と型部材の表面とを加圧接触させて、円筒状電子写真感光体を軸回りに回転させながら転写する表面加工方法においては、像露光時の露光電位が低下しやすくなることで、細線再現性が低下しやすいという課題も生じる。この原因として、円筒状電子写真感光体が円筒状であるのに対し、型部材が平面状であり、このような加工を行う際に、両者が接触することで接触面積が小さくなり、その結果荷重が一部分に集中することで円筒状電子写真感光体の樹脂層の剥がれ(支持体または他の樹脂層からの剥がれ)が誘発され、像露光時の露光電位が低下することが挙げられる。また、同様に接触面積が小さくなることで前記の回転する方向の力を十分に受け止められないことから円筒状電子写真感光体の樹脂層の剥がれが生じることもある。これらの課題は特許文献2で開示されおり、同時に特許文献2では型部材を加圧接触時に円筒状電子写真感光体の表面(周面)に沿うように変形させて加工することの必要性が示されている。さらに、型部材を支持する部材構成として弾性部材を採用し、円筒状電子写真感光体の表面に弾性のある型部材の凹凸形状を転写する方法を用いることで円筒状電子写真感光体の樹脂層の剥がれが抑制され、細線再現性が向上することも示されている。 On the other hand, in the surface processing method in which the surface of the cylindrical electrophotographic photosensitive member and the surface of the mold member are brought into pressure contact with each other to transfer the cylindrical electrophotographic photosensitive member while rotating it about an axis, the exposure potential at the time of image exposure is used. There is also a problem that the fine line reproducibility is likely to be lowered because the is easily lowered. The reason for this is that while the cylindrical electrophotographic photosensitive member is cylindrical, the mold member is planar, and when performing such processing, the contact area becomes smaller due to contact between the two, resulting in a smaller contact area. When the load is concentrated on a part, the resin layer of the cylindrical electrophotographic photosensitive member is peeled off (peeling from the support or another resin layer), and the exposure potential at the time of image exposure is lowered. Similarly, as the contact area becomes smaller, the force in the direction of rotation cannot be sufficiently received, so that the resin layer of the cylindrical electrophotographic photosensitive member may peel off. These problems are disclosed in Patent Document 2, and at the same time, in Patent Document 2, it is necessary to deform and process the mold member along the surface (peripheral surface) of the cylindrical electrophotographic photosensitive member at the time of pressure contact. It is shown. Further, by adopting an elastic member as a member configuration for supporting the mold member and using a method of transferring the uneven shape of the elastic mold member to the surface of the cylindrical electrophotographic photosensitive member, the resin layer of the cylindrical electrophotographic photosensitive member is used. It has also been shown that peeling is suppressed and fine line reproducibility is improved.

特許第4059518号公報Japanese Patent No. 4059518 特開2013−238844号公報Japanese Unexamined Patent Publication No. 2013-238844

特許文献2で示されている主な方法は、型部材の凹凸形状を有する面の背面側に平板状の金属部材、ゴムなどの弾性部材、支持部材をこの順で配設するものである。そして型部材、金属部材、弾性部材のヤング率や厚みなどを適宜調整することで円筒状電子写真感光体からの荷重を受け止める際に型部材及び金属部材が円筒状電子写真感光体の形状にならう形で湾曲することを可能にしている。この湾曲が円筒状電子写真感光体と型部材との接触面積を適宜拡張させることができる。 The main method shown in Patent Document 2 is to arrange a flat metal member, an elastic member such as rubber, and a support member in this order on the back surface side of a surface having an uneven shape of the mold member. Then, when the load from the cylindrical electrophotographic photosensitive member is received by appropriately adjusting the Young's modulus and the thickness of the mold member, the metal member, and the elastic member, the mold member and the metal member become the shape of the cylindrical electrophotographic photosensitive member. It is possible to bend in a U shape. This curvature can appropriately expand the contact area between the cylindrical electrophotographic photosensitive member and the mold member.

しかし、同時に工業生産として使用する部材耐久性の観点から、こうした部材の湾曲を伴う円筒状電子写真感光体の加工には課題が残る。それは、加工に使用する部材の耐久性を確保しにくく、製造コストを効果的に抑制することが困難であるという点である。具体的には、金属部材は湾曲という変形を繰り返すことで疲労を蓄積し、一定の回数の加工を経たのちに湾曲した状態での塑性変形に至る。そしてその一定の回数は、必要な荷重力や使用する金属部材のヤング率や引張り強度といった物性や厚みを適宜選定することが重要になるが、金属部材としては柔軟性と耐久性を大量生産というレベルで両立させることは困難である。 However, at the same time, from the viewpoint of the durability of members used for industrial production, there remains a problem in processing a cylindrical electrophotographic photosensitive member with curvature of such members. That is, it is difficult to secure the durability of the members used for processing, and it is difficult to effectively suppress the manufacturing cost. Specifically, the metal member accumulates fatigue by repeating deformation called bending, and after a certain number of times of processing, it reaches plastic deformation in a curved state. For a certain number of times, it is important to appropriately select physical properties and thickness such as the required load force, Young's modulus and tensile strength of the metal member to be used, but as a metal member, flexibility and durability are called mass production. It is difficult to achieve both at the level.

本発明で提供する方法は、円筒状電子写真感光体を表面に凹凸形状を有する型部材に接触させて加圧し該円筒状電子写真感光体を軸回りに回転させながら該円筒状電子写真感光体の表面に凹凸形状を形成する方法である。第一の方法は、型部材と、その型部材の凹凸形状を有する面の背面側に加圧方向に直交する方向に、分割されて積層され、かつ加圧時には互いにずれることができるように配設された複数の金属部材と、その複数の金属部材が加圧方向に撓むことができるように支持する支持部材を用いることを特徴とする。 In the method provided in the present invention, the cylindrical electrophotographic photosensitive member is brought into contact with a mold member having an uneven shape on the surface and pressurized, and the cylindrical electrophotographic photosensitive member is rotated about an axis while the cylindrical electrophotographic photosensitive member is rotated. It is a method of forming an uneven shape on the surface of the surface. The first method is to arrange the mold member and the concave-convex surface of the mold member so that they are divided and laminated in a direction orthogonal to the pressurizing direction and can be displaced from each other during pressurization. It is characterized by using a plurality of provided metal members and a support member that supports the plurality of metal members so that they can bend in the pressurizing direction.

第二の方法は、前記第一の方法における複数の金属部材の加圧方向に直交する方向の厚みの全ての厚みを合計した厚みをTtotalとし、前記複数の金属部材の加圧方向に直交する方向の厚みが最も厚い金属部材の厚みをT1としたとき、以下の関係式
T1 ≦ 0.7・Ttotal
が成立することを特徴とする。
In the second method, the total thickness of all the thicknesses of the plurality of metal members in the direction orthogonal to the pressurizing direction in the first method is T total, and the thickness is orthogonal to the pressurizing direction of the plurality of metal members. When the thickness of the metal member with the thickest thickness in the direction of orthogonality is T1, the following relational expression T1 ≤ 0.7 · T total
Is characterized in that.

第三の方法は、前記第一の方法における複数の金属部材の加圧方向に直交する方向の厚みが、前記複数の金属部材の加圧方向に直交する方向の厚みが最も厚い金属部材の厚みT1と同じ、又は前記複数の金属部材の加圧方向に直交する方向の厚みが最も厚い金属部材の厚みT1に次ぐ厚みを有する金属部材の厚みをT2としたとき、以下の関係式
T2 ≧ 0.7・T1
が成立することを特徴とする。
The third method is the thickness of the metal member having the thickest thickness in the direction orthogonal to the pressurizing direction of the plurality of metal members in the first method and the thickness in the direction orthogonal to the pressurizing direction of the plurality of metal members. When the thickness of the metal member having the same thickness as T1 or the thickness of the metal member having the thickest thickness in the direction orthogonal to the pressurizing direction of the plurality of metal members T1 is T2, the following relational expression T2 ≧ 0 .7 ・ T1
Is characterized in that.

第四の方法は、前記複数の金属部材のうち、少なくとも前記複数の金属部材の加圧方向に直交する方向の厚みが最も厚い金属部材の厚みT1の厚みを有する金属部材が圧延加工を含む加工法によってその厚みを形成したものであり、かつ、その金属部材を、圧延加工の圧延方向が、円筒状電子写真感光体を型部材に接触させて加圧する際に、前記円筒状電子写真感光体の軸に略直交する様な方向に配設して用いることを特徴とする。 In the fourth method, among the plurality of metal members, at least the metal member having the thickness of the thickest metal member in the direction orthogonal to the pressurizing direction of the plurality of metal members has a thickness of T1 and includes rolling. The thickness is formed by the method, and when the metal member is pressurized by bringing the cylindrical electrophotographic photosensitive member into contact with the mold member in the rolling direction of the rolling process, the cylindrical electrophotographic photosensitive member is formed. It is characterized in that it is arranged and used in a direction substantially orthogonal to the axis of.

第五の方法は、前記複数の金属部材の加圧方向に直交する方向の厚みが最も厚い金属部材の厚みT1の厚みを有する金属部材の引張り強度が500MPa以上であることを特徴とする。 The fifth method is characterized in that the tensile strength of the metal member having the thickness T1 of the thickness of the metal member having the thickest thickness in the direction orthogonal to the pressurizing direction of the plurality of metal members is 500 MPa or more.

第六の方法は、前記複数の金属部材が、加圧方向において型部材に最も近い金属部材と、円筒状電子写真感光体の軸方向において、端部が、円筒状電子写真感光体の端部及び、型部材の端部及び、加圧方向において該型部材に最も近い金属部材の端部よりも中央寄りに位置する金属部材とを有することを特徴とする。 In the sixth method, the plurality of metal members have a metal member closest to the mold member in the pressurizing direction and an end portion of the cylindrical electrophotographic photosensitive member in the axial direction of the cylindrical electrophotographic photosensitive member. It is characterized by having an end portion of the mold member and a metal member located closer to the center than the end portion of the metal member closest to the mold member in the pressurizing direction.

第七の方法は、加圧方向において型部材に最も近い金属部材の型部材側の表面から、端部が円筒状電子写真感光体の軸方向において最も中央寄りに位置する金属部材の型部材側の表面までの距離をTとし、円筒状電子写真感光体の軸方向において、円筒状電子写真感光体の端部又は型部材の端部又は加圧方向において型部材に最も近い金属部材の端部のうち、最も中央寄りに位置する端部の位置から、端部が最も中央寄りに位置する金属部材の端部の位置までの距離をLとしたとき、
L ≧ T
の関係であることを特徴とする。
The seventh method is the mold member side of the metal member whose end is located closest to the center in the axial direction of the cylindrical electrophotographic photosensitive member from the surface of the metal member closest to the mold member in the pressurizing direction. In the axial direction of the cylindrical electrophotographic photosensitive member, the end of the cylindrical electrophotographic photosensitive member, the end of the mold member, or the end of the metal member closest to the mold member in the pressurizing direction. When the distance from the position of the end located closest to the center to the position of the end of the metal member whose end is located closest to the center is L.
L ≧ T
It is characterized by having a relationship of.

本発明によれば、円筒状電子写真感光体の表面に凹凸形状を形成する加工方法において、使用する部材の耐久性をより高める加工方法、ならびに使用する部材の耐久性をより高める円筒状電子写真感光体の製造方法を提供する。 According to the present invention, in a processing method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member, a processing method for further enhancing the durability of the member to be used, and a cylindrical electrophotograph for further enhancing the durability of the member to be used. A method for producing a photoconductor is provided.

本発明で提供する円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the cylindrical electrophotographic photosensitive member provided in this invention. 本発明で提供する円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the cylindrical electrophotographic photosensitive member provided in this invention. 従来の円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the conventional cylindrical electrophotographic photosensitive member. 従来の円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the conventional cylindrical electrophotographic photosensitive member. 型部材の凹凸形状の一例を示す図である。It is a figure which shows an example of the concavo-convex shape of a mold member. 本発明で提供する円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the cylindrical electrophotographic photosensitive member provided in this invention. 本発明で提供する円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the cylindrical electrophotographic photosensitive member provided in this invention. 本発明で提供する円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the cylindrical electrophotographic photosensitive member provided in this invention. 型部材の端部付近を示す図である。It is a figure which shows the vicinity of the end portion of a mold member. 従来の円筒状電子写真感光体の加工方法の一例を示す図である。It is a figure which shows an example of the processing method of the conventional cylindrical electrophotographic photosensitive member.

本発明の説明に際して、先ず、円筒状電子写真感光体の表面を型部材に押しつけて凹凸形状を形成するための従来方法の一例を、図3及び4を用いて示す。円筒状電子写真感光体11は円筒状の挿入部材17をその軸方向に挿通した状態で支持されている。型部材12は平面状であり、円筒状電子写真感光体11に向かう表面には、円筒状電子写真感光体11の表面に転写する凹凸形状が形成されている。型部材12の図示下方すなわち円筒状電子写真感光体11に向かう面の背面側には平面状の金属部材13が配置されている。更に金属部材13の図示下方には弾性部材14が配置される。さらに弾性部材14の図示下方には支持部材15が配置される。なお図3及び4において、型部材12と金属部材13と弾性部材14と支持部材15と台16の図示奥行き方向の長さは、およそ円筒状電子写真感光体11と同等またはそれ以上である。 In the description of the present invention, first, an example of a conventional method for pressing the surface of a cylindrical electrophotographic photosensitive member against a mold member to form an uneven shape is shown with reference to FIGS. 3 and 4. The cylindrical electrophotographic photosensitive member 11 is supported with a cylindrical insertion member 17 inserted in the axial direction thereof. The mold member 12 is flat, and a concave-convex shape transferred to the surface of the cylindrical electrophotographic photosensitive member 11 is formed on the surface of the cylindrical electrophotographic photosensitive member 11 toward the cylindrical electrophotographic photosensitive member 11. A flat metal member 13 is arranged below the mold member 12 in the drawing, that is, on the back surface side of the surface facing the cylindrical electrophotographic photosensitive member 11. Further, an elastic member 14 is arranged below the metal member 13 in the drawing. Further, a support member 15 is arranged below the elastic member 14 in the drawing. In FIGS. 3 and 4, the lengths of the mold member 12, the metal member 13, the elastic member 14, the support member 15, and the base 16 in the illustrated depth direction are approximately equal to or longer than those of the cylindrical electrophotographic photosensitive member 11.

次に、加工動作について説明する。先ず円筒状電子写真感光体11は挿入部材17を挿通した状態で、挿入部材17によって所定の荷重力で型部材12に押しつけられる。その状態で台16が図示左方向へ移動するか、または挿入部材17が図示右方向に移動することで円筒状電子写真感光体11は型部材12に押しつけられた状態で型部材12上を従動的に転動する。そして円筒状電子写真感光体11がおよそ1周転動した時点で、挿入部材17によって円筒状電子写真感光体11が型部材12より離間する。 Next, the machining operation will be described. First, the cylindrical electrophotographic photosensitive member 11 is pressed against the mold member 12 by the insertion member 17 with a predetermined load force in a state where the insertion member 17 is inserted. In that state, the table 16 moves to the left in the drawing, or the insertion member 17 moves to the right in the drawing, so that the cylindrical electrophotographic photosensitive member 11 moves on the mold member 12 in a state of being pressed against the mold member 12. Roll around. Then, when the cylindrical electrophotographic photosensitive member 11 rolls about once, the insertion member 17 separates the cylindrical electrophotographic photosensitive member 11 from the mold member 12.

ここで、型部材12はその凹凸形状の付与に際して主にエッチングを行って作製することから、ニッケルやステンレス、鉄などに代表される金属を材料とするのが好ましく、かつ作製コストの観点から厚みを薄く作製することが好ましい。また、金属部材13の主な役割は、型部材12を薄く作製して用い、かつ円筒状電子写真感光体11からの荷重力を受け止めるに際して型部材12を補強して支持することである。金属部材13は耐久性の観点から金属を材料とするのが好ましく、特には鉄やステンレス、銅などの合金を主原料としたバネ鋼などを用いるのが好ましい。弾性部材14は種々のゴム材料やスポンジといった柔軟性に優れる材料を用いるのが好ましく、また、加工に際して熱をかける場合などは熱伝達性を確保する理由からゴム材料に金属粒子を分散させて用いることも効果的である。挿入部材17と装置本体との固定は、前記円筒状電子写真感光体11の前記転動負荷を軽減することが重要であり、ベアリングなどの軸受けを使用して挿入部材17が軸回りに回転自在な状態を維持することが好ましい。 Here, since the mold member 12 is manufactured by mainly performing etching when imparting the uneven shape, it is preferable to use a metal typified by nickel, stainless steel, iron, etc. as a material, and from the viewpoint of manufacturing cost, the thickness is increased. Is preferably made thin. Further, the main role of the metal member 13 is to make the mold member 12 thin and use it, and to reinforce and support the mold member 12 when receiving the load force from the cylindrical electrophotographic photosensitive member 11. From the viewpoint of durability, the metal member 13 is preferably made of metal, and in particular, it is preferable to use spring steel or the like whose main raw material is an alloy such as iron, stainless steel, or copper. As the elastic member 14, it is preferable to use various rubber materials or materials having excellent flexibility such as sponge, and when heat is applied during processing, metal particles are dispersed in the rubber material for the purpose of ensuring heat transfer. That is also effective. For fixing the insertion member 17 to the main body of the apparatus, it is important to reduce the rolling load of the cylindrical electrophotographic photosensitive member 11, and the insertion member 17 can rotate around the axis using a bearing such as a bearing. It is preferable to maintain a good condition.

ここで、円筒状電子写真感光体11が挿入部材17によって型部材12に押しつけられる荷重力について述べる。この荷重力は、主に次に挙げる要素によってその強弱を設定するべきである。 Here, the load force on which the cylindrical electrophotographic photosensitive member 11 is pressed against the mold member 12 by the insertion member 17 will be described. The strength of this load force should be set mainly by the following factors.

1つ目の要素は加工面圧である。この加工面圧は、円筒状電子写真感光体を型部材に押しつけた際に、円筒状電子写真感光体の表面と型部材が接触している部分に生じている、単位面積当たりの押しつけ力を意味する。この加工面圧が必要十分な強さで生じている状態で円筒状電子写真感光体と型部材を押し付けている場合は、型部材の凹凸形状を円筒状電子写真感光体の表面に十分に転写することができる。そして、この加工面圧の設定にあたって考慮するべきは、円筒状電子写真感光体の表面層の硬さと、型部材の表面の凹凸形状である。表面層がより硬い場合はそれに応じて加工面圧をより高く設定する必要があり、逆に表面層がより軟らかい場合はそれに応じて加工面圧をより下げて設定することが可能である。同様に、型部材の凹凸形状が、円筒状電子写真感光体と型部材が接触する面積に対して、円筒状電子写真感光体の表面層を窪ませる面積の比率が高い場合は加工面圧をより高く設定する必要があり、逆にこの窪ませる面積の比率が低い場合は加工面圧をより低く設定することが可能である。さらに、加工面圧が所定の範囲を超えて強くなると、感光層へのダメージが過大になり、これは前記剥がれと同様に画像欠陥を生じる原因となる。これらのことから所定の加工面圧とは、その範囲が、型部材の凹凸形状を円筒状電子写真感光体の表面に十分に転写でき、かつ感光層に画像欠陥を生じさせない強さの範囲である。 The first factor is the machining surface pressure. This processing surface pressure is the pressing force per unit area generated at the portion where the surface of the cylindrical electrophotographic photosensitive member and the mold member are in contact with each other when the cylindrical electrophotographic photosensitive member is pressed against the mold member. means. When the cylindrical electrophotographic photosensitive member and the mold member are pressed against each other while the processed surface pressure is generated with a necessary and sufficient strength, the uneven shape of the mold member is sufficiently transferred to the surface of the cylindrical electrophotographic photosensitive member. can do. In setting the processed surface pressure, the hardness of the surface layer of the cylindrical electrophotographic photosensitive member and the uneven shape of the surface of the mold member should be taken into consideration. If the surface layer is harder, the machined surface pressure needs to be set higher accordingly, and conversely, if the surface layer is softer, the machined surface pressure can be set lower accordingly. Similarly, when the uneven shape of the mold member has a high ratio of the area where the surface layer of the cylindrical electrophotographic photosensitive member is recessed to the area where the cylindrical electrophotographic photosensitive member comes into contact with the mold member, the processing surface pressure is increased. It is necessary to set it higher, and conversely, when the ratio of the recessed area is low, the machining surface pressure can be set lower. Further, when the processed surface pressure becomes stronger than a predetermined range, the damage to the photosensitive layer becomes excessive, which causes image defects as in the case of the peeling. From these facts, the predetermined processed surface pressure is a range of strength that can sufficiently transfer the uneven shape of the mold member to the surface of the cylindrical electrophotographic photosensitive member and does not cause image defects in the photosensitive layer. is there.

なお、加工面圧の測定は、受けた圧力に応じた濃度に発色する圧力測定フィルムなどを用いて行うことができる。ただし加工に際して加熱を伴う場合は、このようなフィルムを用いた方法での測定は測定精度やフィルム自体の熱耐性の課題も生じるので避けるべきである。その場合は、予め型部材や円筒状電子写真感光体を加熱していない状態でこの圧力測定フィルムを用いて圧力を測定しておき、その後必要個所を加熱して加工し、転写状態を評価することで、必要な加工面圧範囲の検討を行うことができる。 The processing surface pressure can be measured by using a pressure measuring film or the like that develops a color at a density corresponding to the received pressure. However, when processing is accompanied by heating, measurement by such a method using a film should be avoided because it causes problems of measurement accuracy and heat resistance of the film itself. In that case, the pressure is measured using this pressure measuring film in a state where the mold member and the cylindrical electrophotographic photosensitive member are not heated in advance, and then the necessary parts are heated and processed to evaluate the transfer state. Therefore, the required machining surface pressure range can be examined.

2つ目の要素はニップ幅である。ここでニップ幅について説明する。図4の(a)は、図3で示す部材構成において、円筒状電子写真感光体11が型部材12に所定の荷重力で押しつけられる様子を断面として拡大して示している。この状態では弾性部材14が挿入部材17からの加重力によって窪むことで型部材12と金属部材13が湾曲するように変形している。ただし、型部材12と金属部材13の変形は、何れの部材においても弾性変形の範囲内で生じているのでおよそ緩やかな曲線を維持している。また、図4の(b)は、図4の(a)を更に拡大し、また、説明を容易にするために型部材12と金属部材13及び弾性部材14の変形をより強調して表している。そしてこの図4の(b)の矢印で示した部分がニップ幅であり、円筒状電子写真感光体11と型部材12が接触する幅を意味する。そしてニップ幅はおよそ型部材及び金属部材の変形の強さに比例し、この変形が大きいとニップ幅は広くなり、逆に変形が小さいとニップ幅は狭くなる。なお、変形が大きいとは変形によって構成される近似的な曲率半径がより短い状態を意味し、変形が小さいとは変形によって構成される近似的な曲率半径がより長い状態を意味する。さらに前記したように、加工において円筒状電子写真感光体が所定の荷重力で型部材に押しつけられた状態で、円筒状電子写真感光体と型部材の図3または図4の図示左右方向の位置が相対的に変化することで、円筒状電子写真感光体は型部材上を従動的に転動する。このときニップ幅が狭いことは、円筒状電子写真感光体表面と型部材との間、又は円筒状電子写真感光体の感光層を構成する各膜同士の間、又は感光層と円筒状基体との間で、この従動的に転動させる力を伝達するための面積が狭いことを意味する。したがってその力の伝達が限られた部分に集中することとなり、その部分において層間の剥がれを誘発する。逆にニップ幅が十分に広いことは、円筒状電子写真感光体表面と型部材との間、又は円筒状電子写真感光体の感光層を構成する各膜同士の間、又は感光層と円筒状基体との間で従動的に転動させる力を伝達するための面積が広いことを意味する。したがってその力の伝達が限られた部分に集中することが無く、その部分において層間の剥がれを誘発することを防ぐことができる。 The second factor is the nip width. Here, the nip width will be described. FIG. 4A shows an enlarged cross section of the member configuration shown in FIG. 3 in which the cylindrical electrophotographic photosensitive member 11 is pressed against the mold member 12 with a predetermined load force. In this state, the elastic member 14 is dented by the gravity applied from the insertion member 17, so that the mold member 12 and the metal member 13 are deformed so as to be curved. However, since the deformation of the mold member 12 and the metal member 13 occurs within the range of elastic deformation in both members, a substantially gentle curve is maintained. Further, (b) of FIG. 4 further enlarges (a) of FIG. 4 and further emphasizes the deformation of the mold member 12, the metal member 13, and the elastic member 14 in order to facilitate the explanation. There is. The portion indicated by the arrow in FIG. 4B is the nip width, which means the width at which the cylindrical electrophotographic photosensitive member 11 and the mold member 12 come into contact with each other. The nip width is approximately proportional to the strength of deformation of the mold member and the metal member. When this deformation is large, the nip width becomes wide, and conversely, when the deformation is small, the nip width becomes narrow. Note that a large deformation means a state in which the approximate radius of curvature formed by the deformation is shorter, and a small deformation means a state in which the approximate radius of curvature formed by the deformation is longer. Further, as described above, in the state where the cylindrical electrophotographic photosensitive member is pressed against the mold member by a predetermined load force in the processing, the positions of the cylindrical electrophotographic photosensitive member and the mold member in the left-right direction shown in FIG. 3 or FIG. The cylindrical electrophotographic photosensitive member passively rolls on the mold member due to the relative change of. At this time, the narrow nip width means that the surface of the cylindrical electrophotographic photosensitive member and the mold member, or between the films constituting the photosensitive layer of the cylindrical electrophotographic photosensitive member, or between the photosensitive layer and the cylindrical substrate. It means that the area for transmitting this passively rolling force is small between the two. Therefore, the transmission of the force is concentrated in a limited part, which induces peeling between layers. On the contrary, a sufficiently wide nip width means that the surface of the cylindrical electrophotographic photosensitive member and the mold member, or between the films constituting the photosensitive layer of the cylindrical electrophotographic photosensitive member, or between the photosensitive layer and the cylindrical shape. This means that the area for transmitting the force of passively rolling to and from the substrate is large. Therefore, the transmission of the force is not concentrated in the limited portion, and it is possible to prevent the peeling between the layers from being induced in that portion.

この前記加工中のニップ幅を決めるのは、円筒状電子写真感光体が型部材に押しつけられる荷重力と、型部材のヤング率及び厚みと、金属部材のヤング率及び厚みと、弾性部材の硬度および厚みである。円筒状電子写真感光体が型部材に押しつけられる荷重力が強いと型部材及び金属部材及び弾性部材の変形が大きくなる。また、型部材のヤング率がより高いと型部材の変形はより小さくなり、同様に型部材の厚みがより厚いと型部材の変形はより小さくなる。同様に金属部材のヤング率がより高いと金属部材の変形はより小さくなり、同様に金属部材の厚みがより厚いと金属部材の変形はより小さくなる。そして、弾性部材の硬度がより高いと弾性部材の窪みはより小さくなり、同様に弾性部材の厚みがより厚いと弾性部材の窪みはより大きくなる。ただし、前記のように型部材は作製コストの面で薄くすることが好ましく、また、弾性部材としてゴムなどの柔軟性の高い樹脂材料を使用する場合はその硬度が金属を用いる部材に比べて非常に低いことから、その材料を変更してもニップ幅への影響は限定的である。なお、弾性部材の硬度は外力による変形に抗する応力を示すが、本説明においては金属材料におけるヤング率と同様な意味として用いる。また、型部材に熱を供給するような加工に際しては、弾性部材の種類や厚みを変更することは熱伝達率の大きな変化を生じる。こうしたことから、部材構成としてニップ幅の調整を行うためには、金属部材を適宜選定するのが最も効率的である。 The nip width during the processing is determined by the load force on which the cylindrical electrophotographic photosensitive member is pressed against the mold member, the Young's modulus and thickness of the mold member, the Young's modulus and thickness of the metal member, and the hardness of the elastic member. And thickness. When the load force against which the cylindrical electrophotographic photosensitive member is pressed against the mold member is strong, the deformation of the mold member, the metal member, and the elastic member becomes large. Further, when the Young's modulus of the mold member is higher, the deformation of the mold member becomes smaller, and similarly, when the thickness of the mold member is thicker, the deformation of the mold member becomes smaller. Similarly, the higher the Young's modulus of the metal member, the smaller the deformation of the metal member, and similarly, the thicker the metal member, the smaller the deformation of the metal member. Then, when the hardness of the elastic member is higher, the depression of the elastic member becomes smaller, and similarly, when the thickness of the elastic member is thicker, the depression of the elastic member becomes larger. However, as described above, it is preferable that the mold member is thin in terms of manufacturing cost, and when a highly flexible resin material such as rubber is used as the elastic member, its hardness is much higher than that of a member using metal. Since it is low, the effect on the nip width is limited even if the material is changed. The hardness of an elastic member indicates a stress that resists deformation due to an external force, but in this description, it is used as having the same meaning as Young's modulus in a metal material. Further, in the process of supplying heat to the mold member, changing the type and thickness of the elastic member causes a large change in the heat transfer coefficient. Therefore, in order to adjust the nip width as a member configuration, it is most efficient to appropriately select a metal member.

ここまで述べてきたように、円筒状電子写真感光体の表面に型部材を用いて凹凸形状を形成するための荷重力は、前記1つ目の要素である加工面圧と、前記2つ目の要素であるニップ幅、特に金属部材の選定によるニップ幅の形成を共に満たすことが重要である。 As described above, the load force for forming the concave-convex shape on the surface of the cylindrical electrophotographic photosensitive member by using the mold member is the processing surface pressure which is the first element and the second element. It is important to satisfy both the nip width, which is an element of the above, especially the formation of the nip width by selecting the metal member.

次に、金属部材の耐久性について説明する。これまで述べたように金属部材は円筒状電子写真感光体から受ける荷重力によって湾曲するように変形する。そしてその変形の大きさ、すなわち変形によって構成される近似的な曲率半径は金属部材による弾性的な変形の大きさの範囲内に留めるべきである。そうすることによって、繰り返し加工に際して金属部材が変形に抗する力すなわち変形応力が一定に保たれるので、前記加工面圧を一定範囲に保つことができる。同様に変形の大きさも一定に保たれることからニップ幅も一定範囲に保つことができる。しかしながら、その変形を繰り返すことで金属部材内に疲労が蓄積し、変形回数がおよそ所定の回数に至った時点で塑性変形を起こし、それ以降は変形応力が著しく変化することとなる。この金属部材の変形応力の変化は前記の加工面圧やニップ幅の変化を生じ、加工結果に対する大きな障害となる。このように変形を繰り返すことで金属部材内に蓄積する疲労が一定以上に達し変形応力が変化する時点、すなわちその回数が金属部材の耐久性の限界である。そしてさらに変形を繰り返すことで、最終的には変形箇所に亀裂を生じるなどの破壊にいたる。以降の説明において、この金属部材に蓄積する疲労が一定以上に達して変形応力が変化する時点までに加工した(変形した)回数を、限界回数と呼ぶこととする。 Next, the durability of the metal member will be described. As described above, the metal member is deformed so as to be curved by the load force received from the cylindrical electrophotographic photosensitive member. And the magnitude of the deformation, that is, the approximate radius of curvature formed by the deformation, should be kept within the range of the magnitude of the elastic deformation by the metal member. By doing so, the force against deformation of the metal member, that is, the deformation stress is kept constant during repeated machining, so that the machining surface pressure can be kept within a constant range. Similarly, since the magnitude of deformation is kept constant, the nip width can be kept within a constant range. However, by repeating the deformation, fatigue accumulates in the metal member, plastic deformation occurs when the number of deformations reaches a predetermined number of times, and the deformation stress changes remarkably thereafter. This change in the deformation stress of the metal member causes the above-mentioned change in the machining surface pressure and the nip width, which is a major obstacle to the machining result. By repeating the deformation in this way, the time when the fatigue accumulated in the metal member reaches a certain level or more and the deformation stress changes, that is, the number of times is the limit of the durability of the metal member. Then, by repeating the deformation further, it finally leads to destruction such as cracking at the deformed part. In the following description, the number of times of processing (deformation) until the fatigue accumulated in the metal member reaches a certain level or more and the deformation stress changes is referred to as a limit number of times.

その金属部材に蓄積する疲労と限界回数は、金属部材が前記荷重力を受けて変形する大きさによって変化するが、たとえその変形の大きさが非常に小さくとも金属部材には必ず疲労が蓄積し、かつ限界回数が存在する。そしてその限界回数は、荷重力や材料物性や厚みなどによって変化する。同じ材料物性かつ同じ厚みの金属部材に対して、加える荷重力がより強いほどその金属部材の変形を大きくし、限界回数が減少する。また、材料物性として限界回数の増減に主に影響するのは引張り強度である。同じ厚みかつ同じ変形の大きさに対してこの引張り強度がより高いほど限界回数は増す。さらに金属部材の厚みは、同じ引張り強度かつ同じ変形の大きさに対してより薄いほど限界回数は増す。なお引張り強度とは、材料に引張り力を与えて伸びを生じさせ、その応力が弾性域、降伏点を超えて破断に至る時点の応力を意味する。一般的には、材料の選定においてその材料の屈曲に対する耐性を判断する指標として用いられる。本発明において考慮する金属部材の耐久性は、湾曲する様な変形形態を円弧に例えたときの、内周部分に対する外周部分の寸法差である。この寸法差が、引張り強度が意味するところの伸びに相当し、この伸びが大きくなる、すなわち変形が増大するにつれて引張り強度が意味するところの応力が増し、限界回数を減少させることになる。また、同じ変形の大きさに対して金属部材の厚みがより薄い場合は伸びが抑えられることで金属部材としての弾性的な変形の範囲が拡大する。これによって応力がより小さく抑えられることで限界回数を多くすることになる。一方、同じ変形の大きさに対して金属部材の厚みがより厚い場合は伸びが大きくなることで金属部材としての弾性的な変形の範囲が縮小する。これによって応力がより大きくなることで限界回数を減少させることになる。 The fatigue and the limit number of times accumulated in the metal member change depending on the magnitude of deformation of the metal member under the load force, but even if the magnitude of the deformation is very small, fatigue always accumulates in the metal member. And there is a limit number of times. The limit number of times changes depending on the load force, the physical characteristics of the material, the thickness, and the like. For a metal member having the same material characteristics and the same thickness, the stronger the applied load force, the greater the deformation of the metal member and the smaller the limit number of times. In addition, it is the tensile strength that mainly affects the increase / decrease in the limit number of times as a material property. The higher the tensile strength for the same thickness and the same magnitude of deformation, the greater the limit number of times. Further, as the thickness of the metal member is thinner for the same tensile strength and the same magnitude of deformation, the limit number of times increases. The tensile strength means the stress at the time when a tensile force is applied to the material to cause elongation and the stress exceeds the elastic region and the yield point and reaches fracture. Generally, it is used as an index for judging the resistance of a material to bending in the selection of the material. The durability of the metal member considered in the present invention is the dimensional difference of the outer peripheral portion with respect to the inner peripheral portion when the curved deformation form is compared to an arc. This dimensional difference corresponds to the elongation as the tensile strength means, and as the elongation increases, that is, the stress as the tensile strength means increases as the deformation increases, the limit number of times is reduced. Further, when the thickness of the metal member is thinner than the magnitude of the same deformation, the elongation is suppressed and the range of elastic deformation as the metal member is expanded. As a result, the stress can be suppressed to a smaller value, and the limit number of times can be increased. On the other hand, when the thickness of the metal member is thicker than the same deformation magnitude, the elongation becomes large and the range of elastic deformation as the metal member is reduced. As a result, the stress becomes larger and the limit number of times is reduced.

また、限界回数を増大させるためには、部材としての強度を増すことも重要である。金属部材の厚みをより厚くすることは、部材としての強度を増すこととなり、同じ荷重力を受けた際の金属部材の変形が小さくなり、限界回数は増加することにもなる。さらに、金属部材の材料物性としてヤング率のより高い金属部材を選定して用いることは部材としての強度を増すこととなり、同じ荷重力を受けた際の金属部材の変形が小さくなり、限界回数は増加する。ただし、前記のようにニップ幅を確保するという点では金属部材の変形の大きさは重要であり、部材の強度のみを優先して変形を小さくするべきではない。 Further, in order to increase the limit number of times, it is also important to increase the strength as a member. Increasing the thickness of the metal member increases the strength of the member, reduces the deformation of the metal member when the same load force is applied, and increases the limit number of times. Further, selecting and using a metal member having a higher Young's modulus as the material physical characteristics of the metal member increases the strength of the member, reduces the deformation of the metal member when the same load force is applied, and the limit number of times is reduced. To increase. However, as described above, the magnitude of deformation of the metal member is important in terms of securing the nip width, and the deformation should not be reduced by giving priority only to the strength of the member.

ここで、金属部材の限界回数という観点で、荷重力と金属部材の厚みについてさらに述べる。前記のように型部材に円筒状電子写真感光体の表面を押しつけて凹凸形状を形成する加工において重要なのは、所定の加工面圧とニップ幅を構成することである。このことは金属部材に対して所定の荷重力の印加と所定の大きさの変形を同時に生じさせることを意味する。さらに、前記のように金属部材の変形の大きさは弾性的な変形の範囲内で設定される必要がある。これらのことから、金属部材に設定すべき厚みは、所定の荷重力の印加を受けた状態において、弾性的な範囲内として所定の大きさの変形を維持するのに十分な強度を有する厚みである必要がある。さらに、金属部材の限界回数をより多く維持するために、前記のように引っ張り強度が意味するところの応力という点で、内周部分に対する外周部分の寸法差を少なくすること、すなわち金属部材の厚みをより薄く設定することも重要である。言いかえれば、限界回数を増加させるという点で、金属部材のヤング率と引張り強度を選定可能な範囲で最も高いものを選定する前提で、その厚みの上限は、印加される荷重力を受けた状態で所定の大きさの変形を弾性的な変形の範囲として維持可能な範囲となる。これは、金属部材の厚みを厚くすることは印加する荷重力に対する強度を引上げることができる半面、変形の大きさを確保することが困難になるということを意味する。以上述べたように、金属部材の課題は、その厚みの設定において限界回数を確保するための材料強度と、ニップ幅を確保するための変形の大きさを両立させるのが困難であるということである。以上が、型部材に円筒状電子写真感光体の表面を押しつけて凹凸形状を形成する加工における部材の耐久性、特には金属部材の耐久性に関する技術的な特徴である。 Here, the load force and the thickness of the metal member will be further described from the viewpoint of the limit number of times of the metal member. As described above, what is important in the process of pressing the surface of the cylindrical electrophotographic photosensitive member against the mold member to form the concave-convex shape is to form a predetermined processed surface pressure and nip width. This means that a predetermined load force is applied to the metal member and a predetermined amount of deformation is generated at the same time. Further, as described above, the magnitude of deformation of the metal member needs to be set within the range of elastic deformation. From these facts, the thickness to be set for the metal member is a thickness having sufficient strength to maintain a deformation of a predetermined size within an elastic range in a state where a predetermined load force is applied. There must be. Further, in order to maintain the limit number of times of the metal member more, the dimensional difference of the outer peripheral portion with respect to the inner peripheral portion is reduced in terms of the stress as described above, that is, the thickness of the metal member. It is also important to set the value thinner. In other words, in terms of increasing the limit number of times, the upper limit of the thickness is subject to the applied load force on the premise that the Young's modulus and tensile strength of the metal member are selected to be the highest in the selectable range. In the state, the deformation of a predetermined size can be maintained as the elastic deformation range. This means that increasing the thickness of the metal member can increase the strength against the applied load force, but it becomes difficult to secure the magnitude of deformation. As described above, the problem with metal members is that it is difficult to achieve both the material strength for securing the limit number of times and the magnitude of deformation for securing the nip width in setting the thickness. is there. The above are technical features relating to the durability of the member in the process of pressing the surface of the cylindrical electrophotographic photosensitive member against the mold member to form an uneven shape, particularly the durability of the metal member.

図1及び図2は、本発明で提供する加工方法の一例を示したものである。
本発明は、円筒状電子写真感光体を表面に凹凸形状を有する型部材に接触させて加圧し該円筒状電子写真感光体を軸回りに回転させながら該円筒状電子写真感光体の表面に凹凸形状を形成する方法であって、該型部材と、該型部材の凹凸形状を有する面の背面側に該加圧方向に直交する方向に、分割されて積層され、かつ該加圧時には互いにずれることができるように、配設された複数の金属部材と、該複数の金属部材が該加圧方向に撓むことができるように支持する支持部材とを用いることを特徴とする、円筒状電子写真感光体の表面に凹凸形状を形成する方法に関する。
1 and 2 show an example of the processing method provided in the present invention.
In the present invention, the cylindrical electrophotographic photosensitive member is brought into contact with a mold member having an uneven shape on the surface and pressurized, and the surface of the cylindrical electrophotographic photosensitive member is uneven while rotating the cylindrical electrophotographic photosensitive member about an axis. A method of forming a shape, in which the mold member and the back surface side of the surface having the uneven shape of the mold member are divided and laminated in a direction orthogonal to the pressurizing direction, and are displaced from each other during the pressurization. Cylindrical electrons, characterized in that they use a plurality of arranged metal members and a support member that supports the plurality of metal members so that they can bend in the pressurizing direction. The present invention relates to a method of forming an uneven shape on the surface of a photographic photosensitive member.

さらに、本発明は、前記複数の金属部材のうち、少なくとも厚みが最も厚い金属部材が圧延加工を含む加工法によって該厚みを形成したものであり、かつ該金属部材を、圧延加工の圧延方向が前記円筒状電子写真感光体の軸に略直交する方向に配設して用いることを特徴とする、円筒状電子写真感光体の表面に凹凸形状を形成する方法に関する。 Further, in the present invention, among the plurality of metal members, at least the thickest metal member has the thickness formed by a processing method including rolling, and the metal member is rolled in a rolling direction. The present invention relates to a method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member, which comprises arranging and using the cylindrical electrophotographic photosensitive member in a direction substantially orthogonal to the axis of the cylindrical electrophotographic photosensitive member.

さらにまた、本発明は、円筒状電子写真感光体を表面に凹凸形状を有する型部材に接触させて加圧し該円筒状電子写真感光体を軸回りに回転させながら該円筒状電子写真感光体の表面に凹凸形状を形成する方法であって、該型部材と、該型部材の凹凸形状を有する面の背面側に該加圧方向に直交する方向に、分割されて積層され、かつ該加圧時には互いにずれることができるように配設された複数の金属部材と、弾性部材と、支持部材とをこの順で配設して用いることを特徴とする、円筒状電子写真感光体の表面に凹凸形状を形成する方法に関する。 Furthermore, in the present invention, the cylindrical electrophotographic photosensitive member is brought into contact with a mold member having an uneven shape on the surface and pressurized, and the cylindrical electrophotographic photosensitive member is rotated about an axis to obtain the cylindrical electrophotographic photosensitive member. A method of forming a concavo-convex shape on a surface, which is divided and laminated in a direction orthogonal to the pressurizing direction on the back surface side of the mold member and the surface having the concavo-convex shape of the mold member, and the pressurization is performed. The surface of the cylindrical electrophotographic photosensitive member is uneven, characterized in that a plurality of metal members arranged so as to be displaced from each other, an elastic member, and a support member are arranged and used in this order. It relates to a method of forming a shape.

この本発明の特徴について、主に従来技術との差異に着目して説明する。図1および図2は本発明で提供する加工方法の一例を示し、前記の従来技術の一例である図3および図4で説明した構成との差異は次のとおりである。金属部材3は一枚の型部材2の図示下方に2枚重ねて配設される。そして金属部材3は複数枚で構成されることが好ましく、前記加工面圧やニップ幅の設計によってその厚みやヤング率や引張り強度などを選定して用いることで効果が得られる。また、枚数についても同様に、3枚、4枚といった枚数を適宜設定して用いることで効果が得られる。また、型部材2と金属部材3と弾性部材4と支持部材5は間座8を用いて互いに固定される。図1に示す例では、図示左方において厚みが弾性部材4とほぼ同等の間座8を金属部材3と支持部材5の間に挟むように配置し、固定ネジ9を用いて、型部材2と金属部材3と間座8と支持部材5を締結している。そして図示右方では固定ネジ9を用いて抑え部材10と間座8と支持部材5を締結している。なおこの状態では固定ネジ9は型部材2と金属部材3を固定していない。そして抑え部材10は、型部材2と金属部材3と弾性部材4の型部材2の凹凸形状面を有する方向への動きを規制している。そしてこのような型部材2等の図1に図示する各部材は台6に固定されている。 The features of the present invention will be described mainly focusing on the differences from the prior art. 1 and 2 show an example of the processing method provided in the present invention, and the differences from the configurations described in FIGS. 3 and 4 which are examples of the above-mentioned prior art are as follows. Two metal members 3 are arranged on top of each other below the drawing of one mold member 2. The metal member 3 is preferably composed of a plurality of members, and the effect can be obtained by selecting and using the thickness, Young's modulus, tensile strength, etc. according to the design of the processed surface pressure and the nip width. Similarly, as for the number of sheets, the effect can be obtained by appropriately setting and using the number of sheets such as 3 sheets and 4 sheets. Further, the mold member 2, the metal member 3, the elastic member 4, and the support member 5 are fixed to each other by using the spacer 8. In the example shown in FIG. 1, a spacer 8 having a thickness substantially equal to that of the elastic member 4 is arranged so as to be sandwiched between the metal member 3 and the support member 5 on the left side of the drawing, and the mold member 2 is used by using the fixing screw 9. The metal member 3, the spacer 8, and the support member 5 are fastened to each other. Then, on the right side of the drawing, the holding member 10, the spacer 8 and the support member 5 are fastened using the fixing screws 9. In this state, the fixing screw 9 does not fix the mold member 2 and the metal member 3. The holding member 10 regulates the movement of the mold member 2, the metal member 3, and the elastic member 4 in the direction of having the concave-convex shape surface. Each member shown in FIG. 1 such as the mold member 2 is fixed to the base 6.

図1及び2と図3及び4との最も大きな差は、従来例である図3及び4の金属部材13が一枚であるのに対し、本願発明に係る図1及び2の金属部材3は2枚を重ねた構成すなわち複数枚の構成である。また、金属部材3の固定が前記のように図1の図示左方のみであることで、図2のように2枚の金属部材3は円筒状電子写真感光体1の荷重力を受けて変形した時点で互いにずれることが可能である。 The largest difference between FIGS. 1 and 2 and FIGS. 3 and 4 is that the metal member 13 of FIGS. 3 and 4 which is a conventional example is one, whereas the metal member 3 of FIGS. 1 and 2 according to the present invention has one. It is a structure in which two sheets are stacked, that is, a structure in which a plurality of sheets are stacked. Further, since the metal member 3 is fixed only on the left side of FIG. 1 as described above, the two metal members 3 are deformed by the load force of the cylindrical electrophotographic photosensitive member 1 as shown in FIG. It is possible to shift from each other at that point.

ここで、金属部材を複数枚用いることについて、前記1つ目の要素である加工面圧と、2つ目の要素であるニップ幅、さらに金属部材の限界回数について述べる。先ず加工面圧に関しては、円筒状電子写真感光体からの荷重力を必要に応じてより強くした場合でも、金属部材を2枚、或いは必要に応じた枚数を重ねて用いることで金属部材の変形の大きさが過大になることを防ぎ、適切な加工面圧を確保することができる。次にニップ幅に関しては、金属部材が複数枚で構成されることで各一枚の厚みを抑えることができ、より柔軟な変形すなわち十分なニップ幅を形成するに必要な変形を可能にしている。続いて限界回数については、同様に各一枚の厚みを抑え、かつ変形時には互いにずれることを可能にしているので前記伸びが短くなり、同じ変形の大きさに対して金属部材としての弾性的な変形の範囲が拡大する。これによって応力がより小さく抑えられることで限界回数を多くすることになる。 Here, regarding the use of a plurality of metal members, the machined surface pressure which is the first element, the nip width which is the second element, and the limit number of times of the metal member will be described. First, regarding the processing surface pressure, even when the load force from the cylindrical electrophotographic photosensitive member is made stronger as needed, the metal member can be deformed by using two metal members or a stack of necessary number of metal members. It is possible to prevent the size of the cylinder from becoming excessive and to secure an appropriate machining surface pressure. Next, regarding the nip width, the thickness of each metal member can be suppressed by being composed of a plurality of metal members, which enables more flexible deformation, that is, the deformation required to form a sufficient nip width. .. Subsequently, regarding the limit number of times, since the thickness of each sheet is similarly suppressed and it is possible to deviate from each other at the time of deformation, the elongation is shortened, and the metal member is elastic with respect to the same deformation magnitude. The range of deformation expands. As a result, the stress can be suppressed to a smaller value, and the limit number of times can be increased.

これらのことを踏まえ、金属部材を一枚で構成する場合と、金属部材を複数枚で構成した場合の違いについて述べる。金属部材を一枚で構成する場合は、加工面圧を確保するために金属部材の厚みをより厚くした状態でニップ幅のための一定の大きさの変形を生じたとき、その厚みによる部材の伸びがより長くなることで限界回数が減少してしまう。これに対し金属部材を複数枚で構成した場合は、加工面圧を確保するために枚数を増やして合計厚みを厚くした状態で一定の大きさの変形を生じても、各一枚の厚みを薄く設定できることで限界回数を多く維持できる。すなわち、金属部材を複数枚で構成する場合の主な特徴は、金属部材の一定の大きさの変形に対して、その合計厚みを増やすことが直接限界回数を減少させることには繋がらないということである。 Based on these facts, the difference between the case where the metal member is composed of one piece and the case where the metal member is composed of a plurality of pieces will be described. When the metal member is composed of one piece, when a certain amount of deformation occurs due to the nip width in a state where the thickness of the metal member is made thicker in order to secure the machining surface pressure, the member due to the thickness The longer the elongation, the less the limit number of times. On the other hand, when a plurality of metal members are used, the thickness of each metal member is increased even if a certain amount of deformation occurs in a state where the total thickness is increased by increasing the number of metal members in order to secure the processing surface pressure. By setting it thin, the limit number of times can be maintained. That is, the main feature when the metal member is composed of a plurality of pieces is that increasing the total thickness of the metal member does not directly reduce the limit number of times for deformation of a certain size. Is.

従って本発明の方法は、金属部材を複数枚用いることで、金属部材を1枚用いる場合に比べて、所定の加工面圧かつ所定のニップ幅での加工に際しての金属部材の限界回数を多くするという効果を有する。また、金属部材の厚みに関して、1枚で用いる場合と同じ厚みを複数枚で構成した場合に、金属部材の限界回数を多くするという効果も有する。 Therefore, in the method of the present invention, by using a plurality of metal members, the limit number of times of machining of the metal member at a predetermined machining surface pressure and a predetermined nip width is increased as compared with the case where one metal member is used. It has the effect of. Further, regarding the thickness of the metal member, when the same thickness as that used for one piece is formed by a plurality of pieces, there is also an effect that the limit number of times of the metal member is increased.

次に、このような金属部材を複数枚で構成する場合の主な特徴を得る上で、複数の金属部材のそれぞれの厚みの設定について重要となる点について述べる。前記のように、一定の大きさの変形を繰り返した場合に、その限界回数は厚みに関係し、より厚いほど少なくなる。したがって複数枚の金属部材の限界回数を多くするには、何れの一枚も厚みが他に比較して厚くならないように構成する、すなわち、およそ全ての金属部材が同じ厚みであるということが望ましい。 Next, in order to obtain the main features when such a metal member is composed of a plurality of pieces, the important points regarding the setting of the thickness of each of the plurality of metal members will be described. As described above, when the deformation of a certain size is repeated, the limit number of times is related to the thickness, and the thicker the deformation, the smaller the limit. Therefore, in order to increase the limit number of times of a plurality of metal members, it is desirable that each of the metal members is configured so as not to be thicker than the others, that is, about all the metal members have the same thickness. ..

これについてより詳しく述べる。前記の理由から金属部材にニップ幅を構成するための変形を生じさせて繰り返し加工を続けたときに、最も早期に限界回数を迎えるのは最も厚い一枚の金属部材である。そして、複数枚で構成した金属部材を用いて一定の荷重力を維持して加工を続ける場合、加工面圧とニップ幅を一定に維持することに対しては全ての金属部材が関係しているが、最も厚みが厚い一枚は、これに最も大きく寄与している。すなわち、複数の金属部材のうち最も厚みが厚い一枚の限界回数が、その複数の金属部材の限界回数ということになる。このことから、全ての金属部材の厚みを合計した厚みをTtotalとし、厚みが最も厚い金属部材の厚みをT1としたとき、以下の関係式、
T1 ≦ 0.7・Ttotal
が成立するように金属部材のそれぞれの板の厚みを構成することが、限界回数を多く確保する上で好ましい。
This will be described in more detail. For the above reason, when the metal member is deformed to form the nip width and repeated machining is continued, it is the thickest single metal member that reaches the limit number of times at the earliest. When machining is continued while maintaining a constant load force using a metal member composed of a plurality of sheets, all the metal members are involved in maintaining the machining surface pressure and the nip width constant. However, the thickest piece contributes the most to this. That is, the limit number of times for one of the plurality of metal members, which is the thickest, is the limit number of times for the plurality of metal members. From this, when the total thickness of all the metal members is T total and the thickness of the thickest metal member is T1, the following relational expression
T1 ≤ 0.7 · T total
It is preferable to configure the thickness of each plate of the metal member so that the above is satisfied in order to secure a large number of times.

また、金属部材の最も厚い一枚以外の金属部材について、次の関係であることが限界回数を多くするという意味でさらに好ましい。それは、金属部材の厚みが、前記厚みT1と同じ、又はT1に次ぐ厚みを有する金属部材の厚みをT2としたとき、以下の関係式、
T2 ≧ 0.7・T1
が成立する。このような関係であることで、先に述べた、およそ全ての金属部材が同じ厚みであるという関係に近づくことになる。詳細には、加工面圧を設定することについて、厚みがT2である金属部材の存在によって、最も厚みが厚い一枚にかかる負担を緩和する、すなわちT1をより薄くすることが可能になる。
Further, for metal members other than the thickest one of the metal members, the following relationship is more preferable in the sense that the limit number of times is increased. It is based on the following relational expression, when the thickness of the metal member is the same as the thickness T1 or the thickness of the metal member having the thickness next to T1 is T2.
T2 ≧ 0.7 ・ T1
Is established. With such a relationship, it approaches the above-mentioned relationship that almost all metal members have the same thickness. Specifically, regarding the setting of the processing surface pressure, the presence of the metal member having a thickness of T2 makes it possible to alleviate the load on the thickest sheet, that is, to make T1 thinner.

続いて、本発明の加工方法において複数枚で構成される金属部材の最も厚みが厚い一枚の構成について更に述べる。本発明で使用する様な金属部材はおよそ薄板形状であって、その成型加工としては圧延加工を主とした加工法によってその厚みを形成する場合が多い。そしてこのような圧延加工を施した金属を構成する結晶粒は、圧延前に比べて圧延方向に伸張されてアスペクト比(結晶粒の圧延方向に直交する方向の長さに対する圧延方向の長さの比率とする)がより大きくなる方向に変化する。一方、前記金属部材の変形による疲労や塑性変形の現象は、主に結晶粒同士の界面における僅かなズレとして生じることが多い。このとき変形による結晶粒同士のズレ方向に対して直交する方向の界面の面積が、円筒状電子写真感光体の軸方向と金属部材の圧延方向がおよそ直交するように、すなわち図1及び2の図示左右方向に圧延して金属部材を配設する場合の方が、円筒状電子写真感光体の軸方向と金属部材の圧延方向がおよそ平行になるように配設した場合に比べてより大きくなる。これにより同じ大きさの変形を生じた金属部材の結晶粒同士のズレは、円筒状電子写真感光体の軸方向と金属部材の圧延方向がおよそ直交するように金属部材を配設することで、より少なく抑えることとなり、ひいては金属部材の限界回数を多くすることになる。なお、この金属部材の圧延方向と円筒状電子写真感光体の軸の方向が金属部材の限界回数に与える影響は、最も厚い一枚のみならず、その他の金属部材の各板についても同様であり、これを適用することで同様の効果を得る。 Subsequently, the structure of one thickest metal member composed of a plurality of pieces in the processing method of the present invention will be further described. The metal member as used in the present invention has a substantially thin plate shape, and the thickness of the metal member is often formed by a processing method mainly for rolling. The crystal grains constituting the metal subjected to such rolling processing are stretched in the rolling direction as compared with those before rolling, and have an aspect ratio (the length in the rolling direction with respect to the length in the direction orthogonal to the rolling direction of the crystal grains). The ratio) changes in the direction of increasing. On the other hand, the phenomenon of fatigue or plastic deformation due to the deformation of the metal member often occurs mainly as a slight deviation at the interface between the crystal grains. At this time, the area of the interface in the direction orthogonal to the displacement direction of the crystal grains due to deformation is such that the axial direction of the cylindrical electrophotographic photosensitive member and the rolling direction of the metal member are substantially orthogonal to each other, that is, in FIGS. 1 and 2. The case where the metal member is arranged by rolling in the left-right direction shown in the drawing is larger than the case where the metal member is arranged so that the axial direction of the cylindrical electrophotographic photosensitive member and the rolling direction of the metal member are substantially parallel to each other. .. By arranging the metal members so that the axial direction of the cylindrical electrophotographic photosensitive member and the rolling direction of the metal members are approximately orthogonal to each other, the deviation between the crystal grains of the metal members that have been deformed to the same size due to this is achieved. It will be suppressed to a smaller number, and as a result, the limit number of times of the metal member will be increased. The effect of the rolling direction of the metal member and the direction of the axis of the cylindrical electrophotographic photosensitive member on the limit number of times of the metal member is the same not only for the thickest sheet but also for each plate of the other metal member. , The same effect can be obtained by applying this.

さらに、金属部材の最も厚みが厚い一枚の材料物性について、前記引張り強度が500MPa以上であることが好ましい。この引張り強度がより高い金属材料を選定して用いることで、同じ厚み及び同じ大きさの変形に際して限界回数をより多くすることができ、特に荷重力や加工面圧を高くするなどの加工負荷の高い加工に際して大きな効果を得る。なお、この金属部材の引張り強度を500MPa以上として用いる効果は最も厚い一枚のみならず、その他の金属部材の各板についても同様であり、これを適用することで同様の効果を得る。 Further, it is preferable that the tensile strength is 500 MPa or more with respect to the physical characteristics of one sheet having the thickest metal member. By selecting and using a metal material with higher tensile strength, the limit number of times can be increased when deforming with the same thickness and size, and especially for machining loads such as increasing the load force and machining surface pressure. Great effect is obtained in high processing. The effect of using the tensile strength of this metal member as 500 MPa or more is the same not only for one of the thickest sheets but also for each plate of other metal members, and the same effect can be obtained by applying this.

また、本発明はこれまで述べてきた限界回数の増加に加えて、さらに別の効果を有する。それは、同一のニップ幅を形成する加工において、金属部材を一枚で構成する場合に比べて、金属部材を複数枚で構成する場合の方が、印加する荷重力をより抑えることができるという点である。これは、一枚の金属部材の厚みを増して所定の厚みを構成する場合と、同一材料のそれより薄い金属部材を足し合わせて(重ねて)同じ所定の厚みを構成する場合では、一枚の金属部材の厚みを増す方が、曲げに対する応力が高いことに由来する。すなわち、この両者に同一の大きさの変形を生じさせるために要する荷重力は、本発明の複数の金属部材を重ねて用いる方法を用いた方が、金属部材を一枚で構成するよりも低くなる。そして、それは本発明の方法が、金属部材を一枚で構成する従来方法よりも、より低い加工面圧での加工を可能にすることにつながる。これは、加工において型部材の凹凸形状を円筒状電子写真感光体の表面に転写可能な最低限の加工面圧を構成する荷重力が、金属部材を一枚で構成した場合の最低限必要なニップ幅を構成する荷重力を下回っている時に、金属部材を複数枚で構成する方法を使用すれば、有効な荷重力の下限を引き下げることが可能となる。一方、加工面圧の上限すなわち加工後の円筒状電子写真感光体の像露光時の露光電位の低下を生じる限界点は金属部材の構成に関わって変化しない。これは、本発明の方法が、加工に際して有効な荷重力の幅を広げることを意味する。したがって本発明の方法を用いることは、荷重力の制御の許容幅を広げることとなり、連続生産における加工、特には荷重力制御の安定性を向上させることができる。 Moreover, the present invention has yet another effect in addition to the increase in the limit number of times described so far. That is, in the process of forming the same nip width, the applied load force can be further suppressed when the metal member is composed of a plurality of pieces as compared with the case where the metal member is composed of one piece. Is. This is one in the case where the thickness of one metal member is increased to form a predetermined thickness, and in the case where thinner metal members of the same material are added (overlapped) to form the same predetermined thickness. This is because the stress on bending is higher when the thickness of the metal member is increased. That is, the load force required to cause deformation of the same magnitude in both of them is lower when using the method of stacking and using a plurality of metal members of the present invention than when using a single metal member. Become. And it leads to the method of the present invention enabling machining with a lower machining surface pressure than the conventional method of constructing a single metal member. This is the minimum required load force that constitutes the minimum processing surface pressure that allows the uneven shape of the mold member to be transferred to the surface of the cylindrical electrophotographic photosensitive member in processing, when the metal member is composed of a single piece. When the load force forming the nip width is less than the load force, the lower limit of the effective load force can be lowered by using the method of forming a plurality of metal members. On the other hand, the upper limit of the processed surface pressure, that is, the limit point at which the exposure potential at the time of image exposure of the cylindrical electrophotographic photosensitive member after processing is lowered does not change regardless of the configuration of the metal member. This means that the method of the present invention widens the range of effective load forces during machining. Therefore, by using the method of the present invention, the permissible range of load force control can be widened, and the stability of machining in continuous production, particularly load force control, can be improved.

ここで、複数の金属部材を重ねて用いることで構成可能な、本発明の別の態様について説明する。
繰り返し円筒状電子写真感光体を型部材に押し付けた際に、型部材に円筒状電子写真感光体の端部が押し付けられる位置を起点とした折れ曲がりが生じることがある。そして、大量生産において加工を繰り返すことによって、このような型部材の折れ曲がりがより強くなると、最終的にはその部分に亀裂が生じるなどして、型部材が使用できなくなる。本発明は、金属部材を複数枚で構成するという特徴から、この型部材の折れ曲がりを緩和し、型部材をより長く使用することを可能にする効果も有する。以降、これについて説明する。
Here, another aspect of the present invention, which can be configured by stacking and using a plurality of metal members, will be described.
When the cylindrical electrophotographic photosensitive member is repeatedly pressed against the mold member, bending may occur starting from the position where the end portion of the cylindrical electrophotographic photosensitive member is pressed against the mold member. Then, when the bending of such a mold member becomes stronger by repeating the processing in mass production, the mold member cannot be used because a crack is finally generated in the portion. The present invention also has the effect of alleviating the bending of the mold member and enabling the mold member to be used for a longer period of time because the metal member is composed of a plurality of pieces. This will be described below.

先ず、型部材の折れ曲がる要因について、図6を用いてより詳細に述べる。図6は、円筒状電子写真感光体、型部材、金属部材、弾性部材その他の部材構成について、円筒状電子写真感光体の一端部について、その断面構成を示すものである。挿入部材7を型部材2にむけて所望の力で移動させることで円筒状電子写真感光体1の表面に型部材2を押し付け、円筒状電子写真感光体1の表面に型部材2の凹凸形状を転写する。
このとき、図6(a)の構成では、型部材2には円筒状電子写真感光体1の端部に相当する位置を起点とした、金属部材3から遠ざかる方向の折れ曲がりが生じる。この曲がりが生じる理由は、型部材2の円筒状電子写真感光体1が押し付けられる部分と、円筒状電子写真感光体1の端部よりも軸方向外側に位置して円筒状電子写真感光体1が押し付けられることのない部分では型部材2の受ける押圧力が大きく違うことに由来する。なお、本説明にて記載する円筒状電子写真感光体1の軸方向外側とは、円筒状電子写真感光体1の軸方向において円筒状電子写真感光体1の中央より遠ざかる方向、すなわち図示右側を意味する。
First, the factors that cause the mold member to bend will be described in more detail with reference to FIG. FIG. 6 shows a cross-sectional configuration of one end of a cylindrical electrophotographic photosensitive member with respect to a cylindrical electrophotographic photosensitive member, a mold member, a metal member, an elastic member, and other member configurations. By moving the insertion member 7 toward the mold member 2 with a desired force, the mold member 2 is pressed against the surface of the cylindrical electrophotographic photosensitive member 1, and the concave-convex shape of the mold member 2 is pressed against the surface of the cylindrical electrophotographic photosensitive member 1. To transfer.
At this time, in the configuration of FIG. 6A, the mold member 2 is bent in the direction away from the metal member 3 starting from the position corresponding to the end portion of the cylindrical electrophotographic photosensitive member 1. The reason why this bending occurs is that the portion of the mold member 2 to which the cylindrical electrophotographic photosensitive member 1 is pressed and the cylindrical electrophotographic photosensitive member 1 are located axially outward from the end portion of the cylindrical electrophotographic photosensitive member 1. This is because the pressing force received by the mold member 2 is significantly different in the portion where the mold member 2 is not pressed. The axially outer side of the cylindrical electrophotographic photosensitive member 1 described in this description is the direction away from the center of the cylindrical electrophotographic photosensitive member 1 in the axial direction of the cylindrical electrophotographic photosensitive member 1, that is, the right side in the drawing. means.

この2つの部分の押圧力の違いについて述べる。図6(a)では、円筒状電子写真感光体1が型部材2に向けて押し付けられる時点で、金属部材3を弾性部材4が図示下方より図示上方に向けて弾性的に応力を発生させて支持しているため、円筒状電子写真感光体1の長さに対応する型部材2には相応の押圧力が生じる。一方、円筒状電子写真感光体1の端部より円筒状電子写真感光体1の軸方向外側(図示右側)の型部材2の部分では、金属部材3に対する円筒状電子写真感光体1による押しつけがないから、型部材2には押圧力が生じていない。
この押圧力の違いによって円筒状電子写真感光体1の端部の角部よりも軸方向外側(図示右側)の型部材2の部分、すなわち押圧力を受けていない型部材2の部分が、円筒状電子写真感光体1が押し付けられる方向の逆の方向に折れ曲がるという現象が生じる。この現象は、金属部材が複数枚で構成されていることに由来して生じるものではなく、金属部材が1枚で構成されていても同様に生じるものである。
The difference in pressing force between these two parts will be described. In FIG. 6A, when the cylindrical electrophotographic photosensitive member 1 is pressed against the mold member 2, the elastic member 4 elastically generates stress on the metal member 3 from the lower part in the drawing toward the upper part in the drawing. Since it is supported, a corresponding pressing force is generated on the mold member 2 corresponding to the length of the cylindrical electrophotographic photosensitive member 1. On the other hand, at the portion of the mold member 2 on the axially outer side (right side in the drawing) of the cylindrical electrophotographic photosensitive member 1 from the end portion of the cylindrical electrophotographic photosensitive member 1, the cylindrical electrophotographic photosensitive member 1 presses against the metal member 3. Therefore, no pressing force is generated on the mold member 2.
Due to this difference in pressing force, the portion of the mold member 2 axially outside (right side in the drawing) from the corner of the end of the cylindrical electrophotographic photosensitive member 1, that is, the portion of the mold member 2 not subjected to the pressing force is cylindrical. A phenomenon occurs in which the electrophotographic photosensitive member 1 is bent in the direction opposite to the pressing direction. This phenomenon does not occur due to the fact that the metal member is composed of a plurality of pieces, but also occurs even if the metal member is composed of one piece.

また、図6(b)のように型部材2の端部を円筒状電子写真感光体1の端部よりも円筒状電子写真感光体1の軸方向の中央寄りに配置することで、図6(a)のような型部材2の折れ曲がりを防止することが可能である。しかし、この構成では円筒状電子写真感光体1が型部材2に向けて押し付けられる際に、型部材2の端部が円筒状電子写真感光体1の表面に傷を付けることとなる。したがって、係る型部材2の端部による円筒状電子写真感光体1の表面の傷の発生を緩和する必要もある。 Further, as shown in FIG. 6B, by arranging the end portion of the mold member 2 closer to the center of the cylindrical electrophotographic photosensitive member 1 in the axial direction than the end portion of the cylindrical electrophotographic photosensitive member 1, FIG. It is possible to prevent bending of the mold member 2 as in (a). However, in this configuration, when the cylindrical electrophotographic photosensitive member 1 is pressed against the mold member 2, the end portion of the mold member 2 scratches the surface of the cylindrical electrophotographic photosensitive member 1. Therefore, it is also necessary to alleviate the occurrence of scratches on the surface of the cylindrical electrophotographic photosensitive member 1 due to the end portion of the mold member 2.

次に、この型部材の折れ曲がりを緩和する本発明の構成の一例として、図7(a)を用いて説明する。図7(a)に示す金属部材31は、複数枚で構成される金属部材3のうち、円筒状電子写真感光体1が型部材2に向かう加圧方向において、最も型部材2に近い金属部材である。また金属部材3を構成する複数の金属部材は、円筒状電子写真感光体1の軸方向の長さが同一ではない金属部材を有する。
そして図7(a)のAは、円筒状電子写真感光体1の軸方向において、円筒状電子写真感光体1又は型部材2又は金属部材31の3つの端部のうち、最も中央寄りに位置する端部の位置を意味する。ここで図6及び図7(a)における各部材の端部とは、各部材の図示右端の位置を意味する。また、図6及び図7(a)における中央寄りとは、円筒状電子写真感光体1の軸方向の中央部に向かう方向、すなわち図示左側に向かう方向を意味する。
Next, as an example of the configuration of the present invention that alleviates the bending of the mold member, FIG. 7A will be described. The metal member 31 shown in FIG. 7A is the metal member closest to the mold member 2 in the pressurizing direction in which the cylindrical electrophotographic photosensitive member 1 is directed toward the mold member 2 among the metal members 3 composed of a plurality of members. Is. Further, the plurality of metal members constituting the metal member 3 have metal members whose axial lengths of the cylindrical electrophotographic photosensitive member 1 are not the same.
A in FIG. 7A is located closest to the center of the three ends of the cylindrical electrophotographic photosensitive member 1 or the mold member 2 or the metal member 31 in the axial direction of the cylindrical electrophotographic photosensitive member 1. It means the position of the end part. Here, the end portion of each member in FIGS. 6 and 7A means the position of the right end portion of each member in the drawing. Further, the center side in FIGS. 6 and 7A means a direction toward the central portion in the axial direction of the cylindrical electrophotographic photosensitive member 1, that is, a direction toward the left side in the drawing.

図7(a)のAは図6(a)の円筒状電子写真感光体1の端部と同じく、前記した型部材2が折れ曲がる現象において、その起点となる部分である。そして図7(a)において、Aより円筒状電子写真感光体1の軸方向中央寄り(図示左側)は型部材2に対する円筒状電子写真感光体1の金属部材31に向けた押しつけ力が生じおり、Aの軸方向外側(図示右側)ではこの押しつけ力が生じていない。しかし、図7(a)では、金属部材31の図示下側にAより端部が軸方向中央寄り(図示左側)に位置する金属部材が存在する。これにより、図7(a)のAにおいて生じる型部材2に対する円筒状電子写真感光体1の金属部材31に向けた押しつけ力は、図6(a)の円筒状電子写真感光体1の端部において型部材2に対する円筒状電子写真感光体1の型部材2に向けた押しつけ力よりも小さい。したがって、図7(a)の構成は、図6(a)の構成に比べて型部材2の折れ曲がりが緩和される。 A in FIG. 7A is a portion that becomes a starting point in the phenomenon in which the mold member 2 is bent, similarly to the end portion of the cylindrical electrophotographic photosensitive member 1 in FIG. 6A. Then, in FIG. 7A, a pressing force is generated from A toward the center of the cylindrical electrophotographic photosensitive member 1 in the axial direction (left side in the drawing) toward the metal member 31 of the cylindrical electrophotographic photosensitive member 1 against the mold member 2. , A, this pressing force is not generated on the outer side in the axial direction (right side in the drawing). However, in FIG. 7A, there is a metal member whose end is located closer to the center in the axial direction (left side in the drawing) than A on the lower side in the drawing of the metal member 31. As a result, the pressing force of the cylindrical electrophotographic photosensitive member 1 against the metal member 31 generated in A of FIG. 7A is the end portion of the cylindrical electrophotographic photosensitive member 1 of FIG. 6A. It is smaller than the pressing force of the cylindrical electrophotographic photosensitive member 1 against the mold member 2 against the mold member 2. Therefore, in the configuration of FIG. 7A, the bending of the mold member 2 is lessened as compared with the configuration of FIG. 6A.

図7(a)のLは、円筒状電子写真感光体1の軸方向において、Aから、金属部材3の複数の金属部材のうち端部が最も中央寄りに位置する金属部材の端部の位置までの距離を示す。またTは、円筒状電子写真感光体1が型部材2に向かう加圧方向において、金属部材31の型部材2側の表面から、金属部材3の複数の金属部材のうち端部が円筒状電子写真感光体1の軸方向において最も中央寄りに位置する金属部材の型部材2側の表面までの距離を意味する。このとき、
L ≧ T
の関係にある場合は、金属部材31のAの部分が、円筒状電子写真感光体1の型部材2に対する押しつけ力をより緩和することができる。これにより、型部材2の折れ曲がりがより緩和される。
FIG. 7A shows the position of the end of the metal member whose end is closest to the center among the plurality of metal members of the metal member 3 from A in the axial direction of the cylindrical electrophotographic photosensitive member 1. Indicates the distance to. Further, T is a cylindrical electrophotographic photosensitive member 1 having a cylindrical electron at an end of a plurality of metal members of the metal member 3 from the surface of the metal member 31 on the mold member 2 side in the pressurizing direction toward the mold member 2. It means the distance to the surface of the metal member located closest to the center in the axial direction of the photographic photosensitive member 1 on the mold member 2 side. At this time,
L ≧ T
In the case of the above relationship, the portion A of the metal member 31 can further relax the pressing force of the cylindrical electrophotographic photosensitive member 1 against the mold member 2. As a result, the bending of the mold member 2 is further alleviated.

続いて、この型部材の折れ曲がりを緩和する本発明の構成の別の例として、図7(b)を用いて説明する。図7(b)に示す金属部材31は、複数枚で構成される金属部材3のうち、円筒状電子写真感光体1が型部材2に向かう加圧方向において、最も型部材2に近い金属部材である。また金属部材3を構成する複数の金属部材は、円筒状電子写真感光体1の軸方向の長さが同一ではない金属部材を有する。 Subsequently, as another example of the configuration of the present invention for alleviating the bending of the mold member, FIG. 7B will be described. The metal member 31 shown in FIG. 7B is a metal member 3 that is closest to the mold member 2 in the pressurizing direction in which the cylindrical electrophotographic photosensitive member 1 is directed toward the mold member 2. Is. Further, the plurality of metal members constituting the metal member 3 have metal members whose axial lengths of the cylindrical electrophotographic photosensitive member 1 are not the same.

そして図7(b)のAは、円筒状電子写真感光体1の軸方向において、円筒状電子写真感光体1又は型部材2又は金属部材31の3つの端部のうち、最も中央寄りに位置する端部の位置を意味する。ここで図6及び図7(b)における各部材の端部とは、各部材の図示右端の端の位置を意味する。また、図6及び図7(b)における中央寄りとは、円筒状電子写真感光体1の軸方向の中央部に向かう方向、すなわち図示左側に向かう方向を意味する。 A in FIG. 7B is located closest to the center of the three ends of the cylindrical electrophotographic photosensitive member 1 or the mold member 2 or the metal member 31 in the axial direction of the cylindrical electrophotographic photosensitive member 1. It means the position of the end part. Here, the end portion of each member in FIGS. 6 and 7B means the position of the end of the right end in the drawing of each member. Further, the term “center-oriented” in FIGS. 6 and 7 (b) means a direction toward the central portion in the axial direction of the cylindrical electrophotographic photosensitive member 1, that is, a direction toward the left side in the drawing.

図7(b)のAは図6(a)の円筒状電子写真感光体1の端部と同じく、前記した型部材2が折れ曲がる現象において、その起点となる部分である。そして図7(b)において、Aより円筒状電子写真感光体1の軸方向中央寄り(図示左側)は型部材2に対する円筒状電子写真感光体1の金属部材31に向けた押しつけ力が生じおり、Aの軸方向外側(図示右側)ではこの押しつけ力が生じていない。しかし、図7(b)では、金属部材31の図示下側にAより端部が軸方向中央寄り(図示左側)に位置する金属部材が存在する。これにより、図7(b)のAにおいて生じる型部材2に対する円筒状電子写真感光体1の金属部材31に向けた押しつけ力は、図6(a)の円筒状電子写真感光体1の端部において型部材2に対する円筒状電子写真感光体1の型部材2に向けた押しつけ力よりも小さい。したがって、図7(b)の構成は、図6(a)の構成に比べて型部材2の折れ曲がりが緩和される。 A in FIG. 7B is a portion that becomes a starting point in the phenomenon in which the mold member 2 is bent, similarly to the end portion of the cylindrical electrophotographic photosensitive member 1 in FIG. 6A. Then, in FIG. 7B, a pressing force is generated from A toward the center of the cylindrical electrophotographic photosensitive member 1 in the axial direction (left side in the drawing) against the mold member 2 toward the metal member 31 of the cylindrical electrophotographic photosensitive member 1. , A, this pressing force is not generated on the outer side in the axial direction (right side in the drawing). However, in FIG. 7B, there is a metal member whose end is located closer to the center in the axial direction (left side in the drawing) than A on the lower side in the drawing of the metal member 31. As a result, the pressing force of the cylindrical electrophotographic photosensitive member 1 against the metal member 31 generated in A of FIG. 7 (b) against the mold member 2 is the end portion of the cylindrical electrophotographic photosensitive member 1 of FIG. 6 (a). It is smaller than the pressing force of the cylindrical electrophotographic photosensitive member 1 against the mold member 2 against the mold member 2. Therefore, in the configuration of FIG. 7 (b), the bending of the mold member 2 is lessened as compared with the configuration of FIG. 6 (a).

図7(b)のLは、円筒状電子写真感光体1の軸方向において、Aから、金属部材3の複数の金属部材のうち端部が最も中央寄りに位置する金属部材の端部の位置までの距離を示す。またTは、円筒状電子写真感光体1が型部材2に向かう加圧方向において、金属部材31の型部材2側の表面から、金属部材3の複数の金属部材のうち端部が円筒状電子写真感光体1の軸方向において最も中央寄りに位置する金属部材の型部材2側の表面までの距離を意味する。このとき、
L ≧ T
の関係にある場合は、金属部材31のAの部分が、円筒状電子写真感光体1の型部材2に対する押しつけ力をより緩和することができる。これにより、型部材2の折れ曲がりがより緩和される。
FIG. 7B shows the position of the end of the metal member whose end is closest to the center among the plurality of metal members of the metal member 3 from A in the axial direction of the cylindrical electrophotographic photosensitive member 1. Indicates the distance to. Further, T is a cylindrical electrophotographic photosensitive member 1 having a cylindrical electron at an end of a plurality of metal members of the metal member 3 from the surface of the metal member 31 on the mold member 2 side in the pressurizing direction toward the mold member 2. It means the distance to the surface of the metal member located closest to the center in the axial direction of the photographic photosensitive member 1 on the mold member 2 side. At this time,
L ≧ T
In the case of the above relationship, the portion A of the metal member 31 can further relax the pressing force of the cylindrical electrophotographic photosensitive member 1 against the mold member 2. As a result, the bending of the mold member 2 is further alleviated.

続いて、型部材の端部によって円筒状電子写真感光体表面に傷を付けることを緩和する本発明の構成の一例を、図8を用いて説明する。図8に示す金属部材31は、複数枚で構成される金属部材3のうち、円筒状電子写真感光体1が型部材2に向かう加圧方向において、最も型部材2に近い金属部材である。また金属部材3を構成する複数の金属部材は、円筒状電子写真感光体1の軸方向の長さが同一ではない金属部材を有する。 Subsequently, an example of the configuration of the present invention that alleviates scratches on the surface of the cylindrical electrophotographic photosensitive member by the end portion of the mold member will be described with reference to FIG. The metal member 31 shown in FIG. 8 is the metal member closest to the mold member 2 in the pressurizing direction in which the cylindrical electrophotographic photosensitive member 1 is directed toward the mold member 2 among the metal members 3 composed of a plurality of members. Further, the plurality of metal members constituting the metal member 3 have metal members whose axial lengths of the cylindrical electrophotographic photosensitive member 1 are not the same.

そして図8のAは、円筒状電子写真感光体1の軸方向において、円筒状電子写真感光体1又は型部材2又は金属部材31の3つの端部のうち、最も中央寄りに位置する端部の位置を意味する。ここで図6及び図8における各部材の端部とは、各部材の図示右端の端の位置を意味する。また、図6及び図8における中央寄りとは、円筒状電子写真感光体1の軸方向の中央部に向かう方向、すなわち図示左側に向かう方向を意味する。 A in FIG. 8 shows the end located closest to the center of the three ends of the cylindrical electrophotographic photosensitive member 1 or the mold member 2 or the metal member 31 in the axial direction of the cylindrical electrophotographic photosensitive member 1. Means the position of. Here, the end portion of each member in FIGS. 6 and 8 means the position of the end of the right end in the drawing of each member. Further, the term “center-oriented” in FIGS. 6 and 8 means a direction toward the central portion in the axial direction of the cylindrical electrophotographic photosensitive member 1, that is, a direction toward the left side in the drawing.

図8のAは図6(b)の型部材2の端部と同じく、型部材によって円筒状電子写真感光体表面に傷を付ける現象の起点となる部分である。そして図8において、Aより円筒状電子写真感光体1の軸方向中央寄り(図示左側)は型部材2に対する円筒状電子写真感光体1の金属部材31に向けた押しつけ力が生じおり、Aの軸方向外側(図示右側)ではこの押しつけ力が生じていない。しかし、図8では、金属部材31の図示下側にAより端部が軸方向中央寄り(図示左側)に位置する金属部材が存在する。これにより、図8のAにおいて生じる型部材2に対する円筒状電子写真感光体1の金属部材31に向けた押しつけ力は、図6(b)の円筒状電子写真感光体1の端部において型部材2に対する円筒状電子写真感光体1の型部材2に向けた押しつけ力よりも小さい。したがって、図8の構成は、図6(b)の構成に比べて型部材2の端部による円筒状電子写真感光体1表面への傷の発生が緩和される。 A in FIG. 8 is a portion that is a starting point of a phenomenon in which the surface of the cylindrical electrophotographic photosensitive member is scratched by the mold member, similarly to the end portion of the mold member 2 in FIG. 6 (b). Then, in FIG. 8, a pressing force is generated from A toward the center of the cylindrical electrophotographic photosensitive member 1 in the axial direction (left side in the drawing) against the mold member 2 toward the metal member 31 of the cylindrical electrophotographic photosensitive member 1. This pressing force is not generated on the outer side in the axial direction (right side in the figure). However, in FIG. 8, there is a metal member whose end is located closer to the center in the axial direction (left side in the drawing) than A on the lower side of the metal member 31 in the drawing. As a result, the pressing force of the cylindrical electrophotographic photosensitive member 1 against the metal member 31 generated in A of FIG. 8 is applied to the mold member at the end of the cylindrical electrophotographic photosensitive member 1 of FIG. 6 (b). It is smaller than the pressing force of the cylindrical electrophotographic photosensitive member 1 against the mold member 2. Therefore, the configuration of FIG. 8 alleviates the occurrence of scratches on the surface of the cylindrical electrophotographic photosensitive member 1 due to the end portion of the mold member 2 as compared with the configuration of FIG. 6B.

図8のLは、円筒状電子写真感光体1の軸方向において、Aから、金属部材3の複数の金属部材のうち端部が最も中央寄りに位置する金属部材の端部の位置までの距離を示す。またTは、円筒状電子写真感光体1が型部材2に向かう加圧方向において、金属部材31の型部材2側の表面から、金属部材3の複数の金属部材のうち端部が円筒状電子写真感光体1の軸方向において最も中央寄りに位置する金属部材の型部材2側の表面までの距離を意味する。このとき、
L ≧ T
の関係にある場合は、金属部材31のAの部分が、円筒状電子写真感光体1の型部材2に対する押しつけ力をより緩和することができる。これにより、型部材2の端部による円筒状電子写真感光体1の表面への傷の発生がより緩和される。
L in FIG. 8 is the distance from A to the position of the end of the metal member whose end is closest to the center among the plurality of metal members of the metal member 3 in the axial direction of the cylindrical electrophotographic photosensitive member 1. Is shown. Further, T is a cylindrical electrophotographic photosensitive member 1 having a cylindrical electron at an end of a plurality of metal members of the metal member 3 from the surface of the metal member 31 on the mold member 2 side in the pressurizing direction toward the mold member 2. It means the distance to the surface of the metal member located closest to the center in the axial direction of the photographic photosensitive member 1 on the mold member 2 side. At this time,
L ≧ T
In the case of the above relationship, the portion A of the metal member 31 can further relax the pressing force of the cylindrical electrophotographic photosensitive member 1 against the mold member 2. As a result, the occurrence of scratches on the surface of the cylindrical electrophotographic photosensitive member 1 due to the end portion of the mold member 2 is further alleviated.

なお、参考として金属部材を1枚で構成した場合の、型部材の折れ曲がりを緩和する構成を図10に示す。本発明の構成は、図10の構成に比べて金属部材が複数枚で構成されているため、金属部材31が前記押圧力をより効果的に緩和することができる。 As a reference, FIG. 10 shows a configuration for alleviating bending of the mold member when the metal member is composed of one piece. Since the configuration of the present invention is composed of a plurality of metal members as compared with the configuration of FIG. 10, the metal member 31 can more effectively relieve the pressing force.

上記した円筒状電子写真感光体の表面に凹凸形状を形成する表面加工方法を用いることにより、使用する部材の耐久性をより高めた表面に凹凸形状を有する円筒状電子写真感光体の製造方法を提供できる。 By using the surface processing method for forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member described above, a method for manufacturing a cylindrical electrophotographic photosensitive member having an uneven shape on the surface having a more durable member to be used can be obtained. Can be provided.

以下に、具体的な実施例を挙げて、本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。また、円筒状電子写真感光体を、以下単に「感光体」ともいう。 Hereinafter, the present invention will be described in more detail with reference to specific examples. In addition, "part" in an Example means "mass part". Further, the cylindrical electrophotographic photosensitive member is also simply referred to as a "photoreceptor" below.

(感光体の製造例)
外径29.92mm、長さ357.5mmのアルミニウムシリンダーを円筒状基体(円筒状支持体)とした。
(Manufacturing example of photoconductor)
An aluminum cylinder having an outer diameter of 29.92 mm and a length of 357.5 mm was used as a cylindrical substrate (cylindrical support).

次に、金属酸化物として酸化亜鉛粒子(比表面積:19m/g、粉体抵抗:4.7×10Ω・cm)100部をトルエン500部と撹拌混合し、これにシランカップリング剤(化合物名:N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、商品名:KBM602、信越化学工業(株)製)0.8部を添加し、6時間攪拌した。その後、トルエンを減圧留去して、130℃で6時間加熱乾燥し、表面処理された酸化亜鉛粒子を得た。 Next, 100 parts of zinc oxide particles (specific surface area: 19 m 2 / g, powder resistance: 4.7 × 10 6 Ω · cm) as a metal oxide were stirred and mixed with 500 parts of toluene, and a silane coupling agent was added thereto. (Compound name: N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, trade name: KBM602, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) 0.8 part was added, and the mixture was stirred for 6 hours. Then, toluene was distilled off under reduced pressure, and the mixture was dried by heating at 130 ° C. for 6 hours to obtain surface-treated zinc oxide particles.

次に、ポリオール樹脂としてブチラール樹脂(商品名:BM−1、積水化学工業(株)製)15部およびブロック化イソシアネート(商品名:スミジュール3175、住友バイエルンウレタン社製)15部をメチルエチルケトン73.5部と1−ブタノール73.5部の混合溶液に溶解させた。この溶液に前記表面処理された酸化亜鉛粒子80.8部、2,3,4−トリヒドロキシベンゾフェノン0.8部(東京化成工業(株)社製)を加え、これを直径0.8mmのガラスビーズを用いたサンドミル装置で23±3℃雰囲気下で3時間分散した。分散後、シリコーンオイル(商品名:SH28PA、東レダウコーニングシリコーン社製)0.01部、架橋ポリメタクリル酸メチル(PMMA)粒子(商品名:TECHPOLYMER SSX−102、積水化成品工業(株)社製、平均一次粒径2.5μm)を5.6部加えて攪拌し、下引き層用塗布液を調製した。
この下引き層用塗布液を上記円筒状基体上に浸漬塗布し、得られた塗膜を40分間160℃で乾燥させて、膜厚が18μmの下引き層を形成した。
Next, as the polyol resin, 15 parts of butanone resin (trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.) and 15 parts of blocked isocyanate (trade name: Sumijour 3175, manufactured by Sumitomo Bavarian Urethane Co., Ltd.) were added to methyl ethyl ketone 73. It was dissolved in a mixed solution of 5 parts and 73.5 parts of 1-butanol. 80.8 parts of the surface-treated zinc oxide particles and 0.8 parts of 2,3,4-trihydroxybenzophenone (manufactured by Tokyo Chemical Industry Co., Ltd.) are added to this solution, and this is added to a glass having a diameter of 0.8 mm. The particles were dispersed in a sand mill using beads in an atmosphere of 23 ± 3 ° C. for 3 hours. After dispersion, 0.01 part of silicone oil (trade name: SH28PA, manufactured by Toray Dow Corning Silicone), crosslinked polymethyl methacrylate (PMMA) particles (trade name: TECHPOLYMER SSX-102, manufactured by Sekisui Plastics Co., Ltd.) , Average primary particle size (2.5 μm) was added in 5.6 parts and stirred to prepare a coating solution for the undercoat layer.
The coating liquid for the undercoat layer was immersed and coated on the cylindrical substrate, and the obtained coating film was dried at 160 ° C. for 40 minutes to form an undercoat layer having a film thickness of 18 μm.

次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.4°および28.2°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、下記構造式(A)で示されるカリックスアレーン化合物0.2部、

Figure 0006842984
ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)10部、および、シクロヘキサノン600部を、直径1mmガラスビーズを用いたサンドミルに入れ、4時間分散処理した後、酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を15分間80℃で乾燥させることによって、膜厚0.17μmの電荷発生層を形成した。 Next, 20 parts of crystalline hydroxygallium phthalocyanine crystal (charge generator) having strong peaks at 7.4 ° and 28.2 ° of Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, the following structural formula 0.2 part of calixarene compound represented by (A),
Figure 0006842984
10 parts of polyvinyl butyral (trade name: Eslek BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone were placed in a sand mill using glass beads with a diameter of 1 mm, dispersed for 4 hours, and then ethyl acetate 700. A coating liquid for a charge generation layer was prepared by adding a portion. The coating liquid for the charge generation layer was immersed and coated on the undercoat layer, and the obtained coating film was dried at 80 ° C. for 15 minutes to form a charge generation layer having a film thickness of 0.17 μm.

次に、下記構造式(B)で示される化合物30部(電荷輸送物質)、下記構造式(C)で示される化合物60部(電荷輸送物質)、下記構造式(D)で示される化合物10部、ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製、ビスフェノールZ型のポリカーボネート)100部、下記構造式(E)で示されるポリカーボネート(粘度平均分子量Mv:20000)0.02部を、混合キシレン600部およびジメトキシメタン200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を前記電荷発生層上に浸漬塗布して塗膜を形成し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚18μmの電荷輸送層を形成した。

Figure 0006842984
Figure 0006842984
Next, 30 parts of the compound represented by the following structural formula (B) (charge transporting substance), 60 parts of the compound represented by the following structural formula (C) (charge transporting substance), and 10 parts of the compound represented by the following structural formula (D). Part, 100 parts of polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd., bisphenol Z type polycarbonate), polycarbonate represented by the following structural formula (E) (viscosity average molecular weight Mv: 20000) 0.02 A coating liquid for a charge transport layer was prepared by dissolving the parts in a mixed solvent of 600 parts of mixed xylene and 200 parts of dimethoxymethane. The coating liquid for the charge transport layer was immersed and coated on the charge generation layer to form a coating film, and the obtained coating film was dried at 100 ° C. for 30 minutes to form a charge transport layer having a film thickness of 18 μm. ..
Figure 0006842984
Figure 0006842984

次に、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)20部/1−プロパノール20部の混合溶剤を、ポリフロンフィルター(商品名:PF−040、アドバンテック東洋(株)製)で濾過した。その後、下記構造式(F)で示される正孔輸送性化合物90部、

Figure 0006842984
1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン70部、および、1−プロパノール70部を上記混合溶剤に加えた。これをポリフロンフィルター(商品名:PF−020、アドバンテック東洋(株)製)で濾過することによって、第二電荷輸送層(保護層)用塗布液を調製した。この第二電荷輸送層用塗布液を電荷輸送層上に浸漬塗布し、得られた塗膜を大気中において6分間50℃で乾燥させた。その後、窒素中において、支持体(被照射体)を200rpmで回転させながら、加速電圧70kV、吸収線量8000Gyの条件で1.6秒間、電子線を塗膜に照射した。引き続いて、窒素中において25℃から125℃まで30秒かけて昇温させ、塗膜の加熱を行った。電子線照射およびその後の加熱時の雰囲気の酸素濃度は15ppmであった。次に、大気中において30分間100℃で加熱処理を行うことによって、電子線により硬化された膜厚5μmの第二電荷輸送層(保護層)を形成した。 Next, a mixed solvent of 20 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name: Zeorora H, manufactured by Nippon Zeon Corporation) / 20 parts of 1-propanol was added to Polyflon. It was filtered with a filter (trade name: PF-040, manufactured by Advantech Toyo Co., Ltd.). After that, 90 parts of the hole transporting compound represented by the following structural formula (F),
Figure 0006842984
70 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 70 parts of 1-propanol were added to the above mixed solvent. A coating liquid for the second charge transport layer (protective layer) was prepared by filtering this with a polyfluorocarbon filter (trade name: PF-020, manufactured by Advantech Toyo Co., Ltd.). The coating liquid for the second charge transport layer was immersed and coated on the charge transport layer, and the obtained coating film was dried in the air at 50 ° C. for 6 minutes. Then, in nitrogen, while rotating the support (irradiated body) at 200 rpm, the coating film was irradiated with an electron beam for 1.6 seconds under the conditions of an acceleration voltage of 70 kV and an absorbed dose of 8000 Gy. Subsequently, the temperature was raised in nitrogen from 25 ° C. to 125 ° C. over 30 seconds to heat the coating film. The oxygen concentration in the atmosphere during electron beam irradiation and subsequent heating was 15 ppm. Next, a second charge transport layer (protective layer) having a film thickness of 5 μm cured by an electron beam was formed by performing a heat treatment at 100 ° C. for 30 minutes in the atmosphere.

このようにして、表面に凹凸形状を形成する前の円筒状電子写真感光体(凹凸形状形成前の円筒状電子写真感光体)を104本作製した。 In this way, 104 cylindrical electrophotographic photosensitive members (cylindrical electrophotographic photosensitive members before forming the concave-convex shape) before forming the concave-convex shape on the surface were produced.

(表面加工および評価)
(実施例1)
前記で得られた円筒状電子写真感光体に、図1に示すような構成の各部材を用いて加工を行った。なお、本実施例1で使用した部材構成と図1の構成の相違点は、金属部材3が本実施例1では4枚であるということと、台6には型部材2に熱を供給するためのヒーターを備えているということである。先ず、炭化タングステンを主材料とした超硬合金を用いた挿入部材を円筒状電子写真感光体に挿入した。挿入に際しては、円筒状電子写真感光体の軸芯方向中心位置との挿入部材の軸芯方向中心位置が合致するように挿入した。
(Surface processing and evaluation)
(Example 1)
The cylindrical electrophotographic photosensitive member obtained above was processed using each member having a structure as shown in FIG. The difference between the member configuration used in the first embodiment and the configuration of FIG. 1 is that the number of metal members 3 is four in the first embodiment, and heat is supplied to the mold member 2 to the table 6. It is equipped with a heater for this purpose. First, an insertion member using a cemented carbide mainly made of tungsten carbide was inserted into a cylindrical electrophotographic photosensitive member. At the time of insertion, the insertion member was inserted so that the center position in the axial direction of the cylindrical electrophotographic photosensitive member coincided with the central position in the axial direction of the insertion member.

台の上に、被転写体である円筒状電子写真感光体に近い方から順に、円筒状電子写真感光体に向かう表面に連続した凸形状を有する型部材、4枚の金属部材、弾性部材、支持部材の順に各部材を配置した。型部材は厚さ0.6mm、ヤング率が204GPa、引張り強度が335MPaであるニッケル材質の平板モールドを使用した。型部材の表面には、図5に示すような凸型の半球形状を連続して設けた。半球形状のピッチXは57μmとした。そして半球形状の直径Yは50μm、かつ高さZは6μmとした。4枚の金属部材は、全て厚みが0.5mm、ヤング率が205GPa、引張り強度が520MPaであるSUS301鋼材を用いた。この4枚の金属部材は圧延加工によって厚みを調整する製法で作製されたものを用いた。なお、金属部材の圧延方向は、表面をルーペ等で拡大して観察し、表面のスジ状の加工跡の方向を目視することで確認した。そしてそのスジ状の加工跡の長手方向が、円筒状電子写真感光体の軸に直交する方向にむけて配置した。弾性部材は厚さ8mm、硬度60(ショアA)のシリコンゴムを用いた。支持部材は、厚さ6mmのSS400製の板の表面に無電解ニッケルメッキを施して用いた。台の材質はSUS430製とし、内部に加熱用のヒーターを設置した。 On the table, in order from the side closest to the cylindrical electrophotographic photosensitive member to be transferred, a mold member having a continuous convex shape on the surface toward the cylindrical electrophotographic photosensitive member, four metal members, an elastic member, Each member was arranged in the order of the support member. As the mold member, a flat plate mold made of nickel material having a thickness of 0.6 mm, a Young's modulus of 204 GPa, and a tensile strength of 335 MPa was used. A convex hemispherical shape as shown in FIG. 5 is continuously provided on the surface of the mold member. The hemispherical pitch X was 57 μm. The hemispherical diameter Y was 50 μm and the height Z was 6 μm. For all four metal members, SUS301 steel material having a thickness of 0.5 mm, a Young's modulus of 205 GPa, and a tensile strength of 520 MPa was used. These four metal members were manufactured by a manufacturing method in which the thickness was adjusted by rolling. The rolling direction of the metal member was confirmed by magnifying the surface with a magnifying glass or the like and observing it, and visually observing the direction of the streak-shaped processing marks on the surface. Then, the streak-shaped processing marks were arranged so that the longitudinal direction was orthogonal to the axis of the cylindrical electrophotographic photosensitive member. As the elastic member, silicon rubber having a thickness of 8 mm and a hardness of 60 (shore A) was used. The support member was used by subjecting the surface of a plate made of SS400 having a thickness of 6 mm to electroless nickel plating. The material of the table was made of SUS430, and a heater for heating was installed inside.

また台は、図1の図示左方向に移動するスライド機構を設けた。また、図1に示すように図示左方において厚みが弾性部材とほぼ同等の間座を金属部材と支持部材の間に挟むように配置し、固定ネジを用いて型部材と金属部材と間座と支持部材を締結した。そして図示右方では固定ネジを用いて抑え部材と間座と支持部材を締結した。この固定ネジは型部材と金属部材を固定しておらず、抑え部材は、型部材と金属部材と弾性部材の型部材の凸形状面を有する方向への動きを規制するようにした。 Further, the table is provided with a slide mechanism that moves to the left in the drawing of FIG. Further, as shown in FIG. 1, a spacer having a thickness substantially equal to that of the elastic member is arranged so as to be sandwiched between the metal member and the support member on the left side of the drawing, and the mold member, the metal member, and the spacer are used with fixing screws. And fastened the support member. Then, on the right side of the figure, the holding member, the spacer, and the supporting member were fastened using fixing screws. This fixing screw does not fix the mold member and the metal member, and the holding member regulates the movement of the mold member, the metal member, and the elastic member in the direction having the convex surface.

円筒状電子写真感光体の表面を型部材に押し付けるために、挿入部材の両端部分に、図示しない荷重機構を設けた。それぞれの荷重機構は、鉛直方向(図1の図示上方から下方へ向かう方向)にガイドレールとボールネジを設け、さらにボールネジとガイドレールに連結して上下する連結支持部材を設けた。ボールネジの下側にはサーボモーターを連結させて回転させ、連結支持部材をガイドレールにならって上下させるようにした。連結支持部材と挿入部材の端部は球形ジョイント及びベアリング内蔵の軸受けで連結した。なお、球形ジョイントと連結支持部材はロードセルを介して連結させるようにし、挿入部材の両端それぞれにかかる荷重力をモニターできるようにした。 In order to press the surface of the cylindrical electrophotographic photosensitive member against the mold member, load mechanisms (not shown) are provided at both ends of the insertion member. Each load mechanism is provided with a guide rail and a ball screw in the vertical direction (direction from the upper side to the lower side in the drawing of FIG. 1), and further provides a connecting support member connected to the ball screw and the guide rail to move up and down. A servomotor was connected to the underside of the ball screw to rotate it, and the connection support member was moved up and down according to the guide rail. The ends of the connection support member and the insertion member were connected by a spherical joint and a bearing with a built-in bearing. The spherical joint and the connection support member are connected via a load cell so that the load force applied to both ends of the insertion member can be monitored.

・加工面圧の測定
型部材の上に富士フィルム社製の圧力測定フィルム(プレスケール)を位置決めし、円筒状電子写真感光体を圧力測定フィルムに前記荷重機構を用いて押しつけ、ロードセルの荷重力が4kN(片側)となった時点で0.5秒静止させた。その後に円筒状電子写真感光体を型部材から離間させた。続いて圧力測定フィルムの円筒状電子写真感光体が押し付けられた部分の発色濃度を、富士フィルム社製プレスケール用濃度計(FPD-305E)を用いて測定した。その結果を表1に示す。なお測定は、圧力測定フィルムの円筒状電子写真感光体が押し付けられた部分のうち、円筒状電子写真感光体の軸方向およそ中央部分の1ヶ所と両端部近傍の各1ヶ所の合計3ヶ所について行い、その平均値を測定値とした。
-Measurement of machining surface pressure A pressure measurement film (prescale) manufactured by Fuji Film Co., Ltd. is positioned on the mold member, and the cylindrical electrophotographic photosensitive member is pressed against the pressure measurement film using the load mechanism, and the load force of the load cell is applied. When it became 4 kN (one side), it was allowed to stand still for 0.5 seconds. The cylindrical electrophotographic photosensitive member was then separated from the mold member. Subsequently, the color development density of the portion of the pressure measuring film on which the cylindrical electrophotographic photosensitive member was pressed was measured using a prescale densitometer (FPD-305E) manufactured by Fuji Film Co., Ltd. The results are shown in Table 1. Of the parts of the pressure measurement film to which the cylindrical electrophotographic photosensitive member was pressed, the measurement was performed at one location approximately in the center of the cylindrical electrophotographic photosensitive member in the axial direction and one location near both ends, for a total of three locations. The measurement was performed, and the average value was used as the measured value.

・ニップ幅の測定
台の内部に設置した加熱用のヒーターを使用して、型部材の凸形状を配した表面の温度が155℃になるようにヒーターを調整した。また、挿入部材を予め55℃に加熱した状態で円筒状電子写真感光体に挿入した。
-Using a heating heater installed inside the nip width measuring table, the heater was adjusted so that the temperature of the surface on which the convex shape of the mold member was arranged was 155 ° C. Further, the insertion member was inserted into the cylindrical electrophotographic photosensitive member in a state of being preheated to 55 ° C.

これらの機構を用いて円筒状電子写真感光体を型部材に前記荷重機構を用いて押しつけ、ロードセルの荷重力が4kN(片側)となった時点で0.5秒静止し、その後に円筒状電子写真感光体を型部材2から離間させた。 Using these mechanisms, the cylindrical electrophotographic photosensitive member is pressed against the mold member using the load mechanism, and when the load force of the load cell reaches 4 kN (one side), it stands still for 0.5 seconds, and then the cylindrical electrons. The photographic photosensitive member was separated from the mold member 2.

この円筒状電子写真感光体の型部材に押しつけた部分のニップ幅を測定するため、光学顕微鏡で観察して測定した。測定は、円筒状電子写真感光体の軸方向およそ中央部分の1ヶ所と両端部近傍の各1ヶ所の合計3ヶ所について行い、その平均値を測定値とした。なおこのニップ幅の測定は、型部材の凸形状が転写されて形成された凸凹形状部分の幅を測定したが、ニップ幅の端部(周方向)付近については、凹形状がおよそ半分以上形成されている部分をニップ幅として含むようにした。その結果を表1に示す。 In order to measure the nip width of the portion pressed against the mold member of this cylindrical electrophotographic photosensitive member, it was observed and measured with an optical microscope. The measurement was performed at one location approximately in the center of the cylindrical electrophotographic photosensitive member in the axial direction and one location near both ends, and the average value was taken as the measured value. In this measurement of the nip width, the width of the uneven shape portion formed by transferring the convex shape of the mold member was measured, but the concave shape is formed by about half or more near the end (circumferential direction) of the nip width. The part that is being used is included as the nip width. The results are shown in Table 1.

・細線再現性の測定
続いて、表面が未加工の円筒状電子写真感光体に挿入部材を挿通させてセットした。そして円筒状電子写真感光体を型部材に前記荷重機構を用いて押しつけ、ロードセルの荷重力が4kN(片側)となった時点で台をスライド機構を用いて図示左方向に95mm移動させて円筒状電子写真感光体を型部材上に転動させた。その後に円筒状電子写真感光体を型部材から離間させた。
-Measurement of fine line reproducibility Subsequently, the insertion member was inserted into a cylindrical electrophotographic photosensitive member having an unprocessed surface and set. Then, the cylindrical electrophotographic photosensitive member is pressed against the mold member using the load mechanism, and when the load force of the load cell reaches 4 kN (one side), the table is moved 95 mm to the left in the drawing using the slide mechanism to form a cylinder. The electrophotographic photosensitive member was rolled onto the mold member. The cylindrical electrophotographic photosensitive member was then separated from the mold member.

このようにして、表面に凹凸形状を有する円筒状電子写真感光体を評価装置であるキヤノン(株)製の電子写真装置(複写機)(商品名:iR−ADV C5255)の改造機のシアンステーションに装着し、以下のように試験および評価を行った。 In this way, the cyan station of a modified machine of an electrophotographic apparatus (copier) (trade name: iR-ADV C5255) manufactured by Canon Inc., which is an evaluation apparatus for a cylindrical electrophotographic photosensitive member having an uneven shape on the surface. The test and evaluation were carried out as follows.

まず、温度23℃、湿度50%RH環境下で、円筒状電子写真感光体の暗部電位(Vd)が−700V、明部電位(Vl)が−200Vになるように帯電装置および画像露光装置の条件を設定し、円筒状電子写真感光体の初期電位を調整した。 First, in an environment of temperature 23 ° C. and humidity 50% RH, the charging device and the image exposure device are set so that the dark potential (Vd) of the cylindrical electrophotographic photosensitive member is -700 V and the bright potential (Vl) is -200 V. Conditions were set and the initial potential of the cylindrical electrophotographic photosensitive member was adjusted.

細線再現性の評価のため、2ポイントサイズ、及び3ポイントサイズのアルファベット文字(A〜Z文字)、及び複雑な漢字文字(電、驚など)を1200dpiの出力解像度で配列したテストチャートを作成した。そのテストチャートを出力した画像によって円筒状電子写真感光体の解像度(細線再現性)の評価を行った。具体的には、出力画像をスキャナー(キヤノン製CanoScan9900F)を使って1600dpiの解像度で読み取り、読み取った画像データとテストチャートの元データを比較した。読み取った画像データについて、テストチャート(元データ)の文字からのズレ部分(太り、細り)の面積を算出し、その面積のテストチャートに対する比率を求めたところ、2%であった。 In order to evaluate the fine line reproducibility, we created a test chart in which 2-point size and 3-point size alphabet characters (AZ characters) and complex Kanji characters (Den, Surprise, etc.) are arranged at an output resolution of 1200 dpi. .. The resolution (fine line reproducibility) of the cylindrical electrophotographic photosensitive member was evaluated from the output image of the test chart. Specifically, the output image was read with a scanner (Canon CanoScan9900F) at a resolution of 1600 dpi, and the read image data was compared with the original data of the test chart. For the read image data, the area of the deviation portion (thickness, thinness) from the characters of the test chart (original data) was calculated, and the ratio of the area to the test chart was calculated to be 2%.

なお、表1に示す荷重力は、前記片側での荷重力を2倍した数字すなわち1本の円筒状電子写真感光体及びアルミシリンダーとしての合計荷重力を示す。 The load force shown in Table 1 is a number obtained by doubling the load force on one side, that is, the total load force of one cylindrical electrophotographic photosensitive member and an aluminum cylinder.

・金属部材の限界回数の測定
続いて、外径30mm、長さ357.5mmのアルミシリンダーに挿入部材を挿通してセットした。この状態でアルミシリンダーを型部材に前記荷重機構を用いて押しつけ、ロードセルの荷重力が4kN(片側)となった時点の荷重機構の位置を記録した後に、アルミシリンダーを型部材から離間させた。続いて荷重機構をプログラム動作で次のように自動的に繰り返す動作をさせた。その動作は、先ず、アルミシリンダーを型部材に対して前記記録した位置まで移動させる。次にその状態でのロードセルの荷重力を読み取り、4kNに対して90%以上の荷重力か否かを判定する。そしてその状態で0.5秒静止した後にアルミシリンダーを型部材から離間させる。その時点で判定の結果が90%以上であった場合は、動作回数をカウンターで1回カウントアップした後に再度一連の動作を繰り返し、また判定結果が90%未満であればアラームを発報して動作を停止する。そして、アラームが発報された時点のカウンターを確認した。その結果を表1に示す。
-Measurement of the limit number of times of the metal member Next, the insertion member was inserted into an aluminum cylinder having an outer diameter of 30 mm and a length of 357.5 mm and set. In this state, the aluminum cylinder was pressed against the mold member using the load mechanism, and after recording the position of the load mechanism when the load force of the load cell became 4 kN (one side), the aluminum cylinder was separated from the mold member. Then, the load mechanism was automatically repeated as follows by the program operation. The operation first moves the aluminum cylinder to the recorded position with respect to the mold member. Next, the load force of the load cell in that state is read, and it is determined whether or not the load force is 90% or more with respect to 4 kN. Then, after standing still for 0.5 seconds in that state, the aluminum cylinder is separated from the mold member. If the judgment result is 90% or more at that time, the number of operations is counted up once by the counter, and then a series of operations are repeated again. If the judgment result is less than 90%, an alarm is issued. Stop operation. Then, I checked the counter at the time when the alarm was issued. The results are shown in Table 1.

なお、本実施例において表1に示す荷重力は、前記片側での荷重力を2倍した数字すなわち1本の円筒状電子写真感光体及びアルミシリンダーとしての合計荷重力を示す。また、Ttotalは金属部材の厚みを合計した厚みを示す。 In this embodiment, the load force shown in Table 1 is a number obtained by doubling the load force on one side, that is, the total load force as one cylindrical electrophotographic photosensitive member and an aluminum cylinder. Further, T total indicates the total thickness of the metal members.

(実施例2〜9)
実施例1で使用した機器のうち、型部材と弾性部材を実施例1と同一かつ未使用のものに交換し、また、4枚の金属部材は表1に示す未使用のものに交換した。そして、全ての荷重動作及び金属部材の限界回数の測定に用いた設定は、表1に記載の荷重力を用いた。それ以外は全て実施例1と同様の方法及び手順で各測定を行った。その結果を表1に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、全て10%未満であった。
(Examples 2 to 9)
Among the devices used in Example 1, the mold member and the elastic member were replaced with the same and unused ones as in Example 1, and the four metal members were replaced with the unused ones shown in Table 1. The load force shown in Table 1 was used as the setting used for all the load operations and the measurement of the limit number of times of the metal member. Every other measurement was carried out by the same method and procedure as in Example 1. The results are shown in Table 1. In addition, when the ratio of the area of the deviation portion (thickness, thinning) in the evaluation of fine line reproducibility to the test chart was calculated, it was all less than 10%.

(実施例10〜18)
4枚の金属部材は、全て表1に示すヤング率が200GPa、引張り強度が450MPaであるSUS430鋼材の未使用のものに交換した。それ以外は全て実施例2と同様の方法及び手順で各測定を行った。その結果を表1に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、全て10%未満であった。
(Examples 10 to 18)
All four metal members were replaced with unused SUS430 steel materials having a Young's modulus of 200 GPa and a tensile strength of 450 MPa shown in Table 1. Every other measurement was carried out by the same method and procedure as in Example 2. The results are shown in Table 1. In addition, when the ratio of the area of the deviation portion (thickness, thinning) in the evaluation of fine line reproducibility to the test chart was calculated, it was all less than 10%.

(実施例19〜36)
4枚の金属部材は、全て表1に示す未使用のものに交換した。ただし、この4枚の金属部材は圧延加工によって厚みを調整する製法で作製されたものを用いた。そして実施例1と同様に金属部材のスジ状の加工跡の方向を確認し、そのスジ状の加工跡の長手方向が、円筒状電子写真感光体の軸に平行な方向にむけて配置した。それ以外は全て実施例10と同様の方法及び手順で各測定を行った。その結果を表1に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、全て10%未満であった。
(Examples 19 to 36)
All four metal members were replaced with unused ones shown in Table 1. However, as these four metal members, those manufactured by a manufacturing method in which the thickness is adjusted by rolling are used. Then, as in Example 1, the direction of the streak-shaped processing marks of the metal member was confirmed, and the longitudinal direction of the streak-shaped processing marks was arranged so as to be parallel to the axis of the cylindrical electrophotographic photosensitive member. Every other measurement was carried out by the same method and procedure as in Example 10. The results are shown in Table 1. In addition, when the ratio of the area of the deviation portion (thickness, thinning) in the evaluation of fine line reproducibility to the test chart was calculated, it was all less than 10%.

(実施例37〜45)
金属部材を表1に記載の2枚の未使用のものを使用し、それ以外は全て実施例19と同様の方法及び手順で各測定を行った。その結果を表1に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、全て10%未満であった。
(Examples 37 to 45)
Two unused metal members shown in Table 1 were used, and all other measurements were carried out by the same method and procedure as in Example 19. The results are shown in Table 1. In addition, when the ratio of the area of the deviation portion (thickness, thinning) in the evaluation of fine line reproducibility to the test chart was calculated, it was all less than 10%.

(実施例46)
2枚の金属部材は、全て表1に示すヤング率が206GPa、引張り強度が400MPaであるSS400鋼材の未使用のものに交換した。それ以外は全て実施例42と同様の方法及び手順で各測定を行った。その結果を表1に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、10%未満であった。
(Example 46)
The two metal members were all replaced with unused SS400 steel materials having a Young's modulus of 206 GPa and a tensile strength of 400 MPa shown in Table 1. Every other measurement was carried out by the same method and procedure as in Example 42. The results are shown in Table 1. In addition, when the ratio of the area of the deviation portion (thickness, thinning) in the evaluation of fine line reproducibility to the test chart was calculated, it was less than 10%.

Figure 0006842984
Figure 0006842984

(参考例1)
実施例1で使用した機器のうち、型部材、弾性部材、および4枚の金属部材を実施例1と同一かつ未使用のものに交換した。表面が未加工の円筒状電子写真感光体に挿入部材を挿通させてセットした。なお、各部材の位置決めについては、円筒状電子写真感光体と、型部材と、全ての金属部材を、円筒状電子写真感光体の軸方向の中心を合致させて位置決めするようにした。そして円筒状電子写真感光体を型部材に前記荷重機構を用いて押しつけ、ロードセルの荷重力が8kN(片側)となった時点で台をスライド機構を用いて図1の図示左方向に95mm移動させて円筒状電子写真感光体を型部材上に転動させた。その後に円筒状電子写真感光体を型部材から離間させた。
続いて円筒状電子写真感光体だけを表面が未加工のものに交換して同様の加工を繰り返し、1000本の表面に凸凹形状が形成された円筒状電子写真感光体を作製した。この1000本の円筒状電子写真感光体うち、最初の1本と最後の1本について、実施例1と同様の方法で細線再現性の評価を行ったところ、ズレ部分(太り、細り)の面積のテストチャートに対する比率は、両方とも10%未満であった。
(Reference example 1)
Of the equipment used in Example 1, the mold member, elastic member, and four metal members were replaced with the same and unused ones as in Example 1. The insertion member was inserted into a cylindrical electrophotographic photosensitive member having an unprocessed surface and set. Regarding the positioning of each member, the cylindrical electrophotographic photosensitive member, the mold member, and all the metal members were positioned so as to align the centers in the axial direction of the cylindrical electrophotographic photosensitive member. Then, the cylindrical electrophotographic photosensitive member is pressed against the mold member using the load mechanism, and when the load force of the load cell reaches 8 kN (one side), the table is moved 95 mm to the left in the drawing using the slide mechanism. The cylindrical electrophotographic photosensitive member was rolled onto the mold member. The cylindrical electrophotographic photosensitive member was then separated from the mold member.
Subsequently, only the cylindrical electrophotographic photosensitive member was replaced with one having an unprocessed surface, and the same processing was repeated to prepare a cylindrical electrophotographic photosensitive member having an uneven shape formed on 1000 surfaces. When the fine line reproducibility was evaluated for the first one and the last one of the 1000 cylindrical electrophotographic photosensitive members by the same method as in Example 1, the area of the misaligned portion (thickness, thinning) was evaluated. The ratio of both to the test chart was less than 10%.

次に、型部材を取り外し、図9に示すように、型部材の、円筒状電子写真感光体の端部近傍での折れ曲がり量を測定した。図9に示すAは、型部材の端部、又は円筒状電子写真感光体の端部、又は型部材に最も近い金属部材の端部の3つの端部のうち、円筒状電子写真感光体の軸方向においてもっとも中央寄りに位置する端部の位置を意味する。参考例1では、金属部材の端部位置を示す。同じくEは、型部材の端部近傍の折れ曲がり量を意味し、Aよりも1mm円筒状電子写真感光体の軸方向外側(図示右側)の部分、すなわち型部材の円筒状電子写真感光体又は金属部材が当接しなかった部分の、円筒状電子写真感光体の加圧方向におけるAとの距離を示す。
次に、荷重発生時に円筒状電子写真感光体表面に対して型部材の端部が当接することによって生じるダメージを評価するため、円筒状電子写真感光体表面の、円筒状電子写真感光体の軸方向の型部材の端部位置について、表面粗さを測定した。その結果を表2に示す。参考例1では、型部材の円筒状電子写真感光体の軸方向のAよりも端部寄りの部分は円筒状電子写真感光体から離れる方向に曲がりが生じていたため、前記ダメージは生じていなかった。
なお、表2における長さとは、各部材の円筒状電子写真感光体の軸方向の幅寸法を示す。また、厚さとは、各部材の加圧方向の厚み寸法を示す。
Next, the mold member was removed, and as shown in FIG. 9, the amount of bending of the mold member near the end of the cylindrical electrophotographic photosensitive member was measured. FIG. 9A shows the cylindrical electrophotographic photosensitive member among the three ends of the mold member, the end portion of the cylindrical electrophotographic photosensitive member, or the end portion of the metal member closest to the mold member. It means the position of the end located closest to the center in the axial direction. Reference Example 1 shows the end position of the metal member. Similarly, E means the amount of bending near the end of the mold member, and is the portion outside the axial direction (right side in the drawing) of the cylindrical electrophotographic photosensitive member 1 mm from A, that is, the cylindrical electrophotographic photosensitive member or metal of the mold member. The distance of the portion where the members did not abut with A in the pressurizing direction of the cylindrical electrophotographic photosensitive member is shown.
Next, in order to evaluate the damage caused by the end portion of the mold member coming into contact with the surface of the cylindrical electrophotographic photosensitive member when a load is generated, the shaft of the cylindrical electrophotographic photosensitive member on the surface of the cylindrical electrophotographic photosensitive member The surface roughness was measured for the end position of the mold member in the direction. The results are shown in Table 2. In Reference Example 1, the portion of the cylindrical electrophotographic photosensitive member of the mold member closer to the end than A in the axial direction was bent in the direction away from the cylindrical electrophotographic photosensitive member, so that the damage did not occur. ..
The length in Table 2 indicates the width dimension in the axial direction of the cylindrical electrophotographic photosensitive member of each member. Further, the thickness indicates the thickness dimension of each member in the pressurizing direction.

(参考例2)
参考例1で使用した機器のうち、型部材、および4枚の金属部材を、未使用の、表2に記載のものに交換した。それ以外は全て参考例1と同様に円筒状電子写真感光体を加工し、型部材の評価を行った。その結果を表2に示す。また、参考例1と同様の方法で細線再現性の評価を行ったところ、ズレ部分(太り、細り)の面積のテストチャートに対する比率は、両方とも10%未満であった。
なお、参考例2では、円筒状電子写真感光体の軸方向において型部材の端部は円筒状電子写真感光体の端部よりも端部寄りであったため、ダメージの評価のための表面粗さの測定は実施しなかった。
(Reference example 2)
Of the equipment used in Reference Example 1, the mold member and the four metal members were replaced with unused ones shown in Table 2. Other than that, a cylindrical electrophotographic photosensitive member was processed in the same manner as in Reference Example 1, and the mold member was evaluated. The results are shown in Table 2. Moreover, when the fine line reproducibility was evaluated by the same method as in Reference Example 1, the ratio of the area of the displaced portion (thick, thin) to the test chart was less than 10% in both cases.
In Reference Example 2, since the end portion of the mold member was closer to the end portion than the end portion of the cylindrical electrophotographic photosensitive member in the axial direction of the cylindrical electrophotographic photosensitive member, the surface roughness for evaluation of damage was obtained. Was not measured.

(参考例3)
参考例1で使用した機器のうち、型部材、および4枚の金属部材を、未使用の、表2に記載のものに交換した。それ以外は全て参考例1と同様に円筒状電子写真感光体を加工し、型部材の評価を行った。その結果を表2に示す。また、参考例1と同様の方法で細線再現性の評価を行ったところ、ズレ部分(太り、細り)の面積のテストチャートに対する比率は、両方とも10%未満であった。
なお、参考例3においては、円筒状電子写真感光体の軸方向におけるAの位置が型部材の端部と同一であったため、Eの距離の測定は行わなかった。
(Reference example 3)
Of the equipment used in Reference Example 1, the mold member and the four metal members were replaced with unused ones shown in Table 2. Other than that, a cylindrical electrophotographic photosensitive member was processed in the same manner as in Reference Example 1, and the mold member was evaluated. The results are shown in Table 2. Moreover, when the fine line reproducibility was evaluated by the same method as in Reference Example 1, the ratio of the area of the displaced portion (thick, thin) to the test chart was less than 10% in both cases.
In Reference Example 3, since the position of A in the axial direction of the cylindrical electrophotographic photosensitive member was the same as the end of the mold member, the distance of E was not measured.

(実施例47〜76)
型部材、金属部材、荷重力について、表2に示す内容で用いた以外は全て参考例1と同様の加工及び評価を行った。その結果を表2に示す。また、参考例1と同様の方法で細線再現性の評価を行ったところ、ズレ部分(太り、細り)の面積のテストチャートに対する比率は、両方とも10%未満であった。
ここで、表2に示すLは、円筒状電子写真感光体の軸方向において、Aの位置から、金属部材の端部のうち、最も中央寄りに位置する端部の位置までの距離を意味する。また、表2に示すTは、加圧方向において型部材に最も近い金属部材の型部材側の表面から、端部が円筒状電子写真感光体の軸方向において最も中央寄りに位置する金属部材の型部材側の表面までの距離を意味する。
なお、実施例のうち円筒状電子写真感光体の軸方向において型部材の端部が円筒状電子写真感光体の端部よりも端部寄りであった構成については、ダメージの評価のための表面粗さの測定を実施しなかった。また、実施例のうち円筒状電子写真感光体の軸方向におけるAの位置が型部材の端部と同一であった構成については、Eの距離の測定を行わなかった。
(Examples 47 to 76)
The mold member, metal member, and load force were all processed and evaluated in the same manner as in Reference Example 1 except that they were used in the contents shown in Table 2. The results are shown in Table 2. Moreover, when the fine line reproducibility was evaluated by the same method as in Reference Example 1, the ratio of the area of the displaced portion (thick, thin) to the test chart was less than 10% in both cases.
Here, L shown in Table 2 means the distance from the position of A to the position of the end located closest to the center of the ends of the metal member in the axial direction of the cylindrical electrophotographic photosensitive member. .. Further, T shown in Table 2 is a metal member whose end is located closest to the center in the axial direction of the cylindrical electrophotographic photosensitive member from the surface of the metal member closest to the mold member in the pressurizing direction on the mold member side. It means the distance to the surface on the mold member side.
In the example, in the configuration in which the end portion of the mold member was closer to the end portion than the end portion of the cylindrical electrophotographic photosensitive member in the axial direction of the cylindrical electrophotographic photosensitive member, the surface for evaluation of damage was obtained. Roughness measurement was not performed. Further, in the example, the distance of E was not measured for the configuration in which the position of A in the axial direction of the cylindrical electrophotographic photosensitive member was the same as the end of the mold member.

Figure 0006842984
Figure 0006842984

(比較例1)
金属部材は、一枚の、厚さ2mmのSS400鋼材の未使用のものに交換した。それ以外は全て実施例44と同様の方法及び手順で各測定を行った。その結果を表3に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、10%未満であった。
(Comparative Example 1)
The metal member was replaced with a single, unused SS400 steel material with a thickness of 2 mm. Every other measurement was carried out by the same method and procedure as in Example 44. The results are shown in Table 3. In addition, when the ratio of the area of the deviation portion (thickness, thinning) in the evaluation of fine line reproducibility to the test chart was calculated, it was less than 10%.

(比較例2〜4)
金属部材は、一枚の、表3に記載の厚さのSUS430鋼材の未使用のものに交換した。それ以外は全て比較例1と同様の方法及び手順で各測定を行った。その結果を表3に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、10%未満であった。
(Comparative Examples 2 to 4)
The metal member was replaced with a single, unused SUS430 steel material of the thickness shown in Table 3. All other measurements were carried out by the same method and procedure as in Comparative Example 1. The results are shown in Table 3. In addition, when the ratio of the area of the deviation portion (thickness, thinning) in the evaluation of fine line reproducibility to the test chart was calculated, it was less than 10%.

(比較例5〜6)
表3に記載の荷重力を設定し、それ以外は全て比較例2と同様にして加工面圧の測定及びニップ幅の測定及び細線再現性の測定を行った。その結果を表3に示す。なお、細線再現性の評価におけるズレ部分(太り、細り)の面積のテストチャートに対する比率を求めたところ、比較例5は26%、比較例6は28%であった。また、比較例5及び6については細線再現性が著しく劣るため、限界回数の測定は行わなかった。
なお、本比較例において表3に示す荷重力は、前記片側での荷重力を2倍した数字すなわち1本の円筒状電子写真感光体及びアルミシリンダーとしての合計荷重力を示す。
(Comparative Examples 5 to 6)
The load force shown in Table 3 was set, and the machining surface pressure, the nip width, and the fine line reproducibility were measured in the same manner as in Comparative Example 2 except for the load force. The results are shown in Table 3. When the ratio of the area of the deviated portion (thick, thin) in the evaluation of the fine line reproducibility to the test chart was obtained, it was 26% in Comparative Example 5 and 28% in Comparative Example 6. Further, in Comparative Examples 5 and 6, since the fine line reproducibility was remarkably inferior, the limit number of times was not measured.
In this comparative example, the load force shown in Table 3 is a number obtained by doubling the load force on one side, that is, the total load force as one cylindrical electrophotographic photosensitive member and an aluminum cylinder.

Figure 0006842984
Figure 0006842984

1.円筒状電子写真感光体
2.型部材
3.金属部材
4.弾性部材
5.支持部材
6.台
7.挿入部材
8.間座
9.固定ネジ
10.抑え部材
11.円筒状電子写真感光体
12.型部材
13.金属部材
14.弾性部材
15.支持部材
16.台
17.挿入部材
31.金属部材
1. 1. Cylindrical electrophotographic photosensitive member 2. Mold member 3. Metal member 4. Elastic member 5. Support member 6. Platform 7. Insertion member 8. Spatula 9. Fixing screw 10. Holding member 11. Cylindrical electrophotographic photosensitive member 12. Mold member 13. Metal member 14. Elastic member 15. Support member 16. Platform 17. Insert member 31. Metal member

Claims (13)

円筒状電子写真感光体を表面に凹凸形状を有する型部材に接触させて加圧し該円筒状電子写真感光体を軸回りに回転させながら該円筒状電子写真感光体の表面に凹凸形状を形成する方法であって、
該型部材と、
該型部材の凹凸形状を有する面の背面側に加圧方向に直交する方向に、分割されて積層され、かつ該加圧時には互いにずれることができるように、配設された複数の金属部材と、
該複数の金属部材が該加圧方向に撓むことができるように支持する支持部材と
を用いることを特徴とする、円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The cylindrical electrophotographic photosensitive member is brought into contact with a mold member having an uneven shape on the surface and pressurized to form an uneven shape on the surface of the cylindrical electrophotographic photosensitive member while rotating the cylindrical electrophotographic photosensitive member about an axis. It ’s a method,
With the mold member
With a plurality of metal members arranged so as to be divided and laminated in a direction orthogonal to the pressurizing direction on the back surface side of the surface having the concave-convex shape of the mold member and to be displaced from each other during the pressurization. ,
A method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member, which comprises using a support member that supports the plurality of metal members so that they can bend in the pressurizing direction.
前記複数の金属部材の加圧方向に直交する方向の厚み
の全ての厚みを合計した厚みをTtotal、前記複数の金属部材の加圧方向に直交する方向の厚みが最も厚い金属部材の厚みをT1としたとき、以下の関係式
T1 ≦ 0.7・Ttotal
が成立する、請求項1に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The total thickness of all the thicknesses of the plurality of metal members in the direction orthogonal to the pressurizing direction is T total , and the thickness of the metal member having the thickest thickness in the direction orthogonal to the pressurizing direction of the plurality of metal members is T total. When T1, the following relational expression T1 ≤ 0.7 · T total
The method for forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member according to claim 1.
前記複数の金属部材の加圧方向に直交する方向の厚みが、
前記複数の金属部材の加圧方向に直交する方向の厚みが最も厚い金属部材の厚みT1と同じであるか、又は該T1に次ぐ厚みを有する金属部材の厚みをT2としたとき、以下の関係式
T2 ≧ 0.7・T1
が成立する、請求項1に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The thickness of the plurality of metal members in the direction orthogonal to the pressurizing direction is
The following relationship is assumed when the thickness of the plurality of metal members in the direction orthogonal to the pressurizing direction is the same as the thickness T1 of the thickest metal member, or when the thickness of the metal member having the thickness next to T1 is T2. Equation T2 ≧ 0.7 · T1
The method for forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member according to claim 1.
前記複数の金属部材のうち、少なくとも厚みが最も厚い金属部材の厚みT1の厚みを有する金属部材が圧延加工を含む加工法によって該厚みを形成したものであり、かつ該金属部材を、圧延加工の圧延方向が前記円筒状電子写真感光体の軸に略直交する方向に配設して用いる、請求項1から3のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。 Among the plurality of metal members, a metal member having a thickness of at least T1 of the thickest metal member has the thickness formed by a processing method including rolling, and the metal member is rolled. The uneven shape is formed on the surface of the cylindrical electrophotographic photosensitive member according to any one of claims 1 to 3, which is used by arranging the rolling direction in a direction substantially orthogonal to the axis of the cylindrical electrophotographic photosensitive member. how to. 厚みが最も厚い前記金属部材の厚みT1の厚みを有する金属部材の引張り強度が500MPa以上である、請求項1から4のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。 The uneven shape is formed on the surface of the cylindrical electrophotographic photosensitive member according to any one of claims 1 to 4, wherein the metal member having the thickness of the thickest metal member T1 has a tensile strength of 500 MPa or more. How to form. 円筒状電子写真感光体を表面に凹凸形状を有する型部材に接触させて加圧し該円筒状電子写真感光体を軸回りに回転させながら該円筒状電子写真感光体の表面に凹凸形状を形成する方法であって、
該型部材と、
該型部材の凹凸形状を有する面の背面側に該加圧方向に直交する方向に、分割されて積層され、かつ該加圧時には互いにずれることができるように、配設された複数の金属部材と、
弾性部材と、
支持部材と
をこの順で配設して用いることを特徴とする、円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The cylindrical electrophotographic photosensitive member is brought into contact with a mold member having an uneven shape on the surface and pressurized to form an uneven shape on the surface of the cylindrical electrophotographic photosensitive member while rotating the cylindrical electrophotographic photosensitive member about an axis. It ’s a method,
With the mold member
A plurality of metal members arranged on the back surface side of the concave-convex shape of the mold member in a direction orthogonal to the pressurizing direction so as to be divided and laminated and displaced from each other during the pressurization. When,
Elastic members and
A method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member, which comprises arranging and using support members in this order.
前記複数の金属部材の加圧方向に直交する方向の厚みが、
全ての金属部材の厚みを合計した厚みをTtotalとし、厚みが最も厚い金属部材の厚みをT1としたとき、以下の関係式
T1 ≦ 0.7・Ttotal
が成立する、請求項6に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The thickness of the plurality of metal members in the direction orthogonal to the pressurizing direction is
When the total thickness of all metal members is T total and the thickness of the thickest metal member is T1, the following relational expression T1 ≤ 0.7 · T total
The method for forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member according to claim 6, wherein the above is satisfied.
前記複数の金属部材の加圧方向に直交する方向の厚みが、
厚みが最も厚い金属部材の厚みT1と同じ、又はT1に次ぐ厚みを有する金属部材の厚みをT2としたとき、以下の関係式
T2 ≧ 0.7・T1
が成立する、請求項6に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The thickness of the plurality of metal members in the direction orthogonal to the pressurizing direction is
When the thickness of the metal member having the same thickness as the thickest metal member T1 or the thickness next to T1 is T2, the following relational expression T2 ≧ 0.7 · T1
The method for forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member according to claim 6, wherein the above is satisfied.
前記T1の厚みを有する金属部材が圧延加工を含む加工法によって該厚みを形成したものであり、かつ該金属部材を、圧延加工の圧延方向が前記円筒状電子写真感光体の軸に略直交する方向に配設して用いる、請求項6乃至8のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。 The metal member having the thickness of T1 has the thickness formed by a processing method including rolling, and the rolling direction of the rolling of the metal member is substantially orthogonal to the axis of the cylindrical electrophotographic photosensitive member. The method for forming a concavo-convex shape on the surface of a cylindrical electrophotographic photosensitive member according to any one of claims 6 to 8, which is used by disposing in the direction. 前記T1の厚みを有する金属部材の引張り強度が500MPa以上である、請求項6乃至9のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。 The method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member according to any one of claims 6 to 9, wherein the tensile strength of the metal member having the thickness of T1 is 500 MPa or more. 前記複数の金属部材が、
前記加圧方向において前記型部材に最も近い金属部材と、
前記円筒状電子写真感光体の軸方向において、
端部が、
該円筒状電子写真感光体の端部及び、
該型部材の端部及び、
該加圧方向において該型部材に最も近い金属部材の端部
よりも中央寄りに位置する金属部材とを有する
ことを特徴とする、請求項1乃至10のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The plurality of metal members
With the metal member closest to the mold member in the pressurizing direction,
In the axial direction of the cylindrical electrophotographic photosensitive member,
The end is
The end of the cylindrical electrophotographic photosensitive member and
The end of the mold member and
The cylindrical electron according to any one of claims 1 to 10, characterized in that it has a metal member located closer to the center than an end portion of the metal member closest to the mold member in the pressurizing direction. A method of forming an uneven shape on the surface of a photographic photoconductor.
前記加圧方向において前記型部材に最も近い金属部材の該型部材側の表面から、
端部が前記円筒状電子写真感光体の軸方向において最も中央寄りに位置する金属部材の該型部材側の表面までの距離をTとし、
該円筒状電子写真感光体の軸方向において、
該円筒状電子写真感光体の端部又は
該型部材の端部又は
該加圧方向において該型部材に最も近い金属部材の端部のうち、
最も中央寄りに位置する端部の位置から、端部が最も中央寄りに位置する金属部材の端部の位置までの距離をLとしたとき、
L ≧ T
の関係であることを特徴とする請求項11に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
From the surface of the metal member closest to the mold member in the pressurizing direction on the mold member side
Let T be the distance to the surface of the metal member whose end is closest to the center in the axial direction of the cylindrical electrophotographic photosensitive member on the mold member side.
In the axial direction of the cylindrical electrophotographic photosensitive member,
Of the end of the cylindrical electrophotographic photosensitive member, the end of the mold member, or the end of the metal member closest to the mold member in the pressurizing direction.
When the distance from the position of the end located closest to the center to the position of the end of the metal member whose end is located closest to the center is L.
L ≧ T
The method for forming a concavo-convex shape on the surface of a cylindrical electrophotographic photosensitive member according to claim 11, wherein the relationship is the same.
請求項1乃至12のいずれか1項に記載の方法を用いることを特徴とする、表面に凹凸形状を有する円筒状電子写真感光体の製造方法。 A method for producing a cylindrical electrophotographic photosensitive member having an uneven shape on the surface, which comprises using the method according to any one of claims 1 to 12.
JP2017088787A 2016-06-17 2017-04-27 Surface processing method for cylindrical electrophotographic photosensitive member and manufacturing method for cylindrical electrophotographic photosensitive member Active JP6842984B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016120993 2016-06-17
JP2016120993 2016-06-17

Publications (2)

Publication Number Publication Date
JP2017227871A JP2017227871A (en) 2017-12-28
JP6842984B2 true JP6842984B2 (en) 2021-03-17

Family

ID=60891589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088787A Active JP6842984B2 (en) 2016-06-17 2017-04-27 Surface processing method for cylindrical electrophotographic photosensitive member and manufacturing method for cylindrical electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP6842984B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413115B2 (en) 2020-03-26 2024-01-15 キヤノン株式会社 Electrophotographic photoreceptors, process cartridges, and electrophotographic devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059518B2 (en) * 2006-01-31 2008-03-12 キヤノン株式会社 Method for producing electrophotographic photosensitive member
JP4975185B1 (en) * 2010-11-26 2012-07-11 キヤノン株式会社 Method for forming uneven shape on surface of surface layer of cylindrical electrophotographic photoreceptor, and method for producing cylindrical electrophotographic photoreceptor having uneven surface formed on surface of surface layer
JP5921471B2 (en) * 2012-04-17 2016-05-24 キヤノン株式会社 Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP6132473B2 (en) * 2012-04-17 2017-05-24 キヤノン株式会社 Method for producing electrophotographic photosensitive member
JP2014059439A (en) * 2012-09-18 2014-04-03 Canon Inc Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof
JP6212350B2 (en) * 2013-10-16 2017-10-11 キヤノン株式会社 Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP6282130B2 (en) * 2014-02-10 2018-02-21 キヤノン株式会社 Method for forming uneven shape on surface of electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member having uneven shape on surface

Also Published As

Publication number Publication date
JP2017227871A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP4975185B1 (en) Method for forming uneven shape on surface of surface layer of cylindrical electrophotographic photoreceptor, and method for producing cylindrical electrophotographic photoreceptor having uneven surface formed on surface of surface layer
JP4059518B2 (en) Method for producing electrophotographic photosensitive member
US10359729B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP7222670B2 (en) Electrophotographic photoreceptor manufacturing method
US11269282B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5921471B2 (en) Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP6842984B2 (en) Surface processing method for cylindrical electrophotographic photosensitive member and manufacturing method for cylindrical electrophotographic photosensitive member
US11392074B2 (en) Electrophotographic photosensitive member having outer surface with first and second structure groups, the first structure group having a smaller appearance period and a lower height than the second structure group
JP6317597B2 (en) Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface
JP6282130B2 (en) Method for forming uneven shape on surface of electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member having uneven shape on surface
US11747743B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP2016090620A (en) Electrophotographic device
JP6212350B2 (en) Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP6818624B2 (en) A method for forming an uneven shape on an electrophotographic photosensitive member, and a method for manufacturing an electrophotographic photosensitive member using this method.
JP2018054904A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP6360381B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2016200734A (en) Surface processing method of xerographic photoreceptor and manufacturing method of xerographic photoreceptor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R151 Written notification of patent or utility model registration

Ref document number: 6842984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151