JP6818624B2 - A method for forming an uneven shape on an electrophotographic photosensitive member, and a method for manufacturing an electrophotographic photosensitive member using this method. - Google Patents

A method for forming an uneven shape on an electrophotographic photosensitive member, and a method for manufacturing an electrophotographic photosensitive member using this method. Download PDF

Info

Publication number
JP6818624B2
JP6818624B2 JP2017088785A JP2017088785A JP6818624B2 JP 6818624 B2 JP6818624 B2 JP 6818624B2 JP 2017088785 A JP2017088785 A JP 2017088785A JP 2017088785 A JP2017088785 A JP 2017088785A JP 6818624 B2 JP6818624 B2 JP 6818624B2
Authority
JP
Japan
Prior art keywords
electrophotographic photosensitive
photosensitive member
mold
cylindrical electrophotographic
uneven shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017088785A
Other languages
Japanese (ja)
Other versions
JP2017227870A (en
Inventor
直晃 市橋
直晃 市橋
川井 康裕
康裕 川井
健一 怒
健一 怒
小川 英紀
英紀 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2017227870A publication Critical patent/JP2017227870A/en
Application granted granted Critical
Publication of JP6818624B2 publication Critical patent/JP6818624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、円筒状電子写真感光体の表面に凹凸形状を付与する方法、及び凹凸形状が付与された電子写真感光体の製造方法に関する。 The present invention relates to a method for imparting an uneven shape to the surface of a cylindrical electrophotographic photosensitive member and a method for producing an electrophotographic photosensitive member having an uneven shape.

有機光導電性物質(電荷発生物質)を含有する電子写真感光体に関し、その耐久性(耐摩耗性など)を向上させることを目的として、電子写真感光体の表面層に硬化性樹脂を含有させる技術がある。 With respect to an electrophotographic photosensitive member containing an organic photoconducting substance (charge generating substance), a curable resin is contained in the surface layer of the electrophotographic photosensitive member for the purpose of improving its durability (wear resistance, etc.). There is technology.

しかしながら、この技術によって電子写真感光体の耐摩耗性を向上させると、電子写真感光体のクリーニング性能への影響が発生しやすくなると共に画像流れも発生しやすくなる。クリーニング性能への影響とは、電子写真感光体の耐摩耗性の高い表面とクリーニングブレードとの摩擦力が大きくなることにより発生する、駆動トルクの増大、クリーニングブレードの微小な振動によるトナーのすり抜け、及びクリーニングブレードの反転等の問題である。また、画像流れとは、電子写真感光体を帯電させることによって生じるオゾンや窒素酸化物などの酸性ガスによって、電子写真感光体の表面層に用いられている材料が劣化することで生じる問題である。また、このように生じた酸性ガスの一部が水分の吸着によって硝酸となって、電子写真感光体の表面抵抗が低下することで、画像流れが発生することもある。 However, if the wear resistance of the electrophotographic photosensitive member is improved by this technique, the cleaning performance of the electrophotographic photosensitive member is likely to be affected and image flow is likely to occur. The effects on the cleaning performance are the increase in drive torque caused by the increased frictional force between the highly wear-resistant surface of the electrophotographic photosensitive member and the cleaning blade, and the slipping of toner due to the minute vibration of the cleaning blade. And problems such as reversal of the cleaning blade. Further, image flow is a problem caused by deterioration of the material used for the surface layer of the electrophotographic photosensitive member due to acid gas such as ozone and nitrogen oxides generated by charging the electrophotographic photosensitive member. .. In addition, a part of the acid gas generated in this way becomes nitric acid due to the adsorption of water, and the surface resistance of the electrophotographic photosensitive member is lowered, so that image flow may occur.

これらの課題を改善するために、表面に凹凸形状を有する型部材を電子写真感光体に押し付けて、電子写真感光体の表面に凹凸形状を形成する技術がある。特許文献1には、電子写真感光体の表面に型部材の凹凸形状を転写する際に、型部材と電子写真感光体の支持体との温度を制御して凹凸形状再現性が高く、さらに画像流れとクリーニング性能をより改善する技術が開示されている。 In order to improve these problems, there is a technique of pressing a mold member having an uneven shape on the surface against the electrophotographic photosensitive member to form an uneven shape on the surface of the electrophotographic photosensitive member. In Patent Document 1, when the uneven shape of the mold member is transferred to the surface of the electrophotographic photosensitive member, the temperature between the mold member and the support of the electrophotographic photosensitive member is controlled to have high uneven shape reproducibility, and further, the image Techniques for further improving flow and cleaning performance are disclosed.

さらに、特許文献2には、表面に凹凸形状を有する型部材、金属部材、および緩衝部材を有する型ユニットを用いて、型部材の表面に電子写真感光体を圧接して凹凸形状を電子写真感光体の表面に形成する技術が開示されている。 Further, in Patent Document 2, a mold member having an uneven shape on the surface, a metal member, and a mold unit having a cushioning member are used, and an electrophotographic photosensitive member is pressed against the surface of the mold member to photosensitize the uneven shape. Techniques for forming on the surface of the body are disclosed.

特許第4059518号公報Japanese Patent No. 4059518 特開2013−238844号公報Japanese Unexamined Patent Publication No. 2013-238844

これら先行技術のように複数の部材から構成される型ユニットを用いる場合、電子写真感光体の圧接によって型ユニットを構成する部材同士の密着性が悪化してしまう傾向にある。型部材を加熱する為に型ユニットに加熱手段を備えて電子写真感光体への凹凸形状の転写を行う場合、部材の密着性悪化による空気層の介在が、熱源から型部材への熱伝達を阻害する要因となる。 When a mold unit composed of a plurality of members is used as in the prior art, the adhesion between the members constituting the mold unit tends to be deteriorated by pressure welding of the electrophotographic photosensitive member. When the mold unit is equipped with a heating means to transfer the uneven shape to the electrophotographic photosensitive member in order to heat the mold member, the presence of an air layer due to the deterioration of the adhesion of the member causes heat transfer from the heat source to the mold member. It becomes a factor to hinder.

連続して電子写真感光体への凹凸形状の転写を行う場合は、電子写真感光体に奪われる型部材の温度が元に戻ってから次の電子写真感光体への凹凸形状の形成を行うべきなので、熱源から型部材までの複数の部材から構成される型ユニットにおける各部材間の密着性を良好にし、熱伝達が速やかに行われることが望まれる。 When continuously transferring the uneven shape to the electrophotographic photosensitive member, the uneven shape should be formed on the next electrophotographic photosensitive member after the temperature of the mold member taken away by the electrophotographic photosensitive member has returned to the original temperature. Therefore, it is desired that the adhesion between the members in the mold unit composed of a plurality of members from the heat source to the mold member is improved and the heat transfer is performed promptly.

また、型部材へ電子写真感光体の圧接を繰り返すことによって型部材の変形を生じることが考えられる。型部材が変形することでさらに型ユニット内で空気層が生じ、熱源から型部材への熱伝達が遅くなり、初期の生産タクト(または加工時間)との差が生じてしまう。 Further, it is conceivable that the mold member is deformed by repeatedly pressing the electrophotographic photosensitive member onto the mold member. When the mold member is deformed, an air layer is further formed in the mold unit, the heat transfer from the heat source to the mold member is delayed, and a difference from the initial production tact (or processing time) occurs.

本発明はこれらの課題を鑑みて見出されたものであり、電子写真感光体の表面に凹凸形状を形成する方法において、熱源から型部材への熱伝達が優れた型ユニットを提供することで生産タクトの短縮を図り、更には長期にわたっての生産タクトの変動を抑制する方法を提供することを目的とする。 The present invention has been discovered in view of these problems, and by providing a mold unit having excellent heat transfer from a heat source to a mold member in a method of forming an uneven shape on the surface of an electrophotographic photosensitive member. It is an object of the present invention to shorten the production tact and to provide a method for suppressing fluctuations in the production tact over a long period of time.

本発明は、表面層を有する円筒状電子写真感光体を、最表面に凹凸形状を有する型ユニットに押しつけ、円筒状電子写真感光体を軸中心に回転させて、円筒状電子写真感光体の表面に凹凸形状を形成する方法において、型ユニットは、加熱手段を有する支持部材、環状部材、緩衝部材、および凹凸形状を有する型部材を少なくとも有し、支持部材、および型部材は、環状部材を介して間接的に接し、減圧可能な空間を形成し、緩衝部材は環状部材の内側で少なくとも型部材および支持部材とそれぞれ接するように配設され、減圧可能な空間を減圧した状態で円筒状電子写真感光体を型ユニットに押しつけることを特徴とする、電子写真感光体の表面に凹凸形状を形成する方法を提供する。 In the present invention, a cylindrical electrophotographic photosensitive member having a surface layer is pressed against a mold unit having an uneven shape on the outermost surface, and the cylindrical electrophotographic photosensitive member is rotated about an axis to rotate the surface of the cylindrical electrophotographic photosensitive member. In the method of forming the concave-convex shape, the mold unit has at least a support member having a heating means, an annular member, a cushioning member, and a mold member having an uneven shape, and the support member and the mold member are via the annular member. The cushioning member is arranged inside the annular member so as to be in contact with at least the mold member and the support member, respectively, and the decompressable space is decompressed to form a cylindrical electrograph. Provided is a method for forming an uneven shape on the surface of an electrophotographic photosensitive member, which comprises pressing the photoconductor against a mold unit.

本発明によれば、電子写真感光体の表面に凹凸形状を形成する方法に際して、生産タクトが短縮され、また、長期的な生産タクトの変動が抑制される。 According to the present invention, the production tact is shortened and the long-term fluctuation of the production tact is suppressed in the method of forming the uneven shape on the surface of the electrophotographic photosensitive member.

電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の一例を説明するための図である。It is a figure for demonstrating an example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member. 電子写真感光体の表面に凹凸形状を形成する、本発明に係る電子写真感光体の表面加工方法の別の例を説明するための図である。It is a figure for demonstrating another example of the surface processing method of the electrophotographic photosensitive member which concerns on this invention which forms an uneven shape on the surface of an electrophotographic photosensitive member.

本発明は、表面層を有する円筒状電子写真感光体を、最表面に凹凸形状を有する型ユニットに押しつけ、該円筒状電子写真感光体を軸中心に回転させて、該円筒状電子写真感光体の表面に凹凸形状を形成する方法において、該型ユニットは、加熱手段を有する支持部材、環状部材、緩衝部材、および凹凸形状を有する型部材を少なくとも有し、該支持部材、および該型部材は、該環状部材を介して間接的に接し、減圧可能な空間を形成し、該緩衝部材は該減圧可能な空間内で少なくとも該型部材および該支持部材と互いに接するように配設され、該減圧可能な空間を減圧した状態で該円筒状電子写真感光体を型ユニットに押しつけ、該円筒状電子写真感光体を軸中心に回転させて該円筒状電子写真感光体の表面に凹凸形状を形成する方法に関する。 In the present invention, a cylindrical electrophotographic photosensitive member having a surface layer is pressed against a mold unit having an uneven shape on the outermost surface, and the cylindrical electrophotographic photosensitive member is rotated about an axis to rotate the cylindrical electrophotographic photosensitive member about the axis. In the method of forming an uneven shape on the surface of the mold unit, the mold unit has at least a support member having a heating means, an annular member, a cushioning member, and a mold member having an uneven shape, and the support member and the mold member are , Indirectly contact via the annular member to form a decompressable space, the cushioning member is arranged in the depressurable space so as to be in contact with at least the mold member and the support member, and the depressurization member is provided. The cylindrical electrophotographic photosensitive member is pressed against the mold unit in a state where the possible space is depressurized, and the cylindrical electrophotographic photosensitive member is rotated about the axis to form an uneven shape on the surface of the cylindrical electrophotographic photosensitive member. Regarding the method.

さらに本発明は、前記型ユニットが、前記型部材と前記緩衝部材の間に金属部材を有することを特徴とする、上記円筒状電子写真感光体の表面に凹凸形状を形成する方法に関する。
さらに本発明は、上記の円筒状電子写真感光体の表面に凹凸形状を形成する方法により、表面を加工された電子写真感光体の製造方法に関する。
Further, the present invention relates to a method for forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member, wherein the mold unit has a metal member between the mold member and the cushioning member.
Furthermore, the present invention relates to a method for producing an electrophotographic photosensitive member whose surface has been processed by the method of forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member.

本発明の基本的な構成について図1(a)および(b)を用いて説明する。電子写真感光体1は円筒状であり、円筒状の芯部材2をその中心部分へ挿通した状態で支持されている。型ユニット3は平面状であり、電子写真感光体1に向かう表面に凹凸形状を有する型部材31と、緩衝部材32と、環状部材33と、支持部材34とを有しており、支持部材34はヒーターや熱媒体の循環機構などの熱源を有し、型部材31に熱を供給することができる。 The basic configuration of the present invention will be described with reference to FIGS. 1 (a) and 1 (b). The electrophotographic photosensitive member 1 has a cylindrical shape, and is supported by inserting a cylindrical core member 2 into a central portion thereof. The mold unit 3 is flat and has a mold member 31 having an uneven shape on the surface facing the electrophotographic photosensitive member 1, a cushioning member 32, an annular member 33, and a support member 34. Has a heat source such as a heater and a circulation mechanism of a heat medium, and can supply heat to the mold member 31.

型部材31と支持部材34は環状部材33を介して間接的に接し減圧可能な空間4を形成する。緩衝部材32は環状部材33の内側で型部材31および支持部材34と互いに接するように配設される。図1(c)に減圧可能な空間4を説明するために、緩衝部材32を省いた型ユニット3を示す。 The mold member 31 and the support member 34 indirectly contact each other via the annular member 33 to form a space 4 capable of depressurizing. The cushioning member 32 is arranged inside the annular member 33 so as to be in contact with the mold member 31 and the support member 34. FIG. 1C shows a mold unit 3 in which the cushioning member 32 is omitted in order to explain the space 4 capable of depressurizing.

さらに減圧可能な空間4を、図示しない吸引ポンプを用いて減圧することによって大気圧に対して負圧とする。そうすることで大気圧との差圧によって支持部材34、緩衝部材32、および型部材31の密着性が向上するので、支持部材34が有する熱源からの熱を型部材31へ効率的に伝えることが可能となる。 Further, the space 4 capable of depressurizing is decompressed by using a suction pump (not shown) to make the pressure negative with respect to the atmospheric pressure. By doing so, the adhesion between the support member 34, the cushioning member 32, and the mold member 31 is improved by the pressure difference from the atmospheric pressure, so that the heat from the heat source of the support member 34 can be efficiently transferred to the mold member 31. Is possible.

支持部材34、緩衝部材32、および型部材31の密着性を維持する為には、減圧可能な空間4の減圧状態を維持することが重要である。型部材31が比較的薄い板状の部材の場合、電子写真感光体1の圧接による変形によって減圧状態の維持が困難となる場合があるので、型部材31の補強を目的とし、型部材31の背面に金属部材35を配設してもよい。図2に金属部材35を用いた場合の構成について示す。金属部材35は型部材31と緩衝部材32の間に配設される。 In order to maintain the adhesion of the support member 34, the cushioning member 32, and the mold member 31, it is important to maintain the decompressed state of the decompressable space 4. When the mold member 31 is a relatively thin plate-shaped member, it may be difficult to maintain the decompressed state due to deformation of the electrophotographic photosensitive member 1 due to pressure contact. Therefore, for the purpose of reinforcing the mold member 31, the mold member 31 A metal member 35 may be arranged on the back surface. FIG. 2 shows a configuration when the metal member 35 is used. The metal member 35 is arranged between the mold member 31 and the cushioning member 32.

以下に型ユニット3の各部材に求められる詳細な要件について説明する。
型部材31は、凹凸形状を有して電子写真感光体1を押し付けられる面を含む部材であり、被加工物である電子写真感光体1の表面を構成する樹脂材料よりも硬い材料を用いる必要がある。その材質は、主に金属であることが好ましく、特には、鉄系又はステンレス系の合金材料、又はニッケル等が好適に利用可能である。
The detailed requirements required for each member of the mold unit 3 will be described below.
The mold member 31 is a member having a concavo-convex shape and includes a surface on which the electrophotographic photosensitive member 1 is pressed, and it is necessary to use a material harder than the resin material constituting the surface of the electrophotographic photosensitive member 1 which is a work piece. There is. The material is preferably mainly a metal, and in particular, an iron-based or stainless-based alloy material, nickel, or the like can be preferably used.

金属部材35は型部材31と緩衝部材32の間に配設される部材で、型部材31に電子写真感光体1が圧接した際の型部材31を補強するために用いる。材料としては鉄系、ステンレス系等の合金が使用され、特に塑性変形の少ないバネ材を使用することが好ましい。金属部材は同一、もしくは異なる材質のものを複数枚重ね合わせて用いてもよい。ただし、型部材31が前記圧接に対して十分な強度を備えた部材を用いている場合は、これを省いて型ユニット3を構成することも可能である。 The metal member 35 is a member arranged between the mold member 31 and the cushioning member 32, and is used to reinforce the mold member 31 when the electrophotographic photosensitive member 1 is pressed against the mold member 31. As a material, an iron-based or stainless steel-based alloy is used, and it is particularly preferable to use a spring material having little plastic deformation. A plurality of metal members of the same or different materials may be stacked and used. However, when the mold member 31 uses a member having sufficient strength against the pressure welding, it is possible to omit the member to form the mold unit 3.

緩衝部材32は、型部材31が電子写真感光体1の圧接を受けた際に電子写真感光体1の周方向での荷重圧の集中を緩和するために用いる部材で、型部材31及び金属部材35を湾曲させて支持することができる。材質としては主に樹脂部材で、シリコーン系やフッ素系のゴム材を用いるのが好ましい。特に加熱を伴う形状転写を行う場合には熱伝導性の高い材料を用いることが好ましい。例えば金属粒子を分散したゴム材を用いることで柔軟性を確保した上で熱伝導性も損なわずに形状転写を行うことができる。 The cushioning member 32 is a member used to alleviate the concentration of load pressure in the circumferential direction of the electrophotographic photosensitive member 1 when the mold member 31 is pressed against the electrophotographic photosensitive member 1, and is a member of the mold member 31 and a metal member. The 35 can be curved and supported. As the material, it is mainly a resin member, and it is preferable to use a silicone-based or fluorine-based rubber material. In particular, when performing shape transfer accompanied by heating, it is preferable to use a material having high thermal conductivity. For example, by using a rubber material in which metal particles are dispersed, shape transfer can be performed without impairing thermal conductivity while ensuring flexibility.

環状部材33は、型部材31および支持部材34とそれぞれ接し、減圧可能な空間4を形成する。材質としては主に樹脂部材で、シリコーン系やフッ素系のゴム材を用いるのが好ましい。環状部材33は必ずしも環状に閉じた構造を持つ必要はなく、一部が開いていてもよい。減圧可能な空間4を、大気圧に対してより負圧にするためには、環状に閉じた構造であることが好ましい。 The annular member 33 is in contact with the mold member 31 and the support member 34, respectively, to form a space 4 capable of depressurizing. As the material, it is mainly a resin member, and it is preferable to use a silicone-based or fluorine-based rubber material. The annular member 33 does not necessarily have to have an annularly closed structure, and a part of the annular member 33 may be open. In order to make the decompressable space 4 more negative with respect to the atmospheric pressure, it is preferable to have a structure closed in an annular shape.

支持部材34は、型ユニット3の各部材を一体に固定する場合に基体となる部材である。この支持部材34を用いることで型ユニット3の各部材、特に緩衝部材32を平面に維持することができ、型ユニット3を安定して取り扱うことができる。支持部材34はヒーターや熱媒体の循環機構などの熱源を有し、型部材31に熱を供給することができる。 The support member 34 is a member that serves as a base when each member of the mold unit 3 is integrally fixed. By using this support member 34, each member of the mold unit 3, particularly the cushioning member 32 can be maintained on a flat surface, and the mold unit 3 can be handled stably. The support member 34 has a heat source such as a heater and a circulation mechanism of a heat medium, and can supply heat to the mold member 31.

吸引ポンプはダイアフラムポンプやロータリーポンプ等、減圧可能な空間4を減圧できるものであれば適宜選択可能である。 The suction pump can be appropriately selected as long as it can depressurize the decompressable space 4, such as a diaphragm pump or a rotary pump.

減圧状態は大気圧基準の真空度を用いて表現する。本発明では減圧可能な空間4と吸引口42からの吸引ポンプの間に設置する差圧計41に表示される値の絶対値を真空度とし、型ユニット3の真空度と表現する。真空度の単位はPaであり、大気圧を0とし、減圧状態では正の値となる。型ユニットの真空度が30kPa以上であると型ユニット3の部材間の密着性が良好となり、支持部材34から型部材31への熱伝達がより効率的に行われる。 The decompression state is expressed using the degree of vacuum based on atmospheric pressure. In the present invention, the absolute value of the value displayed on the differential pressure gauge 41 installed between the space 4 capable of depressurizing and the suction pump from the suction port 42 is defined as the degree of vacuum, and is expressed as the degree of vacuum of the mold unit 3. The unit of the degree of vacuum is Pa, the atmospheric pressure is 0, and the value is positive in the decompressed state. When the degree of vacuum of the mold unit is 30 kPa or more, the adhesion between the members of the mold unit 3 becomes good, and heat transfer from the support member 34 to the mold member 31 is performed more efficiently.

連続して形状転写を行う場合、電子写真感光体1の圧接が繰り返されることによって型部材31の変形が生じる。変形が軽度であれば型部材31と環状部材33の密閉性が維持されるので型ユニットの真空度は保たれ、部材間の密着性は維持されるが、変形が大きく型部材31と環状部材33の密閉性が損なわれると、型ユニットの真空度が低下し、部材間の密着性が阻害される。 When the shape is continuously transferred, the mold member 31 is deformed by repeating the pressure welding of the electrophotographic photosensitive member 1. If the deformation is slight, the airtightness between the mold member 31 and the annular member 33 is maintained, so that the degree of vacuum of the mold unit is maintained and the adhesion between the members is maintained, but the deformation is large and the mold member 31 and the annular member are greatly deformed. When the airtightness of 33 is impaired, the degree of vacuum of the mold unit decreases, and the adhesion between the members is impaired.

図3に、図1及び図2で例示した構成に加えて、型ユニットの真空度を維持するための構成の一例を示す。図3は金属部材35を有する型ユニットを別の方向から見た構成を示している。型部材31と接する円筒状の電子写真感光体1の端と、電子写真感光体1の軸方向における金属部材35の端との距離をDmm、型部材31の厚みをtmmとするとき、
D≦4t
の関係を維持した状態で形状転写を行うと電子写真感光体1の圧接による型部材31の変形を抑制することができる。すなわち、電子写真感光体1の端と電子写真感光体1の軸方向における金属部材35の端とのずれがあまりない位置関係で形状転写を行うことが好ましい。
FIG. 3 shows an example of a configuration for maintaining the degree of vacuum of the mold unit in addition to the configurations illustrated in FIGS. 1 and 2. FIG. 3 shows a configuration in which the mold unit having the metal member 35 is viewed from another direction. When the distance between the end of the cylindrical electrophotographic photosensitive member 1 in contact with the mold member 31 and the end of the metal member 35 in the axial direction of the electrophotographic photosensitive member 1 is D mm, and the thickness of the mold member 31 is tmm.
D ≤ 4t
If the shape is transferred while maintaining the above relationship, the deformation of the mold member 31 due to the pressure welding of the electrophotographic photosensitive member 1 can be suppressed. That is, it is preferable to perform shape transfer in a positional relationship in which there is not much deviation between the end of the electrophotographic photosensitive member 1 and the end of the metal member 35 in the axial direction of the electrophotographic photosensitive member 1.

Dが4tよりも大きい場合は、型部材31は以下の二通りの変形が起こりやすくなる。電子写真感光体1の一方の端に着目した場合、電子写真感光体1の軸方向において金属部材35の端部よりも電子写真感光体1が4tを超えて外側にある場合、金属部材35による型部材31の背面の支持が不足するため、型部材31は金属部材35の端を起点に加圧方向に変形を生じる。 When D is larger than 4t, the mold member 31 is likely to be deformed in the following two ways. When focusing on one end of the electrophotographic photosensitive member 1, when the electrophotographic photosensitive member 1 is outside the end portion of the metal member 35 in the axial direction of the electrophotographic photosensitive member 1 by more than 4 tons, the metal member 35 is used. Since the back surface of the mold member 31 is insufficiently supported, the mold member 31 is deformed in the pressurizing direction starting from the end of the metal member 35.

一方、電子写真感光体1の軸方向における端が金属部材35の端部よりも4tを超えて内側にある場合、型部材31の電子写真感光体1の端の内側と外側で応力の差が生じ、電子写真感光体1の端の外側の型部材31が加圧方向と逆方向に変形する。 On the other hand, when the axial end of the electrophotographic photosensitive member 1 is more than 4t inside the end portion of the metal member 35, the stress difference between the inside and outside of the end of the electrophotographic photosensitive member 1 of the mold member 31 is large. As a result, the mold member 31 outside the end of the electrophotographic photosensitive member 1 is deformed in the direction opposite to the pressurizing direction.

本発明では、型ユニット3の真空度を高く維持することで支持部材34、緩衝部材32、金属部材35、および型部材31の密着性を高めることが可能であるが、ネジ等を用いた固定を併せて行ってもよい。図4は電子写真感光体1と金属部材35の位置関係を制御しやすくする目的で、金属部材35を間座36を介して支持部材34に固定する方法である。図5は型部材31のずれを抑制するために、型部材31を間座36を介して支持部材34に固定する方法である。また、図6に示すようにこれらの固定方法を組み合わせても良い。 In the present invention, it is possible to improve the adhesion of the support member 34, the cushioning member 32, the metal member 35, and the mold member 31 by maintaining a high degree of vacuum of the mold unit 3, but it is fixed by using screws or the like. May be performed together. FIG. 4 is a method of fixing the metal member 35 to the support member 34 via the spacer 36 for the purpose of facilitating the control of the positional relationship between the electrophotographic photosensitive member 1 and the metal member 35. FIG. 5 shows a method of fixing the mold member 31 to the support member 34 via the spacer 36 in order to suppress the displacement of the mold member 31. Further, as shown in FIG. 6, these fixing methods may be combined.

表面に凹凸形状を有する型部材を電子写真感光体に押し付けて電子写真感光体の表面に凹凸形状を形成するという形状転写が繰り返された時に、電子写真感光体1の端部が型部材31の表面に傷を生じさせることがある。この傷が成長していくことで型部材31に亀裂が生じ、型ユニットが寿命を迎える原因のひとつとなってしまう。
これは、電子写真感光体1を型ユニット3に押しつけた時に、電子写真感光体1が当接する領域の下部にある緩衝部材32のみが圧縮され、電子写真感光体1の端部が型部材31に強く接することが原因である。
When the shape transfer of pressing the mold member having an uneven shape on the surface against the electrophotographic photosensitive member to form the concave-convex shape on the surface of the electrophotographic photosensitive member is repeated, the end portion of the electrophotographic photosensitive member 1 becomes the mold member 31. May cause scratches on the surface. As the scratches grow, the mold member 31 cracks, which is one of the causes for the mold unit to reach the end of its life.
This is because when the electrophotographic photosensitive member 1 is pressed against the mold unit 3, only the buffer member 32 at the lower part of the region where the electrophotographic photosensitive member 1 comes into contact is compressed, and the end portion of the electrophotographic photosensitive member 1 is the mold member 31. The cause is strong contact with.

型部材31の表面に発生する傷を抑制するための型ユニット構成を図9に示す。
図9においては、型ユニットの両端に型保持部材7を有していることを特徴としている。型保持部材7は、型部材31の電子写真感光体1の軸方向における両端を保持し、型部材31と環状部材33の接触を保つ目的で配設する部材である。型保持部材7の材質は特に限定されるものではなく、鉄系、ステンレス系等の合金や、樹脂材料を用いることができる。
FIG. 9 shows a mold unit configuration for suppressing scratches generated on the surface of the mold member 31.
FIG. 9 is characterized in that the mold holding members 7 are provided at both ends of the mold unit. The mold holding member 7 is a member that holds both ends of the electrophotographic photosensitive member 1 of the mold member 31 in the axial direction and is arranged for the purpose of maintaining contact between the mold member 31 and the annular member 33. The material of the mold holding member 7 is not particularly limited, and an iron-based or stainless steel-based alloy or a resin material can be used.

h1は電子写真感光体1の押しつけ方向において、電子写真感光体の回転軸線6と型部材31の電子写真感光体1が当接する面との距離である。
h2は電子写真感光体の回転軸線6と型部材31の電子写真感光体の軸方向における型保持部材7で保持されている部分の電子写真感光体に最も近い位置との距離である。
緩衝部材32、環状部材33、および金属部材35の厚みを変えることによって、
h1<h2
となるように型ユニット3を構成することで、電子写真感光体1を押しつけた時の型部材31の表面に発生する傷を抑制することができる。
電子写真感光体1を型ユニット3に押しつけた時のh1、h2をそれぞれh1’、h2’とするとき、
h1’≦h2’
となるように型ユニット3を構成することで、電子写真感光体1を押しつけた時の型部材31の表面に発生する傷をさらに抑制することができる。
h1 is the distance between the rotation axis 6 of the electrophotographic photosensitive member and the surface of the mold member 31 in contact with the electrophotographic photosensitive member 1 in the pressing direction of the electrophotographic photosensitive member 1.
h2 is the distance between the rotation axis 6 of the electrophotographic photosensitive member and the position of the mold member 31 that is held by the mold holding member 7 in the axial direction of the electrophotographic photosensitive member closest to the electrophotographic photosensitive member.
By changing the thickness of the cushioning member 32, the annular member 33, and the metal member 35,
h1 <h2
By configuring the mold unit 3 so as to be, it is possible to suppress scratches generated on the surface of the mold member 31 when the electrophotographic photosensitive member 1 is pressed.
When h1 and h2 when the electrophotographic photosensitive member 1 is pressed against the mold unit 3 are set to h1'and h2', respectively.
h1'≤h2'
By configuring the mold unit 3 so as to be, it is possible to further suppress the scratches generated on the surface of the mold member 31 when the electrophotographic photosensitive member 1 is pressed.

図9の構成をとることにより、電子写真感光体1の軸方向における端が金属部材35の端部よりも内側にある場合においても、型保持部材7の存在により、型部材31の電子写真感光体1の端の内側と外側での応力の差が減少され、電子写真感光体1の端の外側の型部材31が加圧方向と逆方向に変形することが抑制される。 By adopting the configuration of FIG. 9, even when the axial end of the electrophotographic photosensitive member 1 is inside the end portion of the metal member 35, the presence of the mold holding member 7 causes the electrophotographic photosensitive member 31 to be electrophotosensitive. The difference in stress between the inside and the outside of the end of the body 1 is reduced, and the deformation of the mold member 31 outside the end of the electrophotographic photosensitive member 1 in the direction opposite to the pressurizing direction is suppressed.

<円筒状電子写真感光体の作製>
支持体(導電性支持体)として、直径30mm、長さ357.5mmのアルミニウムシリンダーを用いた。
<Preparation of cylindrical electrophotographic photosensitive member>
As a support (conductive support), an aluminum cylinder having a diameter of 30 mm and a length of 357.5 mm was used.

次に、金属酸化物として酸化亜鉛粒子(比表面積:19m2/g、粉体抵抗:4.7×10Ω・cm)100部をトルエン500部と撹拌混合した。これにシランカップリング剤(化合物名:N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、商品名:KBM602、信越化学工業(株)製)0.8部を添加し、6時間攪拌した。その後、トルエンを減圧留去して、140℃で6時間加熱乾燥し、表面処理された酸化亜鉛粒子を得た。 Next, 100 parts of zinc oxide particles (specific surface area: 19 m 2 / g, powder resistance: 4.7 × 10 6 Ω · cm) as a metal oxide were stirred and mixed with 500 parts of toluene. To this, 0.8 part of a silane coupling agent (compound name: N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, trade name: KBM602, manufactured by Shin-Etsu Chemical Co., Ltd.) was added for 6 hours. Stirred. Then, toluene was distilled off under reduced pressure, and the mixture was heated and dried at 140 ° C. for 6 hours to obtain surface-treated zinc oxide particles.

次に、ポリオール樹脂としてブチラール樹脂(商品名:BM−1、積水化学工業(株)製)15部およびブロック化イソシアネート(商品名:スミジュール3175、住友バイエルンウレタン社製)15部を混合溶液に溶解させた。混合溶液はメチルエチルケトン73.5部と1−ブタノール73.5部の混合である。 Next, 15 parts of butyral resin (trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.) and 15 parts of blocked isocyanate (trade name: Sumijour 3175, manufactured by Sumitomo Bavarian Urethane Co., Ltd.) were added as a polyol resin to a mixed solution. It was dissolved. The mixed solution is a mixture of 73.5 parts of methyl ethyl ketone and 73.5 parts of 1-butanol.

この溶液に前記表面処理された酸化亜鉛粒子80.8部、2,3,4−トリヒドロキシベンゾフェノン0.4部(東京化成工業(株)社製)を加え、これを直径0.8mmのガラスビーズを用いたサンドミル装置で23±3℃雰囲気下で3時間分散した。分散後、シリコーンオイル(商品名:SH28PA、東レ・ダウコーニング(株)製)0.01部、有機樹脂粒子として架橋性ポリメタクリル酸メチル樹脂(PMMA)粒子(商品名:TECHPOLYMER SSX−102、積水化成品工業(株)社製、平均一次粒径2.5μm)を5.6部加えて攪拌し、下引き層用塗布液を調製した。この下引き層用塗布液を上記支持体上に浸漬塗布し、得られた塗膜を40分間160℃で乾燥させて、膜厚が18μmの下引き層を形成した。 80.8 parts of the surface-treated zinc oxide particles and 0.4 parts of 2,3,4-trihydroxybenzophenone (manufactured by Tokyo Chemical Industry Co., Ltd.) are added to this solution, and this is added to a glass having a diameter of 0.8 mm. The particles were dispersed in a sand mill using beads in an atmosphere of 23 ± 3 ° C. for 3 hours. After dispersion, 0.01 part of silicone oil (trade name: SH28PA, manufactured by Toray Dow Corning Co., Ltd.), crosslinkable polymethyl methacrylate resin (PMMA) particles as organic resin particles (trade name: TECHPOLYMER SSX-102, Sekisui) 5.6 parts (manufactured by Kaseihin Kogyo Co., Ltd., average primary particle size 2.5 μm) was added and stirred to prepare a coating liquid for an undercoat layer. The coating liquid for the undercoat layer was immersed and coated on the support, and the obtained coating film was dried at 160 ° C. for 40 minutes to form an undercoat layer having a film thickness of 18 μm.

次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.4°および28.1°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)4部、および下記構造式(A)で示される化合物0.04部を、シクロヘキサノン100部にポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業(株)製)2部を溶解させた液に加えた。これを、直径1mmのガラスビーズを用いたサンドミル装置で23±3℃の雰囲気下で1時間分散した。分散後、酢酸エチル100部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を上記下引き層上に浸漬塗布し、得られた塗膜を10分間90℃で乾燥させることによって、膜厚が0.20μmの電荷発生層を形成した。

Figure 0006818624
Next, four parts of crystalline hydroxygallium phthalocyanine crystals (charge generators) having strong peaks at 7.4 ° and 28.1 ° at Bragg angles of 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, and the following structure. 0.04 part of the compound represented by the formula (A) was added to a solution prepared by dissolving 2 parts of a polyvinyl butyral resin (trade name: Eslek BX-1, manufactured by Sekisui Chemical Industry Co., Ltd.) in 100 parts of cyclohexanone. This was dispersed for 1 hour in an atmosphere of 23 ± 3 ° C. with a sand mill device using glass beads having a diameter of 1 mm. After dispersion, 100 parts of ethyl acetate was added to prepare a coating liquid for a charge generation layer. The coating liquid for the charge generation layer was immersed and coated on the undercoat layer, and the obtained coating film was dried at 90 ° C. for 10 minutes to form a charge generation layer having a film thickness of 0.20 μm.
Figure 0006818624

次に、下記構造式(B)で示される化合物30部(電荷輸送物質)、下記構造式(C)で示される化合物60部(電荷輸送物質)、下記構造式(D)で示される化合物10部、ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製、ビスフェノールZ型のポリカーボネート)100部、下記構造式(E)で示されるポリカーボネート(粘度平均分子量Mv:20000)0.02部を、混合キシレン600部およびジメトキシメタン200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を前記電荷発生層上に浸漬塗布して塗膜を形成し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚18μmの電荷輸送層を形成した。

Figure 0006818624
Figure 0006818624
Next, 30 parts of the compound represented by the following structural formula (B) (charge transporting substance), 60 parts of the compound represented by the following structural formula (C) (charge transporting substance), and 10 parts of the compound represented by the following structural formula (D). Part, Polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd., bisphenol Z type polycarbonate) 100 parts, polycarbonate represented by the following structural formula (E) (viscosity average molecular weight Mv: 20000) 0.02 A coating liquid for a charge transport layer was prepared by dissolving the parts in a mixed solvent of 600 parts of mixed xylene and 200 parts of dimethoxymethane. The coating liquid for the charge transport layer was immersed and coated on the charge generation layer to form a coating film, and the obtained coating film was dried at 100 ° C. for 30 minutes to form a charge transport layer having a film thickness of 18 μm. ..
Figure 0006818624
Figure 0006818624

次に、下記式(F)で示される化合物(連鎖重合性官能基であるアクリル基を有する電荷輸送物質)36部、ポリテトラフルオロエチレン樹脂微粉末(ルブロンL−2、ダイキン工業(株)製)4部をn−プロピルアルコール60部に混合した後に超高圧分散機にて分散混合することによって、保護層用塗布液(第二電荷輸送層用塗布液)を調整した。
この保護層用塗布液を上記電荷輸送層上に浸漬塗布し、得られた塗膜を5分間50℃で乾燥させた。乾燥後、窒素雰囲気下にて、加速電圧70kV、吸収線量8000Gyの条件で1.6秒間、シリンダーを回転させながら電子線を塗膜に照射し、塗膜を硬化させた。その後、窒素雰囲気下にて、塗膜が130℃になる条件で3分間加熱処理を行った。なお、電子線の照射から3分間の加熱処理までの酸素濃度は20ppmであった。次に、大気中において、塗膜が100℃になる条件で30分加熱処理を行い、膜厚が5μmである保護層(第2電荷輸送層)を形成した。

Figure 0006818624
以上のようにして、形状転写前の電子写真感光体を作製した。 Next, 36 parts of the compound represented by the following formula (F) (charge transport substance having an acrylic group which is a chain polymerizable functional group), polytetrafluoroethylene resin fine powder (Lubron L-2, manufactured by Daikin Industries, Ltd.) ) 4 parts were mixed with 60 parts of n-propyl alcohol and then dispersed and mixed by an ultrahigh pressure disperser to prepare a coating liquid for a protective layer (coating liquid for a second charge transport layer).
The coating liquid for the protective layer was immersed and coated on the charge transport layer, and the obtained coating film was dried at 50 ° C. for 5 minutes. After drying, the coating film was cured by irradiating the coating film with an electron beam while rotating the cylinder for 1.6 seconds under the conditions of an acceleration voltage of 70 kV and an absorbed dose of 8000 Gy in a nitrogen atmosphere. Then, the heat treatment was carried out in a nitrogen atmosphere under the condition that the coating film became 130 ° C. for 3 minutes. The oxygen concentration from the irradiation of the electron beam to the heat treatment for 3 minutes was 20 ppm. Next, a protective layer (second charge transport layer) having a film thickness of 5 μm was formed by heat treatment in the air for 30 minutes under the condition that the coating film became 100 ° C.
Figure 0006818624
As described above, an electrophotographic photosensitive member before shape transfer was produced.

<型ユニットの温度回復性評価>
(実施例1)
図6に示すような型ユニット3を準備した。型部材31は、厚さ0.3mmのニッケル材を用いた。
金属部材35は、厚さ2mm、電子写真感光体1の軸方向における長さが358.5mmのSUS301材を用いた。
<Evaluation of temperature recovery of mold unit>
(Example 1)
A mold unit 3 as shown in FIG. 6 was prepared. The mold member 31 was made of a nickel material having a thickness of 0.3 mm.
As the metal member 35, a SUS301 material having a thickness of 2 mm and a length of the electrophotographic photosensitive member 1 in the axial direction of 358.5 mm was used.

緩衝部材32は、厚さ8mmのゴムを用いた。その材料は、柔軟性と熱伝導性を両立させるために、熱伝導性ミラブル型シリコーンゴム(型式:XE20−A7016、モメンティブパフォーマンスマテリアルジャパン社製)を用いた。さらに緩衝部材32の両面には、図7に示すような面取り部5を設けた。 As the cushioning member 32, rubber having a thickness of 8 mm was used. As the material, in order to achieve both flexibility and thermal conductivity, a thermally conductive mirable type silicone rubber (model: XE20-A7016, manufactured by Momentive Performance Materials Japan) was used. Further, chamfered portions 5 as shown in FIG. 7 are provided on both surfaces of the cushioning member 32.

支持部材34は、厚さ6mmのSS400材の表面に無電解ニッケルメッキを施したものを用いた。支持部材34には、図6に示すように吸引口42を設けた。 As the support member 34, an electroless nickel plating was used on the surface of an SS400 material having a thickness of 6 mm. The support member 34 is provided with a suction port 42 as shown in FIG.

環状部材33は、厚さを10mmのゴムを用い、耐熱性と柔軟性を両立させるために、シリコンゴムシート(RBAM、ミスミ社製)を用いた。 For the annular member 33, rubber having a thickness of 10 mm was used, and a silicon rubber sheet (RBAM, manufactured by MISUMI) was used in order to achieve both heat resistance and flexibility.

この状態で吸引口42からダイアフラム型ドライ真空ポンプ(型式:DA−121D、アルバック機構社製)で減圧可能な空間4内の空気を吸引した。差圧計41の表示より、型ユニットの真空度は98kPaであった。 In this state, air in the space 4 that can be depressurized was sucked from the suction port 42 by a diaphragm type dry vacuum pump (model: DA-121D, manufactured by ULVAC KIKO). From the display of the differential pressure gauge 41, the degree of vacuum of the mold unit was 98 kPa.

この状態で支持部材34に内蔵した各ヒーターを昇温させ、型部材31の露出している側の表面に温度測定点を設定し、温度が150℃になるようにヒーター出力を調整した。電子写真感光体1に挿通した芯部材2に片側1000Nずつ両端に荷重を与えながら電子写真感光体1を型部材31の表面に押しつけ、電子写真感光体1の軸周りに回転させ、温度測定点上を電子写真感光体1が通過するように電子写真感光体1への形状転写を行った。形状転写に際しては、電子写真感光体1の軸方向における、電子写真感光体1の中心と、金属部材35の中心とを合わせるように位置制御を行った。電子写真感光体1の端と電子写真感光体1の軸方向における金属部材35の端の距離(D)は0.5mmであった。 In this state, the temperature of each heater built in the support member 34 was raised, a temperature measurement point was set on the surface of the mold member 31 on the exposed side, and the heater output was adjusted so that the temperature became 150 ° C. The electrophotographic photosensitive member 1 is pressed against the surface of the mold member 31 while applying a load of 1000 N on each side to the core member 2 inserted through the electrophotographic photosensitive member 1, and is rotated around the axis of the electrophotographic photosensitive member 1 to measure the temperature. The shape was transferred to the electrophotographic photosensitive member 1 so that the electrophotographic photosensitive member 1 passed over the top. At the time of shape transfer, the position was controlled so that the center of the electrophotographic photosensitive member 1 and the center of the metal member 35 were aligned with each other in the axial direction of the electrophotographic photosensitive member 1. The distance (D) between the end of the electrophotographic photosensitive member 1 and the end of the metal member 35 in the axial direction of the electrophotographic photosensitive member 1 was 0.5 mm.

形状転写後、形状転写前に測定した温度測定点の温度が、形状転写前の温度まで回復するまでの時間を測定した。測定終了後、次の電子写真感光体1への形状転写を行った。このように10本の電子写真感光体1への形状転写を行い、温度が回復するまでにかかる平均時間を初期の温度回復性とした。 The time required for the temperature at the temperature measurement point measured after the shape transfer and before the shape transfer to recover to the temperature before the shape transfer was measured. After the measurement was completed, the shape was transferred to the next electrophotographic photosensitive member 1. In this way, the shape was transferred to the 10 electrophotographic photosensitive members 1, and the average time required for the temperature to recover was taken as the initial temperature recovery property.

次に10000本の電子写真感光体1への形状転写を行った後、初期の温度回復性と同様に10本の電子写真感光体1への形状転写を行い、温度が回復するまでにかかる平均時間を耐久後の温度回復性とした。
結果を表1に示す。
Next, after the shape is transferred to 10,000 electrophotographic photosensitive members 1, the shape is transferred to 10 electrophotographic photosensitive members 1 in the same manner as the initial temperature recovery, and the average time required for the temperature to recover is average. The time was defined as the temperature recovery after endurance.
The results are shown in Table 1.

(実施例2)
図示しない圧力調整機構を用いて、形状転写前の型ユニットの真空度が32kPaとなるようにした以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 2)
An initial temperature recovery property and a temperature recovery property after durability were evaluated in the same manner as in Example 1 except that the degree of vacuum of the mold unit before shape transfer was set to 32 kPa by using a pressure adjusting mechanism (not shown). The results are shown in Table 1.

(実施例3)
金属部材35を、厚さ2mm、電子写真感光体1の軸方向における長さが361.5mmのSUS301材を用い、電子写真感光体1の端と電子写真感光体1の軸方向における金属部材35の端の距離(D)が2.0mmとなるように行った以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 3)
The metal member 35 is made of a SUS301 material having a thickness of 2 mm and a length of the electrophotographic photosensitive member 1 in the axial direction of 361.5 mm, and the metal member 35 at the end of the electrophotographic photosensitive member 1 and the axial direction of the electrophotographic photosensitive member 1. The initial temperature recovery property and the temperature recovery property after endurance were evaluated in the same manner as in Example 1 except that the distance (D) between the ends was 2.0 mm. The results are shown in Table 1.

(実施例4)
図示しない圧力調整機構を用いて、形状転写前の型ユニットの真空度が20kPaとなるようにした以外は実施例3と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 4)
An initial temperature recovery property and a temperature recovery property after durability were evaluated in the same manner as in Example 3 except that the degree of vacuum of the mold unit before shape transfer was set to 20 kPa by using a pressure adjusting mechanism (not shown). The results are shown in Table 1.

(実施例5)
図示しない圧力調整機構を用いて、形状転写前の型ユニットの真空度が20kPaとなるようにした以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 5)
An initial temperature recovery property and a temperature recovery property after durability were evaluated in the same manner as in Example 1 except that the degree of vacuum of the mold unit before shape transfer was set to 20 kPa by using a pressure adjusting mechanism (not shown). The results are shown in Table 1.

(実施例6)
金属部材35を、厚さ2mm、電子写真感光体1の軸方向における長さが359.9mmのSUS301材を用い、電子写真感光体1の端と電子写真感光体1の軸方向における金属部材35の端の距離(D)が1.2mmとなるように行った以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 6)
The metal member 35 is made of a SUS301 material having a thickness of 2 mm and an axial length of the electrophotographic photosensitive member 1 of 359.9 mm, and the metal member 35 at the end of the electrophotographic photosensitive member 1 and the axial direction of the electrophotographic photosensitive member 1. The initial temperature recovery property and the temperature recovery property after durability were evaluated in the same manner as in Example 1 except that the distance (D) between the ends was 1.2 mm. The results are shown in Table 1.

(実施例7)
金属部材35を、厚さ0.5mmのものを4枚重ねたものに変更した以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 7)
The metal member 35 was the same as in Example 1 except that the metal member 35 had a thickness of 0.5 mm and was changed to a stack of four, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

(実施例8)
図8に示すようなC形状の環状部材33を用いた以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 8)
The same as in Example 1 except that the C-shaped annular member 33 as shown in FIG. 8 was used, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

(実施例9)
緩衝部材32を厚さ8mmのシリコーンゴム(SR−60、タイガースポリマー社製)に変更した以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 9)
The same as in Example 1 except that the cushioning member 32 was changed to a silicone rubber (SR-60, manufactured by Tigers Polymer Co., Ltd.) having a thickness of 8 mm, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

(実施例10)
型部材31を厚さ0.6mmのニッケル材に変更した以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 10)
The same as in Example 1 except that the mold member 31 was changed to a nickel material having a thickness of 0.6 mm, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

(実施例11)
緩衝部材32を厚さ12mmの熱伝導性ミラブル型シリコーンゴムに変更し、環状部材33の厚みを14mmのものに変更した以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 11)
The same as in Example 1 except that the cushioning member 32 was changed to a heat conductive mirable type silicone rubber having a thickness of 12 mm and the thickness of the annular member 33 was changed to that of 14 mm, and the initial temperature recovery and the temperature after durability were obtained. The resilience was evaluated. The results are shown in Table 1.

(実施例12)
図1に示すように、金属部材35を有さない型ユニット3を用いた。
金属部材35を用いず、環状部材33の厚みを8mmのものに変更した以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Example 12)
As shown in FIG. 1, a mold unit 3 having no metal member 35 was used.
The same as in Example 1 except that the thickness of the annular member 33 was changed to 8 mm without using the metal member 35, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

(比較例1)
減圧可能な空間4を減圧せずに形状転写を行った以外は実施例1と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Comparative Example 1)
The shape was transferred in the same manner as in Example 1 except that the decompressable space 4 was not decompressed, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

(比較例2)
減圧可能な空間4を減圧せずに形状転写を行った以外は実施例9と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Comparative Example 2)
The shape was transferred in the same manner as in Example 9 except that the decompressable space 4 was not decompressed, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

(比較例3)
減圧可能な空間4を減圧せずに形状転写を行った以外は実施例12と同様にし、初期の温度回復性および耐久後の温度回復性を評価した。結果を表1に示す。
(Comparative Example 3)
The shape was transferred in the same manner as in Example 12 except that the space 4 capable of decompression was not decompressed, and the initial temperature recovery property and the temperature recovery property after durability were evaluated. The results are shown in Table 1.

なお、実施例1〜12、及び比較例1〜3で使用した支持部材34と内蔵ヒーターはすべて同一である。 The support member 34 and the built-in heater used in Examples 1 to 12 and Comparative Examples 1 to 3 are all the same.

Figure 0006818624
Figure 0006818624

評価の結果、実施例では減圧可能な空間4を吸引ポンプで減圧することによって支持部材34〜型部材31までの部材の密着性が高まっていたので、型ユニット3の初期の温度回復性、耐久後の温度回復性が向上した。よって、タクトが短縮された生産が可能となり、長期的なタクトの変動も抑制されていた。比較例においては、減圧可能な空間4を減圧しなかったため、形状転写後の温度回復に時間を有する結果となった。 As a result of the evaluation, in the example, the adhesion of the members from the support member 34 to the mold member 31 was improved by decompressing the decompressable space 4 with the suction pump, so that the initial temperature recovery and durability of the mold unit 3 were improved. Later temperature recovery was improved. Therefore, production with shortened tact is possible, and long-term fluctuations in tact are suppressed. In the comparative example, since the decompressable space 4 was not decompressed, the result was that it took time to recover the temperature after the shape transfer.

<型部材表面の傷評価>
(実施例13)
図9に示す型ユニット3を準備した。間座36による金属部材の固定を行わず、環状部材33の厚みを6mmに変更し、SUS304製の型保持部材7を支持部材34にネジ留めして用い、芯部材2の両端に与える荷重を片側5000Nずつに変更した以外は実施例1と同様にし、初期の温度回復性および10000本耐久後の温度回復性を評価した。結果を表2に示す。
<Evaluation of scratches on the surface of the mold member>
(Example 13)
The mold unit 3 shown in FIG. 9 was prepared. Instead of fixing the metal member with the spacer 36, the thickness of the annular member 33 is changed to 6 mm, and the mold holding member 7 made of SUS304 is screwed to the support member 34 to apply the load applied to both ends of the core member 2. The same as in Example 1 except that the temperature was changed to 5000 N on each side, the initial temperature recovery property and the temperature recovery property after the durability of 10,000 screws were evaluated. The results are shown in Table 2.

電子写真感光体1を型部材31に当接させる前のh1、h2の差は4mmであり、電子写真感光体1を型部材31に当接させている時のh1’、h2’の差は2mmであった。
温度回復性の評価後、型部材31の表面粗さ測定を行い、得られた最大高さ(RyJIS)の値を、電子写真感光体1の端部による型部材31への傷発生度合いとして評価した。
The difference between h1 and h2 before the electrophotographic photosensitive member 1 is brought into contact with the mold member 31 is 4 mm, and the difference between h1'and h2'when the electrophotographic photosensitive member 1 is brought into contact with the mold member 31 is. It was 2 mm.
After the evaluation of the temperature recovery property, the surface roughness of the mold member 31 is measured, and the obtained maximum height (RyJIS) value is evaluated as the degree of damage to the mold member 31 by the end portion of the electrophotographic photosensitive member 1. did.

表面粗さ測定は2001年JIS規格を基準とし、(株)小坂研究所製の表面粗さ測定機SE700を用い、以下の条件で測定した。
検出器:R2μm、0.7mNのダイヤモンド針
フィルタ:2CR
カットオフ値:0.8mm
測定長さ:5.0mm
送り速さ:0.1mm/秒
傾斜補正:最小二乗法
測定箇所は、型部材31の表面のうち、電子写真感光体1の端部が当接していた箇所を含むように選定し、測定方向は、電子写真感光体1を当接させたときの電子写真感光体の軸方向と同方向とした。得られた断面曲線からうねり曲線を除き、最大高さ(RyJIS)を得た。結果を表2に示す。
The surface roughness was measured based on the 2001 JIS standard using a surface roughness measuring machine SE700 manufactured by Kosaka Laboratory Co., Ltd. under the following conditions.
Detector: R2 μm, 0.7 mN diamond needle filter: 2CR
Cutoff value: 0.8 mm
Measurement length: 5.0 mm
Feed speed: 0.1 mm / sec Tilt correction: Least squares method The measurement location is selected so as to include the portion of the surface of the mold member 31 where the end of the electrophotographic photosensitive member 1 is in contact, and the measurement direction is selected. Was the same direction as the axial direction of the electrophotographic photosensitive member when the electrophotographic photosensitive member 1 was brought into contact with the photophotoreceptor 1. The swell curve was removed from the obtained cross-sectional curve to obtain the maximum height (RyJIS). The results are shown in Table 2.

(実施例14)
環状部材33の厚みを8mmにした以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Example 14)
The temperature recovery property of the mold unit and the scratch evaluation on the surface of the mold member were evaluated in the same manner as in Example 13 except that the thickness of the annular member 33 was set to 8 mm. The results are shown in Table 2.

(実施例15)
環状部材33の厚みを9mmにした以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Example 15)
The temperature recoverability of the mold unit and the scratch evaluation on the surface of the mold member were evaluated in the same manner as in Example 13 except that the thickness of the annular member 33 was 9 mm. The results are shown in Table 2.

(実施例16)
環状部材33の厚みを9.8mmにした以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Example 16)
The temperature recovery property of the mold unit and the scratch evaluation on the surface of the mold member were evaluated in the same manner as in Example 13 except that the thickness of the annular member 33 was set to 9.8 mm. The results are shown in Table 2.

(実施例17)
金属部材35を用いず、環状部材33の厚みを5mmにした以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Example 17)
The temperature recoverability of the mold unit and the scratch evaluation on the surface of the mold member were evaluated in the same manner as in Example 13 except that the metal member 35 was not used and the thickness of the annular member 33 was 5 mm. The results are shown in Table 2.

(実施例18)
金属部材35の部材をSUS304に変更した以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Example 18)
The same as in Example 13 except that the member of the metal member 35 was changed to SUS304, the temperature recovery of the mold unit and the scratch evaluation on the surface of the mold member were evaluated. The results are shown in Table 2.

(実施例19)
緩衝部材32を厚さ8mmのシリコーンゴム(SR−60、タイガースポリマー社製)に変更した以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Example 19)
The same as in Example 13 except that the cushioning member 32 was changed to a silicone rubber (SR-60, manufactured by Tigers Polymer Co., Ltd.) having a thickness of 8 mm, the temperature recovery of the mold unit was evaluated, and the scratches on the surface of the mold member were evaluated. It was. The results are shown in Table 2.

(実施例20)
金属部材35を、厚さ2mm、電子写真感光体1の軸方向における長さが361.5mmのSUS301材を用い、電子写真感光体1の端と電子写真感光体1の軸方向における金属部材35の端の距離が2.0mmとなるように行った以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Example 20)
The metal member 35 is made of a SUS301 material having a thickness of 2 mm and a length of the electrophotographic photosensitive member 1 in the axial direction of 361.5 mm, and the metal member 35 at the end of the electrophotographic photosensitive member 1 and the axial direction of the electrophotographic photosensitive member 1. The temperature recoverability of the mold unit and the scratches on the surface of the mold member were evaluated in the same manner as in Example 13 except that the distance between the ends was 2.0 mm. The results are shown in Table 2.

(参考例1)
環状部材33の厚みを10mmにした以外は実施例13と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Reference example 1)
The temperature recoverability of the mold unit and the scratch evaluation on the surface of the mold member were evaluated in the same manner as in Example 13 except that the thickness of the annular member 33 was 10 mm. The results are shown in Table 2.

(参考例2)
環状部材33の厚みを8mmにした以外は実施例17と同様にし、型ユニットの温度回復性の評価、および型部材表面の傷評価を行った。結果を表2に示す。
(Reference example 2)
The temperature recovery property of the mold unit and the scratch evaluation on the surface of the mold member were evaluated in the same manner as in Example 17 except that the thickness of the annular member 33 was set to 8 mm. The results are shown in Table 2.

Figure 0006818624
Figure 0006818624

評価の結果、h2−h1>0とすることによって、電子写真感光体1を押しつけた時の電子写真感光体1の端部が型部材31に接する力が緩和され、傷の発生が抑制された。また、h2’−h1’≧0とすることで、さらに傷の発生が抑制された。 As a result of the evaluation, by setting h2-h1> 0, the force of the end portion of the electrophotographic photosensitive member 1 in contact with the mold member 31 when the electrophotographic photosensitive member 1 was pressed was alleviated, and the occurrence of scratches was suppressed. .. Further, by setting h2'-h1'≥0, the occurrence of scratches was further suppressed.

1 電子写真感光体
2 芯部材
3 型ユニット
31 型部材
32 緩衝部材
33 環状部材
34 支持部材
35 金属部材
36 間座
4 減圧可能な空間
41 差圧計
42 吸引口
5 面取り部
6 電子写真感光体の回転軸線
7 型保持部材
1 Xerographic photoconductor 2 Core member 3 Type unit 31 Type member 32 Cushioning member 33 Ring member 34 Support member 35 Metal member 36 Spatula 4 Space that can be depressurized 41 Differential pressure gauge 42 Suction port 5 Chamfering part 6 Rotation of electrophotographic photosensitive member Axis 7 type holding member

Claims (7)

表面層を有する円筒状電子写真感光体を、最表面に凹凸形状を有する型ユニットに押しつけ、該円筒状電子写真感光体を軸中心に回転させて、該円筒状電子写真感光体の表面に凹凸形状を形成する方法において、
該型ユニットは、加熱手段を有する支持部材、環状部材、緩衝部材、および凹凸形状を有する型部材を少なくとも有し、
該支持部材、および該型部材は、該環状部材を介して間接的に接し、減圧可能な空間を形成し、
該緩衝部材は該減圧可能な空間内で少なくとも該型部材および該支持部材と互いに接するように配設され、
該減圧可能な空間を減圧した状態で該円筒状電子写真感光体を型ユニットに押しつけ、該円筒状電子写真感光体を軸中心に回転させて該円筒状電子写真感光体の表面に凹凸形状を形成する方法。
A cylindrical electrophotographic photosensitive member having a surface layer is pressed against a mold unit having an uneven shape on the outermost surface, and the cylindrical electrophotographic photosensitive member is rotated about an axis to have an uneven surface on the surface of the cylindrical electrophotographic photosensitive member. In the method of forming the shape
The mold unit has at least a support member having a heating means, an annular member, a cushioning member, and a mold member having an uneven shape.
The support member and the mold member indirectly contact each other via the annular member to form a decompressable space.
The cushioning member is arranged so as to be in contact with at least the mold member and the support member in the decompressable space.
The cylindrical electrophotographic photosensitive member is pressed against the mold unit in a state where the decompressable space is depressurized, and the cylindrical electrophotographic photosensitive member is rotated about an axis to form an uneven shape on the surface of the cylindrical electrophotographic photosensitive member. How to form.
前記型ユニットは、前記型部材と前記緩衝部材の間に金属部材を有する請求項1に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。 The method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member according to claim 1, wherein the mold unit has a metal member between the mold member and the cushioning member. 前記型部材と接する前記円筒状電子写真感光体の端と、前記円筒状電子写真感光体の軸方向における前記金属部材の端との距離をD、前記型部材の厚みをtとするとき、
D≦4t
の関係を維持した状態で前記円筒状電子写真感光体を前記型ユニットに押しつけ、前記円筒状電子写真感光体を軸中心に回転させる、請求項2に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
When the distance between the end of the cylindrical electrophotographic photosensitive member in contact with the mold member and the end of the metal member in the axial direction of the cylindrical electrophotographic photosensitive member is D, and the thickness of the mold member is t.
D ≤ 4t
On the surface of the cylindrical electrophotographic photosensitive member according to claim 2, the cylindrical electrophotographic photosensitive member is pressed against the mold unit and the cylindrical electrophotographic photosensitive member is rotated about an axis while maintaining the above relationship. A method of forming an uneven shape.
前記型ユニットの真空度を30kPa以上に維持した状態で前記円筒状電子写真感光体を前記型ユニットに押しつけ、前記円筒状電子写真感光体を軸中心に回転させる、請求項1〜3のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。 Any of claims 1 to 3, wherein the cylindrical electrophotographic photosensitive member is pressed against the mold unit while the vacuum degree of the mold unit is maintained at 30 kPa or more, and the cylindrical electrophotographic photosensitive member is rotated about an axis. The method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member according to item 1. 前記型部材の前記円筒状電子写真感光体の軸方向における両端を型保持部材で保持し、
前記円筒状電子写真感光体の押しつけ方向において、前記円筒状電子写真感光体の回転軸線と前記型部材の前記円筒状電子写真感光体が当接する面との距離をh1、前記円筒状電子写真感光体の回転軸線と前記型部材の該感光体の軸方向における前記型保持部材で保持されている部分の前記円筒状電子写真感光体に最も近い位置との距離をh2とするとき、
h1<h2
となるように前記円筒状電子写真感光体を平面状に保持された前記型ユニットに押しつけ、前記円筒状電子写真感光体を軸中心に回転させて、前記円筒状電子写真感光体の表面に凹凸形状を形成することを特徴とする、請求項1〜4のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
Both ends of the mold member in the axial direction of the cylindrical electrophotographic photosensitive member are held by the mold holding member.
In the pressing direction of the cylindrical electrophotographic photosensitive member, the distance between the rotation axis of the cylindrical electrophotographic photosensitive member and the surface of the mold member with which the cylindrical electrophotographic photosensitive member abuts is h1, and the cylindrical electrophotographic photosensitive member is exposed to light. When the distance between the rotation axis of the body and the portion of the mold member held by the mold holding member in the axial direction of the photoconductor, which is closest to the cylindrical electrophotographic photosensitive member, is h2.
h1 <h2
The cylindrical electrophotographic photosensitive member is pressed against the mold unit held flat so as to be such that the cylindrical electrophotographic photosensitive member is rotated about an axis, and the surface of the cylindrical electrophotographic photosensitive member is uneven. The method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member according to any one of claims 1 to 4, wherein the shape is formed.
前記円筒状電子写真感光体を前記型ユニットに押しつけた時の、前記円筒状電子写真感光体の押しつけ方向における、前記円筒状電子写真感光体の回転軸線と前記型部材の前記円筒状電子写真感光体が当接する面との距離をh1’、前記円筒状電子写真感光体の回転軸線と前記型部材の該感光体の軸方向における前記型部材で保持されている部分の該感光体に最も近い位置との距離をh2’とするとき、
h1’≦h2’
とすることを特徴とする請求項1〜5のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法。
The rotation axis of the cylindrical electrophotographic photosensitive member and the cylindrical electrophotographic photosensitive member of the mold member in the pressing direction of the cylindrical electrophotographic photosensitive member when the cylindrical electrophotographic photosensitive member is pressed against the mold unit. The distance to the surface with which the body abuts is h1', which is the closest to the rotating axis of the cylindrical electrophotographic photosensitive member and the portion of the mold member held by the mold member in the axial direction of the photoconductor. When the distance from the position is h2',
h1'≤h2'
The method for forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member according to any one of claims 1 to 5.
請求項1〜6のいずれか1項に記載の円筒状電子写真感光体の表面に凹凸形状を形成する方法により、表面を加工された電子写真感光体の製造方法。 A method for producing an electrophotographic photosensitive member whose surface is processed by the method for forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member according to any one of claims 1 to 6.
JP2017088785A 2016-06-17 2017-04-27 A method for forming an uneven shape on an electrophotographic photosensitive member, and a method for manufacturing an electrophotographic photosensitive member using this method. Active JP6818624B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016120995 2016-06-17
JP2016120995 2016-06-17

Publications (2)

Publication Number Publication Date
JP2017227870A JP2017227870A (en) 2017-12-28
JP6818624B2 true JP6818624B2 (en) 2021-01-20

Family

ID=60891591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088785A Active JP6818624B2 (en) 2016-06-17 2017-04-27 A method for forming an uneven shape on an electrophotographic photosensitive member, and a method for manufacturing an electrophotographic photosensitive member using this method.

Country Status (1)

Country Link
JP (1) JP6818624B2 (en)

Also Published As

Publication number Publication date
JP2017227870A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP4975185B1 (en) Method for forming uneven shape on surface of surface layer of cylindrical electrophotographic photoreceptor, and method for producing cylindrical electrophotographic photoreceptor having uneven surface formed on surface of surface layer
JP6403586B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6562804B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
CN108803266B (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007233356A (en) Method for manufacturing electrophotographic photoreceptor
JP2009237568A (en) Electrophotographic photoreceptor, process cartridge ,and image forming device
US11269282B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5921471B2 (en) Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP5906795B2 (en) Image forming apparatus, protective agent supply member, and protective layer forming apparatus
JP4735727B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2005144751A (en) Surface releasable member, surface releasable heating member and thermal fixing device using them
JP2012173739A (en) Pressure members comprising cnt/pfa nanocomposite coatings
JP6818624B2 (en) A method for forming an uneven shape on an electrophotographic photosensitive member, and a method for manufacturing an electrophotographic photosensitive member using this method.
JP2017134279A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2015161786A (en) Surface processing method of electrophotographic photoreceptor, and manufacturing method of electrophotographic photoreceptor having rugged surface
JP6282130B2 (en) Method for forming uneven shape on surface of electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member having uneven shape on surface
JP2017227871A (en) Surface processing method of cylindrical electrophotographic photoreceptor and manufacturing method of cylindrical electrophotographic photoreceptor
JP6212350B2 (en) Surface processing method for electrophotographic photosensitive member and method for producing electrophotographic photosensitive member
JP4250487B2 (en) Electrophotographic apparatus, process cartridge and facsimile apparatus
US11599034B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP5338103B2 (en) Elastic member for image forming apparatus, charging device for image forming apparatus, and image forming apparatus
JP2016200734A (en) Surface processing method of xerographic photoreceptor and manufacturing method of xerographic photoreceptor
JP2014059439A (en) Method for forming uneven shape on surface of cylindrical electrophotographic photoreceptor, and method of manufacturing cylindrical electrophotographic photoreceptor having uneven shape on surface thereof
JP2022189755A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP6541440B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R151 Written notification of patent or utility model registration

Ref document number: 6818624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151