JP2017134279A - Electrophotographic photoreceptor, process cartridge and electrophotographic device - Google Patents

Electrophotographic photoreceptor, process cartridge and electrophotographic device Download PDF

Info

Publication number
JP2017134279A
JP2017134279A JP2016014635A JP2016014635A JP2017134279A JP 2017134279 A JP2017134279 A JP 2017134279A JP 2016014635 A JP2016014635 A JP 2016014635A JP 2016014635 A JP2016014635 A JP 2016014635A JP 2017134279 A JP2017134279 A JP 2017134279A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
contour
concave
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016014635A
Other languages
Japanese (ja)
Other versions
JP6624952B2 (en
Inventor
健一 怒
Kenichi Ikari
健一 怒
北村 航
Ko Kitamura
航 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016014635A priority Critical patent/JP6624952B2/en
Publication of JP2017134279A publication Critical patent/JP2017134279A/en
Application granted granted Critical
Publication of JP6624952B2 publication Critical patent/JP6624952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electro-photographic photoreceptor, a process cartridge having the electro- photographic photoreceptor, and an electro-photographic device which reduce a strip-like image defect generated by a low print mode output under a high temperature environment.SOLUTION: In an electro-photographic photoreceptor having a photosensitive layer on a cylindrical support medium, a surface of the electro-photographic photoreceptor has a plurality of recesses each of which is independent from one another, and a width in the axial direction of the electro-photographic photoreceptor of an opening surface of the recess is not less than 20 μm and not more than 80 μm, and when a square region having one side of 500 μm is arranged at an arbitrary position of the electro-photographic photoreceptor, a sum total of the area of the opening surface of the recess in the square region having one side of 500 μm is 100000 μm. The recess has a specific shape, and the plurality of recesses has an angle in a peripheral direction and an axial direction of the electro-photographic photoreceptor in arrangement direction of the adjacent recesses.SELECTED DRAWING: Figure 2

Description

本発明は、電子写真感光体、プロセスカートリッジおよび電子写真装置に関する。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an electrophotographic apparatus.

電子写真感光体の表面には、帯電やクリーニングなどの電気的外力や機械的外力が加えられるため、これらの外力に対する耐久性(耐摩耗性など)が要求される。
この要求に対して、従来から、電子写真感光体の表面層に耐摩耗性の高い樹脂(硬化性樹脂など)を用いるなどの改良技術が用いられている。
一方、電子写真感光体の表面の耐摩耗性を高めることによって生じる課題として、画像流れやクリーニング性能の低下が挙げられる。
画像流れは、電子写真感光体の表面の帯電によって生じるオゾンや窒素酸化物などにより、電子写真感光体の表面層に用いられている材料が劣化したり、水分の吸着によって電子写真感光体の表面が低抵抗化したりすることが原因であると考えられている。そして、電子写真感光体の表面の耐摩耗性が高くなるほど、電子写真感光体の表面のリフレッシュ(劣化した材料や吸着した水分などの画像流れ原因物質の除去)がなされにくくなり、画像流れが発生しやすくなる。
Since an electric external force such as charging or cleaning or a mechanical external force is applied to the surface of the electrophotographic photosensitive member, durability against such external force (such as wear resistance) is required.
In response to this requirement, conventionally, improved techniques such as using a highly wear-resistant resin (such as a curable resin) for the surface layer of the electrophotographic photosensitive member have been used.
On the other hand, problems caused by increasing the wear resistance of the surface of the electrophotographic photosensitive member include a decrease in image flow and cleaning performance.
In the image flow, the material used for the surface layer of the electrophotographic photosensitive member deteriorates due to ozone or nitrogen oxide generated by charging of the surface of the electrophotographic photosensitive member, or the surface of the electrophotographic photosensitive member due to moisture adsorption. Is considered to be caused by a decrease in resistance. The higher the abrasion resistance of the surface of the electrophotographic photosensitive member, the more difficult the surface of the electrophotographic photosensitive member is refreshed (removal of materials that cause image flow such as deteriorated materials and adsorbed moisture), resulting in image flow. It becomes easy to do.

画像流れを改善する技術として、特許文献1には、電子写真感光体の表面に、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の凹部を一辺500μmの正方形領域に凹部の面積が10000μm以上90000μm以下設け、さらに凹部以外の部分に含まれる平坦部の面積が80000μm以上240000μm以下設けることによって、高温高湿環境下に電子写真感光体を放置した場合にもドット再現性を良化させる技術が開示されている。 As a technique for improving image flow, Patent Document 1 discloses that a concave portion having a depth of 0.5 μm or more and 5 μm or less and a maximum opening diameter of 20 μm or more and 80 μm or less is formed on a surface of the electrophotographic photosensitive member in a square region having a side of 500 μm. area provided 10000 2 more 90000Myuemu 2 or less, further by the area of the flat portion contained in a portion other than the recess provided 80000Myuemu 2 more 240000Myuemu 2 or less, dots even when allowed to stand an electrophotographic photosensitive member in a high-temperature and high-humidity environment A technique for improving reproducibility is disclosed.

特許第5127991号公報Japanese Patent No. 5127799

しかしながら、特許文献1に開示された技術では画像流れの改善効果は非常に大きい一方で、低湿環境において長期にわたり使用すると電子写真画像にはスジ状の画像欠陥(以下、低湿耐久スジとも呼ぶ)が生じることがあるという点で改善の余地が残っている。   However, while the technique disclosed in Patent Document 1 has a very large effect on improving the image flow, when used for a long time in a low-humidity environment, the electrophotographic image has a streak-like image defect (hereinafter also referred to as a low-humidity durable streak). There remains room for improvement in that it may occur.

本発明者らは、特許文献1に開示された技術をもとに、電子写真感光体の表面に、深さ0.5μm以上5μm以下かつ開口部最長径20μm以上80μm以下の凹部を設け、一辺500μmの正方形領域に凹部の面積の総和が95000μm以上とすることにより上記した低湿耐久スジの改善を行った。
しかしながら、高温高湿環境下において低印字モードで印刷した後に出力した濃度30%程度のハーフトーン画像上にスジ状の画像欠陥(以下、H/H初期スジとも呼ぶ)を生じるという点でさらなる改善の余地が残っている。
Based on the technique disclosed in Patent Document 1, the present inventors provide a concave portion having a depth of 0.5 μm or more and 5 μm or less and a longest opening diameter of 20 μm or more and 80 μm or less on the surface of the electrophotographic photosensitive member. The above-mentioned low-humidity endurance streak was improved by making the total area of the recesses 95,000 μm 2 or more in a 500 μm square region.
However, a further improvement is that a streak-like image defect (hereinafter also referred to as H / H initial streak) occurs on a halftone image having a density of about 30% that is output after printing in a low print mode in a high temperature and high humidity environment. There remains room for.

本発明の目的は、高温高湿環境下での低印字モード出力により生じるスジ状の画像欠陥を低減する電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することにある。   An object of the present invention is to provide an electrophotographic photosensitive member that reduces streak-like image defects caused by a low print mode output under a high temperature and high humidity environment, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus. is there.

本発明は、円筒状の支持体上に感光層を有する電子写真感光体であって、該電子写真感光体の表面が、各々独立した複数の凹形状部を有し、該凹形状部の開口面の該電子写真感光体の軸方向の幅が、20μm以上80μm以下であり、該電子写真感光体の表面の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹形状部の開口面の面積の総和が100000μm以上であり、該凹形状部の開口面の輪郭形状が、該電子写真感光体の周方向の少なくとも一方の端部側に、2つの輪郭直線、2つの輪郭曲線、もしくは1つの輪郭直線と1つの輪郭曲線とから成る頂点を有し、該頂点を成す該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、該電子写真感光体の周方向に延び且つ該頂点を通る直線Aまでの距離が最も離れた2つの点から、該頂点に向かって、該直線Aまでの距離が徐々に小さくなっており、該距離が最も離れた2つの点から該頂点までにおいて、該輪郭直線または該輪郭曲線の接線が、該電子写真感光体の軸方向に対して成す角度が45°以上90°以下であり、該凹形状部は、当該凹形状部の開口面からの深さが最も深い点から該頂点に向かって深さが徐々に浅くなる形状であり、該複数の凹形状部は、隣り合う凹形状部の配列方向が、該電子写真感光体の周方向および軸方向に角度を有することを特徴とする電子写真感光体である。 The present invention relates to an electrophotographic photosensitive member having a photosensitive layer on a cylindrical support, the surface of the electrophotographic photosensitive member having a plurality of independent concave portions, and an opening of the concave portion. The width of the surface in the axial direction of the electrophotographic photosensitive member is 20 μm or more and 80 μm or less, and when a square region having a side of 500 μm is arranged at an arbitrary position on the surface of the electrophotographic photosensitive member, The sum of the area of the opening surface of the concave shape portion is 100000 μm 2 or more, and the contour shape of the opening surface of the concave shape portion has two contours on at least one end side in the circumferential direction of the electrophotographic photosensitive member. A straight line, two contour curves, or a vertex composed of one contour line and one contour curve, and the contour straight line or the contour curve forming the vertex is the electron on the contour straight line or the contour curve. Around the photoconductor The distance from the two points that are the farthest to the straight line A passing through the vertex to the straight line A gradually decreases toward the vertex, and the two points that are the farthest away from the straight line A. From the top to the top, the angle formed by the contour straight line or the tangent to the contour curve with respect to the axial direction of the electrophotographic photosensitive member is 45 ° or more and 90 ° or less, and the concave portion is the concave portion. The depth of the opening from the deepest surface is a shape that gradually decreases from the deepest point toward the apex, and the plurality of concave-shaped portions are arranged such that the direction of arrangement of adjacent concave-shaped portions is the electrophotographic photosensitive member. An electrophotographic photosensitive member having an angle in a circumferential direction and an axial direction of the body.

また、本発明は、円筒状の支持体上に感光層を有する電子写真感光体及びクリーニングブレードを少なくとも有するプロセスカートリッジであって、該電子写真感光体の表面が、各々独立した複数の凹形状部を有し、該凹形状部の開口面の該電子写真感光体の軸方向の幅が、20μm以上80μm以下であり、該電子写真感光体の表面の該クリーニングブレードとの接触領域の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹形状部の開口面の面積の総和が100000μm以上であり、該凹形状部の開口面の輪郭形状が、該電子写真感光体の回転方向の後端側に、2つの輪郭直線、2つの輪郭曲線、もしくは1つの輪郭直線と1つの輪郭曲線とから成る頂点を有し、該頂点を成す該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、該電子写真感光体の周方向に延び且つ該頂点を通る直線Aまでの距離が最も離れた2つの点から、該頂点に向かって、該直線Aまでの距離が徐々に小さくなっており、該距離が最も離れた2つの点から該頂点までにおいて、該輪郭直線または該輪郭曲線の接線が、該電子写真感光体の軸方向に対して成す角度が45°以上90°以下であり、該複数の凹形状部は、隣り合う凹形状部の配列方向が、該電子写真感光体の周方向および軸方向に対して角度を有することを特徴とするプロセスカートリッジである。 The present invention also provides a process cartridge having at least an electrophotographic photosensitive member having a photosensitive layer on a cylindrical support and a cleaning blade, wherein the surface of the electrophotographic photosensitive member has a plurality of independent concave portions. And the width of the opening of the concave portion in the axial direction of the electrophotographic photosensitive member is not less than 20 μm and not more than 80 μm, and an arbitrary position of a contact area with the cleaning blade on the surface of the electrophotographic photosensitive member When a square region having a side of 500 μm is disposed on the surface, the total area of the opening surface of the concave portion in the square region having a side of 500 μm is 100,000 μm 2 or more, and the contour shape of the opening surface of the concave portion is The wheel which has the vertex which consists of two outline straight lines, two outline curves, or one outline straight line and one outline curve in the back end side of the rotation direction of a photographic photosensitive member, and forms this apex The straight line or the contour curve extends from the two points on the contour straight line or the contour curve that extend in the circumferential direction of the electrophotographic photosensitive member and the distance to the straight line A that passes through the vertex is farthest from the point. Thus, the distance to the straight line A gradually decreases, and the tangent line of the contour straight line or the contour curve is in the axial direction of the electrophotographic photosensitive member from the two points where the distance is the farthest to the vertex. The plurality of concave portions have an arrangement direction of adjacent concave portions having an angle with respect to the circumferential direction and the axial direction of the electrophotographic photosensitive member. This is a process cartridge.

また、本発明は、上記電子写真感光体、該電子写真感光体の表面を帯電する帯電手段、帯電された該電子写真感光体の表面に露光光を照射して静電潜像を形成する露光手段、該静電潜像が形成された該電子写真感光体をトナーで現像する現像手段、該電子写真感光体上のトナー像を転写材上に転写する転写手段、および該電子写真感光体に接触配置されたクリーニングブレードを備えることを特徴とする電子写真装置である。   The present invention also provides the electrophotographic photosensitive member, charging means for charging the surface of the electrophotographic photosensitive member, and exposure for irradiating the charged surface of the electrophotographic photosensitive member with exposure light to form an electrostatic latent image. Developing means for developing the electrophotographic photosensitive member on which the electrostatic latent image is formed with toner, transfer means for transferring the toner image on the electrophotographic photosensitive member onto a transfer material, and the electrophotographic photosensitive member. An electrophotographic apparatus comprising a cleaning blade arranged in contact.

本発明によれば、高温高湿環境下での低印字モード出力により生じるスジ状の画像欠陥を低減する電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置を提供することができる。   According to the present invention, it is possible to provide an electrophotographic photosensitive member that reduces streak-like image defects caused by a low print mode output under a high temperature and high humidity environment, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus. it can.

フィッティングの例を示す図である。It is a figure which shows the example of fitting. (a):本発明の凹形状部の開口面の一例を示す図である。(b):本発明の凹形状部の一例における周方向断面図である。(A): It is a figure which shows an example of the opening surface of the concave shape part of this invention. (B): It is circumferential direction sectional drawing in an example of the concave shape part of this invention. 本発明に係る電子写真感光体の表面の凹形状部の開口部の形状の例を示す図である。It is a figure which shows the example of the shape of the opening part of the concave shape part of the surface of the electrophotographic photoreceptor which concerns on this invention. 本発明に係る電子写真感光体の表面の凹形状部の周方向断面の形状の例を示す図である。It is a figure which shows the example of the shape of the circumferential cross section of the concave-shaped part of the surface of the electrophotographic photoreceptor which concerns on this invention. 電子写真感光体の表面に凹形状部を形成するための圧接形状転写加工装置の例を示す図である。It is a figure which shows the example of the press-contact shape transfer processing apparatus for forming a concave shape part in the surface of an electrophotographic photoreceptor. 本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の例を示す図である。FIG. 2 is a diagram showing an example of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention. (a):電子写真感光体の製造例(比較例1に対応)で用いたモールドを示す上面図である。(b):図7(a)に示されたモールドにおける凸部のB−B断面図である。(c):図7(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 1) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.7 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.7 (a). (a):電子写真感光体の製造例(比較例2に対応)で用いたモールドを示す上面図である。(b):図8(a)に示されたモールドにおける凸部のB−B断面図である。(c):図8(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 2) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.8 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.8 (a). (a):電子写真感光体の製造例(比較例3に対応)で用いたモールドを示す上面図である。(b):図9(a)に示されたモールドにおける凸部のB−B断面図である。(c):図9(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 3) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.9 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.9 (a). (a):電子写真感光体の製造例(比較例4に対応)で用いたモールドを示す上面図である。(b):図10(a)に示されたモールドにおける凸部のB−B断面図である。(c):図10(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 4) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.10 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.10 (a). (a):電子写真感光体の製造例(比較例5に対応)で用いたモールドを示す上面図である。(b):図11(a)に示されたモールドにおける凸部のB−B断面図である。(c):図11(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 5) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.11 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.11 (a). (a):電子写真感光体の製造例(比較例6に対応)で用いたモールドを示す上面図である。(b):図12(a)に示されたモールドにおける凸部のB−B断面図である。(c):図12(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 6) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.12 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.12 (a). (a):電子写真感光体の製造例(比較例7に対応)で用いたモールドを示す上面図である。(b):図13(a)に示されたモールドにおける凸部のB−B断面図である。(c):図13(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 7) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.13 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.13 (a). (a):電子写真感光体の製造例(比較例8に対応)で用いたモールドを示す上面図である。(b):図14(a)に示されたモールドにおける凸部のB−B断面図である。(c):図14(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 8) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.14 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.14 (a). (a):電子写真感光体の製造例(比較例9に対応)で用いたモールドを示す上面図である。(b):図15(a)に示されたモールドにおける凸部のB−B断面図である。(c):図15(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to the comparative example 9) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.15 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.15 (a). (a):電子写真感光体の製造例(実施例1〜4に対応)で用いたモールドを示す上面図である。(b):図16(a)に示されたモールドにおける凸部のB−B断面図である。(c):図16(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to Examples 1-4) of the electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.16 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.16 (a). (a):電子写真感光体の製造例(実施例5〜8に対応)で用いたモールドを示す上面図である。(b):図17(a)に示されたモールドにおける凸部のB−B断面図である。(c):図17(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to Examples 5-8) of an electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.17 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.17 (a). (a):電子写真感光体の製造例(実施例9〜12に対応)で用いたモールドを示す上面図である。(b):図18(a)に示されたモールドにおける凸部のB−B断面図である。(c):図18(a)に示されたモールドにおける凸部のC−C断面図である。(A): It is a top view which shows the mold used by the manufacture example (corresponding to Examples 9-12) of an electrophotographic photosensitive member. (B): It is BB sectional drawing of the convex part in the mold shown by Fig.18 (a). (C): It is CC sectional drawing of the convex part in the mold shown by Fig.18 (a).

本発明の特許文献1に対する特徴は、2点ある。
1点目は、電子写真感光体の表面における凹形状部の開口面の面積の総和が大きい点である。
2点目は、凹形状部が、つぎに示す特定の形状を有する点である。
すなわち、開口面の輪郭形状が、電子写真感光体の周方向の少なくとも一方の端部側に、2つの輪郭直線、2つの輪郭曲線、もしくは1つの輪郭直線と1つの輪郭曲線とから成る頂点を有する。そして、該頂点を成す該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、該電子写真感光体の周方向に延び且つ該頂点を通る直線Aまでの距離が最も離れた2つの点から該頂点に向かって、該直線Aまでの距離が徐々に小さくなっている。さらに、該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、該距離が最も離れた2つの点から該頂点までにおいて、該輪郭直線または該輪郭曲線の接線が、該電子写真感光体の軸方向に対して成す角度が45°以上90°以下である。また、該凹形状部は、当該凹形状部の開口面からの深さが最も深い点から該頂点に向かって深さが徐々に浅くなる形状であり、該複数の凹形状部は、隣り合う凹形状部の配列方向が、該電子写真感光体の周方向および軸方向に角度を有する。
There are two features of the present invention with respect to Patent Document 1.
The first point is that the sum of the areas of the opening surfaces of the concave portions on the surface of the electrophotographic photosensitive member is large.
The second point is a point where the concave portion has a specific shape shown below.
That is, the contour shape of the opening surface has two contour straight lines, two contour curves, or a vertex composed of one contour straight line and one contour curve on at least one end side in the circumferential direction of the electrophotographic photosensitive member. Have. The contour straight line or the contour curve that forms the vertex extends 2 in the circumferential direction of the electrophotographic photosensitive member on the contour straight line or the contour curve, and the distance 2 to the straight line A that passes through the vertex is the farthest 2 The distance to the straight line A gradually decreases from one point toward the vertex. Further, when the contour line or the contour curve is located on the contour line or the contour curve from the two points that are the farthest apart to the vertex, the contour line or the tangent of the contour curve is the electrophotographic image. The angle formed with respect to the axial direction of the photoreceptor is 45 ° or more and 90 ° or less. Further, the concave shape portion has a shape in which the depth gradually decreases from the point where the depth from the opening surface of the concave shape portion is deepest toward the apex, and the plurality of concave shape portions are adjacent to each other. The arrangement direction of the concave portions has an angle in the circumferential direction and the axial direction of the electrophotographic photosensitive member.

本発明者らの検討の結果、電子写真感光体の表面に、特定の凹形状部を密に配置し、かつ特定の凹形状部の配列方向を周方向および軸方向に角度を持たせることにより、高温高湿環境下において生じるスジ状の画像欠陥の抑制効果が飛躍的に向上することがわかった。
特定の幅の凹形状部を電子写真感光体の表面に高密度で設けることにより、クリーニングブレードの長手方向(電子写真感光体の軸方向と同方向)の大きなねじれや振動(ビビり)が、より効率的に抑制される。これによりクリーニングブレードに対して負荷の大きい環境でも、より安定的な摺擦が行われることで、使用が長期におよんだ場合にもクリーニングブレードの劣化が少なくなる。
As a result of the study by the present inventors, specific concave portions are densely arranged on the surface of the electrophotographic photosensitive member, and the arrangement direction of the specific concave portions is given an angle in the circumferential direction and the axial direction. It has been found that the effect of suppressing streak-like image defects generated in a high-temperature and high-humidity environment is greatly improved.
By providing concave portions with a specific width at a high density on the surface of the electrophotographic photosensitive member, large torsion and vibration (vibration) in the longitudinal direction of the cleaning blade (the same direction as the axial direction of the electrophotographic photosensitive member) can be further increased. It is efficiently suppressed. As a result, even when the load is large on the cleaning blade, more stable rubbing is performed, so that the deterioration of the cleaning blade is reduced even when it is used for a long time.

さらに凹形状部は、以下に示す輪郭形状の開口面を有する。
凹形状部の開口面の輪郭形状が、電子写真感光体の回転方向の後端側に、2つの輪郭直線、2つの輪郭曲線、もしくは1つの輪郭直線と1つの輪郭曲線とから成る頂点を有する。また、該頂点を成す該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、該電子写真感光体の周方向に延び且つ該頂点を通る直線Aまでの距離が最も離れた2つの点から該頂点に向かって、該直線Aまでの距離が徐々に小さくなっている。さらに、該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、該距離が最も離れた2つの点から該頂点までにおいて、該輪郭直線または該輪郭曲線の接線が、該電子写真感光体の軸方向に対して成す角度が45°以上90°以下である。
これらを満たす輪郭形状の開口面を有する凹形状部である場合、クリーニングブレードが凹形状部の電子写真感光体の回転方向における後端側を通過する際のブレードの変形やそれに伴うブレード振動が抑制される。その結果、ミクロな領域のクリーニングブレードの挙動がさらに均一化される。これにより、クリーニングブレードと電子写真感光体との摺擦状態の均一化が飛躍的に向上することで、電子写真感光体上への付着物や摺擦の不均一により生じるメモリーが抑制され、H/H初期スジの抑制効果が発現しているものと本発明者らは考えている。
Furthermore, the concave shape portion has an opening surface having a contour shape shown below.
The contour shape of the opening surface of the concave portion has two contour lines, two contour curves, or a vertex composed of one contour line and one contour curve on the rear end side in the rotation direction of the electrophotographic photosensitive member. . Further, the contour straight line or the contour curve that forms the vertex extends 2 in the circumferential direction of the electrophotographic photosensitive member on the contour straight line or the contour curve, and the distance to the straight line A that passes through the vertex is the longest 2 The distance to the straight line A gradually decreases from one point toward the vertex. Further, when the contour line or the contour curve is located on the contour line or the contour curve from the two points that are the farthest apart to the vertex, the contour line or the tangent of the contour curve is the electrophotographic image. The angle formed with respect to the axial direction of the photoreceptor is 45 ° or more and 90 ° or less.
In the case of a concave portion having a contour-shaped opening that satisfies these conditions, blade deformation and blade vibration associated with the cleaning blade passing through the rear end side in the rotation direction of the electrophotographic photosensitive member of the concave portion are suppressed. Is done. As a result, the behavior of the cleaning blade in the micro area is further uniformized. As a result, the uniformity of the rubbing state between the cleaning blade and the electrophotographic photosensitive member is dramatically improved, thereby suppressing memory generated due to deposits and non-uniform rubbing on the electrophotographic photosensitive member. The present inventors consider that the effect of suppressing / H initial streaks is manifested.

また、特定の凹形状部の配置として、隣り合う凹形状部と周方向および軸方向に対して角度を持って配置することにより、換言すると、複数の凹形状部は、隣り合う凹形状部の配列方向が、周方向および軸方向に対して角度を有することで、クリーニングブレードの挙動が安定化する。   Further, as the arrangement of the specific concave shape portion, by arranging the adjacent concave shape portion with an angle with respect to the circumferential direction and the axial direction, in other words, the plurality of concave shape portions can be arranged as adjacent concave shape portions. Since the arrangement direction has an angle with respect to the circumferential direction and the axial direction, the behavior of the cleaning blade is stabilized.

ある凹形状部を隣り合う凹形状部と周方向に対して角度を持って配置することは、隣り合う凹形状が、電子写真感光体の周方向に対して、凹形状部の幅(凹形状部の軸方向長さ)より短い範囲でずれて配置されていることを示す。一方、ある凹形状部を隣り合う凹形状部と軸方向に対して角度を持って配置することは、電子写真感光体の軸方向に対して隣り合う凹形状が、電子写真感光体の軸方向に対して、凹形状部の長さ(凹形状部の周方向長さ)より短い範囲でずれて配置されていることを示す。   Arranging a certain concave shape portion at an angle with respect to the circumferential direction of the adjacent concave shape portion means that the adjacent concave shape has a width (concave shape) of the concave shape portion with respect to the circumferential direction of the electrophotographic photosensitive member. It is shown that they are arranged so as to be shifted within a range shorter than the axial length of the portion. On the other hand, arranging a certain concave shape portion with an angle with respect to the adjacent concave shape portion is that the concave shape adjacent to the axial direction of the electrophotographic photosensitive member is the axial direction of the electrophotographic photosensitive member. On the other hand, it shows that it is shifted and arranged in a range shorter than the length of the concave portion (the circumferential length of the concave portion).

複数の特定の凹形状部が、周方向に角度を持って配列されることで、クリーニングブレードのミクロな領域の変位量が分散される配置となり、周方向変化(電子写真感光体の回転)に対するクリーニングブレードの負荷を分散させることができると本発明者らは考えている。   A plurality of specific concave-shaped portions are arranged at an angle in the circumferential direction, so that the displacement amount of the micro area of the cleaning blade is dispersed, and against a change in the circumferential direction (rotation of the electrophotographic photosensitive member). The present inventors consider that the load of the cleaning blade can be distributed.

複数の特定の凹形状部が、軸方向に角度を持って配列されることで、クリーニングブレードが周方向に移動した際のマクロな領域での変位タイミングが分散される配置となり、クリーニングブレードの長手方向(電子写真感光体の軸方向)での大きなねじれや振動を抑制できると本発明者らは考えている。   A plurality of specific concave portions are arranged at an angle in the axial direction, so that the displacement timing in the macro area when the cleaning blade moves in the circumferential direction is dispersed, and the length of the cleaning blade The present inventors consider that a large twist or vibration in the direction (the axial direction of the electrophotographic photosensitive member) can be suppressed.

具体的には、本発明の電子写真感光体の表面には、各々独立した複数の凹形状部が設けられ、該凹形状部の開口面の該電子写真感光体の軸方向の幅が、20μm以上80μm以下であり、該凹形状部の開口面の輪郭形状が、該電子写真感光体の周方向の少なくとも一方の端部側に、2つの輪郭直線、2つの輪郭曲線、もしくは1つの輪郭直線と1つの輪郭曲線とから成る頂点を有し、該頂点を成す該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、該電子写真感光体の周方向に延び且つ該頂点を通る直線Aまでの距離が最も離れた2つの点から、該頂点に向かって、該直線Aまでの距離が徐々に小さくなっており、該距離が最も離れた2つの点から該頂点までにおいて、該輪郭直線または該輪郭曲線の接線が、該電子写真感光体の軸方向に対して成す角度が45°以上90°以下であり、該凹形状部は、当該凹形状部の開口面からの深さが最も深い点から該頂点に向かって深さが徐々に浅くなる。(以下、この特定の形状を有する凹形状部を「特定凹形状部」ともいう。)   Specifically, a plurality of independent concave portions are provided on the surface of the electrophotographic photosensitive member of the present invention, and the axial width of the opening surface of the concave portion is 20 μm. The contour shape of the opening of the concave portion is not less than 80 μm, and two contour straight lines, two contour curves, or one contour straight line is formed on at least one end side in the circumferential direction of the electrophotographic photosensitive member. And a contour curve, and the contour straight line or the contour curve forming the vertex extends in the circumferential direction of the electrophotographic photosensitive member on the contour straight line or the contour curve. The distance to the straight line A gradually decreases from the two points that are the most distant from the straight line A to the vertex, and from the two points that are the farthest to the vertex, The contour straight line or the tangent to the contour curve The angle formed with respect to the axial direction of the sub-photosensitive member is not less than 45 ° and not more than 90 °, and the concave portion has a depth from the deepest point to the apex from the opening surface of the concave portion. Gradually becomes shallower. (Hereinafter, the concave portion having the specific shape is also referred to as “specific concave portion”.)

そして、本発明において、特定凹形状部は、電子写真感光体の表面の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置したとき(すなわち、電子写真感光体の表面のどの位置に一辺500μmの正方形領域を配置しても)、その一辺500μmの正方形領域における特定凹形状部の面積の総和が100000μm以上になるように、電子写真感光体の表面に設けられる。あるいは、本発明において、特定凹形状部は、電子写真感光体の表面のクリーニングブレードとの接触領域の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置したとき(すなわち、電子写真感光体の表面のクリーニングブレードとの接触領域のどの位置に一辺500μmの正方形領域を配置しても)、その一辺500μmの正方形領域における特定凹形状部の面積の総和が100000μm以上になるように、電子写真感光体の表面に設けられる。なお、電子写真感光体の表面が曲面である場合(例えば、電子写真感光体が円筒状である場合、電子写真感光体の表面(周面)は周方向に曲がった曲面となっている。)、「電子写真感光体の表面の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置」するとは、その曲面を平面に補正した場合に、その平面において正方形になるような領域(面積が250000μm)を電子写真感光体の表面の任意の位置に配置するということを意味する。同様に、「電子写真感光体の表面のクリーニングブレードとの接触領域の任意の位置に一辺500μmの正方形領域(面積が250000μm)を配置」するとは、その曲面を平面に補正した場合に、その平面において正方形になるような領域(面積が250000μm)を電子写真感光体の表面のクリーニングブレードとの接触領域の任意の位置に配置するということを意味する。 In the present invention, the specific concave-shaped portion is located at any position on the surface of the electrophotographic photosensitive member when a square region having a side of 500 μm (area is 250,000 μm 2 ) (that is, any position on the surface of the electrophotographic photosensitive member). In other words, a square area having a side of 500 μm is disposed on the surface of the electrophotographic photosensitive member so that the total area of the specific concave portions in the square area having a side of 500 μm is 100000 μm 2 or more. Alternatively, in the present invention, the specific concave-shaped portion has a 500 μm square area (area: 250,000 μm 2 ) arranged at an arbitrary position in the contact area with the cleaning blade on the surface of the electrophotographic photosensitive member (that is, electrophotography). So that the sum of the areas of the specific concave portions in the 500 μm square area is 100000 μm 2 or more regardless of the position of the 500 μm side square area in any contact area of the surface of the photosensitive member with the cleaning blade. And provided on the surface of the electrophotographic photosensitive member. When the surface of the electrophotographic photosensitive member is a curved surface (for example, when the electrophotographic photosensitive member is cylindrical, the surface (circumferential surface) of the electrophotographic photosensitive member is a curved surface curved in the circumferential direction). , “Disposing a square region (area: 250,000 μm 2 ) having a side of 500 μm at an arbitrary position on the surface of the electrophotographic photosensitive member” means a region that becomes a square in the plane when the curved surface is corrected to a plane ( This means that an area of 250,000 μm 2 ) is arranged at an arbitrary position on the surface of the electrophotographic photosensitive member. Similarly, “arranging a square region (area: 250,000 μm 2 ) having a side of 500 μm at an arbitrary position in the contact region with the cleaning blade on the surface of the electrophotographic photosensitive member” means that when the curved surface is corrected to a flat surface, It means that a region (area is 250,000 μm 2 ) that becomes a square in the plane is arranged at an arbitrary position in the contact region with the cleaning blade on the surface of the electrophotographic photosensitive member.

電子写真感光体の表面の特定凹形状部などは、例えば、レーザー顕微鏡、光学顕微鏡、電子顕微鏡、原子間力顕微鏡などの顕微鏡を用いて観察することができる。   The specific concave portion on the surface of the electrophotographic photosensitive member can be observed using a microscope such as a laser microscope, an optical microscope, an electron microscope, or an atomic force microscope.

レーザー顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製の超深度形状測定顕微鏡VK−8550、超深度形状測定顕微鏡VK−9000、超深度形状測定顕微鏡VK−9500、VK−X200,VK−X100 オリンパス(株)製の走査型共焦点レーザー顕微鏡OLS3000
レーザーテック(株)製のリアルカラーコンフォーカル顕微鏡オプリテクスC130
光学顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製のデジタルマイクロスコープVHX−500、デジタルマイクロスコープVHX−200
オムロン(株)製の3DデジタルマイクロスコープVC−7700
電子顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製の3Dリアルサーフェスビュー顕微鏡VE−9800、3Dリアルサーフェスビュー顕微鏡VE−8800
(株)日立ハイテクサイエンス(旧:エスアイアイ・ナノテクノロジー(株))製の走査型電子顕微鏡コンベンショナル/Variable Pressure SEM
(株)島津製作所製の走査型電子顕微鏡SUPERSCAN SS−550
原子間力顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製のナノスケールハイブリッド顕微鏡VN−8000
(株)日立ハイテクサイエンス製の走査型プローブ顕微鏡NanoNaviステーション
(株)島津製作所製の走査型プローブ顕微鏡SPM−9600
As the laser microscope, for example, the following devices can be used.
Keyence's ultra-deep shape measuring microscope VK-8550, ultra-deep shape measuring microscope VK-9000, ultra-deep shape measuring microscope VK-9500, VK-X200, VK-X100 Scanning confocal made by Olympus Corporation Laser microscope OLS3000
Real color confocal microscope Oplitex C130 manufactured by Lasertec Co., Ltd.
As the optical microscope, for example, the following devices can be used.
Digital microscope VHX-500, digital microscope VHX-200 manufactured by Keyence Corporation
3D digital microscope VC-7700 manufactured by OMRON Corporation
As the electron microscope, for example, the following devices can be used.
Keyence 3D Real Surface View Microscope VE-9800, 3D Real Surface View Microscope VE-8800
Scanning Electron Microscope Conventional / Variable Pressure SEM manufactured by Hitachi High-Tech Science Co., Ltd. (formerly SII Nanotechnology Co., Ltd.)
Scanning electron microscope SUPERSCAN SS-550 manufactured by Shimadzu Corporation
As the atomic force microscope, for example, the following devices can be used.
KEYENCE nanoscale hybrid microscope VN-8000
Scanning probe microscope NanoNavi station manufactured by Hitachi High-Tech Science Co., Ltd. Scanning probe microscope SPM-9600 manufactured by Shimadzu Corporation

上記一辺500μmの正方形領域の観察は、一辺500μmの正方形領域が収まるような倍率で行ってもよいし、より高い倍率で部分的な観察を行った後、ソフトを用いて複数の部分画像を連結するようにしてもよい。   The observation of the square area with a side of 500 μm may be performed at a magnification such that the square area with a side of 500 μm can be accommodated, or after partial observation at a higher magnification, a plurality of partial images are connected using software. You may make it do.

以下に一辺500μmの正方形領域における特定凹形状部について説明する。
まず、電子写真感光体の表面を顕微鏡で拡大観察する。例えば、電子写真感光体が円筒状である場合のように電子写真感光体の表面(周面)が周方向に曲がった曲面となっている場合は、その曲面の断面プロファイルを抽出し、曲線(電子写真感光体が円筒状であれば円弧)をフィッティングする。
The specific concave shape portion in the square region having a side of 500 μm will be described below.
First, the surface of the electrophotographic photoreceptor is enlarged and observed with a microscope. For example, when the surface (circumferential surface) of the electrophotographic photosensitive member is a curved surface curved in the circumferential direction as in the case where the electrophotographic photosensitive member is cylindrical, a cross-sectional profile of the curved surface is extracted and a curved line ( If the electrophotographic photosensitive member is cylindrical, an arc) is fitted.

図1に、フィッティングの例を示す。図1に示す例は、電子写真感光体が円筒状である場合の例であって、その軸方向に対して垂直な断面(周方向に平行な断面)における電子写真感光体表面の一部である。図1中、実線の101は電子写真感光体の表面(曲面)の断面プロファイルであり、破線の102は断面プロファイル101にフィッティングした曲線である。その曲線102が直線になるように断面プロファイル101の補正を行い、得られた直線を電子写真感光体の長手方向(周方向に直交する方向、すなわち、軸方向)に拡張した面を基準面とする。電子写真感光体が円筒状でない場合も、円筒状である場合と同様にして基準面を得る。   FIG. 1 shows an example of fitting. The example shown in FIG. 1 is an example in which the electrophotographic photosensitive member is cylindrical, and is a part of the surface of the electrophotographic photosensitive member in a cross section perpendicular to the axial direction (cross section parallel to the circumferential direction). is there. In FIG. 1, a solid line 101 is a cross-sectional profile of the surface (curved surface) of the electrophotographic photosensitive member, and a broken line 102 is a curve fitted to the cross-sectional profile 101. The cross-sectional profile 101 is corrected so that the curve 102 becomes a straight line, and a surface obtained by extending the obtained straight line in the longitudinal direction (direction orthogonal to the circumferential direction, that is, the axial direction) of the electrophotographic photosensitive member is defined as a reference surface. To do. Even when the electrophotographic photosensitive member is not cylindrical, the reference surface is obtained in the same manner as when the electrophotographic photosensitive member is cylindrical.

得られた基準面よりも下方に位置する部分を当該正方形領域における凹形状部とする。基準面による凹形状部の断面が、凹形状部の開口面である。基準面から、凹形状部の底面のうち該基準面(開口面)から最も離れた点(深さが最も深い点)、即ち、最低点までの距離を凹形状部の深さとする。開口面を軸方向に横切る線分のうち、最も長い線分の長さを凹形状部の開口面の幅とする。本発明における特定凹形状部の開口面の幅は、クリーニングブレードを安定化させ、低温環境におけるトナーのすり抜けやH/H初期スジを効果的に低減するという観点から20μm以上80μm以下の範囲にあることが好ましい。さらには、特定凹形状部の開口面の幅が30μm以上60μm以下の範囲にあることがより好ましい。また、上記正方形領域における特定凹形状部の開口面の面積の総和が100000μm以上であることが好ましく、100000μm以上175000μm以下であることがより好ましい。 A portion located below the obtained reference plane is defined as a concave portion in the square region. A cross section of the concave portion by the reference surface is an opening surface of the concave portion. The distance from the reference surface to the point farthest from the reference surface (opening surface) (the deepest point) of the bottom surface of the concave portion is the depth of the concave portion. Of the line segments crossing the opening surface in the axial direction, the length of the longest line segment is defined as the width of the opening surface of the concave portion. The width of the opening surface of the specific concave portion in the present invention is in the range of 20 μm or more and 80 μm or less from the viewpoint of stabilizing the cleaning blade and effectively reducing toner slipping and H / H initial streaks in a low temperature environment. It is preferable. Furthermore, it is more preferable that the width of the opening surface of the specific concave portion is in the range of 30 μm to 60 μm. Moreover, it is preferable that the sum total of the area of the opening surface of the specific concave-shaped part in the said square area | region is 100000 micrometers 2 or more, and it is more preferable that they are 100000 micrometers 2 or more and 175000 micrometers 2 or less.

また、電子写真感光体の表面の任意の50箇所に配置される上記一辺500μmの正方形領域において特定凹形状部の開口面の面積をそれぞれ測定したとき、50個の特定凹形状部の開口面の面積の総和の測定値の標準偏差が5%以下であることが好ましい。   Further, when the area of the opening surface of the specific concave shape portion was measured in each of the above-described square regions having a side of 500 μm arranged at any 50 locations on the surface of the electrophotographic photosensitive member, the opening surfaces of the 50 specific concave shape portions were measured. The standard deviation of the measured value of the total area is preferably 5% or less.

図2(a)に、特定凹形状部の開口面の一例(特定凹形状部の上面図)、図2(b)に、図2(a)に示す特定凹形状部の一例における周方向断面を示す。なお、図2(b)に示す特定凹形状部の断面の例は、上記補正後の断面プロファイルである。
図3(A)〜(J)に、特定凹形状部の開口面の形状(特定凹形状部を上から見たときの形状)の例を示す。
図4(a)〜(h)に、特定凹形状部の周方向断面の形状の例を示す。
FIG. 2A shows an example of an opening surface of the specific concave shape portion (a top view of the specific concave shape portion), and FIG. 2B shows a circumferential cross section of the specific concave shape portion shown in FIG. Indicates. The example of the cross section of the specific concave portion shown in FIG. 2B is the cross-sectional profile after the correction.
3A to 3J show examples of the shape of the opening surface of the specific concave portion (the shape when the specific concave portion is viewed from above).
The example of the shape of the circumferential cross section of a specific concave shape part is shown to Fig.4 (a)-(h).

図2(a)および図2(b)に示す特定凹形状部の例について説明する。まずは特定凹形状部の開口面の形状について説明する。図2に示した特定凹形状部の開口面は電子写真感光体の周方向の一方の端部側に2つの輪郭直線からなる頂点Iを有し、他方の端部側は半円形状を有している。また、開口面は、周方向の線であって頂点Iを通る直線Aまでの距離が、2つの輪郭直線上において最も離れた2つの点F,F’(直線Aから矢印の点線で示した位置)から頂点Iに向かって、徐々に小さくなっている。   An example of the specific concave shape portion shown in FIGS. 2A and 2B will be described. First, the shape of the opening surface of the specific concave portion will be described. The opening surface of the specific concave portion shown in FIG. 2 has a vertex I composed of two contour straight lines on one end side in the circumferential direction of the electrophotographic photosensitive member, and the other end side has a semicircular shape. doing. In addition, the opening surface is a circumferential line, and the distance to the straight line A passing through the vertex I is two points F and F ′ that are the farthest on the two contour straight lines (indicated by dotted lines with arrows from the straight line A). The position gradually decreases from the position) toward the vertex I.

本発明の特定凹形状部は、頂点Iから距離が最も離れた輪郭直線または輪郭曲線上の2つの点F,F’から頂点Iまでの間における、輪郭直線または輪郭曲線の接線が電子写真感光体の軸方向に対して成す角度θが45°以上90°以下であることがトナーのすり抜けおよびH/H初期スジの点から好ましい。さらに、角度θが62°以上90°未満であることがより好ましい。 In the specific concave shape portion of the present invention, the tangent line of the contour straight line or the contour curve between the two points F and F ′ on the contour straight line or contour curve farthest from the vertex I to the vertex I is electrophotographic photosensitive. it is preferable from the viewpoint of slipping and H / H initial streaks of toner angle theta 1 which forms with respect to the axial direction of the body is 45 ° to 90 °. Furthermore, it is more preferred angle theta 1 is less than 90 ° 62 ° or more.

また、特定凹形状部の開口面から投影したとき、距離が最も離れた輪郭直線または輪郭曲線上の2つの点F,F’から頂点Iまでの間における、2つの輪郭直線で成す角度、2つの輪郭曲線の接線で成す角度、または1つの輪郭直線と1つの輪郭曲線の接線とで成す角度をθとする。ここで、角度θが58°以下であることがトナーのすり抜けおよびH/H初期スジの点から好ましい。さらに、角度θが56°以下であることがより好ましい。 Further, when projected from the opening surface of the specific concave shape portion, an angle formed by two contour straight lines between two points F and F ′ to the vertex I on the contour straight line or the contour curve with the longest distance, 2 one of the angle formed by the tangent of the contour curve, or the angle between one contour line and the tangent of one contour curve and theta 2. Here, the angle theta 2 is at 58 ° or less is preferable from the viewpoint of slipping and H / H Initial streaks of toner. Furthermore, it is more preferred angle theta 2 is at 56 ° or less.

次に、特定凹形状部の周方向断面について説明する。図2(b)に示した特定凹形状部の一例における周方向断面は、凹形状部の開口面に対して該電子写真感光体の深さ方向に最も深い点Dから頂点Iに向かって深さが直線状に浅くなる形状を有し、他方(点Dから頂点Iとは反対に向かう側)は円弧状の形状を有している。本発明においては、電子写真感光体を側面から投影したとき(軸方向に対して平行方向から見たとき)の、特定凹形状部の開口面上の直線と、頂点Iと電子写真感光体の深さ方向に最も深い点Dとを結ぶ直線と、で成す角度θが、8.5°以下であることがトナーのすり抜けおよびH/H初期スジの点からより好ましい。更に、角度θが3.8°以下であることがより好ましい。 Next, a circumferential section of the specific concave shape portion will be described. The circumferential cross section in an example of the specific concave shape portion shown in FIG. 2B has a depth from the deepest point D to the vertex I in the depth direction of the electrophotographic photosensitive member with respect to the opening surface of the concave shape portion. Has a shape that becomes linearly shallower, and the other (side facing away from the vertex I from the point D) has an arc shape. In the present invention, when the electrophotographic photosensitive member is projected from the side surface (when viewed from a direction parallel to the axial direction), the straight line on the opening surface of the specific concave portion, the vertex I, and the electrophotographic photosensitive member The angle θ 3 formed by the straight line connecting the deepest point D in the depth direction is more preferably 8.5 ° or less from the viewpoint of slipping through the toner and H / H initial streaks. Furthermore, the angle θ 3 is more preferably 3.8 ° or less.

特定凹形状部の開口面の輪郭形状としては、例えば、図3(A)〜(J)に示すような形状が挙げられる。図3における上下方向を電子写真感光体の周方向とすると、図3において例示した特定凹形状部の開口面の輪郭形状のうち、(C)、(D)、(F)、(I)および(J)は周方向の一方の端部側に頂点を有し、(A)、(B)、(E)、(G)および(H)は周方向の双方の端部側に頂点を有する形状である。
ここで、図3の(C)の場合、電子写真感光体の周方向の端部のうち、図3中の上端側は、電子写真感光体の軸方向(すなわち、図3の左右方向)と一致する輪郭直線からなり、この軸方向と一致する輪郭直線の両端は他の輪郭直線と接している。しかしながら、図3の(C)における上端側のように、周方向の端部が軸方向と一致する直線からなる場合は、その端部は本発明でいう頂点は有しない。
Examples of the contour shape of the opening surface of the specific concave shape portion include shapes as shown in FIGS. When the vertical direction in FIG. 3 is the circumferential direction of the electrophotographic photosensitive member, among the contour shapes of the opening surface of the specific concave shape portion illustrated in FIG. 3, (C), (D), (F), (I) and (J) has a vertex on one end side in the circumferential direction, and (A), (B), (E), (G) and (H) have a vertex on both end sides in the circumferential direction. Shape.
Here, in the case of FIG. 3C, the upper end side in FIG. 3 among the circumferential ends of the electrophotographic photosensitive member is the axial direction of the electrophotographic photosensitive member (that is, the horizontal direction in FIG. 3). Consists of matching contour lines, and both ends of the contour line matching the axial direction are in contact with other contour lines. However, when the end in the circumferential direction is a straight line that coincides with the axial direction as in the upper end side in FIG. 3C, the end does not have a vertex in the present invention.

また、特定凹形状部の断面形状としては、例えば、図4(a)〜(h)に示すような形状が挙げられる。図4に示す特定凹形状部の断面形状は、いずれも開口面からの深さが最も深い点から頂点に向かって深さが徐々に浅くなる形状である。なお、図4の(c)に示されるような、深さが最も深い点が1点ではなく、連続した平坦部(開口面に対して平行な線や面)を形成している場合であっても、本発明における開口面からの深さが最も深い点から頂点に向かって深さが徐々に浅くなる形状に含まれる。   Moreover, as a cross-sectional shape of a specific concave shape part, the shape as shown to Fig.4 (a)-(h) is mentioned, for example. Each of the cross-sectional shapes of the specific concave shape portion shown in FIG. 4 is a shape in which the depth gradually decreases from the point having the deepest depth from the opening surface toward the apex. Note that, as shown in FIG. 4C, the deepest point is not a single point but a continuous flat part (a line or surface parallel to the opening surface) is formed. However, it is included in the shape in which the depth gradually decreases from the point having the deepest depth from the opening surface to the apex in the present invention.

電子写真感光体の表面に設けられる各々独立した複数の特定凹形状部は、すべてが同一の形状(例えば、同一の開口面最長径、深さ)であってもよいし、異なる形状(例えば、異なる開口面最長径、深さ)のものが混在していてもよい。また、必要に応じて本発明に係る凹形状部以外の凹形状部を形成してもよい。   The plurality of independent specific concave-shaped portions provided on the surface of the electrophotographic photosensitive member may all have the same shape (for example, the same opening surface longest diameter and depth) or different shapes (for example, Different ones with the longest diameter and depth of the opening surface may be mixed. Moreover, you may form concave shape parts other than the concave shape part which concerns on this invention as needed.

上記特定凹形状部は、電子写真感光体の表面の全域に形成されていてもよいし、電子写真感光体の表面の一部分に形成されていてもよい。特定凹形状部が電子写真感光体の表面の一部分に形成されている場合は、少なくともクリーニングブレードとの接触領域の全域には特定凹形状部が形成されていることが好ましい。   The specific concave portion may be formed on the entire surface of the electrophotographic photosensitive member, or may be formed on a part of the surface of the electrophotographic photosensitive member. When the specific concave portion is formed on a part of the surface of the electrophotographic photosensitive member, it is preferable that the specific concave portion is formed at least in the entire contact area with the cleaning blade.

<電子写真感光体の表面に凹形状部を形成する方法>
電子写真感光体表面への凹部の形成の方法としては、形成するべき凹形状部に対応した凸部を有するモールドを電子写真感光体の表面に圧接し、形状転写を行う方法が一例として挙げられる。
<Method of forming a concave portion on the surface of an electrophotographic photosensitive member>
An example of a method for forming a recess on the surface of the electrophotographic photosensitive member is a method in which a mold having a convex portion corresponding to the concave portion to be formed is pressed against the surface of the electrophotographic photosensitive member and shape transfer is performed. .

図5に、電子写真感光体の表面に凹形状部を形成するための圧接形状転写加工装置の例を示す。
図5に示す圧接形状転写加工装置によれば、被加工物である電子写真感光体51を回転させながら、その表面(周面)に連続的にモールド52を接触させ、加圧することにより、電子写真感光体51の表面に凹形状部や平坦部を形成することができる。
FIG. 5 shows an example of a press-contact shape transfer processing apparatus for forming a concave portion on the surface of the electrophotographic photosensitive member.
According to the press-contact shape transfer processing apparatus shown in FIG. 5, while rotating the electrophotographic photosensitive member 51 as a workpiece, the mold 52 is continuously brought into contact with the surface (circumferential surface) and pressurized, whereby the electronic A concave portion or a flat portion can be formed on the surface of the photoconductor 51.

加圧部材53の材質としては、例えば、金属、金属酸化物、プラスチック、ガラスなどが挙げられる。これらの中でも、機械的強度、寸法精度、耐久性の観点から、ステンレス鋼(SUS)が好ましい。加圧部材53は、その上面にモールド52が設置される。また、加圧部材53は、下面側に設置される支持部材(不図示)および加圧システム(不図示)により、支持部材54に支持された電子写真感光体51の表面に、モールド52を所定の圧力で接触させることができる。また、支持部材54を加圧部材53に対して所定の圧力で押し付けてもよいし、支持部材54および加圧部材53を互いに押し付けてもよい。   Examples of the material of the pressing member 53 include metals, metal oxides, plastics, and glass. Among these, stainless steel (SUS) is preferable from the viewpoint of mechanical strength, dimensional accuracy, and durability. The pressure member 53 is provided with a mold 52 on its upper surface. The pressing member 53 has a mold 52 on the surface of the electrophotographic photosensitive member 51 supported by the supporting member 54 by a supporting member (not shown) and a pressing system (not shown) installed on the lower surface side. It can be made to contact with the pressure of. Further, the support member 54 may be pressed against the pressure member 53 with a predetermined pressure, or the support member 54 and the pressure member 53 may be pressed against each other.

図5に示す例は、加圧部材53を電子写真感光体51の軸方向と垂直な方向に移動させることにより、電子写真感光体51が従動または駆動回転しながら、その表面を連続的に加工する例である。さらに、加圧部材53を固定し、支持部材54を電子写真感光体51の軸方向と垂直な方向に移動させることにより、または、支持部材54および加圧部材53の両者を移動させることにより、電子写真感光体51の表面を連続的に加工することもできる。   In the example shown in FIG. 5, the surface of the electrophotographic photosensitive member 51 is continuously processed while being driven or rotated by moving the pressing member 53 in a direction perpendicular to the axial direction of the electrophotographic photosensitive member 51. This is an example. Further, by fixing the pressure member 53 and moving the support member 54 in a direction perpendicular to the axial direction of the electrophotographic photosensitive member 51, or by moving both the support member 54 and the pressure member 53, The surface of the electrophotographic photoreceptor 51 can also be processed continuously.

なお、形状転写を効率的に行う観点から、モールド52や電子写真感光体51を加熱することが好ましい。   Note that it is preferable to heat the mold 52 and the electrophotographic photosensitive member 51 from the viewpoint of efficiently performing shape transfer.

モールド52としては、例えば、微細な表面加工がされた金属や樹脂フィルム、シリコンウエハーなどの表面にレジストによりパターニングをしたもの、微粒子が分散された樹脂フィルム、および、微細な表面形状を有する樹脂フィルムに金属コーティングを施したものなどが挙げられる。   As the mold 52, for example, a metal or resin film that has been subjected to fine surface processing, a surface of a silicon wafer or the like patterned with a resist, a resin film in which fine particles are dispersed, and a resin film having a fine surface shape And the like coated with a metal coating.

また、電子写真感光体51に押し付けられる圧力を均一にする観点から、モールド52と加圧部材53との間に弾性体(不図示)を設置することが好ましい。   From the viewpoint of making the pressure pressed against the electrophotographic photoreceptor 51 uniform, it is preferable to install an elastic body (not shown) between the mold 52 and the pressing member 53.

<電子写真感光体の構成>
本発明の電子写真感光体は、支持体および支持体上に形成された感光層を有する。
感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であってもよいし、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよい。電子写真特性の観点から、積層型感光層が好ましい。また、積層型感光層は、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層であってもよいし、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層であってもよい。電子写真特性の観点から、順層型感光層が好ましい。また、電荷発生層を積層構成としてもよいし、電荷輸送層を積層構成としてもよい。
<Configuration of electrophotographic photoreceptor>
The electrophotographic photoreceptor of the present invention has a support and a photosensitive layer formed on the support.
The photosensitive layer may be a single-layer type photosensitive layer containing a charge transport material and a charge generation material in the same layer, or a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material. It may be a laminated type (functionally separated type) photosensitive layer separated. From the viewpoint of electrophotographic characteristics, a laminated photosensitive layer is preferred. Further, the laminated photosensitive layer may be a normal photosensitive layer in which the charge generation layer and the charge transport layer are laminated in this order from the support side, or a reverse layer in which the charge transport layer and the charge generation layer are laminated in this order from the support side. Type photosensitive layer. From the viewpoint of electrophotographic characteristics, a normal layer type photosensitive layer is preferred. In addition, the charge generation layer may have a stacked structure, and the charge transport layer may have a stacked structure.

(支持体)
支持体としては、導電性を示すもの(導電性支持体)であることが好ましい。支持体の材質としては、例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレスなどの金属(合金)が挙げられる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを用いて真空蒸着によって形成した被膜を有する金属製支持体やプラスチック製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子をプラスチックや紙に含浸してなる支持体や、導電性結着樹脂製の支持体を用いることもできる。
(Support)
The support is preferably one that exhibits conductivity (conductive support). Examples of the material of the support include metals (alloys) such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum alloy, and stainless steel. In addition, a metal support or a plastic support having a film formed by vacuum deposition using aluminum, an aluminum alloy, an indium oxide-tin oxide alloy, or the like can also be used. In addition, a support obtained by impregnating plastic or paper with conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles, or a support made of conductive binder resin can also be used.

支持体の表面は、レーザー光の散乱による干渉縞の抑制を目的として、切削処理、粗面化処理、アルマイト処理などが施されていてもよい。   The surface of the support may be subjected to cutting treatment, roughening treatment, anodizing treatment, etc. for the purpose of suppressing interference fringes due to scattering of laser light.

(導電層)
支持体と、後述の下引き層または感光層(電荷発生層、電荷輸送層)との間には、レーザー光の散乱による干渉縞の抑制や、支持体の傷の被覆などを目的として、導電層を設けてもよい。
(Conductive layer)
Conduction between the support and the undercoat layer or photosensitive layer (charge generation layer, charge transport layer), which will be described later, for the purpose of suppressing interference fringes due to scattering of laser light and covering scratches on the support. A layer may be provided.

導電層は、カーボンブラック、導電性顔料、抵抗調節顔料などを結着樹脂とともに分散処理することによって得られる導電層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。また、導電層用塗布液には、加熱、紫外線照射、放射線照射などにより硬化重合する化合物を添加してもよい。導電性顔料や抵抗調節顔料などを分散させてなる導電層は、その表面が粗面化される傾向にある。   The conductive layer is formed by applying a coating solution for conductive layer obtained by dispersing carbon black, conductive pigment, resistance adjusting pigment and the like together with a binder resin to form a coating film, and then drying the obtained coating film. Can be formed. Moreover, you may add to the coating liquid for conductive layers the compound which carries out hardening polymerization by heating, ultraviolet irradiation, radiation irradiation, etc. A conductive layer in which a conductive pigment, a resistance adjusting pigment or the like is dispersed tends to have a roughened surface.

導電層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体や、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリウレタン樹脂、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of the binder resin used for the conductive layer include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene, polyvinyl alcohol resin, and polyvinyl alcohol. Examples include acetal resin, polycarbonate resin, polyester resin, polysulfone resin, polyphenylene oxide resin, polyurethane resin, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.

導電性顔料および抵抗調節顔料としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレスなどの金属(合金)の粒子や、これらをプラスチックの粒子の表面に蒸着したものなどが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズがドープされている酸化インジウム、アンチモンやタンタルがドープされている酸化スズなどの金属酸化物の粒子を用いることもできる。これらは、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、混合するだけでもよいし、固溶体や融着の形にしてもよい。   Examples of the conductive pigment and the resistance adjusting pigment include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those obtained by depositing these on the surface of plastic particles. . It is also possible to use metal oxide particles such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony or tantalum-doped tin oxide. it can. These may be used alone or in combination of two or more. When two or more types are used in combination, they may be mixed, or may be in the form of a solid solution or fusion.

導電層の膜厚は、0.2μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、5μm以上30μm以下であることがより好ましい。   The thickness of the conductive layer is preferably 0.2 μm or more and 40 μm or less, more preferably 1 μm or more and 35 μm or less, and more preferably 5 μm or more and 30 μm or less.

(下引き層(中間層))
支持体または導電層と感光層(電荷発生層、電荷輸送層)との間には、感光層の接着性改良、塗工性改良、支持体からの電荷注入性改良、感光層の電気的破壊に対する保護などを目的として、バリア機能や接着機能を有する下引き層(中間層)を設けてもよい。
下引き層は、樹脂(結着樹脂)を溶剤に溶解させることによって得られる下引き層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。
下引き層に用いられる樹脂としては、例えば、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ、ゼラチン、ポリウレタン樹脂、アクリル樹脂、アリル樹脂、アルキッド樹脂、フェノール樹脂、エポキシ樹脂などが挙げられる。
(Undercoat layer (intermediate layer))
Between the support or conductive layer and the photosensitive layer (charge generation layer, charge transport layer), improvement of adhesion of the photosensitive layer, improvement of coating property, improvement of charge injection from the support, electrical breakdown of the photosensitive layer An undercoat layer (intermediate layer) having a barrier function or an adhesive function may be provided for the purpose of protecting the film.
The undercoat layer can be formed by applying a coating solution for an undercoat layer obtained by dissolving a resin (binder resin) in a solvent and drying the obtained coating film.
Examples of the resin used for the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, N-methoxymethylated 6 nylon, and copolymer nylon. , Glue, gelatin, polyurethane resin, acrylic resin, allyl resin, alkyd resin, phenol resin, epoxy resin and the like.

下引き層には、金属酸化物粒子を含有させてもよい。下引き層に用いられる金属酸化物粒子としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化アルミニウムが挙げられる。
金属酸化物粒子は、金属酸化物粒子の表面がシランカップリング剤などの表面処理剤で処理されている粒子であってもよい。
下引き層用塗布液中の金属酸化物粒子の分散方法としては、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、振動ミル、アトライター、液衝突型高速分散機を用いた方法が挙げられる。
The undercoat layer may contain metal oxide particles. Examples of the metal oxide particles used for the undercoat layer include titanium oxide, zinc oxide, tin oxide, zirconium oxide, and aluminum oxide.
The metal oxide particles may be particles in which the surface of the metal oxide particles is treated with a surface treatment agent such as a silane coupling agent.
Examples of the method for dispersing the metal oxide particles in the coating liquid for the undercoat layer include a method using a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill, a vibration mill, an attritor, and a liquid collision type high-speed disperser. .

下引き層には、例えば、下引き層の表面粗さの調整、または下引き層のひび割れ軽減を目的として、有機樹脂粒子や、レベリング剤をさらに含有させてもよい。有機樹脂粒子としては、シリコーン粒子等の疎水性有機樹脂粒子や、架橋型ポリメタクリレート樹脂(PMMA)粒子等の親水性有機樹脂粒子を用いることができる。   The undercoat layer may further contain, for example, organic resin particles or a leveling agent for the purpose of adjusting the surface roughness of the undercoat layer or reducing cracks in the undercoat layer. As the organic resin particles, hydrophobic organic resin particles such as silicone particles and hydrophilic organic resin particles such as cross-linked polymethacrylate resin (PMMA) particles can be used.

下引き層の膜厚は、0.05μm以上40μm以下であることが好ましく、0.2μm以上35μm以下であることがより好ましい。   The thickness of the undercoat layer is preferably 0.05 μm or more and 40 μm or less, and more preferably 0.2 μm or more and 35 μm or less.

(感光層)
感光層に用いられる電荷発生物質としては、例えば、ピリリウム、チアピリリウム染料や、各種の中心金属および各種の結晶形(α、β、γ、ε、X型など)を有するフタロシアニン顔料や、アントアントロン顔料や、ジベンズピレンキノン顔料や、ピラントロン顔料や、モノアゾ、ジスアゾ、トリスアゾなどのアゾ顔料や、インジゴ顔料や、キナクリドン顔料や、非対称キノシアニン顔料や、キノシアニン顔料などが挙げられる。これら電荷発生物質は、1種のみ用いてもよく、2種以上用いてもよい。
(Photosensitive layer)
Examples of the charge generating material used in the photosensitive layer include pyrylium and thiapyrylium dyes, phthalocyanine pigments having various central metals and various crystal forms (α, β, γ, ε, X type, etc.), and anthanthrone pigments. And dibenzpyrenequinone pigments, pyranthrone pigments, azo pigments such as monoazo, disazo, and trisazo, indigo pigments, quinacridone pigments, asymmetric quinocyanine pigments, and quinocyanine pigments. These charge generation materials may be used alone or in combination of two or more.

感光層に用いられる電荷輸送物質としては、例えば、ピレン化合物、N−アルキルカルバゾール化合物、ヒドラゾン化合物、N,N−ジアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物、トリフェニルメタン化合物、ピラゾリン化合物、スチリル化合物、スチルベン化合物などが挙げられる。これら電荷輸送物質は、1種のみ用いてもよく、2種以上用いてもよい。   Examples of the charge transport material used in the photosensitive layer include pyrene compounds, N-alkylcarbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, triphenylmethane compounds, pyrazoline compounds, styryl. Compounds and stilbene compounds. These charge transport materials may be used alone or in combination of two or more.

感光層が積層型感光層である場合、電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散処理することによって得られた電荷発生層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。
電荷発生物質と結着樹脂との質量比は、1:0.3〜1:4の範囲であることが好ましい。
分散処理方法としては、例えば、ホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルなどを用いる方法が挙げられる。
When the photosensitive layer is a laminated photosensitive layer, the charge generation layer is formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent to form a coating film, It can form by drying the obtained coating film. The charge generation layer may be a vapor generation film of a charge generation material.
The mass ratio of the charge generating material and the binder resin is preferably in the range of 1: 0.3 to 1: 4.
Examples of the dispersion treatment method include a method using a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, roll mill, and the like.

電荷輸送層は、電荷輸送物質および結着樹脂を溶剤に溶解させることによって得られる電荷輸送層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。また、単独で成膜性を有する電荷輸送物質を用いる場合は、結着樹脂を用いずに電荷輸送層を形成することもできる。   The charge transport layer is formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent to form a coating film, and then drying the obtained coating film. Can do. In addition, in the case where a charge transport material having film-forming properties is used alone, the charge transport layer can be formed without using a binder resin.

電荷発生層および電荷輸送層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体や、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリウレタン樹脂、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of the binder resin used for the charge generation layer and the charge transport layer include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, and trifluoroethylene, Examples include polyvinyl alcohol resin, polyvinyl acetal resin, polycarbonate resin, polyester resin, polysulfone resin, polyphenylene oxide resin, polyurethane resin, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.

電荷発生層の膜厚は、5μm以下であることが好ましく、0.1〜2μmであることがより好ましい。
電荷輸送層の膜厚は、5〜50μmであることが好ましく、10〜35μmであることがより好ましい。
The thickness of the charge generation layer is preferably 5 μm or less, and more preferably 0.1 to 2 μm.
The thickness of the charge transport layer is preferably 5 to 50 μm, and more preferably 10 to 35 μm.

感光層が単層型感光層である場合、感光層は、電荷発生物質、電荷輸送物質および結着樹脂を溶剤に溶解させることによって得られる感光層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。なお、単層型感光層に用いられる結着樹脂、電荷発生物質および電荷輸送物質は、電荷発生層や電荷輸送層に用いられるものと同じものを用いることができる。   When the photosensitive layer is a single-layer type photosensitive layer, the photosensitive layer is formed by applying a photosensitive layer coating solution obtained by dissolving a charge generating substance, a charge transporting substance and a binder resin in a solvent to form a coating film. It can be formed by drying the obtained coating film. The same binder resin, charge generating substance and charge transporting substance used for the single layer type photosensitive layer can be used for the charge generating layer and the charge transporting layer.

また、電子写真感光体の耐久性の向上の観点から、電子写真感光体の表面層を架橋有機高分子で構成することが好ましい。
本発明においては、例えば、電荷発生層上の電荷輸送層を電子写真感光体の表面層として架橋有機高分子で構成することができる。また、電荷発生層上の電荷輸送層上に第二電荷輸送層または保護層として架橋有機高分子で構成された表面層を形成することができる。
Further, from the viewpoint of improving the durability of the electrophotographic photosensitive member, the surface layer of the electrophotographic photosensitive member is preferably composed of a crosslinked organic polymer.
In the present invention, for example, the charge transport layer on the charge generation layer can be composed of a crosslinked organic polymer as the surface layer of the electrophotographic photoreceptor. Further, a surface layer made of a crosslinked organic polymer can be formed on the charge transport layer on the charge generation layer as a second charge transport layer or a protective layer.

また、架橋有機高分子で構成された表面層に要求される特性は、膜の強度と電荷輸送能力の両立であり、その観点から、電荷輸送物質または導電性粒子と、架橋重合性のモノマー/オリゴマーとを用いて表面層を形成することが好ましい。
電荷輸送物質としては、上述の電荷輸送物質を用いることができる。また、導電性粒子としては、公知の導電性粒子を用いることができる。架橋重合性のモノマー/オリゴマーとしては、例えば、アクリロイルオキシ基やスチリル基などの連鎖重合性官能基を有する化合物や、水酸基、アルコキシシリル基、イソシアネート基などの逐次重合性官能基を有する化合物などが挙げられる。
また、膜の強度と電荷輸送能力の両立の観点から、同一分子内に電荷輸送性構造(好ましくは正孔輸送性構造)およびアクリロイルオキシ基の両方を有する化合物を用いることがより好ましい。
架橋硬化させる方法としては、例えば、熱、紫外線、放射線を用いる方法が挙げられる。
架橋有機高分子で構成された表面層の膜厚は、0.1〜30μmであることが好ましく、1〜10μmであることがより好ましい。
In addition, the characteristics required for the surface layer composed of the crosslinked organic polymer are both the strength of the film and the charge transport capability. From this viewpoint, the charge transport material or the conductive particles and the crosslinkable monomer / It is preferable to form a surface layer using an oligomer.
As the charge transport material, the above-described charge transport materials can be used. Moreover, well-known electroconductive particle can be used as electroconductive particle. Examples of the crosslinkable monomer / oligomer include a compound having a chain polymerizable functional group such as an acryloyloxy group and a styryl group, and a compound having a sequentially polymerizable functional group such as a hydroxyl group, an alkoxysilyl group and an isocyanate group. Can be mentioned.
Further, from the viewpoint of achieving both the strength of the film and the charge transport capability, it is more preferable to use a compound having both a charge transport structure (preferably a hole transport structure) and an acryloyloxy group in the same molecule.
Examples of the crosslinking and curing method include a method using heat, ultraviolet rays, and radiation.
The film thickness of the surface layer composed of the crosslinked organic polymer is preferably 0.1 to 30 μm, and more preferably 1 to 10 μm.

電子写真感光体の各層には、添加剤を添加することができる。添加剤としては、例えば、酸化防止剤、紫外線吸収剤などの劣化防止剤や、フッ素原子含有樹脂粒子、アクリル樹脂粒子などの有機樹脂粒子や、シリカ、酸化チタン、アルミナなどの無機粒子などが挙げられる。   Additives can be added to each layer of the electrophotographic photoreceptor. Examples of additives include deterioration inhibitors such as antioxidants and ultraviolet absorbers, organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles, and inorganic particles such as silica, titanium oxide, and alumina. It is done.

<プロセスカートリッジおよび電子写真装置の構成>
図6に、本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の例を示す。
図6において、円筒状の本発明の電子写真感光体1は、軸2を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1の表面は、回転過程において、帯電手段3(一次帯電手段:例えば、帯電ローラーなど)により、正または負の所定電位に均一に帯電される。次いで、均一に帯電された電子写真感光体1の表面は、露光手段(画像露光手段)(不図示)から照射される露光光(画像露光光)4を受ける。このようにして、電子写真感光体1の表面には、目的の画像情報に対応した静電潜像が形成される。なお、電子写真感光体1の回転方向は、電子写真感光体1の周方向の一方と一致している。電子写真感光体1はその周方向のいずれの方向にも回転可能であって、電子写真装置に搭載して所定の一方向に回転させる。
本発明は、放電を利用した帯電手段を用いた場合において、効果が特に大きい。
<Configuration of process cartridge and electrophotographic apparatus>
FIG. 6 shows an example of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.
In FIG. 6, a cylindrical electrophotographic photosensitive member 1 of the present invention is driven to rotate around a shaft 2 at a predetermined peripheral speed (process speed) in the direction of an arrow. The surface of the electrophotographic photosensitive member 1 is uniformly charged to a predetermined positive or negative potential by a charging unit 3 (primary charging unit: for example, a charging roller) during the rotation process. Next, the uniformly charged surface of the electrophotographic photosensitive member 1 receives exposure light (image exposure light) 4 irradiated from an exposure means (image exposure means) (not shown). In this way, an electrostatic latent image corresponding to target image information is formed on the surface of the electrophotographic photosensitive member 1. Note that the rotation direction of the electrophotographic photosensitive member 1 coincides with one of the circumferential directions of the electrophotographic photosensitive member 1. The electrophotographic photosensitive member 1 can be rotated in any of the circumferential directions, and is mounted on the electrophotographic apparatus and rotated in a predetermined direction.
The present invention is particularly effective when a charging means using discharge is used.

電子写真感光体1の表面に形成された静電潜像は、次いで現像手段5内のトナー(不定形トナーまたは球形トナー)で現像(正規現像または反転現像)されてトナー像が形成される。電子写真感光体1の表面に形成されたトナー像が、転写手段(例えば、転写ローラーなど)6からの転写バイアスによって、転写材上に転写されていく。このとき、転写材Pは、転写材供給手段(不図示)から電子写真感光体1の回転と同期して取り出されて、電子写真感光体1と転写手段6との間(当接部)に給送される。また、転写手段6には、トナーの保有電荷とは逆極性のバイアス電圧がバイアス電源(不図示)から印加される。   The electrostatic latent image formed on the surface of the electrophotographic photoreceptor 1 is then developed (regular development or reversal development) with toner (indeterminate toner or spherical toner) in the developing means 5 to form a toner image. A toner image formed on the surface of the electrophotographic photosensitive member 1 is transferred onto a transfer material by a transfer bias from a transfer unit (for example, a transfer roller) 6. At this time, the transfer material P is taken out from the transfer material supply means (not shown) in synchronism with the rotation of the electrophotographic photosensitive member 1 and is placed between the electrophotographic photosensitive member 1 and the transfer means 6 (contact portion). Be fed. Further, a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer unit 6 from a bias power source (not shown).

トナー像が転写された転写材Pは、電子写真感光体1の表面から分離されて定着手段8へ搬送されてトナー像の定着処理を受けることにより、画像形成物(プリント、コピー)として電子写真装置外へプリントアウトされる。   The transfer material P to which the toner image has been transferred is separated from the surface of the electrophotographic photosensitive member 1 and conveyed to the fixing means 8 to undergo the toner image fixing process, whereby an electrophotographic image forming product (print, copy) is obtained. Printed out of the device.

トナー像の転写後の電子写真感光体1の表面は、電子写真感光体1の表面に接触配置(当接)されたクリーニングブレードを有するクリーニング手段7によって転写残トナーなどの付着物の除去を受けて清浄面化される。さらに、清浄面化された電子写真感光体1の表面は前露光手段(不図示)からの前露光光(不図示)により除電処理された後、繰り返し画像形成に使用される。なお、図6に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光手段は必ずしも必要ではない。   The surface of the electrophotographic photoreceptor 1 after the transfer of the toner image is subjected to removal of deposits such as transfer residual toner by a cleaning means 7 having a cleaning blade placed in contact (contact) with the surface of the electrophotographic photoreceptor 1. To clean the surface. Further, the cleaned surface of the electrophotographic photoreceptor 1 is subjected to charge removal processing by pre-exposure light (not shown) from a pre-exposure means (not shown), and then repeatedly used for image formation. As shown in FIG. 6, when the charging unit 3 is a contact charging unit using a charging roller or the like, the pre-exposure unit is not necessarily required.

本発明に係るプロセスカートリッジは、電子写真感光体1およびクリーニングブレードを少なくとも有するプロセスカートリッジである。本発明においては、電子写真感光体1と、クリーニングブレードと、帯電手段3および現像手段5などから選択される構成要素から選ばれる1つ以上の構成要素と、を容器に納めてプロセスカートリッジとして一体に支持する構成としてもよい。そして、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成することができる。図6では、電子写真感光体1と、帯電手段3と、現像手段5と、クリーニングブレードを有するクリーニング手段7と、を一体に支持してカートリッジ化して、電子写真装置本体のレールなどの案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としている。   The process cartridge according to the present invention is a process cartridge having at least the electrophotographic photosensitive member 1 and a cleaning blade. In the present invention, the electrophotographic photosensitive member 1, the cleaning blade, and one or more components selected from the components selected from the charging unit 3 and the developing unit 5 are housed in a container and integrated as a process cartridge. It is good also as a structure supported by. The process cartridge can be configured to be detachable from a main body of an electrophotographic apparatus such as a copying machine or a laser beam printer. In FIG. 6, the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5, and the cleaning unit 7 having a cleaning blade are integrally supported to form a cartridge, and guide units such as a rail of the electrophotographic apparatus main body. 10 is used as a process cartridge 9 detachably attached to the main body of the electrophotographic apparatus.

露光光4は、電子写真装置が複写機やプリンターである場合、原稿からの反射光や透過光、または、センサーで原稿を読み取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイや液晶シャッターアレイの駆動などにより照射される光である。   When the electrophotographic apparatus is a copying machine or a printer, the exposure light 4 is a reflected light or transmitted light from a manuscript, or a manuscript is read by a sensor, converted into a signal, laser beam scanning performed in accordance with this signal, LED array, Light emitted by driving a liquid crystal shutter array or the like.

以下、具体的な実施例を挙げて、本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。また、電子写真感光体を、以下単に「感光体」ともいう。   Hereinafter, the present invention will be described in more detail with reference to specific examples. In the examples, “part” means “part by mass”. Further, the electrophotographic photoreceptor is hereinafter simply referred to as “photoreceptor”.

(感光体−1の製造例)
直径30mm、長さ357.5mmのアルミニウムシリンダーを支持体(円筒状支持体)とした。
次に、金属酸化物として酸化亜鉛粒子(比表面積:19m/g、粉体抵抗:4.7×10Ω・cm)100部をトルエン500部と撹拌混合し、これにシランカップリング剤(化合物名:N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、商品名:KBM602、信越化学工業(株)製)0.8部を添加し、6時間攪拌した。その後、トルエンを減圧留去して、130℃で6時間加熱乾燥し、表面処理された酸化亜鉛粒子を得た。
(Example of photoconductor-1 production)
An aluminum cylinder having a diameter of 30 mm and a length of 357.5 mm was used as a support (cylindrical support).
Next, 100 parts of zinc oxide particles (specific surface area: 19 m 2 / g, powder resistance: 4.7 × 10 6 Ω · cm) as a metal oxide are stirred and mixed with 500 parts of toluene, and this is mixed with a silane coupling agent. (Compound name: N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, trade name: KBM602, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.8 part was added and stirred for 6 hours. Thereafter, toluene was distilled off under reduced pressure, followed by heating and drying at 130 ° C. for 6 hours to obtain surface-treated zinc oxide particles.

次に、ポリオール樹脂としてブチラール樹脂(商品名:BM−1、積水化学工業(株)製)15部およびブロック化イソシアネート(商品名:スミジュール3175、住化コベストロウレタン社(旧:住友バイエルウレタン社)製)15部をメチルエチルケトン73.5部と1−ブタノール73.5部の混合溶液に溶解させた。この溶液に前記表面処理された酸化亜鉛粒子80.8部、2,3,4−トリヒドロキシベンゾフェノン0.8部(東京化成工業(株)社製)を加え、これを直径0.8mmのガラスビーズを用いたサンドミル装置で23±3℃雰囲気下で3時間分散した。分散後、シリコーンオイル(商品名:SH28PA、東レダウコーニングシリコーン社製)0.01部、架橋ポリメタクリル酸メチル(PMMA)粒子(商品名:TECHPOLYMER SSX−102、積水化成品工業(株)社製、平均一次粒径2.5μm)を5.6部加えて攪拌し、下引き層用塗布液を調製した。
この下引き層用塗布液を上記支持体上に浸漬塗布し、得られた塗膜を40分間160℃で乾燥させて、膜厚が18μmの下引き層を形成した。
Next, 15 parts of butyral resin (trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.) and blocked isocyanate (trade name: Sumidur 3175, Sumika Covestro Urethane Co., Ltd. (former: Sumitomo Bayer Urethane) as polyol resin 15 parts) was dissolved in a mixed solution of 73.5 parts of methyl ethyl ketone and 73.5 parts of 1-butanol. To this solution, 80.8 parts of the surface-treated zinc oxide particles and 0.8 part of 2,3,4-trihydroxybenzophenone (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, and this was added to a glass having a diameter of 0.8 mm. Dispersion was performed in a sand mill apparatus using beads in an atmosphere of 23 ± 3 ° C. for 3 hours. After dispersion, 0.01 parts of silicone oil (trade name: SH28PA, manufactured by Toray Dow Corning Silicone), cross-linked polymethyl methacrylate (PMMA) particles (trade name: TECHPOLYMER SSX-102, manufactured by Sekisui Plastics Co., Ltd.) 5.6 parts of an average primary particle size of 2.5 μm) was added and stirred to prepare an undercoat layer coating solution.
This undercoat layer coating solution was applied onto the support by dip coating, and the resulting coating film was dried at 160 ° C. for 40 minutes to form an undercoat layer having a thickness of 18 μm.

次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.4°および28.2°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、下記構造式(A)で示されるカリックスアレーン化合物0.2部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)10部、および、シクロヘキサノン600部を、直径1mmガラスビーズを用いたサンドミルに入れ、4時間分散処理した後、酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を15分間80℃で乾燥させることによって、膜厚0.17μmの電荷発生層を形成した。

Figure 2017134279
Next, 20 parts of a crystalline hydroxygallium phthalocyanine crystal (charge generation material) having strong peaks at 7.4 ° and 28.2 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, the following structural formula A glass bead having a diameter of 1 mm was used for 0.2 part of the calixarene compound represented by (A), 10 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone. After putting into a sand mill and dispersing for 4 hours, 700 parts of ethyl acetate was added to prepare a charge generation layer coating solution. The charge generation layer coating solution was dip-coated on the undercoat layer, and the resulting coating film was dried at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm.
Figure 2017134279

次に、下記構造式(B)で示される化合物30部(電荷輸送物質)、下記構造式(C)で示される化合物60部(電荷輸送物質)、下記構造式(D)で示される化合物10部、ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製、ビスフェノールZ型のポリカーボネート)100部、下記構造式(E)を有するポリカーボネート(粘度平均分子量Mv:20000)0.02部を、混合キシレン600部およびジメトキシメタン200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を前記電荷発生層上に浸漬塗布して塗膜を形成し、得られた塗膜を30分間100℃で乾燥させることによって、膜厚18μmの電荷輸送層を形成した。

Figure 2017134279
Figure 2017134279
Next, 30 parts of a compound represented by the following structural formula (B) (charge transporting substance), 60 parts of a compound represented by the following structural formula (C) (charge transporting substance), and 10 of a compound represented by the following structural formula (D) Part, polycarbonate resin (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd., bisphenol Z type polycarbonate), polycarbonate having the following structural formula (E) (viscosity average molecular weight Mv: 20000) 0.02 part Was dissolved in a mixed solvent of 600 parts of mixed xylene and 200 parts of dimethoxymethane to prepare a coating solution for charge transport layer. The charge transport layer coating solution was dip coated on the charge generation layer to form a coating film, and the resulting coating film was dried at 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 18 μm. .
Figure 2017134279
Figure 2017134279

次に、下記構造式(F)で示される化合物(連鎖重合性官能基であるアクリル基を有する電荷輸送物質)36部、ポリテトラフルオロエチレン樹脂微粉末(ルブロンL−2、ダイキン工業(株)製)4部、およびn−プロパノール60部を超高圧分散機で分散混合することによって、保護層用塗布液を調製した。この保護層用塗布液を上記電荷輸送層上に浸漬塗布し、得られた塗膜を5分間50℃で乾燥させた。乾燥後、窒素雰囲気下にて、加速電圧70kV、吸収線量8000Gyの条件で、1.6秒間シリンダーを回転させながら塗膜に電子線を照射し、塗膜を硬化させた。その後、窒素雰囲気下にて、塗膜が120℃になる条件で3分間加熱処理を行った。なお、電子線の照射から3分間の加熱処理までの酸素濃度は20ppmであった。次に、大気中において、塗膜が100℃になる条件で30分加熱処理を行い、膜厚が5μmである保護層(第二電荷輸送層)を形成した。

Figure 2017134279
Next, 36 parts of a compound represented by the following structural formula (F) (charge transporting substance having an acrylic group which is a chain polymerizable functional group), polytetrafluoroethylene resin fine powder (Lublon L-2, Daikin Industries, Ltd.) A protective layer coating solution was prepared by dispersing and mixing 4 parts) and 60 parts of n-propanol with an ultrahigh pressure disperser. This protective layer coating solution was dip-coated on the charge transport layer, and the resulting coating film was dried at 50 ° C. for 5 minutes. After drying, the coating film was cured by irradiating the coating film with an electron beam for 1.6 seconds under the conditions of an acceleration voltage of 70 kV and an absorbed dose of 8000 Gy in a nitrogen atmosphere. Thereafter, heat treatment was performed for 3 minutes in a nitrogen atmosphere under conditions where the coating film became 120 ° C. Note that the oxygen concentration from the electron beam irradiation to the heat treatment for 3 minutes was 20 ppm. Next, in the atmosphere, a heat treatment was performed for 30 minutes under the condition that the coating film reached 100 ° C., thereby forming a protective layer (second charge transport layer) having a thickness of 5 μm.
Figure 2017134279

このようにして、表面に凹形状部を形成する前の円筒状の電子写真感光体(凹形状部形成前の電子写真感光体)を作製した。   In this way, a cylindrical electrophotographic photosensitive member (electrophotographic photosensitive member before forming the concave portion) before forming the concave portion on the surface was produced.

・モールド圧接形状転写による凹形状部の形成
概ね図5に示す構成の圧接形状転写加工装置に、モールドとして概ね図16に示す形状のモールド(本実施例においては、最大幅(モールド上の凸部を上から見たときの電子写真感光体の軸方向に対応する方向の最大幅のこと。以下同じ。)X:40μm、最大長さ(モールド上の凸部を上から見たときの電子写真感光体の周方向に対応する方向の最大長さのこと。以下同じ。)Y:80μm、面積率50%、高さH:4μmの凸形状)を設置し、作製した凹形状部形成前の電子写真感光体に対して表面加工を行った。面積率とは、モールドの加工領域の面積に対する、モールド上の凸部が設けられた領域の面積の総和の割合(すなわち、電子写真感光体の周面における表面積に対する凹部形状の開口面の面積の総和の割合)である。加工時には、電子写真感光体の表面の温度が120℃になるように電子写真感光体およびモールドの温度を制御し、7.0MPaの圧力で電子写真感光体と加圧部材を押し付けながら、電子写真感光体を周方向に回転させて、電子写真感光体の表面(周面)の全面に凹形状部を形成した。
このようにして、表面に特定凹形状部を有する電子写真感光体を作製した。この電子写真感光体を「感光体−1」とする。
Forming a concave portion by mold press-fitting shape transfer A press-fitting shape transfer processing apparatus having a configuration shown in FIG. 5 is generally used as a mold with a mold having a shape shown in FIG. 16 (in this embodiment, a maximum width (a convex portion on the mold). Is the maximum width in the direction corresponding to the axial direction of the electrophotographic photosensitive member when viewed from above. The same applies hereinafter.) X: 40 μm, maximum length (electrophotography when the convex part on the mold is viewed from above) The maximum length in the direction corresponding to the circumferential direction of the photoreceptor, the same applies hereinafter.) Y: convex shape with 80 μm, area ratio 50%, height H: 4 μm) Surface processing was performed on the electrophotographic photosensitive member. The area ratio is the ratio of the total area of the areas where the protrusions on the mold are provided to the area of the processing area of the mold (that is, the area of the opening surface of the recess shape relative to the surface area of the peripheral surface of the electrophotographic photosensitive member). The ratio of the sum). At the time of processing, the temperature of the electrophotographic photosensitive member and the mold is controlled so that the surface temperature of the electrophotographic photosensitive member becomes 120 ° C., and the electrophotographic photosensitive member and the pressure member are pressed at a pressure of 7.0 MPa, The photosensitive member was rotated in the circumferential direction to form a concave portion on the entire surface (circumferential surface) of the electrophotographic photosensitive member.
Thus, an electrophotographic photosensitive member having a specific concave portion on the surface was produced. This electrophotographic photosensitive member is referred to as “photosensitive member-1”.

・電子写真感光体の表面の観察
得られた電子写真感光体(感光体−1)の表面を、レーザー顕微鏡((株)キーエンス製、商品名:X−100)で50倍レンズにより拡大観察し、上述のようにして電子写真感光体の表面に設けられた特定凹形状部の判定を行った。観察時には、電子写真感光体の長手方向(軸方向)に傾きがないように、また、周方向については、電子写真感光体の円弧の頂点にピントが合うように、調整を行った。一辺500μmの正方形領域は、拡大観察を行った画像を画像連結アプリケーションによって連結して得た。また、得られた結果については、付属の画像解析ソフトにより、画像処理高さデータを選択し、フィルタタイプメディアンでフィルタ処理を行った。
上記観察によって特定凹形状部の深さ、開口面の軸方向の幅、開口面の周方向の長さ、面積、2つの輪郭直線で形成された頂点の角度、などを求めた。結果を表2に示す。
-Observation of the surface of the electrophotographic photosensitive member The surface of the obtained electrophotographic photosensitive member (photosensitive member-1) was magnified and observed with a 50 × lens with a laser microscope (trade name: X-100, manufactured by Keyence Corporation). The specific concave portion provided on the surface of the electrophotographic photosensitive member was determined as described above. At the time of observation, adjustment was performed so that there is no inclination in the longitudinal direction (axial direction) of the electrophotographic photosensitive member, and the circumferential direction was focused on the apex of the arc of the electrophotographic photosensitive member. A square region having a side of 500 μm was obtained by connecting the enlarged images with an image connection application. Moreover, about the obtained result, image processing height data was selected with attached image analysis software, and the filter process was performed by the filter type median.
By the above observation, the depth of the specific concave shape portion, the axial width of the opening surface, the length in the circumferential direction of the opening surface, the area, the angle of the apex formed by the two contour straight lines, and the like were obtained. The results are shown in Table 2.

なお、電子写真感光体(感光体−1)の表面を、他のレーザー顕微鏡((株)キーエンス製、商品名:X−9500)を用い、上記と同様の方法で観察を行ったところ、上記のレーザー顕微鏡((株)キーエンス製、商品名:X−100)を用いた場合と同様の結果が得られた。以下の製造例では、電子写真感光体(感光体−2〜21)の表面の観察に、レーザー顕微鏡((株)キーエンス製、商品名:X−100)および50倍レンズを用いた。   The surface of the electrophotographic photosensitive member (photosensitive member-1) was observed in the same manner as described above using another laser microscope (manufactured by Keyence Co., Ltd., trade name: X-9500). The same result as that obtained when using a laser microscope (trade name: X-100, manufactured by Keyence Corporation) was obtained. In the following production examples, a laser microscope (manufactured by Keyence Corporation, trade name: X-100) and a 50 × lens were used for observing the surface of the electrophotographic photosensitive member (photosensitive member-2 to 21).

(感光体−2〜感光体−21の製造例)
感光体−1の製造例において、モールドを表1に示したように変更した以外は、感光体−1の製造例と同様にして電子写真感光体を作製した。これらの電子写真感光体を「感光体−2〜感光体21」とする。感光体−1の製造例と同様にして、得られた電子写真感光体の表面観察を行った。結果を表2に示す。
なお、図7〜図18において、いずれも(a)図は電子写真感光体の各製造例で用いたモールドを示す概略上面図、(b)図は(a)図に示されたモールドにおける凸部のB−B概略断面図、(c)図は(a)図に示されたモールドにおける凸部のC−C概略断面図である。また、感光体−1〜感光体−4は図16、感光体−5〜感光体−8は図17、感光体−9〜感光体−12は図18に示すモールドを用いているが、図16〜図18は詳細の図示が省略されたものであって、各製造例に応じて、最大幅X、最大長さY、面積率、高さHが表1に記載されたものにあわせた異なるモールドを用いている。
(Production example of photoconductor-2 to photoconductor-21)
An electrophotographic photosensitive member was manufactured in the same manner as in the manufacturing example of the photosensitive member-1, except that the mold was changed as shown in Table 1 in the manufacturing example of the photosensitive member-1. These electrophotographic photosensitive members are referred to as “photosensitive member-2 to photosensitive member 21”. The surface of the obtained electrophotographic photoreceptor was observed in the same manner as in the production example of photoreceptor-1. The results are shown in Table 2.
7 to 18, (a) is a schematic top view showing a mold used in each example of production of an electrophotographic photosensitive member, and (b) is a protrusion in the mold shown in (a). BB schematic sectional drawing of a part, (c) A figure is CC schematic sectional drawing of the convex part in the mold shown by (a) figure. The photosensitive member-1 to the photosensitive member-4 use the mold shown in FIG. 16, the photosensitive member-5 to the photosensitive member-8 uses the mold shown in FIG. 17, and the photosensitive member-9 to the photosensitive member-12 use the mold shown in FIG. 16 to 18 are not shown in detail, and the maximum width X, the maximum length Y, the area ratio, and the height H are adjusted to those described in Table 1 according to each production example. Different molds are used.

Figure 2017134279
Figure 2017134279

Figure 2017134279
Figure 2017134279

(電子写真感光体の実機評価)
(実施例1)
感光体−1を、評価装置であるキヤノン(株)製の電子写真装置(複写機)(商品名:iR−ADV C5255)の改造機のシアンステーションに装着し、以下のように試験および評価を行った。
32.5℃/85%RH環境下で、電子写真感光体の暗部電位(Vd)が−500V、明部電位(Vl)が−180Vになるように帯電装置および画像露光装置の条件を設定し、電子写真感光体の初期電位を調整した。
(Evaluation of actual electrophotographic photosensitive member)
Example 1
Photoreceptor-1 is mounted on a cyan station of a modified machine of an electrophotographic apparatus (copier) (trade name: iR-ADV C5255) manufactured by Canon Inc., which is an evaluation apparatus, and tested and evaluated as follows. went.
Under the environment of 32.5 ° C / 85% RH, the conditions of the charging device and the image exposure device are set so that the dark portion potential (Vd) of the electrophotographic photosensitive member is -500V and the light portion potential (Vl) is -180V. The initial potential of the electrophotographic photosensitive member was adjusted.

次に、硬度77°のポリウレタンゴム製クリーニングブレードを、電子写真感光体の表面に対して当接角28°、当接圧50g/cmとなるように設定した。電子写真感光体用のヒーター(ドラムヒーター)をONにした状態で、32.5℃/85%RH環境下で、A4横の1%印字画像の評価用チャートを連続で100枚出力した後、シアン濃度30%のスクリーン画像をハーフトーン画像として出力し、画像上のH/H初期スジを以下のように評価した。結果を表3に示す。尚、本評価方法は加速評価であり、画像上の優劣差を顕著にする目的で適用した。尚、本発明において、ウレタンゴム製のクリーニングブレード(ウレタンゴム)の硬度(IRHD)は、ウォーレス(H.W.WALLACE)社製のウォーレス微小硬度計を用い、国際ゴム硬さ試験M法によって測定した値である。国際ゴム硬さ試験M法は、JISK6253−1997に規定されている。   Next, a polyurethane rubber cleaning blade having a hardness of 77 ° was set so that the contact angle was 28 ° and the contact pressure was 50 g / cm with respect to the surface of the electrophotographic photosensitive member. With the heater (drum heater) for the electrophotographic photosensitive member turned on, 100 evaluation charts of 1% printed image next to A4 were output continuously in an environment of 32.5 ° C./85% RH. A screen image with a cyan density of 30% was output as a halftone image, and the H / H initial streak on the image was evaluated as follows. The results are shown in Table 3. This evaluation method is an accelerated evaluation, and was applied for the purpose of conspicuous difference in image quality. In the present invention, the hardness (IRHD) of a urethane rubber cleaning blade (urethane rubber) is measured by an international rubber hardness test M method using a Wallace microhardness meter manufactured by H. WALLACE. It is the value. The international rubber hardness test M method is defined in JIS K6253-1997.

A:画像上にスジが発生していない。
B:画像上にスジが疑われるような画像が得られるが明確にスジであるかどうかの判定ができないレベルである。
C:画像上に極軽微なスジがわずかに確認できるが画像上問題の無いレベルである。
D:画像上に極軽微なスジが発生しているが、画像上問題の無いレベルである。
E:画像上に軽微なスジが発生しているが、画像上許容できるレベルである。
F:画像上に明らかなスジが発生している。画像上許容できないレベルである。
A: No streak is generated on the image.
B: An image where a streak is suspected is obtained on the image, but it is a level at which it cannot be clearly determined whether or not it is a streak.
C: Slightly slight streaks can be confirmed on the image, but there is no problem on the image.
D: Although very slight streaks are generated on the image, it is at a level with no problem on the image.
E: Although slight streaks are generated on the image, the level is acceptable on the image.
F: A clear streak is generated on the image. This is an unacceptable level on the image.

(実施例2〜4,9〜12)
電子写真感光体として表3に示すものを用いた以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表3に示す。
(Examples 2-4, 9-12)
The actual evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 1 except that the electrophotographic photosensitive member shown in Table 3 was used. The results are shown in Table 3.

(実施例5〜8)
電子写真感光体として表3に示すものを用い、電子写真感光体を、電子写真感光体の回転方向の後端側に頂点を有する向きに電子写真装置に装着した。実施例1と同様にして電子写真感光体のH/H初期スジ評価を行った。結果を表3に示す。

Figure 2017134279
(Examples 5 to 8)
The electrophotographic photosensitive member shown in Table 3 was used, and the electrophotographic photosensitive member was mounted on the electrophotographic apparatus in a direction having a vertex on the rear end side in the rotation direction of the electrophotographic photosensitive member. In the same manner as in Example 1, the H / H initial stripe evaluation of the electrophotographic photosensitive member was performed. The results are shown in Table 3.
Figure 2017134279

(比較例1、3〜7、9)
電子写真感光体として表3に示すものを用いた以外は、実施例1と同様にして電子写真感光体の実機評価を行った。結果を表3に示す。
(Comparative Examples 1, 3-7, 9)
The actual evaluation of the electrophotographic photosensitive member was performed in the same manner as in Example 1 except that the electrophotographic photosensitive member shown in Table 3 was used. The results are shown in Table 3.

(比較例2、8)
電子写真感光体として表3に示すものを用い、電子写真感光体を、電子写真感光体の回転方向の後端側に頂点を有する向きに電子写真装置に装着した。実施例1と同様にして電子写真感光体のH/H初期スジ評価を行った。結果を表3に示す。
(Comparative Examples 2 and 8)
The electrophotographic photosensitive member shown in Table 3 was used, and the electrophotographic photosensitive member was mounted on the electrophotographic apparatus in a direction having a vertex on the rear end side in the rotation direction of the electrophotographic photosensitive member. In the same manner as in Example 1, the H / H initial stripe evaluation of the electrophotographic photosensitive member was performed. The results are shown in Table 3.

1 電子写真感光体、2 軸、3 帯電手段、4 露光光、5 現像手段、6 転写手段、7 クリーニング手段、8 定着手段、9 プロセスカートリッジ、10 案内手段、51 電子写真感光体、52 モールド、53 加圧部材、54 支持部材、101 断面プロファイル(実線)、102 フィッティングした曲線(破線)、A 直線、C 頂点 DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor, 2 axis | shaft, 3 charging means, 4 exposure light, 5 image development means, 6 transfer means, 7 cleaning means, 8 fixing means, 9 process cartridge, 10 guide means, 51 electrophotographic photoreceptor, 52 mold, 53 Pressure member, 54 Support member, 101 Cross-sectional profile (solid line), 102 Fitted curve (dashed line), A straight line, C vertex

Claims (8)

円筒状の支持体上に感光層を有する電子写真感光体であって、
該電子写真感光体の表面が、各々独立した複数の凹形状部を有し、
該凹形状部の開口面の該電子写真感光体の軸方向の幅が、20μm以上80μm以下であり、
該電子写真感光体の表面の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹形状部の開口面の面積の総和が100000μm以上であり、
該凹形状部の開口面の輪郭形状が、該電子写真感光体の周方向の少なくとも一方の端部側に、2つの輪郭直線、2つの輪郭曲線、もしくは1つの輪郭直線と1つの輪郭曲線とから成る頂点を有し、
該頂点を成す該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、
該電子写真感光体の周方向に延び且つ該頂点を通る直線Aまでの距離が最も離れた2つの点から、該頂点に向かって、該直線Aまでの距離が徐々に小さくなっており、
該距離が最も離れた2つの点から該頂点までにおいて、該輪郭直線または該輪郭曲線の接線が、該電子写真感光体の軸方向に対して成す角度が45°以上90°以下であり、
該凹形状部は、当該凹形状部の開口面からの深さが最も深い点から該頂点に向かって深さが徐々に浅くなる形状であり、
該複数の凹形状部は、隣り合う凹形状部の配列方向が、該電子写真感光体の周方向および軸方向に対して角度を有することを特徴とする電子写真感光体。
An electrophotographic photosensitive member having a photosensitive layer on a cylindrical support,
The surface of the electrophotographic photosensitive member has a plurality of independent concave portions,
The axial width of the electrophotographic photoreceptor of the opening of the concave portion is 20 μm or more and 80 μm or less,
When a square region having a side of 500 μm is arranged at an arbitrary position on the surface of the electrophotographic photosensitive member, the total area of the opening surfaces of the concave portions in the square region having a side of 500 μm is 100,000 μm 2 or more,
The contour shape of the opening surface of the concave-shaped portion has two contour lines, two contour curves, or one contour line and one contour curve on at least one end side in the circumferential direction of the electrophotographic photosensitive member. Have vertices consisting of
The contour straight line or the contour curve forming the vertex is on the contour straight line or the contour curve.
The distance to the straight line A gradually decreases from the two points that extend in the circumferential direction of the electrophotographic photosensitive member and the farthest distance to the straight line A passing through the vertex toward the vertex,
The angle formed by the contour straight line or the tangent of the contour curve with respect to the axial direction of the electrophotographic photosensitive member from the two points that are the farthest apart to the vertex is 45 ° or more and 90 ° or less,
The concave shape portion is a shape in which the depth gradually decreases from the point where the depth from the opening surface of the concave shape portion is deepest toward the apex,
The electrophotographic photosensitive member, wherein the plurality of concave-shaped portions have an arrangement direction of adjacent concave-shaped portions having an angle with respect to a circumferential direction and an axial direction of the electrophotographic photosensitive member.
前記電子写真感光体を側面から投影したとき、前記凹形状部の開口面上の直線と、前記頂点と前記電子写真感光体の深さ方向に最も深い点とを結ぶ直線と、で成す角度が、8.5°以下である請求項1に記載の電子写真感光体。   When the electrophotographic photosensitive member is projected from a side surface, an angle formed by a straight line on the opening surface of the concave portion and a straight line connecting the vertex and the deepest point in the depth direction of the electrophotographic photosensitive member is The electrophotographic photosensitive member according to claim 1, having an angle of 8.5 ° or less. 前記凹形状部の開口面から投影したとき、前記距離が最も離れた2つの点から前記頂点までにおいて、前記2つの輪郭直線で成す角度、前記2つの輪郭曲線の接線で成す角度、または前記1つの輪郭直線と前記1つの輪郭曲線の接線とで成す角度が、58°以下である請求項1または2に記載の電子写真感光体。   When projected from the opening surface of the concave-shaped portion, the angle formed by the two contour straight lines, the angle formed by the tangent lines of the two contour curves, or the above-mentioned 1 The electrophotographic photosensitive member according to claim 1 or 2, wherein an angle formed by one contour line and a tangent line of the one contour curve is 58 ° or less. 円筒状の支持体上に感光層を有する電子写真感光体及びクリーニングブレードを少なくとも有するプロセスカートリッジであって、
該電子写真感光体の表面が、各々独立した複数の凹形状部を有し、
該凹形状部の開口面の該電子写真感光体の軸方向の幅が、20μm以上80μm以下であり、
該電子写真感光体の表面の該クリーニングブレードとの接触領域の任意の位置に一辺500μmの正方形領域を配置したとき、該一辺500μmの正方形領域における該凹形状部の開口面の面積の総和が100000μm以上であり、
該凹形状部の開口面の輪郭形状が、該電子写真感光体の回転方向の後端側に、2つの輪郭直線、2つの輪郭曲線、もしくは1つの輪郭直線と1つの輪郭曲線とから成る頂点を有し、
該頂点を成す該輪郭直線または該輪郭曲線が、当該輪郭直線または当該輪郭曲線上において、
該電子写真感光体の周方向に延び且つ該頂点を通る直線Aまでの距離が最も離れた2つの点から、該頂点に向かって、該直線Aまでの距離が徐々に小さくなっており、
該距離が最も離れた2つの点から該頂点までにおいて、該輪郭直線または該輪郭曲線の接線が、該電子写真感光体の軸方向に対して成す角度が45°以上90°以下であり、
該複数の凹形状部は、隣り合う凹形状部の配列方向が、該電子写真感光体の周方向および軸方向に対して角度を有することを特徴とするプロセスカートリッジ。
A process cartridge having at least an electrophotographic photosensitive member having a photosensitive layer on a cylindrical support and a cleaning blade,
The surface of the electrophotographic photosensitive member has a plurality of independent concave portions,
The axial width of the electrophotographic photoreceptor of the opening of the concave portion is 20 μm or more and 80 μm or less,
When a square region having a side of 500 μm is arranged at an arbitrary position in the contact region with the cleaning blade on the surface of the electrophotographic photosensitive member, the total area of the opening surfaces of the concave portions in the square region having a side of 500 μm is 100,000 μm. 2 or more,
The contour shape of the opening surface of the concave-shaped portion has two contour straight lines, two contour curves, or one contour straight line and one contour curve on the rear end side in the rotation direction of the electrophotographic photosensitive member. Have
The contour straight line or the contour curve forming the vertex is on the contour straight line or the contour curve.
The distance to the straight line A gradually decreases from the two points that extend in the circumferential direction of the electrophotographic photosensitive member and the farthest distance to the straight line A passing through the vertex toward the vertex,
The angle formed by the contour straight line or the tangent of the contour curve with respect to the axial direction of the electrophotographic photosensitive member from the two points that are the farthest apart to the vertex is 45 ° or more and 90 ° or less,
The process cartridge according to claim 1, wherein the plurality of concave-shaped portions have an arrangement direction of adjacent concave-shaped portions having an angle with respect to a circumferential direction and an axial direction of the electrophotographic photosensitive member.
前記凹形状部の開口面から投影したとき、前記距離が最も離れた2つの点から前記頂点までにおいて、前記2つの輪郭直線で成す角度、前記2つの輪郭曲線の接線で成す角度、または前記1つの輪郭直線と前記1つの輪郭曲線の接線とで成す角度が、58°以下である請求項4に記載のプロセスカートリッジ。   When projected from the opening surface of the concave-shaped portion, the angle formed by the two contour straight lines, the angle formed by the tangent lines of the two contour curves, or the above-mentioned 1 The process cartridge according to claim 4, wherein an angle formed by one contour line and a tangent line of the one contour curve is 58 ° or less. 前記凹形状部は、当該凹形状部の開口面からの深さが最も深い点から該頂点に向かって深さが徐々に浅くなる形状である請求項4または5に記載のプロセスカートリッジ。   6. The process cartridge according to claim 4, wherein the concave shape portion has a shape in which the depth gradually decreases from a point having the deepest depth from the opening surface of the concave shape portion toward the apex. 前記電子写真感光体を側面から投影したとき、前記凹形状部の開口面上の直線と、前記頂点と前記電子写真感光体の深さ方向に最も深い点とを結ぶ直線と、で成す角度が、8.5°以下である請求項6に記載のプロセスカートリッジ。   When the electrophotographic photosensitive member is projected from a side surface, an angle formed by a straight line on the opening surface of the concave portion and a straight line connecting the vertex and the deepest point in the depth direction of the electrophotographic photosensitive member is The process cartridge according to claim 6, which is 8.5 ° or less. 請求項1乃至3のいずれか一項に記載の電子写真感光体、該電子写真感光体の表面を帯電する帯電手段、帯電された該電子写真感光体の表面に露光光を照射して静電潜像を形成する露光手段、該静電潜像が形成された該電子写真感光体をトナーで現像する現像手段、該電子写真感光体上のトナー像を転写材上に転写する転写手段、および該電子写真感光体に接触配置されたクリーニングブレードを備えることを特徴とする電子写真装置。   The electrophotographic photosensitive member according to any one of claims 1 to 3, charging means for charging the surface of the electrophotographic photosensitive member, and electrostatic charging by irradiating the charged surface of the electrophotographic photosensitive member with exposure light. Exposure means for forming a latent image, developing means for developing the electrophotographic photosensitive member on which the electrostatic latent image is formed with toner, transfer means for transferring the toner image on the electrophotographic photosensitive member onto a transfer material, and An electrophotographic apparatus comprising: a cleaning blade disposed in contact with the electrophotographic photosensitive member.
JP2016014635A 2016-01-28 2016-01-28 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus Active JP6624952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014635A JP6624952B2 (en) 2016-01-28 2016-01-28 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014635A JP6624952B2 (en) 2016-01-28 2016-01-28 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JP2017134279A true JP2017134279A (en) 2017-08-03
JP6624952B2 JP6624952B2 (en) 2019-12-25

Family

ID=59502581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014635A Active JP6624952B2 (en) 2016-01-28 2016-01-28 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP6624952B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074735A (en) * 2017-10-16 2019-05-16 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2019191506A (en) * 2018-04-27 2019-10-31 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP7406427B2 (en) 2020-03-26 2023-12-27 キヤノン株式会社 Electrophotographic photoreceptors, process cartridges, and electrophotographic devices
JP7413115B2 (en) 2020-03-26 2024-01-15 キヤノン株式会社 Electrophotographic photoreceptors, process cartridges, and electrophotographic devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233357A (en) * 2006-01-31 2007-09-13 Canon Inc Method of image forming and electrophotographic apparatus making use of the method
WO2009014262A1 (en) * 2007-07-26 2009-01-29 Canon Kabushiki Kaisha Electrophotographic photosensitive element, process cartridge, and electrophotographic device
JP2009031500A (en) * 2007-07-26 2009-02-12 Canon Inc Image forming apparatus and process cartridge
JP2010160475A (en) * 2008-12-08 2010-07-22 Canon Inc Electrophotographic apparatus and process cartridge
JP5127991B1 (en) * 2011-05-31 2013-01-23 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2015152623A (en) * 2014-02-10 2015-08-24 キヤノン株式会社 Method for forming uneven shape on surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor having uneven shape on surface
JP2015172731A (en) * 2014-02-21 2015-10-01 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233357A (en) * 2006-01-31 2007-09-13 Canon Inc Method of image forming and electrophotographic apparatus making use of the method
WO2009014262A1 (en) * 2007-07-26 2009-01-29 Canon Kabushiki Kaisha Electrophotographic photosensitive element, process cartridge, and electrophotographic device
JP2009031500A (en) * 2007-07-26 2009-02-12 Canon Inc Image forming apparatus and process cartridge
JP2010160475A (en) * 2008-12-08 2010-07-22 Canon Inc Electrophotographic apparatus and process cartridge
JP5127991B1 (en) * 2011-05-31 2013-01-23 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2015152623A (en) * 2014-02-10 2015-08-24 キヤノン株式会社 Method for forming uneven shape on surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor having uneven shape on surface
JP2015172731A (en) * 2014-02-21 2015-10-01 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074735A (en) * 2017-10-16 2019-05-16 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP7240124B2 (en) 2017-10-16 2023-03-15 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2019191506A (en) * 2018-04-27 2019-10-31 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP7406427B2 (en) 2020-03-26 2023-12-27 キヤノン株式会社 Electrophotographic photoreceptors, process cartridges, and electrophotographic devices
JP7413115B2 (en) 2020-03-26 2024-01-15 キヤノン株式会社 Electrophotographic photoreceptors, process cartridges, and electrophotographic devices

Also Published As

Publication number Publication date
JP6624952B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6562804B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6403586B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6704739B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5127991B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5318204B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2016038577A (en) Electrophotographic photoreceptor, process cartridge and electrophotographing device
US11269282B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6624952B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2010026240A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP6723790B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2018087874A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6132473B2 (en) Method for producing electrophotographic photosensitive member
JP6415170B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6541440B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
JP2023042423A (en) Electro-photographic device
JP2015102676A (en) Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP6360381B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2017078804A (en) Electrophotographic device and process cartridge
JP2011090247A (en) Method for manufacturing electrophotographic photoreceptor

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191126

R151 Written notification of patent or utility model registration

Ref document number: 6624952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151