JP2015102676A - Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor - Google Patents

Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2015102676A
JP2015102676A JP2013243081A JP2013243081A JP2015102676A JP 2015102676 A JP2015102676 A JP 2015102676A JP 2013243081 A JP2013243081 A JP 2013243081A JP 2013243081 A JP2013243081 A JP 2013243081A JP 2015102676 A JP2015102676 A JP 2015102676A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
shape
resin
electrophotographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013243081A
Other languages
Japanese (ja)
Other versions
JP2015102676A5 (en
Inventor
高橋 孝治
Koji Takahashi
孝治 高橋
直晃 市橋
Naoaki Ichihashi
直晃 市橋
川井 康裕
Yasuhiro Kawai
康裕 川井
小川 英紀
Hidenori Ogawa
英紀 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013243081A priority Critical patent/JP2015102676A/en
Publication of JP2015102676A publication Critical patent/JP2015102676A/en
Publication of JP2015102676A5 publication Critical patent/JP2015102676A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for processing a surface of a cylindrical electrophotographic photoreceptor for reducing an abnormal sound that generates by friction against a cleaning blade upon starting use of the electrophotographic photoreceptor, and a method for manufacturing a cylindrical electrophotographic photoreceptor having a rugged pattern on a surface thereof.SOLUTION: The method for processing a surface of an electrophotographic photoreceptor includes a step of transferring a surface pattern of a surface of a die member onto a surface of a cylindrical electrophotographic photoreceptor while rotating the electrophotographic photoreceptor. The surface of the electrophotographic photoreceptor includes: a region (A) where the surface pattern of the die member is transferred n times to the surface of the electrophotographic photoreceptor by press-contacting the die member n times; and a region (B) adjoining to the region (A), where the surface pattern is transferred n+1 times or more onto the surface of the electrophotographic photoreceptor by press-contacting the die member n+1 times or more.

Description

本発明は、電子写真感光体の表面加工方法、および、電子写真感光体の製造方法に関する。   The present invention relates to a surface processing method of an electrophotographic photosensitive member and a method of manufacturing an electrophotographic photosensitive member.

有機光導電性物質(電荷発生物質)を含有する電子写真感光体は、電子写真感光体の耐久性(耐摩耗性など)を向上させることを目的として、電子写真感光体の表面層に硬化性樹脂を含有させる技術が知られている。   An electrophotographic photosensitive member containing an organic photoconductive substance (charge generating substance) is curable on the surface layer of the electrophotographic photosensitive member for the purpose of improving the durability (such as wear resistance) of the electrophotographic photosensitive member. A technique for containing a resin is known.

しかしながら、電子写真感光体の耐摩耗性を向上させることにより、クリーニング性能への影響と、画像流れが発生しやすくなる。画像流れとは、電子写真感光体を帯電させることによって生じるオゾンや窒素酸化物などの酸性ガスによるものであると考えられている。この酸性ガスによって、電子写真感光体の表面層に用いられている材料が劣化したり、水分の吸着によって酸性ガスの一部が硝酸となって、電子写真感光体の表面が低抵抗化したりすることが原因であると考えられている。そして、電子写真感光体の耐摩耗性が高くなるほど、電子写真感光体の表面のリフレッシュ(画像流れの原因となる物質の除去)が行われ難く、画像流れが発生しやすくなる。   However, by improving the abrasion resistance of the electrophotographic photosensitive member, the influence on the cleaning performance and the image flow are likely to occur. The image flow is considered to be caused by an acidic gas such as ozone or nitrogen oxide generated by charging the electrophotographic photosensitive member. This acid gas deteriorates the material used for the surface layer of the electrophotographic photosensitive member, or part of the acidic gas becomes nitric acid due to moisture adsorption, and the surface of the electrophotographic photosensitive member is reduced in resistance. Is considered to be the cause. As the abrasion resistance of the electrophotographic photosensitive member becomes higher, the surface of the electrophotographic photosensitive member is less likely to be refreshed (removal of substances that cause image flow), and image flow is more likely to occur.

クリーニング性への影響とは、電子写真感光体の耐摩耗性の高い表面とクリーニングブレードとの摩擦が大きくなり発生する、クリーニングブレードの反転や欠け、微小振動の増加に伴うトナーすり抜け等の問題である。   The effect on cleaning performance is caused by problems such as increased friction between the surface of the electrophotographic photosensitive member and the cleaning blade, reversal and chipping of the cleaning blade, and toner slipping due to increased micro vibration. is there.

これらの課題を改善する技術として、特許文献1には高温高湿環境下の画像流れを改善するために、電子写真感光体の表面に特定の凹部を有する電子写真感光体が記載されている。特許文献2には、クリーニング性の向上を目的として、電子写真感光体の表面形状を制御性良く形成するための製造方法に関する技術が記載されている。   As a technique for improving these problems, Patent Document 1 describes an electrophotographic photosensitive member having specific concave portions on the surface of the electrophotographic photosensitive member in order to improve image flow under a high temperature and high humidity environment. Patent Document 2 describes a technique relating to a manufacturing method for forming the surface shape of an electrophotographic photosensitive member with good controllability for the purpose of improving cleaning properties.

特開2007−233355号公報JP 2007-233355 A 特開2007−233356号公報JP 2007-233356 A

しかしながら、特許文献1および2に記載された技術は、電子写真感光体の使用開始時にクリーニングブレードの摺擦により異音がするという課題が発生しやすく、改善の余地があるものであった。   However, the techniques described in Patent Documents 1 and 2 tend to cause a problem that abnormal noise is caused by rubbing of the cleaning blade at the start of use of the electrophotographic photosensitive member, and there is room for improvement.

本発明の目的は、電子写真感光体の使用開始時に生じる異音を低減させた円筒状の電子写真感光体の表面加工方法、および表面に凹凸形状を有する円筒状の電子写真感光体の製造方法を提供することにある。   An object of the present invention is to provide a surface processing method for a cylindrical electrophotographic photosensitive member in which abnormal noise generated at the start of use of the electrophotographic photosensitive member is reduced, and a method for manufacturing a cylindrical electrophotographic photosensitive member having an uneven surface. Is to provide.

上記目的は、以下の本発明によって達成される。   The above object is achieved by the present invention described below.

本発明は、円筒状の電子写真感光体の表面に凹凸形状を形成する方法であって、
該電子写真感光体と該凹凸形状に対応する表面形状を有する平板型の型部材を加圧接触させて、該電子写真感光体を回転させながら該型部材の表面の表面形状を該電子写真感光体の表面に転写する工程を有し、
該電子写真感光体の表面が、
該型部材をn回加圧接触させて該表面形状を該電子写真感光体の表面にn回転写した領域A、および
該領域Aに隣接して、該型部材をn+1回以上加圧接触させて該表面形状を該電子写真感光体の表面にn+1回以上転写した領域Bを有することを特徴とする円筒状の電子写真感光体の表面加工方法に関する。
The present invention is a method of forming an uneven shape on the surface of a cylindrical electrophotographic photosensitive member,
The electrophotographic photosensitive member is brought into pressure contact with a plate-shaped mold member having a surface shape corresponding to the uneven shape, and the surface shape of the surface of the mold member is changed to the electrophotographic photosensitive member while rotating the electrophotographic photosensitive member. Having a process of transferring to the surface of the body,
The surface of the electrophotographic photoreceptor is
Region A in which the mold member is brought into pressure contact n times to transfer the surface shape onto the surface of the electrophotographic photosensitive member n times, and the mold member is brought into pressure contact at least n + 1 times adjacent to the region A The present invention relates to a surface processing method for a cylindrical electrophotographic photosensitive member, which has a region B in which the surface shape is transferred to the surface of the electrophotographic photosensitive member n + 1 times or more.

また、本発明は、電子写真感光体を製造し、上記の表面加工方法を用いて該円筒状の電子写真感光体の表面に凸凹形状を形成する工程を有することを特徴とする、表面に凹凸形状を有する円筒状の電子写真感光体の製造方法に関する。   Further, the present invention provides an electrophotographic photosensitive member, and has a step of forming an uneven shape on the surface of the cylindrical electrophotographic photosensitive member using the surface processing method described above. The present invention relates to a method for manufacturing a cylindrical electrophotographic photosensitive member having a shape.

本発明によれば、電子写真感光体の使用開始時に生じる異音を低減させた円筒状の電子写真感光体の表面加工方法、および表面に凸凹形状を有する円筒状の電子写真感光体の製造方法を提供することができる。   According to the present invention, a surface processing method of a cylindrical electrophotographic photosensitive member in which abnormal noise generated at the start of use of the electrophotographic photosensitive member is reduced, and a manufacturing method of a cylindrical electrophotographic photosensitive member having an uneven surface. Can be provided.

(A)〜(D)は、円筒状の電子写真感光体における領域A、領域B、Wbなどの関係を模式的に示す図である。(A)-(D) is a figure which shows typically the relationship of the area | region A, the area | region B, Wb, etc. in a cylindrical electrophotographic photoreceptor. 電子写真感光体の表面に凹凸形状を形成するための圧接形状転写加工装置の例を示す図である。It is a figure which shows the example of the press-contact shape transcription | transfer processing apparatus for forming uneven | corrugated shape on the surface of an electrophotographic photoreceptor. 円筒状の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の例を示す図である。It is a figure which shows the example of the electrophotographic apparatus provided with the process cartridge which has a cylindrical electrophotographic photoreceptor. 型部材を模式的に示す図である。It is a figure which shows a type | mold member typically.

本発明の円筒状の電子写真感光体の表面加工方法は、電子写真感光体と該凹凸形状に対応する表面形状を有する平板型の型部材を加圧接触させて、該電子写真感光体を回転させながら該型部材の表面の表面形状を該電子写真感光体の表面に転写する工程を有する。電子写真感光体の表面が、型部材をn回加圧接触させて表面形状を電子写真感光体の表面にn回転写した領域Aを有する。さらに、該領域Aに隣接して、型部材をn+1回以上加圧接触させて表面形状を電子写真感光体の表面にn+1回以上転写した領域Bを有することを特徴とする。すなわち、電子写真感光体の表面に凹凸形状を形成する際に、表面加工された面を重ねることである。   The surface processing method of the cylindrical electrophotographic photosensitive member of the present invention comprises rotating the electrophotographic photosensitive member by pressing and contacting the electrophotographic photosensitive member with a flat plate-shaped mold member having a surface shape corresponding to the uneven shape. And transferring the surface shape of the mold member to the surface of the electrophotographic photosensitive member. The surface of the electrophotographic photosensitive member has a region A in which the mold member is brought into pressure contact n times and the surface shape is transferred n times to the surface of the electrophotographic photosensitive member. Further, it is characterized by having a region B adjacent to the region A, in which the mold member is pressed and contacted n + 1 times or more and the surface shape is transferred to the surface of the electrophotographic photosensitive member n + 1 times or more. That is, the surface processed surface is overlapped when forming an uneven shape on the surface of the electrophotographic photosensitive member.

本発明者らの検討の結果、表面加工された面を重ねることによって、電子写真感光体の使用開始時のクリーニングブレードとの摺擦により生じる異音を低減させることが分かった。電子写真感光体の使用開始とは、電子写真感光体が電子写真装置本体に装着され、駆動を開始した時点を意味する。   As a result of the study by the present inventors, it has been found that noise generated by rubbing with the cleaning blade at the start of use of the electrophotographic photosensitive member is reduced by superimposing the surface processed surfaces. The start of use of the electrophotographic photosensitive member means a point in time when the electrophotographic photosensitive member is mounted on the main body of the electrophotographic apparatus and driving is started.

平板状の型部材を電子写真感光体の表面に加圧接触させて、型部材の表面の表面形状を転写する場合、型部材によって加圧接触が開始された電子写真感光体の表面の位置に微小な凹みが生じる。この凹みによって、図1(B)に示すように、電子写真感光体の長手方向に連続した凸部1−2が生じる。この凸部によって、電子写真感光体の使用開始時のクリーニングブレードとの摺擦により異音を生じていた。   When a flat mold member is brought into pressure contact with the surface of the electrophotographic photosensitive member to transfer the surface shape of the surface of the mold member, the surface of the electrophotographic photosensitive member where pressure contact is started by the mold member is transferred. A minute dent is generated. Due to this recess, as shown in FIG. 1 (B), a convex portion 1-2 continuous in the longitudinal direction of the electrophotographic photosensitive member is generated. Due to this convex portion, abnormal noise was generated by rubbing with the cleaning blade at the start of use of the electrophotographic photosensitive member.

そこで、本発明では、表面加工された面を重ねることによって、上述の凸部1−2を再度表面加工することにより、図1(D)の領域B(1−3)に示すように、凸部をなくすように変形させることが可能となる。これによって、クリーニングブレードが上述の凸部を摺擦する際の振動を抑制することが可能となり、異音を低減することができると考えている。   Therefore, in the present invention, the surface is processed again by superimposing the surface-processed surfaces, so that the protrusions as shown in a region B (1-3) in FIG. It is possible to deform so as to eliminate the part. This makes it possible to suppress vibrations when the cleaning blade rubs the above-described convex portions, thereby reducing abnormal noise.

本発明において、nは1であることが好ましい。この場合、領域A(図1(C)1−1)は凹凸形状が1回形成された領域であり、領域B(図1(D)1−4)は凹凸形状が2回以上形成された領域である。   In the present invention, n is preferably 1. In this case, the region A (FIG. 1C) 1-1 is a region in which the uneven shape is formed once, and the region B (FIG. 1D) 1-4 is formed in the uneven shape twice or more. It is an area.

領域Bの電子写真感光体の回転方向における長さをWb(図1(D)1−4)とし、
クリーニング部材であるクリーニングブレードと該電子写真感光体との接触領域の電子写真感光体の回転方向における長さをWとしたとき、
WおよびWbが、下記式(1)を満たすことが好ましい。下記式(1)を満たすと、より異音を低減することが可能となる。
Wb>W ・・・(1)
The length of the region B in the rotation direction of the electrophotographic photosensitive member is Wb (FIG. 1 (D) 1-4),
When the length in the rotation direction of the electrophotographic photosensitive member of the contact area between the cleaning blade as the cleaning member and the electrophotographic photosensitive member is W,
It is preferable that W and Wb satisfy the following formula (1). When the following formula (1) is satisfied, it is possible to further reduce abnormal noise.
Wb> W (1)

上記領域A、領域B、WbおよびW、転写された凹凸形状等については、例えば、レーザー顕微鏡、光学顕微鏡、電子顕微鏡、原子力間顕微鏡などの顕微鏡を用いて観察することができる。   About the said area | region A, area | region B, Wb and W, the transferred uneven | corrugated shape, etc., it can observe using microscopes, such as a laser microscope, an optical microscope, an electron microscope, and an atomic force microscope.

レーザー顕微鏡としては、例えば、以下の機器が利用可能である。   As the laser microscope, for example, the following devices can be used.

(株)キーエンス製の超深度形状測定顕微鏡VK−8550、超深度形状測定顕微鏡VK−9000、超深度形状測定顕微鏡VK−9500、VK−X200
(株)菱化システム製の表面形状測定システムSurface Explorer SX−520DR型機
オリンパス(株)製の走査型共焦点レーザー顕微鏡OLS3000
レーザーテック(株)製のリアルカラーコンフォーカル顕微鏡OPTELICSシリーズH1200
Keyence Corporation ultra-deep shape measurement microscope VK-8550, ultra-deep shape measurement microscope VK-9000, ultra-deep shape measurement microscope VK-9500, VK-X200
Surface shape measuring system Surface Explorer SX-520DR model manufactured by Ryoka System Co., Ltd. Scanning confocal laser microscope OLS3000 manufactured by Olympus Corporation
Real color confocal microscope OPTELICS series H1200 manufactured by Lasertec Co., Ltd.

光学顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製のデジタルマイクロスコープVHX−500、デジタルマイクロスコープVHX−200
オムロン(株)製の3DデジタルマイクロスコープVC−7700
As the optical microscope, for example, the following devices can be used.
Digital microscope VHX-500, digital microscope VHX-200 manufactured by Keyence Corporation
3D digital microscope VC-7700 manufactured by OMRON Corporation

電子顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製の3Dリアルサーフェスビュー顕微鏡VE−9800、3Dリアルサーフェスビュー顕微鏡VE−8800
エスアイアイ・ナノテクノロジー(株)製の走査型電子顕微鏡コンベンショナル/Variable Pressure SEM
(株)島津製作所製の走査型電子顕微鏡SUPERSCAN SS−550
As the electron microscope, for example, the following devices can be used.
Keyence 3D Real Surface View Microscope VE-9800, 3D Real Surface View Microscope VE-8800
Scanning Electron Microscope Conventional / Variable Pressure SEM manufactured by SII NanoTechnology Co., Ltd.
Scanning electron microscope SUPERSCAN SS-550 manufactured by Shimadzu Corporation

原子力間顕微鏡としては、例えば、以下の機器が利用可能である。
(株)キーエンス製のナノスケールハイブリッド顕微鏡VN−8000
エスアイアイ・ナノテクノロジー(株)製の走査型プローブ顕微鏡NanoNaviステーション
(株)島津製作所製の走査型プローブ顕微鏡SPM−9600
As the atomic force microscope, for example, the following devices can be used.
KEYENCE nanoscale hybrid microscope VN-8000
Scanning Probe Microscope NanoNavi Station manufactured by SII Nano Technology Co., Ltd. Scanning Probe Microscope SPM-9600 manufactured by Shimadzu Corporation

領域Aは、型部材の表面形状を電子写真感光体の表面にn回転写した領域であり、n回形成された凹凸形状が重なり合って観察される領域である。ただし、nが1のときは、型部材の表面形状を電子写真感光体の表面に1回転写した領域であり、型部材の表面形状に対応する凹凸形状が観察される領域である。一方、領域Bは、型部材の表面形状を電子写真感光体の表面にn+1回以上転写した領域のため、n回目に形成された凹凸形状とn+1回目以降に形成された凹凸形状が重なり合った形状が観察される領域である。   Region A is a region where the surface shape of the mold member has been transferred n times to the surface of the electrophotographic photosensitive member, and is a region where the concavo-convex shapes formed n times overlap and are observed. However, when n is 1, it is an area where the surface shape of the mold member is transferred once to the surface of the electrophotographic photosensitive member, and an uneven shape corresponding to the surface shape of the mold member is observed. On the other hand, the region B is a region in which the surface shape of the mold member is transferred to the surface of the electrophotographic photosensitive member n + 1 times or more, so that the uneven shape formed at the nth time and the uneven shape formed after the n + 1 time are overlapped. Is a region observed.

上記Wbの測定は、表面加工の開始部が判別できる倍率であれば、低倍率のもので行っても構わない。また、電子写真感光体の長手方向の評価を行う場合には、ソフトを用いて複数の部分画像を連結するようにしてもよい。まず、電子写真感光体の表面を顕微鏡で拡大観察する。例えば、円筒状の電子写真感光体の表面(周面)、その曲面の断面プロファイルを抽出し、曲線(電子写真感光体が円筒状であれば円弧)をフィッティングする。その曲線が直線になるように補正を行った後、表面加工の開始位置と表面加工の終了位置の幅を測定し、電子写真感光体の長手方向において測定した幅の最小値をWbとする。   The measurement of Wb may be performed at a low magnification as long as the magnification at which the surface processing start portion can be identified. When evaluating the longitudinal direction of the electrophotographic photosensitive member, a plurality of partial images may be connected using software. First, the surface of the electrophotographic photoreceptor is enlarged and observed with a microscope. For example, the surface (circumferential surface) of the cylindrical electrophotographic photosensitive member and the cross-sectional profile of the curved surface are extracted, and a curve (arc if the electrophotographic photosensitive member is cylindrical) is fitted. After correcting so that the curve becomes a straight line, the width of the start position of the surface processing and the end position of the surface processing is measured, and the minimum value of the width measured in the longitudinal direction of the electrophotographic photosensitive member is defined as Wb.

領域Aと領域Bでは、形成された凹凸形状が異なるため、最適なクリーニングブレードの設定が異なる。したがって、クリーニング性を維持する観点から、Wbが下記式(2)を満たすことが好ましい。
40mm≧Wb ・・・(2)
さらには、下記式(3)を満たすことが好ましい。
20mm≧Wb≧0.5mm・・・(3)
The region A and the region B are different in the formed uneven shape, and therefore the optimum setting of the cleaning blade is different. Therefore, from the viewpoint of maintaining cleaning properties, it is preferable that Wb satisfies the following formula (2).
40 mm ≧ Wb (2)
Furthermore, it is preferable to satisfy the following formula (3).
20 mm ≧ Wb ≧ 0.5 mm (3)

上記Wの測定は、クリーニングブレードと電子写真感光体との接触領域の電子写真感光体回転方向における長さを直接的に観察して計測しても構わないし、間接的に観察し、計測しても構わない。また、電子写真感光体の長手方向の評価を行う場合には、ソフトを用いて複数の部分画像を連結するようにしてもよい。クリーニングブレードと電子写真感光体との接触領域の電子写真感光体の回転方向における長さを測定し、クリーニングブレードの長手方向において測定した長さの最大値をWとする。   The measurement of W may be performed by directly observing and measuring the length of the contact area between the cleaning blade and the electrophotographic photosensitive member in the rotation direction of the electrophotographic photosensitive member. It doesn't matter. When evaluating the longitudinal direction of the electrophotographic photosensitive member, a plurality of partial images may be connected using software. The length of the contact area between the cleaning blade and the electrophotographic photosensitive member in the rotation direction of the electrophotographic photosensitive member is measured, and the maximum length measured in the longitudinal direction of the cleaning blade is defined as W.

<電子写真感光体の表面に凸凹形状を形成する方法>
表面形状を有する平板状の型部材を電子写真感光体の表面に加圧接触させ、電子写真感光体を回転させながら型部材の表面の表面形状を電子写真感光体の表面に転写することによって、電子写真感光体の表面に凸凹形状を形成することができる。
<Method for forming uneven shape on the surface of electrophotographic photosensitive member>
A plate-shaped mold member having a surface shape is brought into pressure contact with the surface of the electrophotographic photosensitive member, and the surface shape of the surface of the mold member is transferred to the surface of the electrophotographic photosensitive member while rotating the electrophotographic photosensitive member. An uneven shape can be formed on the surface of the electrophotographic photosensitive member.

図2に、電子写真感光体の表面に凹凸形状を形成するための圧接形状転写加工装置の例を示す。   FIG. 2 shows an example of a pressure contact shape transfer processing apparatus for forming an uneven shape on the surface of an electrophotographic photosensitive member.

図2に示す圧接形状転写加工装置によれば、被加工物である円筒状の電子写真感光体2−1を回転させながら、その表面(周面)に連続的に平板状の型部材2−2を接触させ、加圧させながら、型部材を移動させる。これにより、電子写真感光体を回転させながら、型部材の表面形状を電子写真感光体の表面に転写し、電子写真感光体2−1の表面に凹凸形状を形成することができる。   According to the press-contact shape transfer processing apparatus shown in FIG. 2, a flat plate-shaped mold member 2- is continuously formed on the surface (circumferential surface) of the cylindrical electrophotographic photosensitive member 2-1, which is a workpiece. The mold member is moved while contacting 2 and applying pressure. As a result, the surface shape of the mold member can be transferred to the surface of the electrophotographic photosensitive member while rotating the electrophotographic photosensitive member, and an uneven shape can be formed on the surface of the electrophotographic photosensitive member 2-1.

加圧部材2−3の材質としては、例えば、金属、金属酸化物、プラスチック、ガラスなどが挙げられる。これらの中でも、機械的強度、寸法精度、耐久性の観点から、ステンレス鋼(SUS)が好ましい。加圧部材2−3は、その上面に型部材が設置される。また、下面側の支持部材(不図示)および加圧システム(不図示)により、支持部材2−4に支持された電子写真感光体2−1の表面に、型部材2−2を所定の圧力で接触させることができる。また、支持部材2−4を加圧部材2−3に対して所定の圧力で押し付けてもよいし、支持部材2−4および加圧部材2−3を互いに押し付けてもよい。   Examples of the material of the pressure member 2-3 include metal, metal oxide, plastic, and glass. Among these, stainless steel (SUS) is preferable from the viewpoint of mechanical strength, dimensional accuracy, and durability. The pressing member 2-3 is provided with a mold member on the upper surface thereof. Further, a predetermined pressure is applied to the surface of the electrophotographic photosensitive member 2-1 supported by the support member 2-4 by a support member (not shown) on the lower surface side and a pressure system (not shown). Can be contacted. Further, the support member 2-4 may be pressed against the pressure member 2-3 with a predetermined pressure, or the support member 2-4 and the pressure member 2-3 may be pressed against each other.

図2に示す例は、加圧部材2−3を移動させることにより、電子写真感光体2−1が従動または駆動回転しながら、その表面を連続的に加工する例である。さらに、加圧部材2−3を固定し、支持部材2−4を移動させることにより、または、支持部材2−4および加圧部材2−3の両者を移動させることにより、電子写真感光体2−1の表面を連続的に加工することもできる。   The example shown in FIG. 2 is an example in which the surface of the electrophotographic photosensitive member 2-1 is continuously processed while being driven or driven and rotated by moving the pressing member 2-3. Further, the electrophotographic photosensitive member 2 is fixed by fixing the pressure member 2-3 and moving the support member 2-4, or by moving both the support member 2-4 and the pressure member 2-3. The surface of -1 can also be processed continuously.

なお、形状転写を効率的に行う観点から、型部材2−2や電子写真感光体2−1を加熱してもよい。   Note that the mold member 2-2 and the electrophotographic photosensitive member 2-1 may be heated from the viewpoint of efficiently performing shape transfer.

型部材としては、例えば、表面形状を有する金属や樹脂フィルム、シリコンウエハーの表面にレジストによりパターニングをしたもの、微粒子が分散された樹脂フィルム、微細な表面形状を有する樹脂フィルムに金属コーティングを施したものが挙げられる。また、シリコンウエハー上にフォトリソグラフィーや電子線により微細形状を描写した後、必要なエッチング処理を行って得られる型部材を用いることもできる。また、ポリイミドなどの樹脂にレーザー加工などにより微細形状を描写したものを母型(マスター)としたニッケル電鋳法により得られる型部材を用いることもできる。   Examples of the mold member include a metal or resin film having a surface shape, a silicon wafer surface patterned with a resist, a resin film in which fine particles are dispersed, and a resin film having a fine surface shape provided with a metal coating. Things. In addition, a mold member obtained by performing a necessary etching process after drawing a fine shape on a silicon wafer by photolithography or electron beam can also be used. Moreover, the mold member obtained by the nickel electroforming method which used as a mother die (master) what described the fine shape by laser processing etc. to resin, such as a polyimide, can also be used.

電子写真感光体の表面に有する凸凹形状としては、例えば、円柱、角柱または半球形状の凸部が連続している形状や、逆に、円柱、角柱または半球形状の凹部が連続している形状が挙げられる。また、一定またはランダムな間隔で、凸または凹の線形状が連続する形状も挙げられる。凸または凹の線形状の方向は、円筒状の電子写真感光体の周方向であってもよいし、回転軸方向であってもよい。   Examples of the uneven shape on the surface of the electrophotographic photosensitive member include a shape in which cylindrical, prismatic or hemispherical convex portions are continuous, and conversely, a shape in which cylindrical, prismatic or hemispherical concave portions are continuous. Can be mentioned. In addition, a shape in which convex or concave line shapes are continuous at regular or random intervals is also exemplified. The direction of the convex or concave line shape may be the circumferential direction of the cylindrical electrophotographic photosensitive member or the rotational axis direction.

電子写真感光体に押し付けられる圧力を均一にする観点から、型部材2−2と加圧部材2−3との間に弾性体を設置することが好ましい。   From the viewpoint of making the pressure pressed against the electrophotographic photosensitive member uniform, it is preferable to install an elastic body between the mold member 2-2 and the pressure member 2-3.

次に、型部材の表面の表面形状について述べる。型部材の表面形状は、電子写真感光体の表面に形成する凹凸形状に対応する形状である。これらの表面形状としては、例えば、平面部に多数の凸部が形成されている形状が挙げられる。凸部の形状としては、例えば、凸部を上から見たときの形が、円、楕円、正方形、長方形、三角形、四角形、六角形などが挙げられる。また、凸部の断面形状は、例えば、三角形、四角形、多角形などのエッジを有するものや、連続した曲線からなる波型や、三角形、四角形、多角形のエッジの一部または全部を曲線に変形したものなどが挙げられる。   Next, the surface shape of the surface of the mold member will be described. The surface shape of the mold member is a shape corresponding to the uneven shape formed on the surface of the electrophotographic photosensitive member. As these surface shapes, for example, a shape in which a large number of convex portions are formed on a plane portion can be mentioned. Examples of the shape of the convex portion include a circle, an ellipse, a square, a rectangle, a triangle, a quadrangle, and a hexagon when the convex portion is viewed from above. In addition, the cross-sectional shape of the convex portion may be, for example, those having edges such as triangles, quadrilaterals, polygons, corrugations consisting of continuous curves, and some or all of the edges of triangles, quadrilaterals, polygons as curves. Deformed ones are listed.

<プロセスカートリッジおよび電子写真装置の構成>
図3に、本発明の電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の例を示す。
<Configuration of process cartridge and electrophotographic apparatus>
FIG. 3 shows an example of an electrophotographic apparatus provided with a process cartridge having the electrophotographic photosensitive member of the present invention.

図3において、円筒状の電子写真感光体1は、軸2を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体1の表面は、回転過程において、帯電手段3(一次帯電手段:例えば、帯電ローラーなど)により、正または負の所定電位に均一に帯電される。次いで、帯電された電子写真感光体1の表面には、露光手段(画像露光手段)(不図示)から露光光(画像露光光)4が照射され、目的の画像情報に対応した静電潜像が形成されていく。像露光光4は、例えば、スリット露光やレーザービーム走査露光などの像露光手段から出力される、目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された光である。   In FIG. 3, a cylindrical electrophotographic photosensitive member 1 is rotationally driven with a predetermined peripheral speed (process speed) in the direction of an arrow about an axis 2. The surface of the electrophotographic photosensitive member 1 is uniformly charged to a predetermined positive or negative potential by a charging unit 3 (primary charging unit: for example, a charging roller) during the rotation process. Next, the surface of the charged electrophotographic photosensitive member 1 is irradiated with exposure light (image exposure light) 4 from exposure means (image exposure means) (not shown), and an electrostatic latent image corresponding to target image information. Will be formed. The image exposure light 4 is, for example, intensity-modulated light corresponding to a time-series electric digital image signal of target image information output from image exposure means such as slit exposure or laser beam scanning exposure.

電子写真感光体1の表面に形成された静電潜像は、現像手段5内に収容された現像剤(トナー)で現像(正規現像または反転現像)され、電子写真感光体の表面にはトナー像が形成される。電子写真感光体1の表面に形成されたトナー像は、転写手段(例えば、転写ローラーなど)6からの転写バイアスによって、転写材7上に転写されていく。このとき、転写材7は、転写材供給手段(不図示)から電子写真感光体1の回転と同期して取り出されて、電子写真感光体1と転写手段6との間(当接部)に給送される。また、転写手段には、トナーの保有電荷とは逆極性のバイアス電圧がバイアス電源(不図示)から印加される。   The electrostatic latent image formed on the surface of the electrophotographic photosensitive member 1 is developed (regular development or reversal development) with a developer (toner) accommodated in the developing means 5, and toner is applied to the surface of the electrophotographic photosensitive member. An image is formed. The toner image formed on the surface of the electrophotographic photoreceptor 1 is transferred onto the transfer material 7 by a transfer bias from a transfer means (for example, a transfer roller) 6. At this time, the transfer material 7 is taken out from the transfer material supply means (not shown) in synchronism with the rotation of the electrophotographic photosensitive member 1 and is placed between the electrophotographic photosensitive member 1 and the transfer means 6 (contact portion). Be fed. Further, a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer means from a bias power source (not shown).

トナー像が転写された転写材7は、電子写真感光体の表面から分離されて定着手段8へ搬送されてトナー像の定着処理を受けることにより、画像形成物(プリント、コピー)として電子写真装置外へプリントアウトされる。   The transfer material 7 onto which the toner image has been transferred is separated from the surface of the electrophotographic photosensitive member, conveyed to the fixing means 8, and subjected to fixing processing of the toner image, whereby an electrophotographic apparatus is formed as an image formed product (print, copy). Printed out.

トナー像が転写された転写材7は、電子写真感光体1の表面から分離されて、定着手段8へ搬送されて、トナー像の定着処理を受け、画像形成物(プリント、コピー)として電子写真装置の外へプリントアウトされる。   The transfer material 7 onto which the toner image has been transferred is separated from the surface of the electrophotographic photosensitive member 1, transported to the fixing means 8, undergoes a toner image fixing process, and is electrophotographic as an image formation (print, copy). Printed out of the device.

トナー像が転写材7に転写された後の電子写真感光体1の表面は、クリーニング手段9により、転写残りの現像剤(転写残トナー)などの付着物の除去を受けて清浄される。また、転写残トナーを現像手段などで回収することもできる(クリーナレスシステム)。   The surface of the electrophotographic photosensitive member 1 after the toner image is transferred to the transfer material 7 is cleaned by the cleaning means 9 after removal of deposits such as a developer remaining after transfer (transfer residual toner). Further, the transfer residual toner can be collected by a developing means (cleanerless system).

さらに、電子写真感光体1の表面には、前露光手段(不図示)からの前露光光10が照射され、除電処理された後、繰り返し画像形成に使用される。なお、図3に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光手段は必ずしも必要ではない。   Further, the surface of the electrophotographic photosensitive member 1 is irradiated with pre-exposure light 10 from pre-exposure means (not shown), subjected to charge removal processing, and then repeatedly used for image formation. As shown in FIG. 3, when the charging unit 3 is a contact charging unit using a charging roller or the like, the pre-exposure unit is not necessarily required.

本発明においては、上述の電子写真感光体1、帯電手段3、現像手段5およびクリーニング手段9などの構成要素のうち、複数の構成要素を容器に納めて一体に支持してプロセスカートリッジを形成してもよい。このプロセスカートリッジを電子写真装置本体に対して着脱自在に構成することができる。例えば、電子写真感光体1と、帯電手段3、現像手段5およびクリーニング手段9から選択される少なくとも1つとを一体に支持してカートリッジ化する。そして、電子写真装置本体のレールなどの案内手段12を用いて電子写真装置本体に着脱自在なプロセスカートリッジ11とすることができる。   In the present invention, among the components such as the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5 and the cleaning unit 9 described above, a plurality of components are housed in a container and integrally supported to form a process cartridge. May be. The process cartridge can be configured to be detachable from the main body of the electrophotographic apparatus. For example, the electrophotographic photosensitive member 1 and at least one selected from the charging unit 3, the developing unit 5, and the cleaning unit 9 are integrally supported to form a cartridge. Then, the process cartridge 11 can be detachably attached to the main body of the electrophotographic apparatus using guide means 12 such as a rail of the main body of the electrophotographic apparatus.

露光光4は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光であってもよい。または、センサーで原稿を読み取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動もしくは液晶シャッターアレイの駆動などにより放射される光であってもよい。   The exposure light 4 may be reflected light or transmitted light from an original when the electrophotographic apparatus is a copying machine or a printer. Alternatively, it may be light emitted by reading a document with a sensor, converting it into a signal, scanning a laser beam performed in accordance with this signal, driving an LED array, or driving a liquid crystal shutter array.

<電子写真感光体の構成>
本発明の電子写真感光体は、支持体および支持体上に形成された感光層を有する円筒状の電子写真感光体である。
<Configuration of electrophotographic photoreceptor>
The electrophotographic photoreceptor of the present invention is a cylindrical electrophotographic photoreceptor having a support and a photosensitive layer formed on the support.

感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層でも、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層でもよい。電子写真特性の観点から、積層型感光層が好ましい。また、積層型感光層は、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層が好ましい。また、電荷発生層を積層構成としてもよいし、電荷輸送層を積層構成としてもよい。   The photosensitive layer is a single layer type photosensitive layer containing a charge transporting material and a charge generating material in the same layer, but is separated into a charge generating layer containing a charge generating material and a charge transporting layer containing a charge transporting material. A (functional separation type) photosensitive layer may be used. From the viewpoint of electrophotographic characteristics, a laminated photosensitive layer is preferred. The laminated photosensitive layer is preferably a normal photosensitive layer in which a charge generation layer and a charge transport layer are laminated in this order from the support side. In addition, the charge generation layer may have a stacked structure, and the charge transport layer may have a stacked structure.

支持体としては、導電性を示すもの(導電性支持体)であることが好ましい。支持体の材質としては、例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレスなどの金属(合金)が挙げられる。また、例えば、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金を用いて真空蒸着によって形成した被膜を有する金属製支持体やプラスチック製支持体を用いることもできる。   The support is preferably one that exhibits conductivity (conductive support). Examples of the material of the support include metals (alloys) such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum alloy, and stainless steel. In addition, for example, a metal support or a plastic support having a film formed by vacuum deposition using aluminum, an aluminum alloy, or an indium oxide-tin oxide alloy can be used.

また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子をプラスチックや紙に含浸させた支持体や、導電性結着樹脂で形成された支持体を用いることもできる。   In addition, a support in which conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles are impregnated with plastic or paper, or a support formed with a conductive binder resin can also be used.

支持体の表面は、レーザー光の散乱による干渉縞の抑制を目的として、例えば、切削処理、粗面化処理、アルマイト処理を施してもよい。   The surface of the support may be subjected to, for example, a cutting process, a roughening process, or an alumite process for the purpose of suppressing interference fringes due to scattering of laser light.

支持体と、後述の下引き層との間には、例えば、レーザー光の散乱による干渉縞の抑制や、支持体の傷の被覆を目的として、導電層を設けてもよい。導電層は、カーボンブラック、導電性顔料、抵抗調節顔料を結着樹脂とともに溶剤に分散処理することによって得られる導電層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。また、導電層用塗布液には、例えば、加熱、紫外線照射、放射線照射により硬化重合する化合物を添加してもよい。   For example, a conductive layer may be provided between the support and the undercoat layer described below for the purpose of suppressing interference fringes due to scattering of laser light and covering the scratches on the support. The conductive layer is formed by applying a coating solution for conductive layer obtained by dispersing carbon black, conductive pigment, and resistance adjusting pigment in a solvent together with a binder resin to form a coating film, and then drying the obtained coating film. Can be formed. Moreover, you may add to the coating liquid for conductive layers the compound which hardens and polymerizes by heating, ultraviolet irradiation, and radiation irradiation, for example.

導電層に用いられる結着樹脂としては、例えば、アクリル樹脂、アリル樹脂、アルキッド樹脂、エチルセルロース樹脂、エチレン−アクリル酸コポリマー、エポキシ樹脂、カゼイン樹脂、シリコーン樹脂、ゼラチン樹脂、フェノール樹脂、ブチラール樹脂、ポリアクリレート樹脂、ポリアセタール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアリルエーテル樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂が挙げられる。   Examples of the binder resin used for the conductive layer include acrylic resin, allyl resin, alkyd resin, ethyl cellulose resin, ethylene-acrylic acid copolymer, epoxy resin, casein resin, silicone resin, gelatin resin, phenol resin, butyral resin, poly Examples thereof include acrylate resins, polyacetal resins, polyamideimide resins, polyamide resins, polyallyl ether resins, polyimide resins, polyurethane resins, polyester resins, polycarbonate resins, and polyethylene resins.

導電性顔料および抵抗調節顔料としては、例えば、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレスなどの金属(合金)の粒子や、これらをプラスチックの粒子の表面に蒸着したものが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズがドープされている酸化インジウム、アンチモンやタンタルがドープされている酸化スズなどの金属酸化物の粒子を用いることもできる。   Examples of the conductive pigment and the resistance adjusting pigment include particles of metal (alloy) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those obtained by vapor deposition on the surface of plastic particles. It is also possible to use metal oxide particles such as zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, tin-doped indium oxide, antimony or tantalum-doped tin oxide. it can.

これらは、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。さらに、導電性顔料および抵抗調節顔料には、表面処理を施すことができる。表面処理剤としては、例えば、界面活性剤、シランカップリング剤、チタンカップリング剤が用いられる。   These may be used alone or in combination of two or more. Further, the conductive pigment and the resistance adjusting pigment can be subjected to a surface treatment. As the surface treatment agent, for example, a surfactant, a silane coupling agent, or a titanium coupling agent is used.

さらに、光散乱を目的として、シリコーン樹脂微粒子やアクリル樹脂微粒子などの粒子を添加してもよい。また、レベリング剤、分散剤、酸化防止剤、紫外線吸収剤、可塑剤、整流性材料等の添加剤を含有させても良い。   Furthermore, for the purpose of light scattering, particles such as silicone resin fine particles and acrylic resin fine particles may be added. Moreover, you may contain additives, such as a leveling agent, a dispersing agent, antioxidant, a ultraviolet absorber, a plasticizer, a rectifying material.

導電層の膜厚は、0.2μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、5μm以上30μm以下であることがより好ましい。   The thickness of the conductive layer is preferably 0.2 μm or more and 40 μm or less, more preferably 1 μm or more and 35 μm or less, and more preferably 5 μm or more and 30 μm or less.

支持体または導電層と感光層(電荷発生層、電荷輸送層)との間には、感光層の接着性改良、支持体からの電荷注入性改良を目的として、下引き層(中間層)を設けてもよい。下下引き層は、結着樹脂、および溶剤を混合することによって得られる下引き層用塗布液の塗膜を形成し、この塗膜を乾燥させることによって下引き層を形成することができる。   An undercoat layer (intermediate layer) is provided between the support or conductive layer and the photosensitive layer (charge generation layer, charge transport layer) for the purpose of improving adhesion of the photosensitive layer and improving charge injection from the support. It may be provided. The undercoat layer can be formed by forming a coating film of an undercoat layer coating solution obtained by mixing a binder resin and a solvent, and drying the coating film.

下引き層に用いられる樹脂としては、例えば、ポリビニルアルコール、ポリエチレンオキシド、エチルセルロース、メチルセルロース、カゼイン、ポリアミド(ナイロン6、ナイロン66、ナイロン610、共重合ナイロンおよびN−アルコキシメチル化ナイロンなど)、ポリウレタン樹脂、アクリル樹脂、アリル樹脂、アルキッド樹脂、フェノール樹脂、エポキシ樹脂が挙げられる。   Examples of the resin used for the undercoat layer include polyvinyl alcohol, polyethylene oxide, ethyl cellulose, methyl cellulose, casein, polyamide (nylon 6, nylon 66, nylon 610, copolymer nylon, N-alkoxymethylated nylon, etc.), polyurethane resin , Acrylic resin, allyl resin, alkyd resin, phenol resin, and epoxy resin.

下引き層の膜厚は、0.05μm以上40μm以下であることが好ましい。   The thickness of the undercoat layer is preferably 0.05 μm or more and 40 μm or less.

下引き層には、金属酸化物粒子を含有させてもより。下引き層に用いられる金属酸化物粒子は、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化アルミニウムからなる群より選択される少なくとも1種を含有する粒子であることが好ましい。上記の金属酸化物を含有する粒子の中でも、酸化亜鉛を含有する粒子がより好ましい。   The subbing layer may contain metal oxide particles. The metal oxide particles used for the undercoat layer are preferably particles containing at least one selected from the group consisting of titanium oxide, zinc oxide, tin oxide, zirconium oxide, and aluminum oxide. Among the particles containing the above metal oxide, particles containing zinc oxide are more preferable.

金属酸化物粒子は、金属酸化物粒子の表面がシランカップリング剤などの表面処理剤で処理されている粒子であってもよい。   The metal oxide particles may be particles in which the surface of the metal oxide particles is treated with a surface treatment agent such as a silane coupling agent.

分散方法としては、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、振動ミル、アトライター、液衝突型高速分散機を用いた方法が挙げられる。   Examples of the dispersion method include a method using a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill, a vibration mill, an attritor, and a liquid collision type high-speed disperser.

下引き層には、例えば、下引き層の表面粗さの調整、または下引き層のひび割れ軽減を目的として、有機樹脂粒子や、レベリング剤をさらに含有させてもよい。有機樹脂粒子としては、シリコーン粒子等の疎水性有機樹脂粒子や、架橋型ポリメタクリレート樹脂(PMMA)粒子等の親水性有機樹脂粒子を用いることができる。   The undercoat layer may further contain, for example, organic resin particles or a leveling agent for the purpose of adjusting the surface roughness of the undercoat layer or reducing cracks in the undercoat layer. As the organic resin particles, hydrophobic organic resin particles such as silicone particles and hydrophilic organic resin particles such as cross-linked polymethacrylate resin (PMMA) particles can be used.

下引き層には、各種添加物を含有させることができる。添加物としては、例えば金属、導電性物質、電子輸送性物質、金属キレート化合物、シランカップリング剤等の有機金属化合物が挙げられる。   Various additives can be contained in the undercoat layer. Examples of the additive include a metal, a conductive material, an electron transporting material, a metal chelate compound, and an organometallic compound such as a silane coupling agent.

感光層が積層型感光層である場合、電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散して得られる電荷発生層用塗布液を塗布して塗膜を形成し、これを乾燥させることによって形成することができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。   When the photosensitive layer is a laminated photosensitive layer, the charge generation layer is formed by applying a charge generation layer coating solution obtained by dispersing the charge generation material together with a binder resin and a solvent to form a coating film, and then drying it. Can be formed. The charge generation layer may be a vapor generation film of a charge generation material.

感光層に用いられる電荷発生物質としては、例えば、アゾ顔料、フタロシアニン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、スクワリリウム色素、チアピリリウム塩、トリフェニルメタン色素、キナクリドン顔料が挙げられる。アズレニウム塩顔料、シアニン染料、アントアントロン顔料、ピラントロン顔料、キサンテン色素、キノンイミン色素、スチリル色素が挙げられる。   Examples of the charge generating material used in the photosensitive layer include azo pigments, phthalocyanine pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, squarylium dyes, thiapyrylium salts, triphenylmethane dyes, and quinacridone pigments. Examples include azulenium salt pigments, cyanine dyes, anthanthrone pigments, pyranthrone pigments, xanthene dyes, quinoneimine dyes, and styryl dyes.

これら電荷発生物質は、1種のみ用いてもよく、2種以上用いてもよい。これらの中でも、感度の観点から、オキシチタニウムフタロシアニン、クロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニンが好ましい。さらに、ヒドロキシガリウムフタロシアニンの中でも、CuKα特性X線回折におけるブラッグ角2θの7.4°±0.3°および28.2°±0.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶が好ましい。   These charge generation materials may be used alone or in combination of two or more. Among these, oxytitanium phthalocyanine, chlorogallium phthalocyanine, and hydroxygallium phthalocyanine are preferable from the viewpoint of sensitivity. Furthermore, among the hydroxygallium phthalocyanines, there are hydroxygallium phthalocyanine crystals having crystal forms having strong peaks at Bragg angles 2θ of 7.4 ° ± 0.3 ° and 28.2 ° ± 0.3 ° in CuKα characteristic X-ray diffraction. preferable.

電荷発生層に用いられる結着樹脂としては、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂、アクリル樹脂、酢酸ビニル樹脂、尿素樹脂が挙げられる。これらの中でも、ブチラール樹脂が好ましい。これらは、単独、混合または共重合体として、1種または2種以上用いることができる。   Examples of the binder resin used for the charge generation layer include polycarbonate resin, polyester resin, butyral resin, polyvinyl acetal resin, acrylic resin, vinyl acetate resin, and urea resin. Among these, a butyral resin is preferable. These may be used alone or in combination as a mixture or copolymer.

分散方法としては、例えば、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、アトライターを用いた方法が挙げられる。   Examples of the dispersion method include a method using a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill, and an attritor.

電荷発生層における電荷発生物質と結着樹脂との割合は、結着樹脂1質量部に対して電荷発生物質が0.3質量部以上10質量部以下であることが好ましい。電荷発生層には、必要に応じて、例えば、増感剤、レベリング剤、分散剤、酸化防止剤、紫外線吸収剤、可塑剤、整流性材料を添加することもできる。電荷発生層の膜厚は、0.01μm以上5μm以下であることが好ましく、0.1μm以上2μm以下であることがより好ましい。   The ratio of the charge generation material and the binder resin in the charge generation layer is preferably 0.3 parts by mass or more and 10 parts by mass or less of the charge generation material with respect to 1 part by mass of the binder resin. If necessary, for example, a sensitizer, a leveling agent, a dispersant, an antioxidant, an ultraviolet absorber, a plasticizer, and a rectifying material can be added to the charge generation layer. The thickness of the charge generation layer is preferably from 0.01 μm to 5 μm, and more preferably from 0.1 μm to 2 μm.

感光層が積層型感光層である場合、電荷発生層上には、電荷輸送層が形成される。電荷輸送層は、電荷輸送物質と結着樹脂を溶剤に溶解させて得られる電荷輸送層用塗布液を塗布して塗膜を形成し、この塗膜を乾燥させることによって形成することができる。   When the photosensitive layer is a laminated photosensitive layer, a charge transport layer is formed on the charge generation layer. The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent to form a coating film and drying the coating film.

電荷輸送物質としては、例えば、ピレン化合物、N−アルキルカルバゾール化合物、ヒドラゾン化合物、N,N−ジアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物、トリフェニルメタン化合物、ピラゾリン化合物、スチリル化合物、スチルベン化合物、ブタジエン化合物が挙げられる。これら電荷輸送物質は、1種のみ用いてもよく、2種以上用いてもよい。これら電荷輸送物質の中でも、電荷の移動度の観点から、トリフェニルアミン化合物が好ましい。   Examples of the charge transport material include pyrene compounds, N-alkylcarbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, triphenylmethane compounds, pyrazoline compounds, styryl compounds, stilbene compounds, A butadiene compound is mentioned. These charge transport materials may be used alone or in combination of two or more. Among these charge transport materials, a triphenylamine compound is preferable from the viewpoint of charge mobility.

電荷輸送層に用いられる結着樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂、ポリビニルカルバゾール樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、ポリサルホン樹脂、ポリアリレート樹脂、塩化ビニリデン、アクリロニトリル共重合体、ポリビニルベンザール樹脂が挙げられる。これらは、単独、混合または共重合体として、1種または2種以上用いることができる。   Examples of the binder resin used for the charge transport layer include polyester resin, acrylic resin, polyvinyl carbazole resin, phenoxy resin, polycarbonate resin, polyvinyl butyral resin, polystyrene resin, polyvinyl acetate resin, polysulfone resin, polyarylate resin, and vinylidene chloride. , Acrylonitrile copolymer, and polyvinyl benzal resin. These may be used alone or in combination as a mixture or copolymer.

電荷輸送層には、必要に応じて、例えば、酸化防止剤、紫外線吸収剤、可塑剤、レベリング剤を添加することもできる。   If necessary, for example, an antioxidant, an ultraviolet absorber, a plasticizer, and a leveling agent can be added to the charge transport layer.

電荷輸送層における電荷輸送物質と結着樹脂との割合は、結着樹脂1質量部に対して電荷輸送物質が0.3質量部以上10質量部以下であることが好ましい。電荷輸送層が1層である場合、その電荷輸送層の膜厚は、5μm以上40μm以下であることが好ましく、8μm以上30μm以下であることがより好ましい。電荷輸送層を積層構成とした場合、支持体側の電荷輸送層の膜厚は、5μm以上30μm以下であることが好ましく、表面側の電荷輸送層の膜厚は、1μm以上10μm以下であることが好ましい。   The ratio of the charge transport material and the binder resin in the charge transport layer is preferably 0.3 parts by mass or more and 10 parts by mass or less of the charge transport material with respect to 1 part by mass of the binder resin. When the charge transport layer is a single layer, the thickness of the charge transport layer is preferably 5 μm or more and 40 μm or less, and more preferably 8 μm or more and 30 μm or less. When the charge transport layer has a laminated structure, the thickness of the charge transport layer on the support side is preferably 5 μm to 30 μm, and the thickness of the charge transport layer on the surface side is preferably 1 μm to 10 μm. preferable.

電荷発生層、電荷輸送層の塗布液に用いられる溶剤としては、例えば、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、ハロゲン化炭化水素系溶剤、芳香族系溶剤が挙げられる。   Examples of the solvent used in the coating solution for the charge generation layer and the charge transport layer include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, halogenated hydrocarbon solvents, and aromatic solvents. Is mentioned.

電子写真感光体の耐摩耗性やクリーニング性の向上を目的として、電荷輸送層上に保護層を形成してもよい。保護層は、結着樹脂を溶剤に溶解させて得られる保護層用塗布液の塗膜を形成し、塗膜を乾燥させることによって形成することができる。   A protective layer may be formed on the charge transport layer for the purpose of improving the abrasion resistance and cleaning properties of the electrophotographic photosensitive member. The protective layer can be formed by forming a coating film of a coating solution for the protective layer obtained by dissolving the binder resin in a solvent and drying the coating film.

保護層に用いられる樹脂としては、例えば、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、フェノール樹脂、ポリアリレート樹脂が挙げられる。   Examples of the resin used for the protective layer include polyvinyl butyral resin, polyester resin, polycarbonate resin, polyamide resin, polyimide resin, polyurethane resin, phenol resin, and polyarylate resin.

また、保護層は、重合性のモノマーあるいはオリゴマーを溶剤に溶解させて得られる保護層用塗布液の塗膜を形成し、塗膜を架橋または重合反応を用いて硬化(重合)させて保護層を形成してもよい。重合性のモノマーあるいはオリゴマーとしては、例えば、アクリロイルオキシ基やスチリル基などの連鎖重合性官能基を有する化合物や、ヒドロキシ基、アルコキシシリル基、イソシアネート基、エポキシ基などの逐次重合性官能基を有する化合物が挙げられる。   In addition, the protective layer is formed by forming a coating film of a coating solution for the protective layer obtained by dissolving a polymerizable monomer or oligomer in a solvent, and curing (polymerizing) the coating film using a crosslinking or polymerization reaction. May be formed. Examples of the polymerizable monomer or oligomer include a compound having a chain polymerizable functional group such as an acryloyloxy group and a styryl group, and a sequentially polymerizable functional group such as a hydroxy group, an alkoxysilyl group, an isocyanate group, and an epoxy group. Compounds.

硬化させる反応としては、例えば、ラジカル重合、イオン重合、熱重合、光重合、放射線重合(電子線重合)、プラズマCVD法、光CVD法などが挙げられる。   Examples of the curing reaction include radical polymerization, ionic polymerization, thermal polymerization, photopolymerization, radiation polymerization (electron beam polymerization), plasma CVD method, and photo CVD method.

また、保護層には、導電性粒子や電荷輸送物質を添加してもよい。導電性粒子としては、上記導電層に用いられる導電性顔料を用いることができる。電荷輸送物質としては、上述の電荷輸送物質を用いることができる。   In addition, conductive particles or a charge transport material may be added to the protective layer. As the conductive particles, a conductive pigment used in the conductive layer can be used. As the charge transport material, the above-described charge transport materials can be used.

さらに、耐摩耗性と電荷輸送能力の両立の観点から、重合性官能基を有する電荷輸送物質を用いることがより好ましい。重合性官能基としてはアクリロイルオキシ基が好ましい。また、同一分子内に重合性官能基を2つ以上有する電荷輸送物質が好ましい。   Furthermore, it is more preferable to use a charge transport material having a polymerizable functional group from the viewpoint of achieving both wear resistance and charge transport capability. As the polymerizable functional group, an acryloyloxy group is preferred. Further, a charge transport material having two or more polymerizable functional groups in the same molecule is preferable.

また、電子写真感光体の表面層(電荷輸送層または保護層)には、有機樹脂粒子や無機粒子を含有させてもよい。有機樹脂粒子としては、フッ素原子含有樹脂粒子、アクリル樹脂粒子が挙げられる。無機粒子としては、アルミナ、シリカ、チタニアが挙げられる。さらに、導電性粒子、酸化防止剤、紫外線吸収剤、可塑剤、レベリング剤などを添加してもよい。   Further, the surface layer (charge transport layer or protective layer) of the electrophotographic photoreceptor may contain organic resin particles or inorganic particles. Examples of the organic resin particles include fluorine atom-containing resin particles and acrylic resin particles. Inorganic particles include alumina, silica, and titania. Furthermore, you may add electroconductive particle, antioxidant, a ultraviolet absorber, a plasticizer, a leveling agent, etc.

保護層の膜厚は、0.1〜30μmであることが好ましく、1〜10μmであることがより好ましい。   The thickness of the protective layer is preferably from 0.1 to 30 μm, and more preferably from 1 to 10 μm.

上記各層の塗布液を塗布する方法としては、例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法を用いることができる。   As a method for applying the coating solution for each layer, for example, a dip coating method (dip coating method), a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method, and a blade coating method can be used.

以下、具体的な実施例を挙げて、本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. In the examples, “part” means “part by mass”.

(感光体−1の製造例)
直径30mm、長さ357.5mmのアルミニウムシリンダーを円筒状支持体(導電性支持体)とした。
(Example of photoconductor-1 production)
An aluminum cylinder having a diameter of 30 mm and a length of 357.5 mm was used as a cylindrical support (conductive support).

次に、酸化亜鉛粒子(比表面積:19m/g、粉体抵抗:4.7×10Ω・cm)100部をトルエン500部と撹拌混合し、これにシランカップリング剤(化合物名:N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、商品名:KBM602、信越化学工業(株)製)0.8部を添加し、6時間攪拌した。その後、トルエンを減圧留去して、130℃で6時間加熱乾燥し、表面処理された酸化亜鉛粒子を得た。 Next, 100 parts of zinc oxide particles (specific surface area: 19 m 2 / g, powder resistance: 4.7 × 10 6 Ω · cm) are stirred and mixed with 500 parts of toluene, and a silane coupling agent (compound name: 0.8 part of N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, trade name: KBM602, manufactured by Shin-Etsu Chemical Co., Ltd.) was added and stirred for 6 hours. Thereafter, toluene was distilled off under reduced pressure, followed by heating and drying at 130 ° C. for 6 hours to obtain surface-treated zinc oxide particles.

次に、ブチラール樹脂(商品名:BM−1、積水化学工業(株)製)15部およびブロック化イソシアネート(商品名:スミジュール3175、住友バイエルンウレタン社製)15部をメチルエチルケトン73.5部と1−ブタノール73.5部の混合溶液に溶解させた。この溶液に表面処理された酸化亜鉛粒子80.8部、2,3,4−トリヒドロキシベンゾフェノン0.8部(東京化成工業(株)社製)を加え、これを直径0.8mmのガラスビーズを用いたサンドミル装置で23±3℃雰囲気下で3時間分散した。分散後、シリコーンオイル(商品名:SH28PA、東レダウコーニングシリコーン社製)0.01部、架橋ポリメタクリル酸メチル(PMMA)粒子(商品名:TECHPOLYMER SSX−102、積水化成品工業(株)社製、平均一次粒径2.5μm)を5.6部加えて攪拌し、下引き層用塗布液を調製した。   Next, 15 parts of butyral resin (trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.) and 15 parts of blocked isocyanate (trade name: Sumidur 3175, manufactured by Sumitomo Bayern Urethane Co., Ltd.) were added to 73.5 parts of methyl ethyl ketone. 1-butanol was dissolved in a mixed solution of 73.5 parts. 80.8 parts of surface-treated zinc oxide particles and 0.8 part of 2,3,4-trihydroxybenzophenone (manufactured by Tokyo Chemical Industry Co., Ltd.) were added to this solution, and this was added to glass beads having a diameter of 0.8 mm. Was dispersed in an atmosphere of 23 ± 3 ° C. for 3 hours. After dispersion, 0.01 parts of silicone oil (trade name: SH28PA, manufactured by Toray Dow Corning Silicone), cross-linked polymethyl methacrylate (PMMA) particles (trade name: TECHPOLYMER SSX-102, manufactured by Sekisui Plastics Co., Ltd.) 5.6 parts of an average primary particle size of 2.5 μm) was added and stirred to prepare an undercoat layer coating solution.

この下引き層用塗布液を円筒状支持体上に浸漬塗布して塗膜を形成し、塗膜を40分間160℃で乾燥させて、膜厚が18μmの下引き層を形成した。   This undercoat layer coating solution was dip-coated on a cylindrical support to form a coating film, and the coating film was dried at 160 ° C. for 40 minutes to form an undercoat layer having a thickness of 18 μm.

次に、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.4°および28.2°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、下記式(1)で示される化合物0.2部、   Next, 20 parts of a crystalline form of a hydroxygallium phthalocyanine crystal (charge generation material) having strong peaks at 7.4 ° and 28.2 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, 0.2 part of the compound represented by 1),

Figure 2015102676
Figure 2015102676

ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)10部、および、シクロヘキサノン600部を、直径1mmガラスビーズを用いたサンドミルに入れ、4時間分散処理した。その後、酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布して塗膜を形成し、塗膜を15分間80℃で乾燥させることによって、膜厚0.17μmの電荷発生層を形成した。 10 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone were placed in a sand mill using glass beads having a diameter of 1 mm and dispersed for 4 hours. Thereafter, 700 parts of ethyl acetate was added to prepare a charge generation layer coating solution. This coating solution for charge generation layer was dip coated on the undercoat layer to form a coating film, and the coating film was dried at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm.

次に、下記式(B)で示される化合物30部(電荷輸送物質)、下記式(C)で示される化合物60部(電荷輸送物質)、下記式(D)で示される化合物10部、ポリカーボネート樹脂(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製、ビスフェノールZ型のポリカーボネート)100部、下記式(E)で示される2つの構造単位を有するポリカーボネート(粘度平均分子量Mv:20000)0.02部を、混合キシレン600部およびジメトキシメタン200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を前記電荷発生層上に浸漬塗布して塗膜を形成し、塗膜を30分間100℃で乾燥させることによって、膜厚18μmの電荷輸送層を形成した。   Next, 30 parts of a compound represented by the following formula (B) (charge transporting substance), 60 parts of a compound represented by the following formula (C) (charge transporting substance), 10 parts of a compound represented by the following formula (D), polycarbonate 100 parts of resin (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd., bisphenol Z-type polycarbonate), polycarbonate having two structural units represented by the following formula (E) (viscosity average molecular weight Mv: 20000) 0 A coating solution for a charge transport layer was prepared by dissolving 0.02 part in a mixed solvent of 600 parts of mixed xylene and 200 parts of dimethoxymethane. This charge transport layer coating solution was applied onto the charge generation layer by dip coating to form a coating film, and the coating film was dried at 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 18 μm.

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

(式(E)中、0.95および0.05は、上記2つの構造単位の共重合比を示す。) (In the formula (E), 0.95 and 0.05 indicate the copolymerization ratio of the two structural units.)

次に、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)20部/1−プロパノール20部の混合溶剤を、ポリフロンフィルター(商品名:PF−040、アドバンテック東洋(株)製)で濾過した。その後、下記式(F)で示される正孔輸送性化合物90部、   Next, a mixed solvent of 20 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd.) / 20 parts of 1-propanol was added to polyflon. The mixture was filtered with a filter (trade name: PF-040, manufactured by Advantech Toyo Co., Ltd.). Thereafter, 90 parts of a hole transporting compound represented by the following formula (F),

Figure 2015102676
Figure 2015102676

1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン70部、および、1−プロパノール70部を上記混合溶剤に加えた。これをポリフロンフィルター(商品名:PF−020、アドバンテック東洋(株)製)で濾過することによって、保護層(第二電荷輸送層)用塗布液を調製した。この保護用塗布液を電荷輸送層上に浸漬塗布し、得られた塗膜を大気中において6分間50℃で乾燥させた。その後、窒素雰囲気中において、支持体(被照射体)を200rpmで回転させながら、加速電圧70kV、吸収線量8000Gyの条件で1.6秒間、電子線を塗膜に照射した。引き続いて、窒素雰囲気中において25℃から125℃まで30秒かけて昇温させ、塗膜の加熱を行った。電子線照射およびその後の加熱時の雰囲気の酸素濃度は15ppmであった。次に、大気中において30分間100℃で加熱処理を行うことによって、膜厚5μmの保護層を形成した。 70 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 70 parts of 1-propanol were added to the mixed solvent. By filtering this with a polyflon filter (trade name: PF-020, manufactured by Advantech Toyo Co., Ltd.), a coating solution for a protective layer (second charge transport layer) was prepared. This protective coating solution was dip-coated on the charge transport layer, and the resulting coating film was dried at 50 ° C. for 6 minutes in the air. Thereafter, the coating film was irradiated with an electron beam for 1.6 seconds under the conditions of an acceleration voltage of 70 kV and an absorbed dose of 8000 Gy while rotating the support (irradiated body) at 200 rpm in a nitrogen atmosphere. Subsequently, the temperature was raised from 25 ° C. to 125 ° C. over 30 seconds in a nitrogen atmosphere, and the coating film was heated. The oxygen concentration in the atmosphere during electron beam irradiation and subsequent heating was 15 ppm. Next, a protective layer having a thickness of 5 μm was formed by performing heat treatment at 100 ° C. for 30 minutes in the air.

型部材圧接形状転写による凹凸形状の形成
概ね図2に示す構成の圧接形状転写加工装置で凹凸形状の転写を行った。型部材の表面形状は、概ね図4(A)に示すようなランダム(誤差拡散法(Floyd&Steinberg法)による)な凸部を平面に配置したものを用いた。図4(A)において、凸部は、上から見たときの形状が直径φ50μmの円形であり、高さHが3μmのドーム型形状を用いた。凸部形状が型部材の表面全体に占める面積は10%であった。
Forming of concave / convex shape by die member press-contact shape transfer The concave / convex shape was transferred by a press-contact shape transfer processing apparatus having a configuration shown in FIG. As the surface shape of the mold member, a shape in which random convex portions (by an error diffusion method (Floyd & Steinberg method)) as shown in FIG. In FIG. 4 (A), the convex portion used was a dome shape having a diameter of 50 μm and a height H of 3 μm when viewed from above. The area occupied by the convex shape on the entire surface of the mold member was 10%.

凹凸形状形成前の電子写真感光体には、超硬合金D40で作製された図2に示される挿入部材2−2に挿入し、それを電子写真感光体2−1の支持部材2−4に装着した。   The electrophotographic photosensitive member before the formation of the concavo-convex shape is inserted into the insertion member 2-2 shown in FIG. 2 made of cemented carbide D40, and is inserted into the supporting member 2-4 of the electrophotographic photosensitive member 2-1. Installed.

表面加工時には、型部材の表面の温度が150℃、電子写真感光体の表面温度が55℃となるように温度を制御し、30MPaの圧力で電子写真感光体と加圧部材を押し付けながら移動させた。そして、電子写真感光体の周方向に回転させて、Wb=1mmとなるように電子写真感光体に凹凸形状を転写して、得られた電子写真感光体を「感光体−1」とし、結果を表1に示す。   During the surface processing, the temperature is controlled so that the surface temperature of the mold member is 150 ° C. and the surface temperature of the electrophotographic photosensitive member is 55 ° C., and the electrophotographic photosensitive member and the pressure member are moved while being pressed at a pressure of 30 MPa. It was. Then, by rotating in the circumferential direction of the electrophotographic photosensitive member, the concavo-convex shape is transferred to the electrophotographic photosensitive member so that Wb = 1 mm, and the obtained electrophotographic photosensitive member is “photosensitive member-1”. Is shown in Table 1.

(感光体−2〜感光体−16の製造例)
感光体−1の製造例において、Wbを表1に示す値に変更した以外は、すべて感光体−1の製造例と同様にして電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−2」〜「感光体−16」とし、結果を表1に示す。
(Production Example of Photoreceptor-2 to Photoreceptor-16)
An electrophotographic photosensitive member was manufactured in the same manner as in the manufacturing example of the photosensitive member-1, except that Wb was changed to the value shown in Table 1 in the manufacturing example of the photosensitive member-1. The obtained electrophotographic photosensitive member having a concavo-convex shape on its surface was designated as “photosensitive member-2” to “photosensitive member-16”, and the results are shown in Table 1.

(感光体−17の製造例)
感光体−1の製造例と同様に凹凸形状を転写した後、再度同様に凹凸形状を転写することにより電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−17」とし、結果を表1に示す。
(Production example of photoconductor-17)
After transferring the concavo-convex shape in the same manner as in the photoconductor-1 production example, the concavo-convex shape was transferred again in the same manner to produce an electrophotographic photosensitive member. The obtained electrophotographic photosensitive member having a concavo-convex shape on the surface was designated as “photosensitive member-17”, and the results are shown in Table 1.

(感光体−18の製造例)
感光体−1の製造例において、30MPaの圧力で電子写真感光体と加圧部材を押し付けながら242mm移動させ、Wb=94.2mmとなるようにした以外は感光体−1の製造例と同様にして電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−18」とし、結果を表1に示す。
(Production example of photoconductor-18)
In the production example of the photoconductor-1, the electrophotographic photoconductor and the pressure member were pressed at a pressure of 30 MPa while being moved by 242 mm so that Wb = 94.2 mm was obtained. Thus, an electrophotographic photosensitive member was produced. The obtained electrophotographic photosensitive member having a concavo-convex shape on the surface was designated as “photosensitive member-18”, and the results are shown in Table 1.

(感光体−101〜感光体−111の製造例)
感光体−1の製造例において、表4(B)に示すように、上から見たときの形状が直径φ5μmの円形であり、高さHが3μmの円柱状の凸部を有し、凸部形状が型部材の表面全体で占める面積は70%である型部材を用いた。上記型部材を用い,Wbを表2に示す値に変更した以外は、感光体−1の製造例と同様にして電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−101」〜「感光体−111」とし、結果を表2に示す。
(Production example of photoconductor-101 to photoconductor-111)
In the production example of the photoreceptor 1, as shown in Table 4 (B), the shape when viewed from above is a circular shape with a diameter of 5 μm, and has a cylindrical convex portion with a height H of 3 μm. A mold member in which the area occupied by the part shape on the entire surface of the mold member was 70% was used. An electrophotographic photosensitive member was manufactured in the same manner as in the manufacturing example of the photosensitive member-1, except that the mold member was used and Wb was changed to the value shown in Table 2. The obtained electrophotographic photosensitive member having a concavo-convex shape on its surface was designated as “photosensitive member-101” to “photosensitive member-111”, and the results are shown in Table 2.

(感光体112の製造例)
感光体−101の製造例と同様に凹凸形状を転写した後、再度同様に凹凸形状を転写することにより電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−112」とし、結果を表2に示す。
(Production example of photoconductor 112)
After transferring the concavo-convex shape in the same manner as in the photoconductor-101 production example, the concavo-convex shape was transferred again in the same manner to produce an electrophotographic photosensitive member. The obtained electrophotographic photosensitive member having a concavo-convex shape on the surface was designated as “photosensitive member-112”, and Table 2 shows the results.

(感光体113の製造例)
感光体−101の製造例において、50MPaの圧力で電子写真感光体と加圧部材を押し付けながら242mm移動させ、Wb=94.2mmとなるようにした以外は感光体−101の製造例と同様にして電子写真感光体を作製した。得られた表面に凹部を有する電子写真感光体を「感光体−113」とし、結果を表2に示す。
(Example of manufacturing photoconductor 113)
In the photoconductor-101 production example, the electrophotographic photoconductor and the pressing member were moved by 242 mm at a pressure of 50 MPa and moved to 242 mm so that Wb = 94.2 mm. Thus, an electrophotographic photosensitive member was produced. The obtained electrophotographic photosensitive member having recesses on the surface was designated as “photosensitive member-113”, and the results are shown in Table 2.

(感光体−201の製造例)
感光体−1の製造例において、型部材の表面の温度が23℃、電子写真感光体の表面温度が23℃となるように温度を制御し、50MPaの圧力で電子写真感光体と加圧部材を押し付けながら凹凸形状を転写した。それ以外は感光体−1の製造例と同様にして電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−201」とし、結果を表3に示す。
(Example of photoconductor-201 production)
In the production example of photoconductor-1, the temperature of the surface of the mold member is controlled to 23 ° C. and the surface temperature of the electrophotographic photoconductor is 23 ° C., and the electrophotographic photoconductor and the pressure member at a pressure of 50 MPa. The concavo-convex shape was transferred while pressing. Otherwise, an electrophotographic photoreceptor was produced in the same manner as in the photoreceptor-1 production example. The obtained electrophotographic photosensitive member having a concavo-convex shape on the surface was designated as “photosensitive member-201”, and the results are shown in Table 3.

(感光体−202〜感光体−211の製造例)
感光体−201の製造例において、Wbを表3に示す値に変更した以外はすべて感光体−201の製造例と同様にして電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−202」〜「感光体−211」とし、結果を表3に示す。
(Production Example of Photoconductor-202 to Photoconductor-211)
In the production example of the photoconductor-201, an electrophotographic photoconductor was produced in the same manner as in the production example of the photoconductor-201 except that Wb was changed to the value shown in Table 3. The obtained electrophotographic photosensitive member having a concavo-convex shape on its surface was designated as “photosensitive member-202” to “photosensitive member-211”, and the results are shown in Table 3.

(感光体−212の製造例)
感光体201の製造例と同様に凹凸形状を転写した後、再度同様に凹凸形状を転写することにより電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−212」とし、結果を表3に示す。
(Production example of photoconductor-212)
After transferring the concavo-convex shape in the same manner as in the production example of the photoconductor 201, the concavo-convex shape was transferred again in the same manner to manufacture an electrophotographic photosensitive member. The obtained electrophotographic photosensitive member having a concavo-convex shape on the surface was designated “photosensitive member-212”, and the results are shown in Table 3.

(感光体−213の製造例)
感光体−201の製造例において、50MPaの圧力で電子写真感光体と加圧部材を押し付けながら242mm移動させ、Wb=94.2mmとなるようにした以外はすべて感光体−201の製造例と同様にして電子写真感光体を作製した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−213」とし、結果を表3に示す。
(Production example of photoconductor-213)
In the production example of the photoconductor-201, everything is the same as the production example of the photoconductor-201 except that the electrophotographic photoconductor and the pressing member are moved by 242 mm while pressing at 50 MPa so that Wb = 94.2 mm. Thus, an electrophotographic photosensitive member was produced. The obtained electrophotographic photosensitive member having a concavo-convex shape on the surface was designated as “photosensitive member-213”, and the results are shown in Table 3.

(感光体1001〜1012の製造例)
感光体−1の製造例において、電子写真感光体の表面における凹凸形状を転写していない領域の電子写真感光体の回転方向の長さWmとし、Wmを表4に示す値に変更した。それ以外は、感光体−1の製造例と同様にして電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−1001」〜「感光体−1012」とし、結果を表4に示す。感光体1001〜1012には、領域Bは観察されなかった。
(Production example of photoconductors 1001 to 1012)
In the production example of Photoreceptor-1, the length Wm of the electrophotographic photoconductor in the rotation direction of the area where the uneven shape on the surface of the electrophotographic photoconductor was not transferred was changed to the value shown in Table 4. Otherwise, the electrophotographic photosensitive member was manufactured in the same manner as in the manufacturing example of the photosensitive member-1. The obtained electrophotographic photosensitive member having an uneven shape on the surface was designated as “photosensitive member-1001” to “photosensitive member-1012”, and the results are shown in Table 4. Region B was not observed on the photoreceptors 1001 to 1012.

(感光体1013〜1024の製造例)
感光体−201の製造例において、Wmを表4に示す値に変更した以外は、感光体−201の製造例と同様にして電子写真感光体を製造した。得られた表面に凹凸形状を有する電子写真感光体を「感光体−1013」〜「感光体−1024」とし、結果を表4に示す。感光体1013〜1024には、領域Bは観察されなかった。
(Example of production of photoconductors 1013 to 1024)
An electrophotographic photosensitive member was manufactured in the same manner as in the manufacturing example of the photosensitive member 201 except that Wm was changed to the value shown in Table 4 in the manufacturing example of the photosensitive member 201. The obtained electrophotographic photosensitive member having a concavo-convex shape on its surface was designated as “photosensitive member-1013” to “photosensitive member-1024”, and the results are shown in Table 4. Region B was not observed on the photoreceptors 1013 to 1024.

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

・凹凸形状を有する電子写真感光体の評価
(実施例A−1)
感光体−1を評価装置であるキヤノン(株)製の電子写真装置(複写機)(商品名:iR−ADV C5255)の改造機のシアンステーションに装着し、以下のように試験および評価を行った。
-Evaluation of electrophotographic photosensitive member having uneven shape (Example A-1)
Photoreceptor-1 is mounted on a cyan station of a modified machine of an electrophotographic apparatus (copier) (trade name: iR-ADV C5255) manufactured by Canon Inc., which is an evaluation apparatus, and tested and evaluated as follows. It was.

まず、電子写真感光体の23℃/50%RH環境下で、電子写真感光体の暗部電位(Vd)が−700V、明部電位(Vl)が−200Vになるように帯電装置および画像露光装置の条件を設定し、電子写真感光体の初期電位を調整した。   First, in a 23 ° C./50% RH environment of an electrophotographic photosensitive member, a charging device and an image exposure device so that the dark portion potential (Vd) of the electrophotographic photosensitive member is −700 V and the bright portion potential (Vl) is −200 V. The initial potential of the electrophotographic photosensitive member was adjusted.

次に、あらかじめ用意した「感光体−1」と同様の凹凸形状を有し、Wb=0である電子写真感光体を用いてクリーニングブレードの設定を領域Aにおいて調整した。その後、この電子写真感光体と同一の外径を有する半円筒状ガラスにクリーニングブレードを設置し、半円筒状ガラスの裏面から、(株)キーエンス製のデジタルマイクロスコープVHX−500を用いて上記Wの測定を行った。Wは、30μmであった。次に、半円筒状半円筒状ガラスを「感光体−1」に変更して以下の異音、画像評価を行った。
・異音及び画像評価方法
2ポイントサイズ、及び、3ポイントサイズのアルファベット(A〜Z)、及び、複雑な漢字(電、驚など)をA4横の出力解像度600dpiの解像度で配列したテストチャートを作成した。
Next, the setting of the cleaning blade was adjusted in region A using an electrophotographic photosensitive member having an uneven shape similar to that of “photosensitive member-1” prepared in advance and having Wb = 0. Thereafter, a cleaning blade is installed on a semicylindrical glass having the same outer diameter as that of the electrophotographic photosensitive member, and the above W is used from the back surface of the semicylindrical glass using a digital microscope VHX-500 manufactured by Keyence Corporation. Was measured. W was 30 μm. Next, the semi-cylindrical semi-cylindrical glass was changed to “photosensitive body-1”, and the following abnormal noise and image evaluation were performed.
・ Sound and image evaluation method A test chart in which alphabets (A to Z) of 2 point size and 3 point size and complex Chinese characters (Den, Surprise, etc.) are arranged at an A4 horizontal output resolution of 600 dpi. Created.

異音については、電子写真装置における電子写真感光体の前回転をオフに設定した状態で電源をONにし、テストチャートのプリントアウト開始から異音が聞こえなくなるまでの時間を測定し、その時間によりランク判定を行った。   For abnormal noise, turn on the power with the pre-rotation of the electrophotographic photosensitive member in the electrophotographic apparatus turned off, measure the time from when the test chart printout starts until no abnormal noise is heard, The rank was determined.

また、クリーニング性については上記画像を連続で10000枚プリントアウトした後、電子写真装置を温度5℃環境下に24時間放置した。次に、ベタ白画像を連続で10枚プリントアウトした後にベタ黒画像を10枚出力し、その直後にハーフトーン画像1枚を出力して、このハーフトーン画像を用いて評価を行った。具体的には、出力画像中のクリーニング不良と考えられるトナーのすり抜けの発生を目視でカウントし、ランク評価を行った。   Regarding the cleaning property, after 10,000 images were continuously printed out, the electrophotographic apparatus was left in an environment at a temperature of 5 ° C. for 24 hours. Next, 10 solid white images were printed out continuously, 10 solid black images were output, and immediately after that, one halftone image was output, and evaluation was performed using this halftone image. Specifically, the occurrence of toner slipping considered to be a cleaning defect in the output image was visually counted to perform rank evaluation.

異音のランク評価
A:感光体回転開始から2秒以内で異音が聞こえなくなる。もしくは回転開始時から異音が発生しない
B:感光体回転開始から10秒以内で異音が聞こえなくなる。
C:感光体回転開始から30秒以内で異音が聞こえなくなる
D:感光体回転開始から30秒を越えても異音が聞こえる。
Rank evaluation of abnormal noise A: No abnormal noise can be heard within 2 seconds from the start of rotation of the photosensitive member. Or no abnormal noise is generated from the start of rotation. B: No abnormal noise is heard within 10 seconds from the start of rotation of the photosensitive member.
C: Abnormal noise is not heard within 30 seconds from the start of photoconductor rotation D: Abnormal noise is heard even after 30 seconds from the start of photoconductor rotation.

クリーニング性のランク評価
A:画質上のスジはなく画質が良好である
B:画像領域内にスジはなく画質は良好であるが、非画像領域において極軽微にトナー抜けが発生するが許容範囲である
C:画像領域内にスジはなく画質は良好であるが、非画像領域に極軽微なスジが発生するが許容範囲である
D:画像領域内にわずかなスジが発生するが許容範囲である。
Rank evaluation of cleaning performance A: No image streak and good image quality B: No image streak and good image quality, but non-image region has a slight loss of toner but is within an acceptable range A: There is no streak in the image area and the image quality is good, but a very slight streak is generated in the non-image area but it is an allowable range. D: A slight streak is generated in the image area, but it is an allowable range. .

結果を表5に示す。   The results are shown in Table 5.

(実施例A−2〜実施例A−13)
電子写真感光体として表5に示すものを用いた以外は実施例A−1と同様にして電子写真感光体の評価を行った。結果を表5に示す。
(Example A-2 to Example A-13)
The electrophotographic photosensitive member was evaluated in the same manner as in Example A-1, except that the electrophotographic photosensitive member shown in Table 5 was used. The results are shown in Table 5.

(実施例B−1〜実施例B−13)
電子写真感光体として表6に示すものを用い、上記Wが50μmになるようにクリーニングブレードの設定を変更した。それ以外は実施例A−1と同様にして電子写真感光体の評価を行った。結果を表6に示す。
(Example B-1 to Example B-13)
The electrophotographic photosensitive member shown in Table 6 was used, and the setting of the cleaning blade was changed so that the W was 50 μm. Otherwise, the electrophotographic photoreceptor was evaluated in the same manner as in Example A-1. The results are shown in Table 6.

(実施例C−1〜実施例C−13)
電子写真感光体として表7に示すものを用い、上記Wが20μmになるようにクリーニングブレードの設定を変更した。それ以外は実施例A−1と同様にして電子写真感光体の評価を行った。結果を表7に示す。
(Example C-1 to Example C-13)
The electrophotographic photosensitive member shown in Table 7 was used, and the setting of the cleaning blade was changed so that the W was 20 μm. Otherwise, the electrophotographic photoreceptor was evaluated in the same manner as in Example A-1. The results are shown in Table 7.

(実施例D−1〜実施例D−13)
電子写真感光体として表8に示すものを用い、あらかじめ用意した「感光体−101」と同様の凹凸形状を有し、Wb=0である電子写真感光体を用いてクリーニングブレードの設定を領域Aにおいて表8に示す値に調整した。それ以外は実施例A−1と同様にして電子写真感光体の評価を行った。結果を表8に示す。
(Example D-1 to Example D-13)
The electrophotographic photosensitive member shown in Table 8 is used, and the cleaning blade is set in the region A using an electrophotographic photosensitive member having a concavo-convex shape similar to that of “photosensitive member-101” prepared in advance and having Wb = 0. Were adjusted to the values shown in Table 8. Otherwise, the electrophotographic photoreceptor was evaluated in the same manner as in Example A-1. The results are shown in Table 8.

(実施例E−1〜実施例E−13)
電子写真感光体として表9に示すものを用い、あらかじめ用意した「感光体−201」と同様の凹凸形状を有し、Wb=0である電子写真感光体を用いてクリーニングブレードの設定を領域Aにおいて表9に示す値に調整した。それ以外は実施例A−1と同様にして電子写真感光体の評価を行った。結果を表9に示す。
(Example E-1 to Example E-13)
The electrophotographic photosensitive member shown in Table 9 is used, and the cleaning blade is set in the region A using an electrophotographic photosensitive member having a concavo-convex shape similar to that of “photosensitive member-201” prepared in advance and Wb = 0. Were adjusted to the values shown in Table 9. Otherwise, the electrophotographic photoreceptor was evaluated in the same manner as in Example A-1. The results are shown in Table 9.

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

Figure 2015102676
Figure 2015102676

Claims (6)

円筒状の電子写真感光体の表面に凹凸形状を形成する方法であって、
該電子写真感光体と該凹凸形状に対応する表面形状を有する平板型の型部材を加圧接触させて、該電子写真感光体を回転させながら該型部材の表面の表面形状を該電子写真感光体の表面に転写する工程を有し、
該電子写真感光体の表面が、
該型部材をn回加圧接触させて該表面形状を該電子写真感光体の表面にn回転写した領域A、および
該領域Aに隣接して、該型部材をn+1回以上加圧接触させて該表面形状を該電子写真感光体の表面にn+1回以上転写した領域Bを有することを特徴とする円筒状の電子写真感光体の表面加工方法。
A method of forming a concavo-convex shape on the surface of a cylindrical electrophotographic photosensitive member,
The electrophotographic photosensitive member is brought into pressure contact with a plate-shaped mold member having a surface shape corresponding to the uneven shape, and the surface shape of the surface of the mold member is changed to the electrophotographic photosensitive member while rotating the electrophotographic photosensitive member. Having a process of transferring to the surface of the body,
The surface of the electrophotographic photoreceptor is
Region A in which the mold member is brought into pressure contact n times to transfer the surface shape onto the surface of the electrophotographic photosensitive member n times, and the mold member is brought into pressure contact at least n + 1 times adjacent to the region A A surface processing method for a cylindrical electrophotographic photosensitive member, comprising a region B in which the surface shape is transferred to the surface of the electrophotographic photosensitive member n + 1 times or more.
前記nが1である請求項1に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein n is 1. クリーニング部材であるクリーニングブレードと該電子写真感光体との接触領域の電子写真感光体の回転方向における長さをWとし、
前記領域Bの電子写真感光体の回転方向における長さをWbとしたとき、
WおよびWbが、下記式(1)
Wb>W ・・・(1)
を満たすことを特徴とする請求項1または2に記載の円筒状の電子写真感光体の表面加工方法。
The length of the contact area between the cleaning blade as the cleaning member and the electrophotographic photosensitive member in the rotation direction of the electrophotographic photosensitive member is W,
When the length of the region B in the rotation direction of the electrophotographic photosensitive member is Wb,
W and Wb are represented by the following formula (1)
Wb> W (1)
The surface processing method for a cylindrical electrophotographic photosensitive member according to claim 1, wherein:
前記Wbが、下記式(2)
40mm≧Wb ・・・(2)
を満たすことを特徴とする請求項3に記載の円筒状の電子写真感光体の表面加工方法。
Wb is the following formula (2)
40 mm ≧ Wb (2)
The surface processing method for a cylindrical electrophotographic photosensitive member according to claim 3, wherein:
前記Wbが、下記式(3)
20mm≧Wb≧0.5mm ・・・(3)
を満たすことを特徴とする請求項3または4に記載の円筒状の電子写真感光体の表面加工方法。
Wb is the following formula (3)
20 mm ≧ Wb ≧ 0.5 mm (3)
5. The surface processing method for a cylindrical electrophotographic photosensitive member according to claim 3, wherein:
電子写真感光体を製造し、請求項1から5のいずれか1項に記載の表面加工方法を用いて該円筒状の電子写真感光体の表面に凸凹形状を形成する工程を有することを特徴とする、表面に凹凸形状を有する円筒状の電子写真感光体の製造方法。
An electrophotographic photosensitive member is produced, and the method includes a step of forming a concavo-convex shape on the surface of the cylindrical electrophotographic photosensitive member using the surface processing method according to any one of claims 1 to 5. A method for producing a cylindrical electrophotographic photosensitive member having a concavo-convex shape on a surface thereof.
JP2013243081A 2013-11-25 2013-11-25 Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor Pending JP2015102676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243081A JP2015102676A (en) 2013-11-25 2013-11-25 Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243081A JP2015102676A (en) 2013-11-25 2013-11-25 Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2015102676A true JP2015102676A (en) 2015-06-04
JP2015102676A5 JP2015102676A5 (en) 2017-01-12

Family

ID=53378413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243081A Pending JP2015102676A (en) 2013-11-25 2013-11-25 Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2015102676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218318A (en) * 2015-05-22 2016-12-22 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292574A (en) * 2007-05-22 2008-12-04 Canon Inc Electrophotographic apparatus
JP2009031501A (en) * 2007-07-26 2009-02-12 Canon Inc Method for manufacturing electrophotographic photoreceptor
JP2010008898A (en) * 2008-06-30 2010-01-14 Canon Inc Electrophotographic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292574A (en) * 2007-05-22 2008-12-04 Canon Inc Electrophotographic apparatus
JP2009031501A (en) * 2007-07-26 2009-02-12 Canon Inc Method for manufacturing electrophotographic photoreceptor
JP2010008898A (en) * 2008-06-30 2010-01-14 Canon Inc Electrophotographic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218318A (en) * 2015-05-22 2016-12-22 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device

Similar Documents

Publication Publication Date Title
JP6562804B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6403586B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2016038577A (en) Electrophotographic photoreceptor, process cartridge and electrophotographing device
JP6704739B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5127991B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6433238B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, process cartridge, and electrophotographic apparatus
JP2011070173A (en) Electrophotographic apparatus
JP2007233359A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5318204B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4590484B2 (en) Electrophotographic apparatus and process cartridge
JP2011128596A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP2021157031A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6624952B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2010026240A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2019139225A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP6723790B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2014066789A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6132473B2 (en) Method for producing electrophotographic photosensitive member
JP2015102676A (en) Method for processing surface of electrophotographic photoreceptor and method for manufacturing electrophotographic photoreceptor
JP6095457B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2017142336A (en) Electrophotographic photoreceptor, method for producing the same, process cartridge, and electrophotographic device
JP2009053727A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP6415170B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2018087874A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6541440B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313