JP5921355B2 - Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface - Google Patents

Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface Download PDF

Info

Publication number
JP5921355B2
JP5921355B2 JP2012136984A JP2012136984A JP5921355B2 JP 5921355 B2 JP5921355 B2 JP 5921355B2 JP 2012136984 A JP2012136984 A JP 2012136984A JP 2012136984 A JP2012136984 A JP 2012136984A JP 5921355 B2 JP5921355 B2 JP 5921355B2
Authority
JP
Japan
Prior art keywords
electrophotographic photosensitive
photosensitive member
resin
heat treatment
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012136984A
Other languages
Japanese (ja)
Other versions
JP2014002245A (en
Inventor
中田 浩一
浩一 中田
高木 進司
進司 高木
宣夫 小坂
宣夫 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012136984A priority Critical patent/JP5921355B2/en
Publication of JP2014002245A publication Critical patent/JP2014002245A/en
Application granted granted Critical
Publication of JP5921355B2 publication Critical patent/JP5921355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は、電子写真感光体の表面加工方法、および表面に凹凸形状を有する電子写真感光体の製造方法に関する。   The present invention relates to a surface processing method for an electrophotographic photosensitive member, and a method for producing an electrophotographic photosensitive member having an uneven shape on the surface.

有機光導電性物質を含有する有機電子写真感光体(以下単に「電子写真感光体」という)の耐摩耗性を向上させることを目的として、電子写真感光体の表面層に硬化型樹脂を含有させる技術がある。   For the purpose of improving the wear resistance of an organic electrophotographic photoreceptor containing an organic photoconductive substance (hereinafter simply referred to as “electrophotographic photoreceptor”), a curable resin is contained in the surface layer of the electrophotographic photoreceptor. There is technology.

しかしながら、電子写真感光体の耐摩耗性を高めることにより、画像流れが発生しやすくなる傾向がある。画像流れとは、電子写真感光体を帯電することによって発生するオゾンや窒素酸化物等の酸性ガスにより、電子写真感光体の表面層に用いられている材料が劣化したり、電子写真感光体の表面に水分が吸着し、電子写真感光体の表面抵抗が低下したりすることで発生する課題である。   However, increasing the abrasion resistance of the electrophotographic photosensitive member tends to cause image flow. Image flow refers to deterioration of the material used for the surface layer of the electrophotographic photosensitive member due to acidic gas such as ozone and nitrogen oxide generated by charging the electrophotographic photosensitive member. This is a problem that occurs when moisture is adsorbed on the surface and the surface resistance of the electrophotographic photosensitive member decreases.

画像流れを抑制する技術として、特許文献1には、電子写真感光体の表面に型部材の凹凸形状を転写する際に、型部材と電子写真感光体の温度を制御する技術が開示されている。   As a technique for suppressing the image flow, Patent Document 1 discloses a technique for controlling the temperature of the mold member and the electrophotographic photosensitive member when transferring the uneven shape of the mold member to the surface of the electrophotographic photosensitive member. .

特開2007−233354号公報JP 2007-233354 A

近年、電子写真装置の設置場所がグローバルに広がってきており、電子写真装置や電子写真感光体の物流時における耐熱性の向上が求められている。   In recent years, installation locations of electrophotographic apparatuses have been expanded globally, and improvement in heat resistance during distribution of electrophotographic apparatuses and electrophotographic photoreceptors is required.

本発明者らの検討の結果、特許文献1に記載されている表面に凹凸形状を有する電子写真感光体は、凹凸形状の安定性が十分ではなく、物流時に高温環境下に置かれた際(例えば物流コンテナ内が温度上昇した場合)に、凹凸形状が平坦になる方向に変化しやすいことがわかった。そして、電子写真感光体の凹凸形状が平坦になる方向に変化してしまうと、画像流れが発生しやすくなってしまう。   As a result of the study by the present inventors, the electrophotographic photosensitive member having a concavo-convex shape on the surface described in Patent Document 1 is not sufficiently stable in the concavo-convex shape, and is placed in a high-temperature environment during distribution ( For example, when the temperature inside the physical distribution container rises), it was found that the uneven shape tends to change in a flattening direction. Then, if the uneven shape of the electrophotographic photosensitive member changes in a flattening direction, image flow tends to occur.

本発明の目的は、電子写真感光体の表面に型部材の凹凸形状を転写して電子写真感光体の表面を加工する方法において、高温環境下における安定性が高い凹凸形状を形成しうる電子写真感光体の表面加工方法を提供することにある。また、本発明の別の目的は、前記電子写真感光体の表面加工方法を用いた、表面に凹凸形状を有する電子写真感光体の製造方法を提供することにある。   An object of the present invention is to provide a method for processing a surface of an electrophotographic photosensitive member by transferring the concave / convex shape of a mold member onto the surface of the electrophotographic photosensitive member. An object of the present invention is to provide a surface processing method for a photoreceptor. Another object of the present invention is to provide a method for producing an electrophotographic photosensitive member having a concavo-convex shape on the surface, using the surface processing method for the electrophotographic photosensitive member.

上記目的は、以下の本発明によって達成される。   The above object is achieved by the present invention described below.

本発明は、熱可塑性樹脂を含有する電荷輸送層および該電荷輸送層上に形成された硬化型樹脂を含有する表面層を有する電子写真感光体の表面に、凹凸形状を有する型部材を加圧接触させることによって、該型部材の凹凸形状を該電子写真感光体の表面に転写する凹凸形状転写工程と、
該凹凸形状転写工程によって、表面に凹凸形状が転写された電子写真感光体を下記条件AおよびBにて加熱処理する加熱処理工程、
とを有することを特徴とする電子写真感光体の表面加工方法に関する。
A:該電子写真感光体の加熱処理の温度をTa(℃)とし、該電荷輸送層のガラス転移温度をTg(℃)としたとき、Tg−20≦Ta≦Tg+20を満たす。
B:該電子写真感光体の加熱処理の時間が、2分間以上である。
The present invention pressurizes a mold member having an uneven shape on the surface of an electrophotographic photosensitive member having a charge transport layer containing a thermoplastic resin and a surface layer containing a curable resin formed on the charge transport layer. An uneven shape transfer step for transferring the uneven shape of the mold member to the surface of the electrophotographic photosensitive member by bringing it into contact;
A heat treatment step of heat-treating the electrophotographic photosensitive member having a concavo-convex shape transferred to the surface under the following conditions A and B by the concavo-convex shape transfer step;
The present invention relates to a surface processing method for an electrophotographic photosensitive member.
A: When the temperature of the heat treatment of the electrophotographic photosensitive member is Ta (° C.) and the glass transition temperature of the charge transport layer is Tg (° C.), Tg−20 ≦ Ta ≦ Tg + 20 is satisfied.
B: The heat treatment time of the electrophotographic photosensitive member is 2 minutes or more.

また、本発明は、上記表面加工方法を用いて電子写真感光体の表面を加工し、該電子写真感光体の表面に凹凸形状を形成する工程を有することを特徴とする、表面に凹凸形状を有する電子写真感光体の製造方法に関する。   The present invention also includes a step of processing the surface of the electrophotographic photosensitive member using the surface processing method described above, and forming a concavo-convex shape on the surface of the electrophotographic photosensitive member. The present invention relates to a method for producing an electrophotographic photosensitive member.

本発明によれば、電子写真感光体の表面に型部材の凹凸形状を転写して電子写真感光体の表面を加工する方法において、高温環境下における安定性が高い凹凸形状を形成しうる電子写真感光体の表面加工方法、および該電子写真感光体の表面加工方法を用いた、表面に凹凸形状を有する電子写真感光体の製造方法を提供することができる。   According to the present invention, in a method for processing the surface of an electrophotographic photosensitive member by transferring the concave / convex shape of a mold member onto the surface of the electrophotographic photosensitive member, an electrophotographic film capable of forming a concave / convex shape having high stability in a high temperature environment. It is possible to provide a method for producing an electrophotographic photosensitive member having a concavo-convex shape on the surface using the surface processing method of the photosensitive member and the surface processing method of the electrophotographic photosensitive member.

「フィシャースコープH100V」(Fischer社製)の出力チャートの概略を示す図である。It is a figure which shows the outline of the output chart of "Fischer scope H100V" (made by Fischer). 「フィシャースコープH100V」(Fischer社製)の出力チャートの一例を示す図である。It is a figure which shows an example of the output chart of "Fischer scope H100V" (made by Fischer). 本発明の電子写真感光体の層構成の一例を示す図である。It is a figure which shows an example of the laminated constitution of the electrophotographic photoreceptor of this invention. 電子写真感光体の表面に凹凸形状を有する型部材を加圧接触させることによって、型部材の凹凸形状を電子写真感光体の表面に転写するための装置(圧接凹凸形状転写装置)の一例を示す図である。An example of an apparatus (pressure contact concavo-convex shape transfer device) for transferring the concavo-convex shape of the mold member to the surface of the electrophotographic photosensitive member by bringing a mold member having the concavo-convex shape into pressure contact with the surface of the electrophotographic photosensitive member is shown. FIG. 電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an electrophotographic apparatus including a process cartridge having an electrophotographic photosensitive member. 実施例で用いた型部材の凹凸形状を示す図である。It is a figure which shows the uneven | corrugated shape of the type | mold member used in the Example.

本発明の電子写真感光体の表面加工方法は、電子写真感光体の表面に凹凸形状を有する型部材を加圧接触させることによって、該型部材の凹凸形状を該電子写真感光体の表面に転写する凹凸形状転写工程を有する。電子写真感光体としては、熱可塑性樹脂を含有する電荷輸送層および該電荷輸送層上に形成された硬化型樹脂を含有する表面層を有する電子写真感光体が用いられる。そして、凹凸形状転写工程の後、表面に凹凸形状が転写された電子写真感光体を下記条件AおよびBにて加熱処理する加熱処理工程をさらに有することを特徴とする。
A:該電子写真感光体の加熱処理の温度をTa(℃)とし、該電荷輸送層のガラス転移温度をTg(℃)としたとき、Tg−20≦Ta≦Tg+20を満たす。
B:該電子写真感光体の加熱処理の時間が、2分間以上である。
The surface processing method of the electrophotographic photosensitive member of the present invention transfers the uneven shape of the mold member to the surface of the electrophotographic photosensitive member by bringing the mold member having the uneven shape into pressure contact with the surface of the electrophotographic photosensitive member. An uneven shape transfer step. As the electrophotographic photosensitive member, an electrophotographic photosensitive member having a charge transport layer containing a thermoplastic resin and a surface layer containing a curable resin formed on the charge transport layer is used. And after the uneven | corrugated shape transfer process, it has further the heat processing process which heat-processes the electrophotographic photoreceptor by which the uneven | corrugated shape was transferred on the surface on the following conditions A and B.
A: When the temperature of the heat treatment of the electrophotographic photosensitive member is Ta (° C.) and the glass transition temperature of the charge transport layer is Tg (° C.), Tg−20 ≦ Ta ≦ Tg + 20 is satisfied.
B: The heat treatment time of the electrophotographic photosensitive member is 2 minutes or more.

本発明者らは、本発明の電子写真感光体の表面加工方法により、電子写真感光体の表面に形成された凹凸形状の高温環境下における安定性が高くなる理由を以下のように考えている。   The present inventors consider the reason why the unevenness formed on the surface of the electrophotographic photosensitive member in the surface processing method of the electrophotographic photosensitive member of the present invention increases the stability in a high temperature environment as follows. .

本発明においては、電子写真感光体の表面に凹凸形状を有する型部材を加圧接触させることによって、該型部材の凹凸形状が該電子写真感光体の表面に転写される。このようにして電子写真感光体の表面に凹凸形状を形成すると、この凹凸形状に対応した凹凸形状が電荷輸送層の表面(表面層と電荷輸送層の界面)にも形成される。そして、電子写真感光体の表面の凹凸形状は、電荷輸送層の表面に形成された凹凸形状によって保持されている。一般的に、表面層が含有する硬化型樹脂は、3次元網目構造を有しているので弾性変形しやすく、電荷輸送層が含有する熱可塑性樹脂は、3次元網目構造を有していないので塑性変形しやすいという性質を有する。電子写真感光体の表面に凹凸形状を有する型部材を加圧接触させることによって、表面層が弾性変形するとともに、その下の電荷輸送層が塑性変形して電荷輸送層の表面に凹凸形状が形成される。表面層の変形は主に弾性変形であるため、表面層は平坦に戻ろうとする力を有しているものの、塑性変形している電荷輸送層には自らの表面が有している凹凸形状を維持する力があり、その表面に表面層が接着していることにより、表面層は電荷輸送層の表面の凹凸形状に沿うように変形したままになり、結果、表面層の表面すなわち電子写真感光体の表面には凹凸形状が形成されていると考えられる。すなわち、電子写真感光体の表面の凹凸形状は、電荷輸送層の表面の凹凸形状によって保持されていると考えられる。   In the present invention, by pressing a mold member having an uneven shape on the surface of the electrophotographic photosensitive member under pressure, the uneven shape of the mold member is transferred to the surface of the electrophotographic photosensitive member. When the uneven shape is formed on the surface of the electrophotographic photosensitive member in this manner, the uneven shape corresponding to the uneven shape is also formed on the surface of the charge transport layer (interface between the surface layer and the charge transport layer). The uneven shape on the surface of the electrophotographic photosensitive member is held by the uneven shape formed on the surface of the charge transport layer. Generally, since the curable resin contained in the surface layer has a three-dimensional network structure, it is easily elastically deformed, and the thermoplastic resin contained in the charge transport layer does not have a three-dimensional network structure. It has the property of being easily plastically deformed. By pressing a mold member having a concavo-convex shape on the surface of the electrophotographic photosensitive member, the surface layer is elastically deformed, and the charge transport layer below it is plastically deformed to form a concavo-convex shape on the surface of the charge transport layer. Is done. Since the deformation of the surface layer is mainly an elastic deformation, the surface layer has a force to return to a flat surface, but the charge transport layer that is plastically deformed has an uneven shape on its surface. Since the surface layer adheres to the surface of the charge transport layer, the surface layer remains deformed along the irregular shape of the surface of the charge transport layer. The surface of the body is considered to have an uneven shape. That is, it is considered that the uneven shape on the surface of the electrophotographic photosensitive member is held by the uneven shape on the surface of the charge transport layer.

この凹凸形状を有する電子写真感光体が、その電荷輸送層のガラス転移温度付近まで加熱されると、電荷輸送層の熱可塑性樹脂が軟化し始め、上記電荷輸送層の凹凸形状を維持する力が著しく低下する。すると、表面層の上記平坦に戻ろうとする力が勝って、電子写真感光体の表面の凹凸形状が平坦に戻りやすくなると考えられる。   When the electrophotographic photosensitive member having the concavo-convex shape is heated to near the glass transition temperature of the charge transport layer, the thermoplastic resin of the charge transport layer starts to soften, and the power to maintain the concavo-convex shape of the charge transport layer is increased. It drops significantly. Then, it is considered that the force to return the surface layer to the above flatness wins and the uneven shape on the surface of the electrophotographic photosensitive member is easily returned to the flat surface.

本発明者らは、検討を行った結果、電子写真感光体の表面に凹凸形状を形成した後、物流時の高温環境を想定した加熱処理を行い、予め電子写真感光体の表面の凹凸形状を平坦になる方向に電荷輸送層および表面層をある程度変形させておくことで、その後の電子写真感光体の表面の凹凸形状が安定化することを発見した。つまり、物流時の高温環境を想定した上記条件AおよびBにて、表面に凹凸形状を有する電子写真感光体を予め加熱処理しておくことで、それ以降に加熱(物流時の温度上昇)されても、電子写真感光体の表面の凹凸形状は平坦になる方向に変形しにくくなる。   As a result of the study, the inventors have formed an uneven shape on the surface of the electrophotographic photosensitive member, and then performed heat treatment assuming a high-temperature environment during distribution, so that the uneven shape of the surface of the electrophotographic photosensitive member is previously obtained. It has been found that the uneven shape on the surface of the electrophotographic photoreceptor thereafter is stabilized by deforming the charge transport layer and the surface layer to some extent in the flattening direction. In other words, an electrophotographic photosensitive member having a concavo-convex shape on the surface is preliminarily heated under the above conditions A and B assuming a high temperature environment at the time of distribution, and thereafter heated (temperature increase at the time of distribution). However, the uneven shape on the surface of the electrophotographic photosensitive member is not easily deformed in a flattening direction.

上記条件Aに示されるように、電子写真感光体の加熱処理の温度(Ta)は、電荷輸送層のガラス転移温度(Tg)から設定される。もし、Ta<Tg−20であると、熱可塑性樹脂を軟化が発生しにくく、表面層の平坦に戻ろうとする力より電子写真感光体の表面の凹凸形状を保持する電荷輸送層の力が勝ったままになっていると考えられる。すなわち、十分な加熱処理が行われていないことになる。そのため、表面に凹凸形状を有する電子写真感光体が物流時に高温環境下に置かれた際、電子写真感光体の表面の凹凸形状が平坦に戻りやすい。一方、Tg+20<Taであると、加熱処理の温度が高過ぎるため、電荷輸送層の軟化が顕著になり、凹凸形状転写工程で電子写真感光体の表面に形成した凹凸形状が、加熱処理により平坦に戻り過ぎてしまう。   As shown in the above condition A, the temperature (Ta) of the heat treatment of the electrophotographic photosensitive member is set from the glass transition temperature (Tg) of the charge transport layer. If Ta <Tg-20, the thermoplastic resin is less likely to be softened, and the force of the charge transport layer that retains the uneven shape on the surface of the electrophotographic photosensitive member is superior to the force of returning the surface layer to the flat surface. It is thought that it has remained. That is, sufficient heat treatment is not performed. Therefore, when an electrophotographic photosensitive member having a concavo-convex shape on the surface is placed in a high-temperature environment at the time of distribution, the concavo-convex shape on the surface of the electrophotographic photosensitive member tends to return flat. On the other hand, if Tg + 20 <Ta, the temperature of the heat treatment is too high, so the softening of the charge transport layer becomes remarkable, and the uneven shape formed on the surface of the electrophotographic photosensitive member in the uneven shape transfer process is flattened by the heat treatment. Go back to too much.

より好ましくは、前記条件AにおけるTa(℃)およびTg(℃)が、Tg−19≦Ta≦Tg+19を満たすことであり、電子写真感光体の表面に形成した複数の凹凸形状同士の均一性がより高まる。Ta<Tgであると、高温環境下における安定性がより高い凹凸形状を形成できる。より好ましくは、Tg−19≦Ta≦Tg+14である。   More preferably, Ta (° C.) and Tg (° C.) in the condition A satisfy Tg−19 ≦ Ta ≦ Tg + 19, and the uniformity of the plurality of uneven shapes formed on the surface of the electrophotographic photosensitive member is Increase more. When Ta <Tg, it is possible to form a concavo-convex shape having higher stability in a high temperature environment. More preferably, Tg-19 ≦ Ta ≦ Tg + 14.

電荷輸送層のガラス転移温度(Tg)は、電荷輸送層を構成する結着樹脂の種類および分子量、電荷輸送物質の種類、樹脂と電荷輸送物質の混合質量比などによって決定される。本発明においては、50≦Tg≦150の範囲であることが好ましい。より好ましくは、60≦Tg≦100を満たすことである。   The glass transition temperature (Tg) of the charge transport layer is determined by the type and molecular weight of the binder resin constituting the charge transport layer, the type of the charge transport material, the mixing mass ratio of the resin and the charge transport material, and the like. In the present invention, a range of 50 ≦ Tg ≦ 150 is preferable. More preferably, 60 ≦ Tg ≦ 100 is satisfied.

電荷輸送層のガラス転移温度は、示差走査熱量分析装置(DSC)、例えばエスアイアイ・ナノテクノロジー(株)製の「SSC5200H」などの熱分析装置を用いて測定することができる。   The glass transition temperature of the charge transport layer can be measured using a differential scanning calorimeter (DSC), for example, a thermal analyzer such as “SSC5200H” manufactured by SII Nanotechnology.

具体的には、(アルミニウム粗管やシート上に直接塗布された)電荷輸送層の膜のみ剥離してサンプリングした材料を測定用パン等に投入し、DSC装置の炉内に設置する。測定温度を30℃から300℃まで5℃/minの昇温速度で走査して測定を行う。得られた示差走査熱量曲線から、ガラス転移温度を決める。   Specifically, only the film of the charge transport layer (applied directly on the aluminum rough tube or the sheet) is peeled off and the sampled material is put into a measuring pan or the like and placed in the furnace of the DSC apparatus. Measurement is performed by scanning the measurement temperature from 30 ° C. to 300 ° C. at a rate of temperature increase of 5 ° C./min. The glass transition temperature is determined from the obtained differential scanning calorimetry curve.

また、上記条件Bに示されるように、電子写真感光体の加熱処理の時間は2分間以上である。もし、2分間未満であると、十分に加熱されないため、熱可塑性樹脂の軟化が発生しにくく、表面層の平坦に戻ろうとする力より電子写真感光体の表面の凹凸形状を保持する電荷輸送層の力が勝ったままになっていると考えられる。すなわち、十分な加熱処理が行われていないことになる。そのため、表面に凹凸形状を有する電子写真感光体が物流時に高温環境下に置かれた際、電子写真感光体の表面の凹凸形状が平坦に戻りやすい。より好ましくは、電子写真感光体の加熱処理の時間は5分間以上であり、電子写真感光体の全体に加熱処理が行われ、凹凸形状の安定性がより高まる。電子写真感光体の加熱時間は、上述の加熱時間(2分間以上)を満たせばよく、さらに加熱時間を長くしても、本発明の効果を得ることができる。好ましくは、電子写真感光体の加熱処理の時間は2分間以上48時間以下であり、より好ましくは、5分間以上であり、2時間以下(120分間以下)である。なお、上記条件Bの加熱処理の時間とは、電子写真感光体の表面の温度がTg−20≦Ta≦Tg+20の範囲にある間の時間である。   Further, as shown in the condition B, the heat treatment time of the electrophotographic photosensitive member is 2 minutes or more. If it is less than 2 minutes, the thermoplastic resin is not sufficiently heated, so that the softening of the thermoplastic resin is difficult to occur, and the charge transport layer that retains the uneven shape on the surface of the electrophotographic photosensitive member by the force of returning to the flat surface layer. It is thought that the power of is still winning. That is, sufficient heat treatment is not performed. Therefore, when an electrophotographic photosensitive member having a concavo-convex shape on the surface is placed in a high-temperature environment at the time of distribution, the concavo-convex shape on the surface of the electrophotographic photosensitive member tends to return flat. More preferably, the heat treatment time of the electrophotographic photosensitive member is 5 minutes or more, and the heat treatment is performed on the entire electrophotographic photosensitive member, thereby improving the stability of the uneven shape. The heating time of the electrophotographic photosensitive member may satisfy the above-described heating time (2 minutes or more), and even if the heating time is further increased, the effect of the present invention can be obtained. Preferably, the heat treatment time of the electrophotographic photosensitive member is 2 minutes or more and 48 hours or less, more preferably 5 minutes or more and 2 hours or less (120 minutes or less). The heat treatment time under the condition B is a time during which the surface temperature of the electrophotographic photosensitive member is in the range of Tg−20 ≦ Ta ≦ Tg + 20.

本発明において、加熱処理は、例えば、オーブン等による加熱や、マイクロ波加熱や、高周波誘電加熱等の電磁波加熱などが用いられ、上記条件Aを満たすように温度等が設定される。電子写真感光体の表面の温度は、電子写真感光体の表面に熱電対等の温度センサーを接触させることにより測定する。放射温度計等の非接触温度センサーを使用しても良い。   In the present invention, for example, heating by an oven, microwave heating, electromagnetic wave heating such as high frequency dielectric heating, or the like is used as the heat treatment, and the temperature or the like is set so as to satisfy the above condition A. The temperature of the surface of the electrophotographic photosensitive member is measured by bringing a temperature sensor such as a thermocouple into contact with the surface of the electrophotographic photosensitive member. A non-contact temperature sensor such as a radiation thermometer may be used.

本発明の電子写真感光体の表面加工方法において、凹凸形状転写工程と加熱処理工程との間に、電子写真感光体を冷却する冷却工程を有することが好ましい。この冷却工程は、電子写真感光体の温度がTg−20未満になるまで冷却することが、本発明の効果を安定的に得られるため好ましい。   In the electrophotographic photoreceptor surface processing method of the present invention, it is preferable to have a cooling step for cooling the electrophotographic photoreceptor between the concavo-convex shape transfer step and the heat treatment step. In this cooling step, cooling until the temperature of the electrophotographic photosensitive member is less than Tg-20 is preferable because the effects of the present invention can be stably obtained.

〈電子写真感光体〉
本発明における電子写真感光体の好ましい構成の概略が図3に示される。図3に示される電子写真感光体においては、21は支持体であり、22は下引き層であり、23は電荷発生層であり、24は電荷輸送層であり、25は表面層である。
<Electrophotographic photoconductor>
An outline of a preferred structure of the electrophotographic photosensitive member in the present invention is shown in FIG. In the electrophotographic photosensitive member shown in FIG. 3, 21 is a support, 22 is an undercoat layer, 23 is a charge generation layer, 24 is a charge transport layer, and 25 is a surface layer.

本発明で用いられる支持体としては、導電性を有するもの(導電性支持体)であることが好ましい。支持体の材質としては、例えば、鉄、銅、金、銀、アルミニウム、亜鉛、チタン、鉛、ニッケル、スズ、アンチモン、インジウム、クロム、アルミニウム合金、ステンレスなどの金属または合金が挙げられる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金などを真空蒸着によって形成した被膜を有する金属製支持体や樹脂製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子などの導電性粒子をプラスチックや紙に含浸してなる支持体や、導電性樹脂を含有する支持体を用いることもできる。支持体の形状としては、円筒状、ベルト状あるいはシート状などが挙げられるが、円筒状が好ましい。   The support used in the present invention is preferably a conductive one (conductive support). Examples of the material of the support include metals or alloys such as iron, copper, gold, silver, aluminum, zinc, titanium, lead, nickel, tin, antimony, indium, chromium, aluminum alloy, and stainless steel. In addition, a metal support or a resin support having a film formed by vacuum deposition of aluminum, an aluminum alloy, an indium oxide-tin oxide alloy, or the like can also be used. In addition, a support obtained by impregnating plastic or paper with conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles, or a support containing a conductive resin can also be used. Examples of the shape of the support include a cylindrical shape, a belt shape, and a sheet shape, and a cylindrical shape is preferable.

支持体の表面は、レーザー光の散乱による干渉縞の抑制を目的として、切削処理、粗面化処理、アルマイト処理などを施してもよい。   The surface of the support may be subjected to cutting treatment, roughening treatment, alumite treatment, etc. for the purpose of suppressing interference fringes due to scattering of laser light.

支持体と、後述の下引き層または電荷発生層との間には、レーザー等の散乱による干渉縞の抑制や、支持体の傷の被覆を目的として、導電層を設けてもよい。   A conductive layer may be provided between the support and the undercoat layer or charge generation layer, which will be described later, for the purpose of suppressing interference fringes due to scattering of a laser or the like and covering the scratches on the support.

導電層は、カーボンブラック、導電性顔料、抵抗調節顔料などを結着樹脂とともに分散処理することによって得られる導電層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。導電層用塗布液には、加熱、紫外線照射、放射線照射などにより硬化重合する化合物を添加してもよい。導電性顔料や抵抗調節顔料を分散させてなる導電層は、その表面が粗面化される傾向にある。   The conductive layer can be formed by applying a coating solution for a conductive layer obtained by dispersing carbon black, a conductive pigment, a resistance adjusting pigment or the like together with a binder resin, and drying the obtained coating film. it can. A compound that is cured and polymerized by heating, ultraviolet irradiation, radiation irradiation, or the like may be added to the conductive layer coating solution. A conductive layer in which a conductive pigment or a resistance adjusting pigment is dispersed tends to have a roughened surface.

導電層用塗布液の溶剤としては、エーテル系溶剤、アルコール系溶剤、ケトン系溶剤、芳香族炭化水素溶剤などが挙げられる。導電層の膜厚は、0.2μm以上40μm以下であることが好ましく、1μm以上35μm以下であることがより好ましく、5μm以上30μm以下であることがより好ましい。導電層の膜厚は、0.1μm以上50μm以下であることが好ましく、さらには0.5μm以上40μm以下であることがより好ましく、さらには1μm以上30μm以下であることがより好ましい。   Examples of the solvent for the conductive layer coating solution include ether solvents, alcohol solvents, ketone solvents, and aromatic hydrocarbon solvents. The thickness of the conductive layer is preferably 0.2 μm or more and 40 μm or less, more preferably 1 μm or more and 35 μm or less, and more preferably 5 μm or more and 30 μm or less. The film thickness of the conductive layer is preferably from 0.1 μm to 50 μm, more preferably from 0.5 μm to 40 μm, and even more preferably from 1 μm to 30 μm.

導電層に用いられる結着樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体 共重合体、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリウレタン樹脂、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂およびエポキシ樹脂が挙げられる。   Examples of the binder resin used for the conductive layer include styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinyl compound polymers such as vinylidene fluoride and trifluoroethylene, copolymers, polyvinyl alcohol resins, polyvinyl Examples include acetal resin, polycarbonate resin, polyester resin, polysulfone resin, polyphenylene oxide resin, polyurethane resin, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.

導電性顔料および抵抗調節顔料としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀、ステンレス等の金属(合金) の粒子や、これらをプラスチックの粒子の表面に蒸着したものが挙げられる。また、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズの金属酸化物の粒子でもよい。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合するだけでもよいし、固溶体や融着の形にしてもよい。   Examples of the conductive pigment and the resistance adjusting pigment include particles of metals (alloys) such as aluminum, zinc, copper, chromium, nickel, silver, and stainless steel, and those obtained by vapor deposition on the surfaces of plastic particles. Alternatively, zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, indium oxide doped with tin, or metal oxide particles of tin oxide doped with antimony or tantalum may be used. These may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion.

支持体又は導電層と電荷発生層との間には、電荷発生層の接着性改良、塗工性改良、支持体からの電荷注入性改良、電荷発生層の電気的破壊に対する保護などを目的として、バリア機能や接着機能を有する下引き層(中間層)を設けてもよい。   Between the support or conductive layer and the charge generation layer, for the purpose of improving the adhesion of the charge generation layer, improving coating properties, improving the charge injection from the support, and protecting the charge generation layer from electrical breakdown An undercoat layer (intermediate layer) having a barrier function or an adhesive function may be provided.

下引き層は、樹脂(結着樹脂)を溶剤に溶解させることによって得られる下引き層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。   The undercoat layer can be formed by applying a coating solution for an undercoat layer obtained by dissolving a resin (binder resin) in a solvent and drying the obtained coating film.

下引き層に用いられる樹脂としては、ポリビニルアルコール樹脂、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド樹脂、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド樹脂、N−メトキシメチル化6ナイロン樹脂、共重合ナイロン樹脂、フェノール樹脂、ポリウレタン樹脂、エポキシ樹脂、アクリル樹脂、メラミン樹脂あるいはポリエステル樹脂などが挙げられる。   As the resin used for the undercoat layer, polyvinyl alcohol resin, poly-N-vinylimidazole, polyethylene oxide resin, ethyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide resin, N-methoxymethylated 6 nylon resin, co-polymer Examples thereof include polymerized nylon resin, phenol resin, polyurethane resin, epoxy resin, acrylic resin, melamine resin, and polyester resin.

下引き層には、さらに、金属酸化物粒子を含有させてもよく、酸化チタン、酸化亜鉛、酸化スズ、酸化ジルコニウム、酸化アルミニウムを含有する粒子が挙げられる。また、金属酸化物粒子は、金属酸化物粒子の表面がシランカップリング剤などの表面処理剤で処理されている金属酸化物粒子であってもよい。   The undercoat layer may further contain metal oxide particles, and examples thereof include particles containing titanium oxide, zinc oxide, tin oxide, zirconium oxide, and aluminum oxide. The metal oxide particles may be metal oxide particles in which the surface of the metal oxide particles is treated with a surface treatment agent such as a silane coupling agent.

下引き層用塗布液に用いられる溶剤としては、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、脂肪族ハロゲン化炭化水素系溶剤、芳香族化合物などの有機溶剤が挙げられる。下引き層の膜厚は、0.05μm以上30μm以下であることが好ましく、1μm以上25μm以下であることがより好ましい。下引き層には、さらに、有機樹脂微粒子、レべリング剤を含有させてもよい。   Examples of the solvent used for the coating solution for the undercoat layer include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, aliphatic halogenated hydrocarbon solvents, and organic solvents such as aromatic compounds. Can be mentioned. The thickness of the undercoat layer is preferably 0.05 μm or more and 30 μm or less, and more preferably 1 μm or more and 25 μm or less. The undercoat layer may further contain organic resin fine particles and a leveling agent.

次に電荷発生層について説明する。電荷発生層は、電荷発生物質を結着樹脂および溶剤とともに分散処理することによって得られた電荷発生層用塗布液を塗布し、得られた塗膜を乾燥させることによって形成することができる。また、電荷発生層は、電荷発生物質の蒸着膜としてもよい。   Next, the charge generation layer will be described. The charge generation layer can be formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent, and drying the obtained coating film. The charge generation layer may be a vapor generation film of a charge generation material.

電荷発生層に用いられる電荷発生物質としては、アゾ顔料、フタロシアニン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、スクワリリウム色素、ピリリウム塩、チアピリリウム塩、トリフェニルメタン色素、キナクリドン顔料、アズレニウム塩顔料、シアニン染料、アントアントロン顔料、ピラントロン顔料、キサンテン色素、キノンイミン色素、スチリル色素などが挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。これら電荷発生物質の中でも、感度の観点から、フタロシアニン顔料やアゾ顔料が好ましく、特にはフタロシアニン顔料がより好ましい。   Examples of charge generation materials used in the charge generation layer include azo pigments, phthalocyanine pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, squarylium dyes, pyrylium salts, thiapyrylium salts, triphenylmethane dyes, quinacridone pigments, azulenium salt pigments, Examples include cyanine dyes, anthanthrone pigments, pyranthrone pigments, xanthene dyes, quinoneimine dyes, and styryl dyes. These charge generation materials may be used alone or in combination of two or more. Among these charge generation materials, phthalocyanine pigments and azo pigments are preferable from the viewpoint of sensitivity, and phthalocyanine pigments are more preferable.

フタロシアニン顔料の中でも、特にオキシチタニウムフタロシアニンあるいはクロロガリウムフタロシアニン、ヒドロキシガリウムフタロシアニンが優れた電荷発生効率を示す。さらに、ヒドロキシガリウムフタロシアニンの中でも、感度の観点から、CuKα特性X線回折におけるブラッグ角2θが7.4°±0.3°および28.2°±0.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶がより好ましい。   Among phthalocyanine pigments, oxytitanium phthalocyanine, chlorogallium phthalocyanine, and hydroxygallium phthalocyanine exhibit excellent charge generation efficiency. Furthermore, among the hydroxygallium phthalocyanines, from the viewpoint of sensitivity, the crystal form of the Bragg angle 2θ in CuKα characteristic X-ray diffraction has strong peaks at 7.4 ° ± 0.3 ° and 28.2 ° ± 0.3 °. A hydroxygallium phthalocyanine crystal is more preferable.

電荷発生層に用いられる結着樹脂としては、例えば、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレンなどのビニル化合物の重合体や、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリフェニレンオキサイド樹脂、ポリウレタン樹脂、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などが挙げられる。   Examples of the binder resin used for the charge generation layer include polymers of vinyl compounds such as styrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, vinylidene fluoride, trifluoroethylene, polyvinyl alcohol resin, Examples include polyvinyl acetal resin, polycarbonate resin, polyester resin, polysulfone resin, polyphenylene oxide resin, polyurethane resin, cellulose resin, phenol resin, melamine resin, silicon resin, and epoxy resin.

電荷発生物質と、結着樹脂の質量比は、1:0.3〜1:4の範囲であることが好ましい。   The mass ratio of the charge generation material and the binder resin is preferably in the range of 1: 0.3 to 1: 4.

分散処理方法としては、例えば、ホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター、ロールミルなどを用いる方法が挙げられる。   Examples of the dispersion treatment method include a method using a homogenizer, ultrasonic dispersion, ball mill, vibration ball mill, sand mill, attritor, roll mill, and the like.

電荷発生層用塗布液に用いられる溶剤は、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、脂肪族ハロゲン化炭化水素系溶剤、芳香族化合物などが挙げられる。   Examples of the solvent used in the coating solution for the charge generation layer include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, aliphatic halogenated hydrocarbon solvents, and aromatic compounds.

次に、電荷輸送層について説明する。電荷輸送層は、電荷輸送物質と熱可塑性樹脂とを溶剤に溶解させることによって得られる電荷輸送層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。   Next, the charge transport layer will be described. The charge transport layer is formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a thermoplastic resin in a solvent to form a coating film, and then drying the obtained coating film. be able to.

電荷輸送層に用いられる電荷輸送物質としては、例えば、カルバゾール化合物、ヒドラゾン化合物、N,N−ジアルキルアニリン化合物、ジフェニルアミン化合物、トリフェニルアミン化合物等、トリフェニルメタン化合物、ピラゾリン化合物、スチリル化合物、スチルベン化合物等などが挙げられる。   Examples of the charge transport material used in the charge transport layer include carbazole compounds, hydrazone compounds, N, N-dialkylaniline compounds, diphenylamine compounds, triphenylamine compounds, and the like, triphenylmethane compounds, pyrazoline compounds, styryl compounds, stilbene compounds. Etc.

電荷輸送層に用いる熱可塑性樹脂としては、アクリル酸エステル、メタクリル酸エステル、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂などが挙げられる。好ましくは、ポリカーボネート樹脂、またはポリエステル樹脂である。電荷輸送層用塗布液に用いられる溶剤としては、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、脂肪族ハロゲン化炭化水素系溶剤、芳香族炭化水素系溶剤などなどが挙げられる。   Examples of the thermoplastic resin used for the charge transport layer include acrylic ester, methacrylic ester, polyvinyl alcohol resin, polyvinyl acetal resin, polycarbonate resin, and polyester resin. A polycarbonate resin or a polyester resin is preferable. Solvents used in the charge transport layer coating solution include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, aliphatic halogenated hydrocarbon solvents, aromatic hydrocarbon solvents, etc. Is mentioned.

電荷輸送層の膜厚は、3μm以上50μm以下であることが好ましく、さらには5μm以上40μm以下であることがより好ましい。   The thickness of the charge transport layer is preferably 3 μm or more and 50 μm or less, and more preferably 5 μm or more and 40 μm or less.

表面層は硬化型樹脂を含有する。硬化型樹脂としては、硬化型フェノール樹脂、硬化型メラミン樹脂、硬化型エポキシ樹脂、硬化型アクリル樹脂、硬化型メタクリル樹脂などが挙げられるが、硬化型アクリル樹脂または硬化型メタクリル樹脂であることが好ましい。また、硬化型アクリル樹脂、硬化型メタクリル樹脂は、アクリルロイルオキシ基、メタクリルロイルオキシ基を有する電荷輸送性化合物を重合させることによって得られた樹脂であることが好ましい。また、アクリルロイルオキシ基、メタクリルロイルオキシ基を有する電荷輸送性化合物を用いる際、多官能モノマー(同一分子内に2つ以上の連鎖重合性官能基を有し、電荷輸送能を有さない化合物)を併用してもよい。多官能モノマーとしては、トリメチロールプロパントリアクリレート(製品名:Miramer M300、東洋ケミカルズ(株)製)、トリメチロールプロパントリメタクリレート(製品名:Miramer M301、東洋ケミカルズ(株)製)などが挙げられる。   The surface layer contains a curable resin. Examples of the curable resin include a curable phenolic resin, a curable melamine resin, a curable epoxy resin, a curable acrylic resin, and a curable methacrylic resin. A curable acrylic resin or a curable methacrylic resin is preferable. . The curable acrylic resin and curable methacrylic resin are preferably resins obtained by polymerizing a charge transporting compound having an acryloyloxy group or a methacryloyloxy group. In addition, when using a charge transporting compound having an acryloyloxy group or a methacryloyloxy group, a polyfunctional monomer (a compound having two or more chain polymerizable functional groups in the same molecule and not having a charge transporting ability) ) May be used in combination. Examples of the polyfunctional monomer include trimethylolpropane triacrylate (product name: Miramer M300, manufactured by Toyo Chemicals Corporation), trimethylolpropane trimethacrylate (product name: Miramer M301, manufactured by Toyo Chemicals Corporation), and the like.

硬化(重合)させる反応としては、例えば、ラジカル重合、イオン重合、熱重合、光重合、放射線重合(電子線重合)、プラズマCVD法、光CVD法などが挙げられる。   Examples of the reaction to be cured (polymerized) include radical polymerization, ionic polymerization, thermal polymerization, photopolymerization, radiation polymerization (electron beam polymerization), plasma CVD method, and photo CVD method.

表面層は、樹脂を有機溶剤に溶解させて得られる表面層用塗布液を塗布して塗膜を形成し、得られた塗膜を乾燥させることによって形成することができる。   The surface layer can be formed by applying a surface layer coating solution obtained by dissolving a resin in an organic solvent to form a coating film and drying the resulting coating film.

表面層の膜厚は、0.1μm以上30μm以下であることが好ましい。更には0.5μm以上15μm以下であることがより好ましい。表面層用塗布液に用いられる溶剤は、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、脂肪族ハロゲン化炭化水素系溶剤、芳香族化合物などが挙げられる。   The thickness of the surface layer is preferably 0.1 μm or more and 30 μm or less. Further, it is more preferably 0.5 μm or more and 15 μm or less. Examples of the solvent used in the surface layer coating solution include alcohol solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, aliphatic halogenated hydrocarbon solvents, aromatic compounds, and the like.

また、電子写真感光体の表面層には、導電性粒子、シリコーンオイル、ワックス、ポリテトラフルオロエチレン粒子などのフッ素原子含有樹脂粒子、シリカ粒子、アルミナ粒子、窒化ホウ素などの潤滑剤を含有させてもよい。   In addition, the surface layer of the electrophotographic photosensitive member contains a lubricant such as conductive particles, silicone oil, wax, fluorine atom-containing resin particles such as polytetrafluoroethylene particles, silica particles, alumina particles, and boron nitride. Also good.

本発明の電子写真感光体の各層には各種添加剤を添加することが出来る。添加剤としては、酸化防止剤や紫外線吸収剤等の劣化防止剤や、レべリング剤等の塗布性改良剤、フッ素原子含有樹脂粒子やアクリル樹脂粒子等の有機樹脂粒子、シリカ、酸化チタン、アルミナ等の無機粒子が挙げられる。   Various additives can be added to each layer of the electrophotographic photoreceptor of the present invention. Additives include deterioration inhibitors such as antioxidants and UV absorbers, coatability improvers such as leveling agents, organic resin particles such as fluorine atom-containing resin particles and acrylic resin particles, silica, titanium oxide, Examples thereof include inorganic particles such as alumina.

上記各層の塗布液を塗布する際には、例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法の如き塗布方法を用いることができる。   When applying the coating liquid for each of the above layers, for example, a coating method such as a dip coating method (dip coating method), a spray coating method, a spinner coating method, a roller coating method, a Meyer bar coating method, or a blade coating method should be used. Can do.

本発明は、凹凸形状を有する型部材を加圧接触させることによって、該型部材の凹凸形状を該電子写真感光体の表面に転写する凹凸形状転写工程を有する。そして、型部材の凹凸形状を電子写真感光体に転写する観点から、弾性変形率が重要である。上述の凹凸形状転写工程を行う観点から、電子写真感光体の表面の弾性変形率は、45〜65%であることが好ましい。この範囲の弾性変形率であると、電子写真感光体の表面に効率的に凹凸形状を形成できる。   The present invention includes a concavo-convex shape transfer step of transferring the concavo-convex shape of the mold member to the surface of the electrophotographic photosensitive member by bringing a mold member having the concavo-convex shape into pressure contact. From the viewpoint of transferring the uneven shape of the mold member to the electrophotographic photosensitive member, the elastic deformation rate is important. From the viewpoint of performing the uneven shape transfer step described above, the elastic deformation rate of the surface of the electrophotographic photosensitive member is preferably 45 to 65%. When the elastic deformation rate is within this range, it is possible to efficiently form a concavo-convex shape on the surface of the electrophotographic photosensitive member.

電子写真感光体の表面の弾性変形率は、ユニバーサル硬さ試験で規定された測定法に基づいて求めることができる。なお、ユニバーサル硬さ試験(マルテンス硬さ試験)は、ISO 14577(JIS Z 2255:2003)で規定された測定法である。温度25℃湿度50%RH環境下で、電子写真感光体の表面を微小硬さ測定装置(商品名:フィシャースコープH100V、Fischer社製)を用いて測定することができる。四角錐で先端の対面角136゜のダイヤモンド圧子で荷重をかけて、測定対象の電子写真感光体の表面にこの圧子を押し込み、圧子に荷重をかけた状態での押し込み深さを電気的に検出して読み取ることで、弾性変形率を算出できる。   The elastic deformation rate of the surface of the electrophotographic photosensitive member can be determined based on a measurement method defined by a universal hardness test. The universal hardness test (Martens hardness test) is a measurement method defined by ISO 14577 (JIS Z 2255: 2003). The surface of the electrophotographic photosensitive member can be measured using a microhardness measuring device (trade name: Fischerscope H100V, manufactured by Fischer) in an environment of a temperature of 25 ° C. and a humidity of 50% RH. A load is applied with a diamond indenter with a face angle of 136 ° at the tip of the square pyramid, the indenter is pushed into the surface of the electrophotographic photosensitive member to be measured, and the indentation depth in the state where the indenter is loaded is electrically detected. Thus, the elastic deformation rate can be calculated.

ダイヤモンド圧子に連続的にかける最終の荷重(最終荷重)は6mNとし、圧子に最終荷重6mNをかけた状態を保持する時間(保持時間)は0.1秒とした。また、測定点は273点とした。各測定点における保持時間も0.1秒とした。   The final load (final load) continuously applied to the diamond indenter was 6 mN, and the time during which the final load 6 mN was applied to the indenter (retention time) was 0.1 second. The measurement points were 273 points. The holding time at each measurement point was also 0.1 seconds.

上記の「フィシャースコープH100V」の出力チャートの概略を図1に示す。また、本発明の電子写真感光体を測定対象としたときの「フィシャースコープH100V」の出力チャートの一例を図2に示す。図1、図2中、縦軸は圧子にかけた荷重F(mN)を、横軸は圧子の押し込み深さh(μm)を示す。図1は、圧子にかける荷重Fを段階的に増加させて荷重が最大になった(点Aから点Bに到達した)後、段階的に荷重を減少させた(点Bから点Cに到達した)ときの結果を示している。図2は、圧子にかける荷重Fを段階的に増加させて最終的に荷重を6mNとし、その後、段階的に荷重を減少させたときの結果を示している。   An outline of the output chart of the “Fisherscope H100V” is shown in FIG. FIG. 2 shows an example of an output chart of “Fischer Scope H100V” when the electrophotographic photosensitive member of the present invention is a measurement object. 1 and 2, the vertical axis represents the load F (mN) applied to the indenter, and the horizontal axis represents the indentation depth h (μm). In FIG. 1, the load F applied to the indenter is increased stepwise to maximize the load (from point A to point B), and then the load is decreased stepwise (from point B to point C). Shows the results. FIG. 2 shows the results when the load F applied to the indenter is increased stepwise to finally set the load to 6 mN, and then the load is decreased stepwise.

図2中、ユニバーサル硬さ値(HU)は、圧子に最終荷重6mNをかけたときの圧子の押し込み深さから下記式により求めることができる。なお、下記式中、HUはユニバーサル硬さ(HU)を意味し、Ffは最終荷重を意味し、Sfは最終荷重をかけたときの圧子の押し込まれた部分の表面積を意味し、hfは最終荷重をかけたときの圧子の押し込み深さを意味する。   In FIG. 2, the universal hardness value (HU) can be obtained from the indentation depth of the indenter when a final load of 6 mN is applied to the indenter by the following formula. In the following formula, HU means universal hardness (HU), Ff means the final load, Sf means the surface area of the indented portion when the final load is applied, and hf is the final value. It means the indentation depth of the indenter when a load is applied.

また、弾性変形率は、圧子が測定対象(電子写真感光体の表面)に対して行った仕事量(エネルギー)、すなわち、圧子の測定対象(電子写真感光体の表面)に対する荷重の増減によるエネルギーの変化より求めることができる。具体的には、弾性変形仕事量Weを全仕事量Wtで除した値(We/Wt)が弾性変形率である。なお、全仕事量Wtは図1中のA−B−D−Aで囲まれる領域の面積であり、弾性変形仕事量Weは図1中のC−B−D−Cで囲まれる領域の面積である。   The elastic deformation rate is the amount of work (energy) performed by the indenter with respect to the measurement target (electrophotographic photosensitive member surface), that is, the energy due to the increase or decrease of the load with respect to the measurement target (electrophotographic photosensitive member surface). It can be obtained from the change of. Specifically, a value (We / Wt) obtained by dividing the elastic deformation work We by the total work Wt is the elastic deformation rate. The total work Wt is the area of the region surrounded by A-B-D-A in FIG. 1, and the elastic deformation work We is the area of the region surrounded by C-B-D-C in FIG. It is.

次に、凹凸形状転写工程について説明する。   Next, the uneven shape transfer process will be described.

図4は、電子写真感光体の表面に凹凸形状を有する型部材を加圧接触させることによって、型部材の凹凸形状を電子写真感光体の表面に転写するための装置(圧接凹凸形状転写装置)の一例を示す図である。   FIG. 4 shows an apparatus for transferring the concavo-convex shape of the mold member to the surface of the electrophotographic photosensitive member by press-contacting the mold member having the concavo-convex shape on the surface of the electrophotographic photosensitive member (pressure contact concavo-convex shape transfer device). It is a figure which shows an example.

図4に示す圧接凹凸形状転写装置によれば、被加工物である電子写真感光体4−1を回転させながら、その表面(周面)に連続的に型部材4−2を接触させ、加圧させながら型部材4−2を移動させる。これにより、電子写真感光体4−1を回転させながら、その表面(周面)に連続的に型部材を加圧接触させ、型部材の凹凸形状を電子写真感光体の表面に転写して電子写真感光体の表面に凹凸形状を形成することができる。なお、電子写真感光体の表面に凹凸形状を効率的に転写する観点から、電子写真感光体や型部材を加熱してもよい。   According to the press-contact uneven shape transfer apparatus shown in FIG. 4, while rotating the electrophotographic photosensitive member 4-1, which is a workpiece, the mold member 4-2 is continuously brought into contact with the surface (circumferential surface), and the processing is performed. The mold member 4-2 is moved while being pressed. As a result, while rotating the electrophotographic photosensitive member 4-1, the mold member is continuously brought into pressure contact with the surface (circumferential surface), and the concave and convex shape of the mold member is transferred to the surface of the electrophotographic photosensitive member. Irregularities can be formed on the surface of the photographic photoreceptor. Note that the electrophotographic photosensitive member and the mold member may be heated from the viewpoint of efficiently transferring the uneven shape onto the surface of the electrophotographic photosensitive member.

また、型部材4−2は、表面に凸部を有する転写層、金属層および弾性層の3つの層から構成される型部材が好ましい。また、転写層および弾性層が一体となった層および弾性層の2つの層で構成される型部材であってもよい。   Moreover, the mold member 4-2 is preferably a mold member composed of three layers including a transfer layer having a convex portion on the surface, a metal layer, and an elastic layer. Further, it may be a mold member composed of two layers, a layer in which a transfer layer and an elastic layer are integrated, and an elastic layer.

加圧部材4−3の材質としては、例えば、金属、金属酸化物、プラスチック、ガラスなどが挙げられる。これらの中でも、機械的強度、寸法精度、耐久性の観点から、ステンレス鋼(SUS)が好ましい。加圧部材4−3の上面には、型部材4−2が設置される。また、下面側の支持部材(不図示)および加圧システム(不図示)により、支持部材4−4に支持された電子写真感光体4−1の表面に、型部材4−2を所定の圧力で接触させることができる。また、支持部材4−4を加圧部材4−3に対して所定の圧力で押し付けてもよいし、支持部材4−4および加圧部材4−3を互いに押し付けてもよい。   Examples of the material of the pressure member 4-3 include metal, metal oxide, plastic, and glass. Among these, stainless steel (SUS) is preferable from the viewpoint of mechanical strength, dimensional accuracy, and durability. A mold member 4-2 is installed on the upper surface of the pressure member 4-3. In addition, the mold member 4-2 is pressed to a predetermined pressure on the surface of the electrophotographic photosensitive member 4-1 supported by the support member 4-4 by a support member (not shown) on the lower surface side and a pressure system (not shown). Can be contacted. Further, the support member 4-4 may be pressed against the pressure member 4-3 with a predetermined pressure, or the support member 4-4 and the pressure member 4-3 may be pressed against each other.

型部材の表面(転写層の表面)の凸部は、例えば、微細な表面加工された(凸部を有する)金属や、表面にレジストによりパターニングをしたものや、微粒子が分散された樹脂フィルムや、微細な凸部を有する樹脂フィルムに金属コーティングを施したものなどが挙げられる。また、転写層としては、上述の凸部を形成する材料と同じであることが好ましく、アルミニウム、ニッケル、各種ステンレスなどが用いられる。金属層としては、アルミニウム、ニッケル、各種ステンレス鋼などが用いられる。弾性層としては、例えば、シリコンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。   The convex part on the surface of the mold member (the surface of the transfer layer) is, for example, a fine surface-processed metal (having a convex part), a surface patterned with a resist, a resin film in which fine particles are dispersed, Examples thereof include a resin film having fine convex portions and a metal coating applied thereto. In addition, the transfer layer is preferably the same as the material forming the above-described convex portions, and aluminum, nickel, various stainless steels, and the like are used. As the metal layer, aluminum, nickel, various stainless steels or the like are used. Examples of the elastic layer include silicon rubber, fluorine rubber, urethane rubber, and the like.

なお、凹凸形状転写を効率的に行う観点から、型部材4−2や電子写真感光体4−1を加熱することが好ましい。   Note that it is preferable to heat the mold member 4-2 and the electrophotographic photosensitive member 4-1, from the viewpoint of efficiently performing the uneven shape transfer.

加工時における回転速度は、上記温度制御および加圧力とともに最適化されるが、概ね電子写真感光体の表面移動速度として、1mm/秒から200mm/秒の範囲で調整される。加圧接触加工の回数は、必要に応じて設定することができ、1回でも複数回でも良い。   The rotational speed at the time of processing is optimized together with the temperature control and the applied pressure, but is generally adjusted in the range of 1 mm / second to 200 mm / second as the surface moving speed of the electrophotographic photosensitive member. The number of press contact processes can be set as necessary, and may be one or more times.

次に、型部材の表面の凸部は、例えば、平面部に多数の凸部が形成されている形状が挙げられる。凸部の形状としては、例えば、凸部を上から見たときの形が、円、楕円、正方形、長方形、三角形、四角形、六角形などが挙げられる。また、凸部の断面形状は、例えば、三角形、四角形、多角形などのエッジを有するものや、連続した曲線からなる波型や、三角形、四角形、多角形のエッジの一部または全部を曲線に変形したものなどが挙げられる。   Next, as for the convex part of the surface of a type | mold member, the shape by which many convex parts are formed in the plane part is mentioned, for example. Examples of the shape of the convex portion include a circle, an ellipse, a square, a rectangle, a triangle, a quadrangle, and a hexagon when the convex portion is viewed from above. In addition, the cross-sectional shape of the convex portion may be, for example, those having edges such as triangles, quadrilaterals, polygons, corrugations consisting of continuous curves, and some or all of the edges of triangles, quadrilaterals, polygons as curves. Deformed ones are listed.

また、電子写真感光体に対する圧力を均一にする観点から、型部材4−2と加圧部材4−3との間に弾性体を設置することが好ましい。   Moreover, it is preferable to install an elastic body between the mold member 4-2 and the pressure member 4-3 from the viewpoint of making the pressure on the electrophotographic photosensitive member uniform.

表面層の表面に形成された凹部の最長径は、0.1μm以上100μm以下が好ましい。また、凹部の深さは、0.1μm以上10μm以下が好ましく、凹部の面積率は、表面層の全体に対して0.1%以上100%以下であることが好ましい。これらの凹部の最長径、深さ、面積率など、表面に凹凸形状が形成された電子写真感光体の表面の観察は、市販のレーザー顕微鏡、光学顕微鏡、電子顕微鏡あるいは原子力間顕微鏡により可能である。   The longest diameter of the recess formed on the surface of the surface layer is preferably 0.1 μm or more and 100 μm or less. Moreover, the depth of the recess is preferably 0.1 μm or more and 10 μm or less, and the area ratio of the recess is preferably 0.1% or more and 100% or less with respect to the entire surface layer. Observation of the surface of the electrophotographic photosensitive member having a concavo-convex shape formed on the surface, such as the longest diameter, depth, and area ratio of these concave portions, is possible with a commercially available laser microscope, optical microscope, electron microscope, or atomic force microscope. .

レーザー顕微鏡としては、例えば、超深度形状測定顕微鏡 VK−8550、VK−9000、VK−9500((株)キーエンス社製)、表面形状測定システムSurface Explorer SX−520DR型機((株)菱化システム社製)、走査型共焦点レーザー顕微鏡OLS3000(オリンパス(株)製)、リアルカラーコンフォーカル顕微鏡オプリテクスC130(レーザーテック(株)製)が挙げられる。   As a laser microscope, for example, ultra-deep shape measurement microscopes VK-8550, VK-9000, VK-9500 (manufactured by Keyence Corporation), surface shape measurement system Surface Explorer SX-520DR type machine (Ryokai System Co., Ltd.) Co., Ltd.), scanning confocal laser microscope OLS3000 (manufactured by Olympus Corporation), and real color confocal microscope Oplitex C130 (manufactured by Lasertec Corporation).

光学顕微鏡としては、例えば、デジタルマイクロスコープVHX−500、およびデジタルマイクロスコープVHX−200(いずれもキーエンス(株)製)、3DデジタルマイクロスコープVC−7700(オムロン(株)製)が挙げられる。   Examples of the optical microscope include a digital microscope VHX-500, a digital microscope VHX-200 (both manufactured by Keyence Corporation), and a 3D digital microscope VC-7700 (manufactured by OMRON Corporation).

電子顕微鏡としては、例えば、3Dリアルサーフェスビュー顕微鏡VE−9800、3Dリアルサーフェスビュー顕微鏡VE−8800(いずれもキーエンス(株)製)、走査型電子顕微鏡コンベンショナル/Variable Pre ssure SEM(エスアイアイ・ナノテクノロジー(株)製)、走査型電子顕微鏡SUPERSCAN SS−550((株)島津製作所製)が挙げられる。   Examples of the electron microscope include a 3D real surface view microscope VE-9800, a 3D real surface view microscope VE-8800 (both manufactured by Keyence Corporation), a scanning electron microscope conventional / variable pre sure SEM (SII Nanotechnology). And a scanning electron microscope SUPERSCAN SS-550 (manufactured by Shimadzu Corporation).

原子力間顕微鏡としては、例えば、ナノスケールハイブリッド顕微鏡VN−8000(キーエンス(株)製)、走査型プローブ顕微鏡NanoNaviステーション(エスアイアイ・ナノテクノロジー(株)製)、走査型プローブ顕微鏡SPM−9600(島津製作所(株)製)が挙げられる。   Examples of the atomic force microscope include a nanoscale hybrid microscope VN-8000 (manufactured by Keyence Corporation), a scanning probe microscope NanoNavi station (manufactured by SII NanoTechnology Corporation), and a scanning probe microscope SPM-9600 (Shimadzu). (Manufactured by Seisakusho Co., Ltd.).

上記顕微鏡を用いて、所定の倍率により、測定視野内の凹凸形状を観察して、断面プロファイルを取得し、顕微鏡に付属の画像解析ソフトにより、この断面プロファイルを画像解析することで求めることができる。一例として、Surface Explorer SX−520DR型機による解析プログラムを利用した測定例について説明する。測定対象の電子写真感光体をワーク置き台に設置し、チルト調整して水平を合わせ、ウェーブモードで電子写真感光体の周面の3次元形状データを取り込む。その際、対物レンズの倍率を50倍または20倍としてもよい。次に、データ解析ソフト中の粒子解析プログラムを用いて電子写真感光体の表面の等高線データ等を表示することができる。   Using the above microscope, it is possible to obtain the cross-sectional profile by observing the uneven shape in the measurement visual field at a predetermined magnification, and by analyzing the cross-sectional profile with the image analysis software attached to the microscope. . As an example, a measurement example using an analysis program by the Surface Explorer SX-520DR type machine will be described. The electrophotographic photosensitive member to be measured is placed on the work table, and the tilt is adjusted to adjust the horizontal, and the three-dimensional shape data of the peripheral surface of the electrophotographic photosensitive member is captured in the wave mode. At this time, the magnification of the objective lens may be 50 times or 20 times. Next, the contour data of the surface of the electrophotographic photoreceptor can be displayed using a particle analysis program in the data analysis software.

次に、図5に本発明の電子写真感光体およびプロセスカートリッジを備えた電子写真装置の概略構成の一例を示す。   Next, FIG. 5 shows an example of a schematic configuration of an electrophotographic apparatus provided with the electrophotographic photosensitive member and the process cartridge of the present invention.

図5において、1は円筒状の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。回転駆動される電子写真感光体1の周面は、帯電手段(一次帯電手段:帯電ローラーなど)3により、正または負の所定電位に均一に帯電される。次いで、スリット露光やレーザービーム走査露光などの露光手段(不図示)から出力される露光光(画像露光光)4を受ける。こうして電子写真感光体1の周面に、目的の画像に対応した静電潜像が順次形成されていく。帯電手段3に印加する電圧は、直流成分に交流成分を重畳した電圧、又は直流成分のみの電圧のどちらでもよい。   In FIG. 5, reference numeral 1 denotes a cylindrical electrophotographic photosensitive member, which is driven to rotate at a predetermined peripheral speed in the direction of the arrow about the shaft 2. The peripheral surface of the electrophotographic photosensitive member 1 that is driven to rotate is uniformly charged to a predetermined positive or negative potential by a charging unit (primary charging unit: charging roller or the like) 3. Next, exposure light (image exposure light) 4 output from exposure means (not shown) such as slit exposure or laser beam scanning exposure is received. In this way, electrostatic latent images corresponding to the target image are sequentially formed on the peripheral surface of the electrophotographic photosensitive member 1. The voltage applied to the charging means 3 may be either a voltage obtained by superimposing an AC component on a DC component or a voltage containing only a DC component.

電子写真感光体1の周面に形成された静電潜像は、現像手段5の現像剤に含まれるトナーにより現像されてトナー像となる。次いで、電子写真感光体1の周面に形成担持されているトナー像が、転写手段(転写ローラーなど)6からの転写バイアスによって、転写材(紙など)7に順次転写されていく。転写材7は、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送される。   The electrostatic latent image formed on the peripheral surface of the electrophotographic photosensitive member 1 is developed with toner contained in the developer of the developing unit 5 to become a toner image. Next, the toner image formed and supported on the peripheral surface of the electrophotographic photosensitive member 1 is sequentially transferred onto a transfer material (such as paper) 7 by a transfer bias from a transfer unit (such as a transfer roller) 6. The transfer material 7 is taken out from a transfer material supply means (not shown) between the electrophotographic photoreceptor 1 and the transfer means 6 (contact portion) in synchronization with the rotation of the electrophotographic photoreceptor 1 and fed. .

トナー像の転写を受けた転写材7は、電子写真感光体1の周面から分離されて定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。   The transfer material 7 that has received the transfer of the toner image is separated from the peripheral surface of the electrophotographic photosensitive member 1, introduced into the fixing means 8, and subjected to image fixing to be printed out of the apparatus as an image formed product (print, copy). Out.

トナー像転写後の電子写真感光体1の表面は、クリーニング手段(クリーニングブレードなど)9によって転写残りの現像剤(トナー)の除去を受けて清浄面化される。次いで、前露光手段(不図示)からの前露光光10により除電処理された後、電子写真感光体1は、画像形成に繰り返し使用される。なお、図5に示すように、帯電手段3が帯電ローラーなどを用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。   The surface of the electrophotographic photosensitive member 1 after the transfer of the toner image is cleaned by receiving a developer (toner) remaining after the transfer by a cleaning means (cleaning blade or the like) 9. Next, after being subjected to charge removal processing by pre-exposure light 10 from a pre-exposure means (not shown), the electrophotographic photosensitive member 1 is repeatedly used for image formation. As shown in FIG. 5, when the charging unit 3 is a contact charging unit using a charging roller or the like, pre-exposure is not necessarily required.

また、転写手段として、例えば、ベルト状やドラム状の中間転写体を用いた中間転写方式の転写手段を採用してもよい。   Further, as the transfer unit, for example, an intermediate transfer type transfer unit using a belt-shaped or drum-shaped intermediate transfer member may be employed.

上記の電子写真感光体1、帯電手段3、現像手段5およびクリーニング手段9などの構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に支持して構成し、このプロセスカートリッジを複写機やレーザービームプリンターなどの電子写真装置本体に対して着脱自在に構成してもよい。図5では、電子写真感光体1と、帯電手段3、現像手段5およびクリーニング手段9とを一体に支持してカートリッジ化して、電子写真装置本体のレールの如き案内手段12を用いて電子写真装置本体に着脱自在なプロセスカートリッジ11としている。   Among the components such as the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5, and the cleaning unit 9, a plurality of components are housed in a container and integrally supported as a process cartridge, and the process cartridge is copied. It may be configured to be detachable from the main body of an electrophotographic apparatus such as a machine or a laser beam printer. In FIG. 5, the electrophotographic photosensitive member 1, the charging unit 3, the developing unit 5 and the cleaning unit 9 are integrally supported to form a cartridge, and the electrophotographic apparatus is used by using a guide unit 12 such as a rail of the main body of the electrophotographic apparatus. The process cartridge 11 is detachable from the main body.

以下に、具体的な実施例を挙げて本発明をより詳細に説明する。なお、実施例中の「部」は「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to specific examples. In the examples, “part” means “part by mass”.

(実施例1)
直径30mm、長さ357.5mm、肉厚1mmのアルミニウムシリンダーを支持体(導電性支持体)とした。
Example 1
An aluminum cylinder having a diameter of 30 mm, a length of 357.5 mm, and a wall thickness of 1 mm was used as a support (conductive support).

次に、金属酸化物として酸化亜鉛粒子(比表面積:19m/g、粉体抵抗:4.7×10Ω・cm)100部をトルエン500部と撹拌混合し、これにシランカップリング剤(化合物名:N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、商品名:KBM602、信越化学工業(株)製)0.8部を添加し、6時間攪拌した。その後、トルエンを減圧留去して、130℃で6時間加熱乾燥し、表面処理された酸化亜鉛粒子を得た。 Next, 100 parts of zinc oxide particles (specific surface area: 19 m 2 / g, powder resistance: 4.7 × 10 6 Ω · cm) as a metal oxide are stirred and mixed with 500 parts of toluene, and this is mixed with a silane coupling agent. (Compound name: N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, trade name: KBM602, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.8 part was added and stirred for 6 hours. Thereafter, toluene was distilled off under reduced pressure, followed by heating and drying at 130 ° C. for 6 hours to obtain surface-treated zinc oxide particles.

次に、ポリオール樹脂としてポリビニルブチラール樹脂(重量平均分子量:40000、商品名:BM−1、積水化学工業(株)製)15部およびブロック化イソシアネート(商品名:スミジュール3175、住化バイエルウレタン(株)製)15部をメチルエチルケトン73.5部と1−ブタノール73.5部の混合溶液に溶解させた。この溶液に前記表面処理された酸化亜鉛粒子80.8部、および2,3,4−トリヒドロキシベンゾフェノン(東京化成工業(株)製)0.8部を加え、これを直径0.8mmのガラスビーズを用いたサンドミル装置で23±3℃雰囲気下で3時間分散した。分散後、シリコーンオイル(商品名:SH28PA、東レダウコーニング(株)製)0.01部、架橋ポリメタクリル酸メチル(PMMA)粒子(商品名:TECHPOLYMER SSX−102、積水化成品工業(株)製、平均一次粒径2.5μm)を5.6部加えて攪拌し、下引き層用塗布液を調製した。   Next, 15 parts of polyvinyl butyral resin (weight average molecular weight: 40000, trade name: BM-1, manufactured by Sekisui Chemical Co., Ltd.) and blocked isocyanate (trade name: Sumidur 3175, Sumika Bayer Urethane ( 15 parts) was dissolved in a mixed solution of 73.5 parts of methyl ethyl ketone and 73.5 parts of 1-butanol. 80.8 parts of the surface-treated zinc oxide particles and 0.8 part of 2,3,4-trihydroxybenzophenone (manufactured by Tokyo Chemical Industry Co., Ltd.) are added to this solution, and this is added to a glass having a diameter of 0.8 mm. Dispersion was performed in a sand mill apparatus using beads in an atmosphere of 23 ± 3 ° C. for 3 hours. After dispersion, 0.01 parts of silicone oil (trade name: SH28PA, manufactured by Toray Dow Corning), cross-linked polymethyl methacrylate (PMMA) particles (trade name: TECHPOLYMER SSX-102, manufactured by Sekisui Plastics Co., Ltd.) 5.6 parts of an average primary particle size of 2.5 μm) was added and stirred to prepare an undercoat layer coating solution.

この下引き層用塗布液を上記アルミニウムシリンダー上に浸漬塗布して塗膜を形成し、得られた塗膜を40分間160℃で乾燥させて、膜厚が18μmの下引き層を形成した。   This undercoat layer coating solution was dip-coated on the aluminum cylinder to form a coating film, and the resulting coating film was dried at 160 ° C. for 40 minutes to form an undercoat layer having a thickness of 18 μm.

次にCuKα特性X線回折のブラック角2θ±0.2°の7.4°および28.2°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷輸送物質)20部、下記式(1)で示されるカリックスアレーン化合物0.2部、ポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業(株)製)10部およびシクロヘキサノン600部を、直径1mmガラスビーズを用いたサンドミル装置で4時間分散した後、酢酸エチル700部を加えて電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を温度80℃のオーブンで15分間加熱乾燥することにより、膜厚が0.17μmの電荷発生層を形成した。   Next, 20 parts of a crystalline hydroxygallium phthalocyanine crystal (charge transport material) having strong peaks at 7.4 ° and 28.2 ° of black angle 2θ ± 0.2 ° of CuKα characteristic X-ray diffraction, the following formula (1) ), 10 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 600 parts of cyclohexanone in a sand mill using 1 mm diameter glass beads. After dispersion for 4 hours, 700 parts of ethyl acetate was added to prepare a coating solution for charge generation layer. This coating solution for charge generation layer was dip coated on the undercoat layer, and the resulting coating film was heated and dried in an oven at a temperature of 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm. .

次に、下記式(2)で示される化合物(電荷輸送物質)60部、および下記式(3)で示される化合物(電荷輸送物質)40部、およびポリカーボネート樹脂(ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)100部を、モノクロロベンゼン600部およびメチラール200部の混合溶媒中に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を温度100℃のオーブンで30分間加熱乾燥することにより、膜厚が18μmの電荷輸送層を形成した。   Next, 60 parts of a compound (charge transport material) represented by the following formula (2), 40 parts of a compound (charge transport material) represented by the following formula (3), and polycarbonate resin (Iupilon Z400, Mitsubishi Engineering Plastics ( The charge transport layer coating solution was prepared by dissolving 100 parts) in a mixed solvent of 600 parts monochlorobenzene and 200 parts methylal. The charge transport layer coating solution was dip-coated on the charge generation layer, and the resulting coating film was dried by heating in an oven at 100 ° C. for 30 minutes to form a charge transport layer having a thickness of 18 μm.

上記電荷輸送層のTgを測定するために、同じアルミニウムシリンダー上に、直接、同じ電荷輸送層用塗布液を同じ条件で塗布して乾燥させて電荷輸送層を形成した。その後、アルミニウムシリンダーから電荷輸送層を剥離し、示差走査熱量測定装置(DSC)測定用のアルミニウムパンの中に折りたたんで投入し、蓋をした。   In order to measure the Tg of the charge transport layer, the same charge transport layer coating solution was directly applied on the same aluminum cylinder under the same conditions and dried to form a charge transport layer. Thereafter, the charge transport layer was peeled off from the aluminum cylinder, folded and put into an aluminum pan for differential scanning calorimetry (DSC) measurement, and covered.

このDSC測定用のサンプルをセイコー電子工業(株)製DSC測定装置に設置し、測定温度を30℃から300℃まで5℃/minの昇温速度で走査して測定を行う。得られた示差走査熱量曲線から、ガラス転移温度(Tg)を求めた。Tgは69℃であった。   This sample for DSC measurement is installed in a DSC measurement apparatus manufactured by Seiko Electronics Industry Co., Ltd., and measurement is performed by scanning the measurement temperature from 30 ° C. to 300 ° C. at a temperature increase rate of 5 ° C./min. The glass transition temperature (Tg) was determined from the obtained differential scanning calorimetry curve. Tg was 69 ° C.

次に、下記式(4)で示される化合物(連鎖重合性官能基を有する正孔輸送性化合物)30部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン35部(商品名:ゼオローラH、日本ゼオン(株)製)、1−プロパノール35部、およびフッ素原子含有樹脂(商品名:GF−300、東亞合成(株)製)0.09部を混合して良く撹拌した。これを、ポリフロンフィルター(商品名:PF−06、アドバンテック東洋(株)製)で濾過を行い、表面層用塗布液を調製した。   Next, 30 parts of a compound represented by the following formula (4) (a hole transporting compound having a chain polymerizable functional group), 35 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane ( Product name: Zeorora H, manufactured by Nippon Zeon Co., Ltd.), 1-propanol 35 parts, and fluorine atom-containing resin (trade name: GF-300, manufactured by Toagosei Co., Ltd.) 0.09 parts may be mixed and stirred well. did. This was filtered with a polyflon filter (trade name: PF-06, manufactured by Advantech Toyo Co., Ltd.) to prepare a surface layer coating solution.

この表面層用塗布液を前記電荷輸送層上に浸漬塗布して塗膜を形成し、得られた塗膜を大気中において温度50℃のオーブンで10分間乾燥した。その後、窒素雰囲気下において、加速電圧150kV、ビーム電流3.0mAの条件で支持体(被照射体)を200rpmで回転させながら、1.6秒間電子線を塗膜に照射した。引き続いて、窒素雰囲気下において、塗膜が温度25℃から温度125℃になるまで30秒かけて昇温させ、塗膜の加熱を行った。なお、このときの電子線の吸収線量を測定したところ、15kGyであった。また、電子線照射から、窒素雰囲気下の加熱処理までの酸素濃度は15ppm以下であった。次に、大気中において、塗膜が温度25℃になるまで自然冷却し、大気中において塗膜が温度100℃になる条件で30分間加熱処理を行い、膜厚5μmの表面層を形成した。   This coating solution for surface layer was dip coated on the charge transport layer to form a coating film, and the obtained coating film was dried in an oven at a temperature of 50 ° C. for 10 minutes in the atmosphere. Thereafter, in a nitrogen atmosphere, the coating film was irradiated with an electron beam for 1.6 seconds while rotating the support (object to be irradiated) at 200 rpm under conditions of an acceleration voltage of 150 kV and a beam current of 3.0 mA. Subsequently, in a nitrogen atmosphere, the coating film was heated for 30 seconds until the temperature of the coating film reached 25 ° C. from 25 ° C. to heat the coating film. In addition, when the absorbed dose of the electron beam at this time was measured, it was 15 kGy. Moreover, the oxygen concentration from electron beam irradiation to heat treatment under a nitrogen atmosphere was 15 ppm or less. Next, in the air, the coating film was naturally cooled until the temperature reached 25 ° C., and heat treatment was performed for 30 minutes under the condition that the temperature of the coating film reached 100 ° C. in the atmosphere to form a surface layer having a thickness of 5 μm.

このようにして、表面に凹凸形状を形成する前の電子写真感光体(凹凸形状形成前の電子写真感光体)を作製した。   In this manner, an electrophotographic photosensitive member before forming a concavo-convex shape on the surface (an electrophotographic photosensitive member before forming the concavo-convex shape) was produced.

次に、概ね図4に示す構成の圧接凹凸形状転写装置に、型部材を設置し、作製した凹凸形状形成前の電子写真感光体に対して表面加工(凹凸形状形成)を行った。型部材は、弾性層(シリコーンゴム)、金属層(ステンレス)、転写層(ニッケル)のものを用いた。転写層が有する凹凸形状は、概ね図6に示す形状のランダム(誤差拡散法(Floyd&Steinberg法)による。)な凸部を平面に配置したものを用いた。図6において、転写層が有する凸形状は、最長径(型部材上の凸部を上から見たときの最長径のこと。)Xm:50μmであり、高さHが8.0μmのドーム型形状であった。この型部材を用いて、上記で作製した電子写真感光体の表面に表面加工を行った。加工時には、電子写真感光体の表面の温度が23℃(室温)になるように電子写真感光体および型部材の温度を制御した。電子写真感光体にかける加圧力が1280kgfになるように電子写真感光体と加圧部材を押し付けながら、電子写真感光体を周方向に回転させた。電子写真感光体の表面(周面)の全面に凹凸形状(凹形状)を形成した。   Next, a mold member was installed in the press-contact uneven shape transfer apparatus having a configuration generally shown in FIG. As the mold member, an elastic layer (silicone rubber), a metal layer (stainless steel), and a transfer layer (nickel) were used. As the concavo-convex shape of the transfer layer, a random convex portion (by an error diffusion method (Floyd & Steinberg method)) having a shape shown in FIG. In FIG. 6, the convex shape of the transfer layer is the longest diameter (the longest diameter when the convex portion on the mold member is viewed from above) Xm: 50 μm, and the height H is 8.0 μm. It was a shape. Using this mold member, surface processing was performed on the surface of the electrophotographic photosensitive member produced above. During processing, the temperatures of the electrophotographic photosensitive member and the mold member were controlled so that the surface temperature of the electrophotographic photosensitive member was 23 ° C. (room temperature). The electrophotographic photosensitive member was rotated in the circumferential direction while pressing the electrophotographic photosensitive member and the pressure member so that the pressure applied to the electrophotographic photosensitive member was 1280 kgf. An uneven shape (concave shape) was formed on the entire surface (circumferential surface) of the electrophotographic photosensitive member.

このようにして、表面に凹凸形状を有する電子写真感光体を製造した。の電子写真感光体表面の弾性変形率を、上述の「フィシャースコープH100V」を用いて測定したところ、53%であった。   In this way, an electrophotographic photosensitive member having an uneven shape on the surface was produced. When the elastic deformation rate of the surface of the electrophotographic photosensitive member was measured using the above-mentioned “Fischerscope H100V”, it was 53%.

得られた電子写真感光体の表面加工直後の凹形状の測定を行った。電子写真感光体の表面の凹形状について、時間や処理工程を経ても追跡できるように凹形状をマーキングして位置を特定しながら測定した。   The concave shape was measured immediately after the surface processing of the obtained electrophotographic photosensitive member. The concave shape on the surface of the electrophotographic photosensitive member was measured while marking the concave shape and specifying the position so that the concave shape could be traced even after time and processing steps.

凹形状の測定は、表面形状測定システムSurface Explorer SX−520DR型機((株)菱化システム社製)で20倍対物レンズにより拡大観察し、凹形状の測定を行った。観察時には、電子写真感光体の長手方向に傾きが無く、周方向については、電子写真感光体の周面の頂点にピントが合うように、調整して行った。測定データは、付属の形状画像解析ソフトにより、必要に応じてノイズ除去処理、曲率補正処理等を行い、凹形状データを抽出した。測定した凹形状は、最長径の平均が50μm、深さが2.72μmであった。   The concave shape was measured with a surface shape measurement system Surface Explorer SX-520DR type machine (manufactured by Ryoka System Co., Ltd.) with a 20 × objective lens, and the concave shape was measured. At the time of observation, the electrophotographic photosensitive member was adjusted so that there was no inclination in the longitudinal direction and the circumferential direction was focused on the apex of the peripheral surface of the electrophotographic photosensitive member. The measurement data was subjected to noise removal processing, curvature correction processing, etc., as necessary, by using the attached shape image analysis software, and concave shape data was extracted. The measured concave shape had an average longest diameter of 50 μm and a depth of 2.72 μm.

表面に凹凸形状が形成された電子写真感光体に対し、本発明の形状安定化のための加熱処理を行った。温風乾燥機を使用して、電子写真感光体の表面の温度が75℃になる条件で15分間加熱して処理した。加熱処理後の電子写真感光体において、表面の凹凸形状(凹形状)を測定した。表面加工直後の凹形状の測定と同様の方法で凹形状の測定を行った。測定された凹形状は、最長径の平均が50μm、深さが1.71μmであった。このように表面加工を行い、電子写真感光体を製造した。   The electrophotographic photosensitive member having a concavo-convex shape formed on the surface was subjected to heat treatment for shape stabilization of the present invention. Using a hot air dryer, the surface of the electrophotographic photoreceptor was heated for 15 minutes under the condition that the temperature was 75 ° C. In the electrophotographic photosensitive member after the heat treatment, the uneven shape (concave shape) on the surface was measured. The concave shape was measured by the same method as the measurement of the concave shape immediately after the surface processing. The measured concave shape had an average longest diameter of 50 μm and a depth of 1.71 μm. Thus, surface processing was performed and the electrophotographic photoreceptor was manufactured.

(高温環境下における凹凸形状の安定性の評価)
高温環境下における凹凸形状の安定性の評価は、物流時の温度上昇などの高温環境を想定し、温度60℃の恒温槽に上記の加熱処理後の電子写真感光体を14日間保管した(以下、過酷保管試験と称する)。
(Evaluation of uneven shape stability under high temperature environment)
The evaluation of the stability of the uneven shape under a high temperature environment is based on the assumption of a high temperature environment such as a temperature rise during distribution, and the electrophotographic photoreceptor after the above heat treatment is stored for 14 days in a constant temperature bath at a temperature of 60 ° C. , Called severe storage test).

14日間保管後の電子写真感光体の表面の凹形状を測定した。初期形状を測定したのと同一の凹部形状について、同様の方法で形状測定を行った。測定された凹形状は、最長径の平均が50μm、深さが1.63μmであった。この電子写真感光体の表面形状維持率は、過酷放置試験前後で対比すると95.3%であった。表面形状維持率は、過酷放置試験前の凹形状の深さを100%としたときの過酷放置試験後の凹形状の深さの割合を示す。得られた結果を表1に示す。   The concave shape of the surface of the electrophotographic photosensitive member after storage for 14 days was measured. About the same recessed part shape which measured initial shape, shape measurement was performed by the same method. The measured concave shape had an average longest diameter of 50 μm and a depth of 1.63 μm. The surface shape maintenance ratio of this electrophotographic photosensitive member was 95.3% when compared before and after the severe storage test. The surface shape maintenance ratio indicates the ratio of the depth of the concave shape after the severe leaving test when the depth of the concave shape before the severe standing test is 100%. The obtained results are shown in Table 1.

(実施例2)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が65℃になる条件で120分間(2時間)加熱して処理した以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 2)
The heat treatment after forming the uneven shape of the electrophotographic photosensitive member was the same as in Example 1 except that the heat treatment was performed for 120 minutes (2 hours) under the condition that the surface temperature of the electrophotographic photosensitive member was 65 ° C. Photoconductors were manufactured and evaluated for the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(実施例3)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を7.0μmに変更した。電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が70℃になる条件で15分間加熱して処理した以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 3)
The height (H) of the mold member when forming the uneven shape of the electrophotographic photosensitive member was changed to 7.0 μm. The electrophotographic photosensitive member was processed in the same manner as in Example 1 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed by heating for 15 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 70 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(実施例4)
電子写真感光体の凹凸形状形成後の加熱処理を電子写真感光体の表面の温度が65℃になる条件で120分間加熱して処理した以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
Example 4
An electrophotographic photosensitive member is produced in the same manner as in Example 1 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member is performed by heating for 120 minutes under the condition that the surface temperature of the electrophotographic photosensitive member is 65 ° C. Then, the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(実施例5)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を6.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が67℃になる条件で15分間加熱処理を行った。これ以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 5)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 6.2 μm, and the heat treatment after forming the concavo-convex shape of the electrophotographic photosensitive member is performed at the surface temperature of the electrophotographic photosensitive member. The heat treatment was performed for 15 minutes under the condition of 67 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 1, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(実施例6)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が65℃になる条件で60分間加熱処理を行った以外は、実施例5と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 6)
The electrophotographic photosensitive member was formed in the same manner as in Example 5 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 60 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 65 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(比較例1)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を4.8μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を行わなかった以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Comparative Example 1)
Example 1 except that the height (H) of the mold member when forming the uneven shape of the electrophotographic photosensitive member was changed to 4.8 μm and the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was not performed. In the same manner as above, an electrophotographic photoreceptor was produced, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(比較例2)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を6.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が45℃になる条件で480分間加熱処理を行った。これ以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Comparative Example 2)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 6.2 μm, and the heat treatment after forming the concavo-convex shape of the electrophotographic photosensitive member is performed at the surface temperature of the electrophotographic photosensitive member. The heat treatment was performed for 480 minutes under the condition of 45 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 1, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(実施例7)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を8.0μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が70℃になる条件で15分間加熱処理を行った。これ以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 7)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 8.0 μm, and the heat treatment after the formation of the concavo-convex shape of the electrophotographic photosensitive member is performed. The heat treatment was performed for 15 minutes under the condition of 70 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 1, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(実施例8)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が67℃になる条件で60分間加熱処理を行った以外は、実施例7と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 8)
The electrophotographic photosensitive member was formed in the same manner as in Example 7 except that the heat treatment after formation of the uneven shape of the electrophotographic photosensitive member was performed for 60 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 67 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(実施例9)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を7.0μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が68℃になる条件で15分間加熱処理を行った。これ以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
Example 9
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 7.0 μm, and the heat treatment after the concavo-convex shape formation of the electrophotographic photosensitive member is performed, the surface temperature of the electrophotographic photosensitive member is changed. The heat treatment was performed for 15 minutes under the condition of a temperature of 68 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 1, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(実施例10)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が65℃になる条件で60分間加熱処理を行った以外は、実施例9と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 10)
The electrophotographic photosensitive member was formed in the same manner as in Example 9 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 60 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 65 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(比較例3)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を6.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を行わなかった以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Comparative Example 3)
Example 1 except that the height (H) of the mold member when forming the uneven shape of the electrophotographic photosensitive member was changed to 6.2 μm and the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was not performed. In the same manner as above, an electrophotographic photoreceptor was produced, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(実施例11)
凹凸形状形成時の型部材の表面温度が150℃になるように温度調整し、電子写真感光体にかける加圧力が800kgfになるように変更した。その後、冷却工程として、凹凸形状が形成された電子写真感光体を室温環境下(23℃、1気圧)で、10分間静置し、電子写真感光体の温度が40℃以下になるようにした。そして、電子写真感光体の凹凸形状形成後の加熱処理、電子写真感光体の表面の温度が83℃になる条件で15分間加熱処理を行った以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 11)
The temperature was adjusted so that the surface temperature of the mold member when the concavo-convex shape was formed was 150 ° C., and the pressure applied to the electrophotographic photosensitive member was changed to 800 kgf. Thereafter, as a cooling step, the electrophotographic photosensitive member having the irregular shape formed thereon was allowed to stand for 10 minutes in a room temperature environment (23 ° C., 1 atm) so that the temperature of the electrophotographic photosensitive member became 40 ° C. or lower. . The electrophotographic photosensitive member was the same as in Example 1 except that the heat treatment after the formation of the concavo-convex shape of the electrophotographic photosensitive member and the heat treatment for 15 minutes were performed under the condition that the surface temperature of the electrophotographic photosensitive member was 83 ° C. And the stability of the irregular shape in a high temperature environment was evaluated. The results are shown in Table 2.

(実施例12)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が77℃になる条件で120分間加熱処理を行った以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 12)
The electrophotographic photosensitive member was formed in the same manner as in Example 11 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 120 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 77 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 2.

(実施例13)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を7.0μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が80℃になる条件で15分間加熱処理を行った。これ以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 13)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 7.0 μm, and the heat treatment after the concavo-convex shape formation of the electrophotographic photosensitive member is performed, the surface temperature of the electrophotographic photosensitive member is changed. Was heat-treated for 15 minutes under the condition of 80 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 11, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 2.

(実施例14)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が75℃になる条件で120分間加熱処理を行った以外は、実施例13と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 14)
The electrophotographic photosensitive member was formed in the same manner as in Example 13 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 120 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 75 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 2.

(実施例15)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を6.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が77℃になる条件で15分間加熱処理を行った。これ以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 15)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 6.2 μm, and the heat treatment after forming the concavo-convex shape of the electrophotographic photosensitive member is performed at the surface temperature of the electrophotographic photosensitive member. The heat treatment was performed for 15 minutes under the condition of a temperature of 77 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 11, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 2.

(実施例16)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が70℃になる条件で120分間加熱処理を行った以外は、実施例15と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 16)
The electrophotographic photosensitive member was formed in the same manner as in Example 15 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 120 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 70 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 2.

(比較例4)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を4.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を行わなかった以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Comparative Example 4)
Example 11 except that the height (H) of the mold member when forming the uneven shape of the electrophotographic photosensitive member was changed to 4.2 μm and the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was not performed. In the same manner as above, an electrophotographic photoreceptor was produced, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 2.

(比較例5)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を6.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が45℃になる条件で480分間加熱処理を行った。これ以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Comparative Example 5)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 6.2 μm, and the heat treatment after forming the concavo-convex shape of the electrophotographic photosensitive member is performed at the surface temperature of the electrophotographic photosensitive member. The heat treatment was performed for 480 minutes under the condition of 45 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 11, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 2.

(実施例17)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を8.0μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が78℃になる条件で15分間加熱処理を行った。これ以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 17)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 8.0 μm, and the heat treatment after the formation of the concavo-convex shape of the electrophotographic photosensitive member is performed. A heat treatment was performed for 15 minutes under the condition of 78 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 11, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 2.

(実施例18)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が75℃になる条件で120分間加熱処理を行った以外は、実施例17と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 18)
The electrophotographic photosensitive member was formed in the same manner as in Example 17 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 120 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 75 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 2.

(実施例19)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を7.0μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が75℃になる条件で15分間加熱処理を行った。これ以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 19)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 7.0 μm, and the heat treatment after the concavo-convex shape formation of the electrophotographic photosensitive member is performed, the surface temperature of the electrophotographic photosensitive member is changed. Was heat-treated for 15 minutes under the condition of 75 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 11, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 2.

(実施例20)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が72℃になる条件で120分間加熱処理を行った以外は、実施例19と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Example 20)
The electrophotographic photosensitive member was formed in the same manner as in Example 19 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 120 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 72 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 2.

(比較例6)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を6.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を行わなかった以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表2に示す。
(Comparative Example 6)
Example 11 except that the height (H) of the mold member when forming the uneven shape of the electrophotographic photosensitive member was changed to 6.2 μm and the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was not performed. In the same manner as above, an electrophotographic photoreceptor was produced, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 2.

(実施例21)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が83℃になる条件で2分間加熱して処理した以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 21)
The electrophotographic photosensitive member was processed in the same manner as in Example 1 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed by heating for 2 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 83 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(実施例22)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が80℃になる条件で5分間加熱して処理した以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 22)
The electrophotographic photosensitive member was processed in the same manner as in Example 1 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed by heating for 5 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 80 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(実施例23)
実施例1で用いたアルミニウムシリンダーを支持体とした。次に、酸化スズの被覆されている硫酸バリウム粒子(商品名:パストランPC1、三井金属鉱業(株)製)60部、酸化チタン粒子(商品名:TITANIX JR、テイカ(株)製)15部、レゾール型フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学工業(株)製、固形分70%)43部、シリコーンオイル(商品名:SH28PA、東レシリコーン(株)製)0.015部、シリコーン樹脂粒子(商品名:トスパール120、東芝シリコーン(株)製)3.6部を、2−メトキシ−1−プロパノール50部/メタノール50部の混合溶剤に混合し、約20時間ボールミルで分散し導電層用塗布液を調製した。この導電層用塗布液を支持体上に浸漬塗布し、得られた塗膜を1時間140℃で加熱し、硬化させることによって、膜厚15μmの導電層を形成した。
(Example 23)
The aluminum cylinder used in Example 1 was used as a support. Next, 60 parts of barium sulfate particles coated with tin oxide (trade name: Pastoran PC1, manufactured by Mitsui Kinzoku Mining Co., Ltd.), 15 parts of titanium oxide particles (trade name: TITANIX JR, manufactured by Teika Co., Ltd.), Resole type phenolic resin (trade name: Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70%) 43 parts, silicone oil (trade name: SH28PA, manufactured by Toray Silicone Co., Ltd.) 0.015 3.6 parts of silicone resin particles (trade name: Tospearl 120, manufactured by Toshiba Silicone Co., Ltd.) in a mixed solvent of 50 parts 2-methoxy-1-propanol / 50 parts methanol and ball-milled for about 20 hours. Dispersed to prepare a coating solution for a conductive layer. The conductive layer coating solution was dip-coated on a support, and the resulting coating film was heated at 140 ° C. for 1 hour to cure, thereby forming a conductive layer having a thickness of 15 μm.

次に、共重合ナイロン樹脂(商品名:アミランCM8000、東レ(株)製)10部とメトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、帝国化学(株)製)30部を、メタノール400部/n−ブタノール200部の混合溶剤に溶解させることによって、下引き層用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、得られた塗膜を温度100℃のオーブンで30分間加熱乾燥することにより、膜厚が0.45μmの下引き層を形成した。   Next, 10 parts of copolymer nylon resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 30 parts of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) are mixed with methanol. An undercoat layer coating solution was prepared by dissolving in a mixed solvent of 400 parts / 200 parts of n-butanol. This undercoat layer coating solution was applied onto the conductive layer by dip coating, and the resulting coating film was heated and dried in an oven at a temperature of 100 ° C. for 30 minutes to form an undercoat layer having a thickness of 0.45 μm.

次に、上記下引き層上に実施例1と同様の電荷発生層を形成した。   Next, a charge generation layer similar to that in Example 1 was formed on the undercoat layer.

次いで下記式(5)で示される化合物(電荷輸送物質(正孔輸送性化合物))70部、およびポリカーボネート樹脂(ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)100部を、モノクロロベンゼン510部およびメチラール170部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を温度105℃のオーブンで60分間加熱乾燥することにより、膜厚が20μmの電荷輸送層を形成した。   Next, 70 parts of a compound represented by the following formula (5) (charge transporting substance (hole transporting compound)) and 100 parts of a polycarbonate resin (Iupilon Z400, manufactured by Mitsubishi Engineering Plastics) were added to 510 parts of monochlorobenzene and A charge transport layer coating solution was prepared by dissolving in 170 parts of methylal mixed solvent. The charge transport layer coating solution was dip-coated on the charge generation layer, and the resulting coating film was heated and dried in an oven at 105 ° C. for 60 minutes to form a charge transport layer having a thickness of 20 μm.

上記電荷輸送層のガラス転移温度(Tg)を実施例1と同様の方法で測定した。Tgは82℃であった。   The glass transition temperature (Tg) of the charge transport layer was measured in the same manner as in Example 1. Tg was 82 ° C.

次に、前記式(4)で示される化合物30部、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン35部、1−プロパノール35部を混合して良く撹拌した。これを、ポリフロンフィルター(商品名:PF−020 、アドバンテック東洋(株)社製)で濾過を行い、表面層用塗布液を調製した。この表面層用塗布液を用いて、実施例1と同様に膜厚5μmの表面層を形成した。   Next, 30 parts of the compound represented by the formula (4), 35 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane and 35 parts of 1-propanol were mixed and stirred well. This was filtered with a polyflon filter (trade name: PF-020, manufactured by Advantech Toyo Co., Ltd.) to prepare a surface layer coating solution. Using this surface layer coating solution, a surface layer having a thickness of 5 μm was formed in the same manner as in Example 1.

次に、電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を8.0μmにして実施例1と同様の条件で表面形状形成を行った。形成された初期形状の深さは、2.90μmであった。この電子写真感光体表面の弾性変形率を、上述の微小硬さ測定装置(商品名:フィシャースコープH100V、Fischer社製)を用いて測定したところ、51%であった。   Next, the surface shape was formed under the same conditions as in Example 1 with the height (H) of the mold member at the time of forming the uneven shape of the electrophotographic photosensitive member being 8.0 μm. The depth of the formed initial shape was 2.90 μm. The elastic deformation rate of the surface of this electrophotographic photosensitive member was 51% when measured using the above-described microhardness measuring apparatus (trade name: Fischerscope H100V, manufactured by Fischer).

次に、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が80℃になる条件で15分間加熱処理を行った。実施例1と同様に高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。   Next, the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed for 15 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 80 ° C. As in Example 1, the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(比較例7)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が83℃になる条件で1分間加熱して処理した以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Comparative Example 7)
The electrophotographic photosensitive member was processed in the same manner as in Example 1 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed by heating for 1 minute under the condition that the surface temperature of the electrophotographic photosensitive member was 83 ° C. Manufactured and evaluated the stability of the irregular shape in a high temperature environment. The results are shown in Table 1.

(実施例24)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を6.2μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が50℃になる条件で480分間加熱処理を行った。これ以外は、実施例1と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 24)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 6.2 μm, and the heat treatment after forming the concavo-convex shape of the electrophotographic photosensitive member is performed at the surface temperature of the electrophotographic photosensitive member. The heat treatment was performed for 480 minutes under the condition of 50 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 1, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(実施例25)
電子写真感光体の凹凸形状を形成する際の型部材の高さ(H)を8.0μmに変更し、電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が88℃になる条件で3分間加熱処理を行った。これ以外は、実施例11と同様に電子写真感光体を製造し、高温環境下における凹凸形状の安定性の評価を行った。結果を表1に示す。
(Example 25)
The height (H) of the mold member when forming the concavo-convex shape of the electrophotographic photosensitive member is changed to 8.0 μm, and the heat treatment after the formation of the concavo-convex shape of the electrophotographic photosensitive member is performed. The heat treatment was performed for 3 minutes under the condition of 88 ° C. Other than this, an electrophotographic photosensitive member was produced in the same manner as in Example 11, and the stability of the uneven shape in a high temperature environment was evaluated. The results are shown in Table 1.

(参考例1)
電子写真感光体の凹凸形状形成後の加熱処理を、電子写真感光体の表面の温度が95℃になる条件で15分間加熱して処理した以外は、実施例1と同様に電子写真感光体を製造した。その結果、加熱処理前の凹形状(初期形状)深さが2.72μmであったのが、加熱処理工程後の凹形状の深さが0.3μm以下になり、凹形状(凹凸形状)がほとんど失われてしまった。
(Reference Example 1)
The electrophotographic photosensitive member was treated in the same manner as in Example 1 except that the heat treatment after forming the uneven shape of the electrophotographic photosensitive member was performed by heating for 15 minutes under the condition that the surface temperature of the electrophotographic photosensitive member was 95 ° C. Manufactured. As a result, the depth of the concave shape (initial shape) before the heat treatment was 2.72 μm, but the depth of the concave shape after the heat treatment step was 0.3 μm or less, and the concave shape (uneven shape) was Almost lost.

1 電子写真感光体
2 軸
3 帯電手段
4 露光光
5 現像手段
6 転写手段
7 転写材
8 定着手段
9 クリーニング手段
10 前露光光
11 プロセスカートリッジ
12 案内手段
21 支持体
22 下引き層
23 電荷発生層
24 電荷輸送層
25 表面層
4−1 電子写真感光体
4−2 型部材
4−3 加圧部材
4−4 電子写真感光体の支持部材
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 2 Axis 3 Charging means 4 Exposure light 5 Developing means 6 Transfer means 7 Transfer material 8 Fixing means 9 Cleaning means 10 Pre-exposure light 11 Process cartridge 12 Guide means 21 Support body 22 Undercoat layer 23 Charge generation layer 24 Charge transport layer 25 Surface layer 4-1 Electrophotographic photosensitive member 4-2 Mold member 4-3 Pressure member 4-4 Electrophotographic photosensitive member support member

Claims (10)

熱可塑性樹脂を含有する電荷輸送層および該電荷輸送層上に形成された硬化型樹脂を含有する表面層を有する電子写真感光体の表面に、凹凸形状を有する型部材を加圧接触させることによって、該型部材の凹凸形状を該電子写真感光体の表面に転写する凹凸形状転写工程と、
該凹凸形状転写工程によって、表面に凹凸形状が転写された電子写真感光体を下記条件AおよびBにて加熱処理する加熱処理工程、
とを有することを特徴とする電子写真感光体の表面加工方法。
A:該電子写真感光体の加熱処理の温度をTa(℃)とし、該電荷輸送層のガラス転移温度をTg(℃)としたとき、Tg−20≦Ta≦Tg+20を満たす。
B:該電子写真感光体の加熱処理の時間が、2分間以上である。
By bringing a mold member having an uneven shape into pressure contact with the surface of an electrophotographic photosensitive member having a charge transport layer containing a thermoplastic resin and a surface layer containing a curable resin formed on the charge transport layer. , A concavo-convex shape transfer step for transferring the concavo-convex shape of the mold member to the surface of the electrophotographic photosensitive member,
A heat treatment step of heat-treating the electrophotographic photosensitive member having a concavo-convex shape transferred to the surface under the following conditions A and B by the concavo-convex shape transfer step;
And a surface processing method for an electrophotographic photosensitive member.
A: When the temperature of the heat treatment of the electrophotographic photosensitive member is Ta (° C.) and the glass transition temperature of the charge transport layer is Tg (° C.), Tg−20 ≦ Ta ≦ Tg + 20 is satisfied.
B: The heat treatment time of the electrophotographic photosensitive member is 2 minutes or more.
前記条件AにおけるTa(℃)およびTg(℃)が、Tg−19≦Ta≦Tg+14を満たす請求項1に記載の電子写真感光体の表面加工方法。   The surface processing method for an electrophotographic photosensitive member according to claim 1, wherein Ta (° C.) and Tg (° C.) in the condition A satisfy Tg-19 ≦ Ta ≦ Tg + 14. 前記条件AにおけるTa(℃)およびTg(℃)が、Ta<Tgを満たす請求項1または2に記載の電子写真感光体の表面加工方法。   The surface processing method for an electrophotographic photosensitive member according to claim 1, wherein Ta (° C.) and Tg (° C.) in the condition A satisfy Ta <Tg. 前記条件Bにおける前記電子写真感光体の加熱処理の時間が、5分間以上である請求項1から3のいずれか1項に記載の電子写真感光体の表面加工方法。   The surface processing method for an electrophotographic photosensitive member according to any one of claims 1 to 3, wherein the time for the heat treatment of the electrophotographic photosensitive member under the condition B is 5 minutes or more. 前記条件Bにおける前記電子写真感光体の加熱処理の時間が、2時間以下である請求項1から4のいずれか1項に記載の電子写真感光体の表面加工方法。   5. The surface processing method for an electrophotographic photosensitive member according to claim 1, wherein the time for the heat treatment of the electrophotographic photosensitive member under the condition B is 2 hours or less. 前記条件AにおけるTg(℃)が、60≦Tg≦100を満たす請求項1から5のいずれか1項に記載の電子写真感光体の表面加工方法。   6. The surface processing method of an electrophotographic photosensitive member according to claim 1, wherein Tg (° C.) in the condition A satisfies 60 ≦ Tg ≦ 100. 前記凹凸形状転写工程と前記加熱処理工程との間に、前記電子写真感光体の温度がTg−20(℃)未満になるまで前記電子写真感光体を冷却する冷却工程をさらに有する請求項1から6のいずれか1項に記載の電子写真感光体の表面加工方法。   The cooling process of further cooling the electrophotographic photosensitive member until the temperature of the electrophotographic photosensitive member becomes less than Tg-20 (° C.) between the uneven shape transfer step and the heat treatment step. 7. The surface processing method for an electrophotographic photosensitive member according to any one of 6 above. 前記熱可塑性樹脂が、ポリカーボネート樹脂またはポリエステル樹脂である請求項1から7のいずれか1項に記載の電子写真感光体の表面加工方法。   The surface processing method for an electrophotographic photosensitive member according to any one of claims 1 to 7, wherein the thermoplastic resin is a polycarbonate resin or a polyester resin. 前記硬化型樹脂が硬化型アクリル樹脂または硬化型メタクリル樹脂である請求項1から8のいずれか1項に記載の電子写真感光体の表面加工方法。   The surface processing method for an electrophotographic photosensitive member according to claim 1, wherein the curable resin is a curable acrylic resin or a curable methacrylic resin. 請求項1から9のいずれか1項に記載の前記表面加工方法を用いて電子写真感光体の表面を加工し、該電子写真感光体の表面に凹凸形状を形成する工程を有することを特徴とする、表面に凹凸形状を有する電子写真感光体の製造方法。   It has the process of processing the surface of an electrophotographic photosensitive member using the said surface processing method of any one of Claim 1 to 9, and forming uneven | corrugated shape on the surface of this electrophotographic photosensitive member, It is characterized by the above-mentioned. A method for producing an electrophotographic photosensitive member having a concavo-convex shape on a surface thereof.
JP2012136984A 2012-06-18 2012-06-18 Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface Active JP5921355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136984A JP5921355B2 (en) 2012-06-18 2012-06-18 Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136984A JP5921355B2 (en) 2012-06-18 2012-06-18 Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface

Publications (2)

Publication Number Publication Date
JP2014002245A JP2014002245A (en) 2014-01-09
JP5921355B2 true JP5921355B2 (en) 2016-05-24

Family

ID=50035472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136984A Active JP5921355B2 (en) 2012-06-18 2012-06-18 Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface

Country Status (1)

Country Link
JP (1) JP5921355B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282130B2 (en) * 2014-02-10 2018-02-21 キヤノン株式会社 Method for forming uneven shape on surface of electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member having uneven shape on surface
JP6317597B2 (en) * 2014-02-27 2018-04-25 キヤノン株式会社 Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface
JP6663337B2 (en) * 2016-10-24 2020-03-11 株式会社沖データ Image forming device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5080888B2 (en) * 2007-07-23 2012-11-21 キヤノン株式会社 Method for producing electrophotographic photosensitive member
JP5105982B2 (en) * 2007-07-24 2012-12-26 キヤノン株式会社 Electrophotographic photoreceptor and electrophotographic apparatus using the electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP2014002245A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP4059518B2 (en) Method for producing electrophotographic photosensitive member
US7556901B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7551878B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6562804B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6433238B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, process cartridge, and electrophotographic apparatus
JP6704739B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5127991B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP7222670B2 (en) Electrophotographic photoreceptor manufacturing method
JP2009145480A (en) Electrophotographic photoreceptor and method of manufacturing the same, and process cartridge and electrophotographic device including the electrophotographic photoreceptor
RU2388034C1 (en) Electrophotographic photosensitive element, cartridge and electrophotographic device
JP2010026240A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP6624952B2 (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP5921355B2 (en) Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface
JP2009031501A (en) Method for manufacturing electrophotographic photoreceptor
JP6317597B2 (en) Surface processing method of electrophotographic photosensitive member, and manufacturing method of electrophotographic photosensitive member having uneven shape on surface
JP5089271B2 (en) Method for producing electrophotographic photosensitive member
JP5105982B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus using the electrophotographic photoreceptor
JP6674270B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, process cartridge and electrophotographic apparatus
JP6433337B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, process cartridge, and electrophotographic apparatus
JP6132473B2 (en) Method for producing electrophotographic photosensitive member
JP2010066670A (en) Method of manufacturing electrophotographic photoreceptor
JP5039469B2 (en) Method for producing electrophotographic photosensitive member
JP6403477B2 (en) Method for producing electrophotographic photosensitive member
JP2020086383A (en) Method of forming uneven shape on surface of cylindrical electrophotographic photoreceptor
JP2018010249A (en) Method for manufacturing electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R151 Written notification of patent or utility model registration

Ref document number: 5921355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151