JP2014059115A - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- JP2014059115A JP2014059115A JP2012205272A JP2012205272A JP2014059115A JP 2014059115 A JP2014059115 A JP 2014059115A JP 2012205272 A JP2012205272 A JP 2012205272A JP 2012205272 A JP2012205272 A JP 2012205272A JP 2014059115 A JP2014059115 A JP 2014059115A
- Authority
- JP
- Japan
- Prior art keywords
- cooler
- refrigerator
- compartment
- cooling
- frost
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
- F28F1/325—Fins with openings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/01—Geometry problems, e.g. for reducing size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/04—Preventing the formation of frost or condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/06—Removing frost
- F25D21/08—Removing frost by electric heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
- F28D2021/0071—Evaporators
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Defrosting Systems (AREA)
Abstract
Description
本発明は、冷却器で生成された冷気をファンによって循環することで冷却する冷蔵庫に関するものである。 The present invention relates to a refrigerator that cools cold air generated by a cooler by circulating it with a fan.
近年、冷蔵庫の省エネルギー化が進む中、冷蔵庫の消費電力量を低減するには冷却効率の効率向上を行うだけでなく、ドア開閉などの実使用において冷却器に霜が付着した状態においても冷却効率の低下を抑制させることが重要である。 In recent years, energy savings in refrigerators have progressed, and in order to reduce the amount of power consumed by refrigerators, not only the efficiency of cooling efficiency has been improved, but also in the state where frost has adhered to the cooler in actual use such as door opening and closing. It is important to suppress the decrease in the above.
その中で、冷蔵庫の消費電力量を低減するために、冷却器に付着する霜による冷却効率の低下を抑制する方法として従来の冷蔵庫では、例えば、特開平11−183011公報(特許文献1)のように、湿度の高い冷蔵室庫内から冷却器へ戻す冷気を、冷却器下部に配置した案内板を通して下から通すことで、冷却器の着霜の均一化を図り、能力劣化抑制する方法や、特開2011−38714号公報(特許文献2)のように、庫内からの戻り冷気を冷却器下部の断熱仕切り壁の内部を通過させることで、冷却器の下側から冷却器の幅と略同一に通過させることで、冷却器の着霜均一化の効果を得る方法や、特開平7−270028公報(特許文献3)のように、庫内から冷却器へと戻す冷気を出来るだけ冷却器中央に通すための流通路、遮蔽板、ガイド部材を設けることで、戻り冷気が拡散され冷却器の着霜均一化を図ると共に、霜の偏着霜による目詰まりを抑制できるため、冷却効率の低下を抑制させた方法に開示されたものがある。 Among them, in order to reduce the power consumption of the refrigerator, a conventional refrigerator as a method for suppressing a decrease in cooling efficiency due to frost adhering to the cooler is disclosed in, for example, JP-A-11-183011 (Patent Document 1). As described above, by passing the cool air returning from the inside of the refrigerator compartment with high humidity to the cooler from below through the guide plate arranged at the lower part of the cooler, the frosting of the cooler is made uniform, and the ability deterioration is suppressed. As in Japanese Patent Application Laid-Open No. 2011-38714 (Patent Document 2), by passing the return cold air from the interior through the inside of the heat insulating partition wall at the lower part of the cooler, the width of the cooler is reduced from the lower side of the cooler. Cooling air that is returned from the interior to the cooler as much as possible is cooled as much as possible, such as a method of obtaining the effect of uniform frost formation of the cooler by passing through substantially the same, or JP-A-7-270028 (Patent Document 3). Flow path for passage through the center of the vessel By providing the plate and the guide member, the return cold air is diffused to achieve uniform frost formation of the cooler, and clogging due to uneven frost formation of frost can be suppressed, so that it is disclosed in a method that suppresses a decrease in cooling efficiency. There is something.
以下、図面を参照しながら上記従来の冷蔵庫を説明する。 Hereinafter, the conventional refrigerator will be described with reference to the drawings.
図7は特許文献1に記載されている冷蔵庫の、冷却器周囲の冷蔵室戻り冷気27の案内板28を示す斜視図を示すものである。冷却器7には冷却器7で生成された冷気が庫内を循環した後の庫内からの戻り冷気が流入する。冷蔵室2からの戻り冷気は右側面側の戻りダクト29の出口から、除霜ヒータ32とドレンパン34との間に案内板28が冷却器下部の左側面側まで延びており、案内板28とドレンパン34との間にダクト状の空間を形成している。更に、この案内板表面には開口部30aが設けて有り、該開口部30aから冷蔵室の戻り冷気が冷却器下部に分散し、案内板28と冷却器下端の間に流入する冷凍室14からの戻り冷気と混合して冷却器下部に一様に吸入される。 FIG. 7 is a perspective view showing the guide plate 28 of the cold room return cold air 27 around the cooler of the refrigerator described in Patent Document 1. As shown in FIG. Returning cold air from the inside of the cooler 7 after the cool air generated by the cooler 7 circulates in the cooler 7 flows into the cooler 7. The return cold air from the refrigerator compartment 2 extends from the outlet of the return duct 29 on the right side to the left side of the lower part of the cooler between the defrost heater 32 and the drain pan 34. A duct-like space is formed between the drain pan 34 and the drain pan 34. Further, an opening 30a is provided on the surface of the guide plate, from which the return cold air from the refrigerator compartment is dispersed in the lower part of the cooler and flows from the freezer compartment 14 flowing between the guide plate 28 and the lower end of the cooler. It is mixed with the return cold air and uniformly sucked into the lower part of the cooler.
本構成により、冷蔵庫内の湿度の高い冷蔵室2からの冷蔵室戻り冷気27を戻りダクト29の延長として除霜ヒータ32とドレンパン34の間に案内板28を設置することにより、冷凍室14からの戻り冷気と混合させて冷却器7に一様に霜を付着させることができ、着霜によるフィン間の目詰まりの偏りを防止して冷却性能を長時間維持すると共に、除霜ヒータ32による除霜時間が短縮されるため、消費電力量を低減することができる。また、案内板28を冷却器7の下部に設置することで、除霜ヒータ32により融解した除霜水を容易にドレンパン34に導くことができると共に、案内板28は冷却器7の上下方向に設置されているため、奥行き方向の寸法が減少することがなく、内容積を減少させることがないなどの効果を有する。 With this configuration, by installing the guide plate 28 between the defrost heater 32 and the drain pan 34 with the cold room return cold air 27 from the high temperature cold room 2 in the refrigerator as an extension of the return duct 29, the freezer room 14 The frost can be uniformly adhered to the cooler 7 by mixing with the return cold air, and the cooling performance can be maintained for a long time by preventing the clogging between the fins due to the frost formation. Since the defrosting time is shortened, the power consumption can be reduced. Further, by installing the guide plate 28 in the lower part of the cooler 7, the defrost water melted by the defrost heater 32 can be easily guided to the drain pan 34, and the guide plate 28 is arranged in the vertical direction of the cooler 7. Since it is installed, there is an effect that the dimension in the depth direction does not decrease and the internal volume does not decrease.
図8の左右の図8(a)と図8(b)は特許文献2に記載されている冷蔵庫の冷却器周囲の正面断面詳細図と冷蔵室運転時の冷気の流れを示すものである。冷蔵庫の構成としては、冷凍室14の背面には冷却器7を備えており、冷凍室14の上段に冷蔵室2、冷凍室14の下段に野菜室6を備える構成となっている。冷蔵室2を冷却し庫内を循環した冷気は、冷蔵室からの戻りダクト29(冷蔵室−野菜室連通ダクト)を介して、野菜室6に送
り、野菜室6からの戻り冷気は、断熱仕切壁13内に備えた野菜室戻りダクト31を介して、冷気が冷却器7の幅とほぼ等しい幅で流入するように設けられた野菜室戻り吐出口15aから、冷却室23に流入するようにしている。すなわち、冷凍室14の上段に位置する冷蔵室2の戻り冷気をそのまま冷却室内に送らずに、一旦野菜室6に流入させ、野菜室6の戻り冷気として、冷却器7の幅とほぼ等しい幅で流入するように設けられた野菜室戻り吐出口15aから、冷却室23に流入する構成としている。
8 (a) and 8 (b) on the left and right of FIG. 8 show a detailed front sectional view around the cooler of the refrigerator described in Patent Document 2 and the flow of cold air during operation of the refrigerator. As a configuration of the refrigerator, a cooler 7 is provided on the back of the freezer compartment 14, and the refrigerator compartment 2 is provided in the upper stage of the freezer compartment 14, and the vegetable compartment 6 is provided in the lower stage of the freezer compartment 14. The cold air that has cooled the refrigerator compartment 2 and circulated in the refrigerator is sent to the vegetable compartment 6 via a return duct 29 (refrigeration compartment-vegetable compartment communication duct) from the refrigerator compartment, and the return cold air from the vegetable compartment 6 is insulated. Via the vegetable chamber return duct 31 provided in the partition wall 13, the cold air flows into the cooling chamber 23 from the vegetable chamber return discharge port 15 a provided so as to flow in a width substantially equal to the width of the cooler 7. I have to. That is, the return cold air of the refrigerator compartment 2 located in the upper stage of the freezer compartment 14 is once sent into the vegetable compartment 6 without being sent into the cooling compartment as it is, and the return cold air of the vegetable compartment 6 has a width substantially equal to the width of the cooler 7. It is set as the structure which flows in into the cooling chamber 23 from the vegetable chamber return discharge port 15a provided so that it may flow in.
これにより、庫内有効内容積の減少を抑えると共に、冷却器7への着霜均一化の効果を得ることが出来るため、冷却器7の熱交換効率を向上させ省エネ性に優れているという効果を有する。 Thereby, while suppressing the reduction | decrease in the effective internal volume in a warehouse, since the effect of the uniform frost formation to the cooler 7 can be acquired, the heat exchange efficiency of the cooler 7 is improved and the effect that it is excellent in energy saving property. Have
図9は特許文献3に記載されている冷蔵庫の、冷却室内を示す斜視図である。 FIG. 9 is a perspective view showing a cooling chamber of the refrigerator described in Patent Document 3. As shown in FIG.
冷却器7が冷凍室背面に配置されており、冷凍室14の上部には冷蔵室2が配置された構成の冷蔵庫である。冷蔵室2を冷却した後の冷蔵室戻り冷気27は、冷却器側部のリターンダクト29を通して冷却室23に導かれるが、冷却器前面と冷却器カバー20との間に流通路47を設けることで、湿度の高い冷蔵室戻り冷気27を拡散させ、冷却器7に付着する霜が一様となるようにしている。 The refrigerator 7 is disposed on the back of the freezer compartment, and the refrigerator has a configuration in which the refrigerator compartment 2 is disposed above the freezer compartment 14. The cold room return cold air 27 after cooling the cold room 2 is guided to the cooling room 23 through the return duct 29 on the side of the cooler, but a flow passage 47 is provided between the front face of the cooler and the cooler cover 20. The refrigeration room return cold air 27 with high humidity is diffused so that the frost adhering to the cooler 7 becomes uniform.
本構成により、冷却器7に付着する霜が分散されるため、着霜し目詰まりによる冷却器7の冷却効率低下を低減できると共に、冷却器7に付着する霜層の高さを低く出来るため、除霜時の効率も向上する。 Since the frost adhering to the cooler 7 is dispersed by this configuration, it is possible to reduce the cooling efficiency reduction of the cooler 7 due to frosting and clogging, and to reduce the height of the frost layer adhering to the cooler 7. Also, the efficiency during defrosting is improved.
しかしながら、上記特許文献1に記載されている従来の冷蔵庫では、冷蔵室から冷却器に流れる戻り冷気が案内板を通じて下部から通すことで冷却器に付着する霜の付着状態を均一にし、着霜時の冷却効率低下を抑制することで、省エネを行う効果はあるものの、案内板を付属することでのコストUP、及び庫内容量の減少も招く。更に、冷却器近傍の案内板は極低温となり案内板で構成するダクト内部に霜残りがし易くなる。そのため、概ね10年程度の使用期間である冷蔵庫の長期使用時を考慮すると霜残りによる風路阻害で冷却性能が低下するという問題があった。また、案内板は除霜ヒータの下面に近傍まで配置されているため、除霜時の除霜ヒータの発熱による温度影響を受ける。除霜時の除霜ヒータの発熱によって、除霜ヒータの表面は概ね摂氏300℃程度まで上昇する。この結果、除霜ヒータの近傍に設けた案内板表面も概ね摂氏100℃以上に上昇するため、熱による変形を防止するためにはアルミ箔などの金属で表面を覆う等の部材が必要となり、材料費や工数のコストUPとなるという問題があった。 However, in the conventional refrigerator described in the above-mentioned Patent Document 1, the return cold air flowing from the refrigerator compartment to the cooler is made to pass through the guide plate from the lower part so that the state of frost adhering to the cooler is uniform, Although the effect of energy saving can be achieved by suppressing the decrease in the cooling efficiency, the increase in cost and the reduction of the internal capacity caused by attaching the guide plate are also caused. Furthermore, the guide plate in the vicinity of the cooler becomes extremely cold, and frost remains easily in the duct constituted by the guide plate. Therefore, considering the long-term use of the refrigerator, which is a period of use of about 10 years, there is a problem that the cooling performance is deteriorated due to the air path obstruction caused by the remaining frost. Moreover, since the guide plate is arrange | positioned to the lower surface of a defrost heater to the vicinity, it receives the temperature influence by heat_generation | fever of the defrost heater at the time of defrost. Due to the heat generated by the defrost heater during defrosting, the surface of the defrost heater generally rises to about 300 ° C. As a result, the surface of the guide plate provided in the vicinity of the defrosting heater also rises to approximately 100 ° C. or more, and thus a member such as covering the surface with a metal such as aluminum foil is necessary to prevent deformation due to heat, There was a problem that material costs and man-hours increased.
また、上記特許文献2に記載されている従来例の冷蔵庫では、冷却器への戻り冷気を一旦野菜室に流入させた後、冷却器下部の断熱仕切り壁の内部を通過させて戻すことで、冷却器の下側から冷却器の幅とほぼ同一に冷気を通過させることが出来る。そのため、冷却器の熱交換効率を最大限に発揮することができることで省エネ性に優れていると共に、冷却器への霜の付着を均一化に出来るという効果はあるものの、野菜室の冷却は冷蔵室を冷却した後の戻り冷気によって行う風路構成であり、冷蔵室の温度変動の影響を受けやすく
、外気温が高く冷蔵室のドア開閉が多い夏場では、野菜室温度も高くなり保鮮性が劣化するという問題があった。また、冷却器への戻り風路は、断熱仕切り板の内部を通過する構成であるため、風路を構成するために断熱仕切り板の厚み大型化による庫内容量の減少や部品コストが上昇するという問題があった。
Moreover, in the refrigerator of the conventional example described in the above-mentioned Patent Document 2, after returning the cold air to the cooler once into the vegetable compartment, by passing it through the inside of the heat insulating partition wall at the lower part of the cooler, Cold air can be passed from the lower side of the cooler in almost the same width as the cooler. For this reason, the heat exchange efficiency of the cooler can be maximized, which is excellent in energy savings and has the effect of making frost adherence to the cooler uniform. In the summer, which is affected by temperature fluctuations in the refrigeration room and the outdoor temperature is high and the doors of the refrigeration room are often opened and closed, the vegetable room temperature is high and the freshness is maintained. There was a problem of deterioration. In addition, since the return air path to the cooler is configured to pass through the inside of the heat insulating partition plate, the internal capacity decreases due to the increase in thickness of the heat insulating partition plate and the component cost increases in order to form the air path. There was a problem.
また、上記特許文献3に記載されている従来例の冷蔵庫では、冷蔵室から冷却器に流れる戻り冷気が流通路、遮蔽板、ガイド部材を通じて冷却器中央部分に導かれることで冷却器に付着する霜の付着状態を均一にし、着霜時の冷却効率低下を抑制することで、省エネを行う効果はあるものの、流通路、遮蔽板、ガイド部材を構成するために無効空間が多くなり庫内容量の減少を招くという問題があった。また、冷却器に接触する遮蔽板が除霜時に除霜ヒータからの輻射熱による熱変形で、材質の線膨張係数が異なることにより、冷却器との間で異音が発生するという問題もあった。 In the conventional refrigerator described in Patent Document 3, the return cold air flowing from the refrigerating chamber to the cooler is guided to the cooler central portion through the flow path, the shielding plate, and the guide member, and adheres to the cooler. Although it has the effect of saving energy by making the frost adherence state uniform and suppressing the cooling efficiency drop at the time of frost formation, there is more invalid space to configure the flow path, shielding plate, and guide member, and the internal capacity There was a problem of inviting a decrease. In addition, the shield plate that contacts the cooler is subject to thermal deformation due to radiant heat from the defrost heater during defrosting, and there is a problem that abnormal noise is generated between the cooler and the linear expansion coefficient of the material. .
このようなことから、本発明は、上記課題に鑑み、着霜均一化による霜付着時での冷却効率向上と除霜効率向上により省エネ性能の高い冷蔵庫で、且つ無効空間を抑制した、安価で大容量の冷蔵庫を提供するものである。 In view of the above problems, the present invention is a refrigerator with high energy saving performance by improving cooling efficiency and defrosting efficiency at the time of frost adhesion by uniform frost formation, and suppressing the invalid space at low cost. A large-capacity refrigerator is provided.
上記従来の課題を解決するために、本発明の冷蔵庫は、断熱壁で区画形成された冷凍室と、前記冷凍室の上方に配置した冷蔵室と、前記冷凍室の背面に備えた冷却室と、前記冷却室内でフィンを有する冷媒管を上下方向に積層した冷却器と、前記冷却器の前面を覆う冷却器カバーと、前記冷却器の側面で前記冷蔵室からの冷気を前記冷却室に戻す冷蔵室戻りダクトと、を備えた冷蔵庫において、前記冷却器の冷媒管は上部より下部の幅寸法を短くしたものである。 In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a freezer compartment partitioned by a heat insulating wall, a refrigeration compartment disposed above the freezer compartment, and a cooling compartment provided at the back of the freezer compartment. A cooler in which cooling pipes having fins are vertically stacked in the cooling chamber, a cooler cover that covers the front surface of the cooler, and cool air from the refrigerating chamber on the side surface of the cooler is returned to the cooling chamber. In the refrigerator including the refrigerator compartment return duct, the refrigerant pipe of the cooler has a width dimension lower than the upper part.
これによって、庫内からの戻り冷気が冷却器に流入する際に、流入部の空間が拡大されているため風路圧損(通風抵抗)の低減が図れる。故に、戻り冷気の通風抵抗を下げることで循環風量も増加でき、冷却器での熱交換量が増えて蒸発温度が上昇し、冷凍サイクル効率の向上によって省エネを図ることができる。 As a result, when the return cold air from the interior flows into the cooler, the space of the inflow portion is enlarged, so that the airway pressure loss (ventilation resistance) can be reduced. Therefore, the circulation air volume can be increased by reducing the ventilation resistance of the return cold air, the heat exchange amount in the cooler is increased, the evaporation temperature is increased, and the energy can be saved by improving the efficiency of the refrigeration cycle.
また、循環風量が増加することは、冷却器の熱交換量の向上となり、庫内を冷却する時間を減らすことができるため、冷却運転時間の短縮による冷却器への着霜量も減らすことができる。これによって、冷却器の除霜周期を延ばす事が可能となり、除霜ヒータの入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。 In addition, an increase in the circulation air volume improves the heat exchange amount of the cooler and can reduce the time for cooling the inside of the warehouse, so that the amount of frost formation on the cooler can also be reduced by shortening the cooling operation time. it can. As a result, the defrost cycle of the cooler can be extended, the number of inputs of the defrost heater can be reduced, the input required for cooling the inside after the temperature rise due to defrosting can be reduced, and further energy saving can be performed. it can.
また通常、冷却器に付着する霜は、冷却器に流入する庫内からの戻り冷気の流入口に多く付着するが、冷却器の冷媒管の幅寸法を短くしているため、例えば夏場などの湿度が高く、且つ、ドア開閉が多い条件で冷媒管やフィンに霜が付着し易い場合でも、霜による閉塞がしにくい状態となる。即ち、霜の付着する部分を分散し、冷却器に均一的に霜を付着させることができる。 Usually, frost adhering to the cooler adheres a lot to the inlet of the return cold air flowing into the cooler, but since the width of the refrigerant pipe of the cooler is shortened, for example, in summer Even when the humidity is high and the doors are often opened and closed, frost is likely to adhere to the refrigerant pipes and fins. That is, it is possible to disperse the portion where the frost adheres and uniformly attach the frost to the cooler.
本発明の冷蔵庫は、庫内冷気の戻り部分の空間拡大で風路圧損の低減が図れ、冷却効率が向上すると共に、霜の付着する部分を分散させることが出来るため、高湿な条件で着霜のし易い場合でも霜による性能劣化の抑制及び、霜の分散での除霜効率の向上が図れるため、省エネ性が高く、庫内容量を確保した冷蔵庫を提供することが可能となる。 The refrigerator of the present invention can reduce the airway pressure loss by expanding the space of the return part of the cool air inside the cabinet, and can improve the cooling efficiency and disperse the portion where frost adheres. Even when frost is easy to occur, it is possible to suppress performance deterioration due to frost and improve defrosting efficiency due to frost dispersion. Therefore, it is possible to provide a refrigerator with high energy saving and a large internal capacity.
第1の発明は、断熱壁で区画形成された冷凍室と、前記冷凍室の上方に配置した冷蔵室と、前記冷凍室の背面に備えた冷却室と、前記冷却室内でフィンを有する冷媒管を上下方向に積層した冷却器と、前記冷却器の前面を覆う冷却器カバーと、前記冷却器の側面で前記冷蔵室からの冷気を前記冷却室に戻す冷蔵室戻りダクトと、を備えた冷蔵庫において、前記冷却器の冷媒管は上部より下部の幅寸法を短くしたものである。 A first aspect of the present invention is a freezer compartment defined by a heat insulating wall, a refrigerating room disposed above the freezer room, a cooling room provided at the back of the freezing room, and a refrigerant pipe having fins in the cooling room Refrigerator comprising: a cooler laminated in a vertical direction; a cooler cover that covers a front surface of the cooler; and a refrigerator return duct that returns cold air from the refrigerator to the cooling chamber on a side surface of the cooler. In the above, the refrigerant pipe of the cooler has a lower width dimension than the upper part.
これによって、材料費低減によるコストダウンのみならず、庫内からの戻り冷気が冷却器に流入する際に、冷媒管の下部を幅方向で短くしているため、流入部の空間拡大による風路圧損(通風抵抗)の低減が図れる。よって、戻り冷気の通風抵抗を下げることで循環風量も増加でき、冷却器での熱交換量が増えて蒸発温度が上昇し、冷凍サイクル効率の向上によって省エネを図ることができる。 As a result, not only cost reduction due to material cost reduction, but also when the return cold air from the interior flows into the cooler, the lower part of the refrigerant pipe is shortened in the width direction. Pressure loss (ventilation resistance) can be reduced. Therefore, the circulation air volume can be increased by lowering the return resistance of the return cold air, the heat exchange amount in the cooler is increased, the evaporation temperature is increased, and the energy can be saved by improving the efficiency of the refrigeration cycle.
また、循環風量が増加することは、冷却器の熱交換量の向上となり、庫内を冷却する時間を減らすことができるため、冷却運転時間の短縮による冷却器への着霜量も減らすことができる。これによって、冷却器の除霜周期を延ばす事が可能となり、除霜ヒータの入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。 In addition, an increase in the circulation air volume improves the heat exchange amount of the cooler and can reduce the time for cooling the inside of the warehouse, so that the amount of frost formation on the cooler can also be reduced by shortening the cooling operation time. it can. As a result, the defrost cycle of the cooler can be extended, the number of inputs of the defrost heater can be reduced, the input required for cooling the inside after the temperature rise due to defrosting can be reduced, and further energy saving can be performed. it can.
また、除霜時における除霜ヒータの入力回数や入力時間を低減できるということは、非冷却運転時間短縮での温度上昇抑制や、除霜ヒータ自身の発熱による温度上昇抑制となることが、庫内で保存されている食品にも該当する。庫内に保存されている冷凍食品は、除霜時の非冷却運転時間での温度上昇や除霜ヒータ自身の温度からの伝熱、及び除霜時の暖気の庫内流入等により、霜焼けや熱の変動による影響で劣化していくが、本発明による効果で長期間保存した場合でも食品の劣化を抑えることが出来る。 In addition, the fact that the number of inputs and the input time of the defrost heater at the time of defrosting can be reduced means that the temperature rise can be suppressed by shortening the non-cooling operation time and the temperature increase can be suppressed by the heat generated by the defrost heater itself. This also applies to foods stored inside. Frozen foods stored in the refrigerator are frost burned due to temperature rise during the non-cooling operation time during defrost, heat transfer from the temperature of the defrost heater itself, and inflow of warm air during defrost. Although it deteriorates due to the influence of heat fluctuations, it is possible to suppress deterioration of food even when stored for a long period of time due to the effect of the present invention.
また通常、冷却器に付着する霜は、冷却器に流入する庫内からの戻り冷気の流入口に多く付着するが、冷媒管の下部を幅方向で短くしているため、湿度が高く冷媒管やフィンに霜が付着し易い場合でも霜による閉塞がしにくい状態となる。よって、梅雨時や夏場の高湿な条件においても、霜の付着する部分を分散し、着霜による性能劣化を抑制できるため製品の品質向上となる。 Usually, frost adhering to the cooler adheres a lot at the inlet of the return cold air flowing into the cooler from the inside, but the lower part of the refrigerant pipe is shortened in the width direction, so the humidity is high and the refrigerant pipe Even when frost is likely to adhere to the fins, the frost is difficult to block. Therefore, even in the rainy season or in high humidity conditions in summer, the portion to which frost adheres can be dispersed and performance deterioration due to frost formation can be suppressed, so that the quality of the product is improved.
第2の発明は、第1の発明において、冷媒管の幅寸法を短くした部分は、冷蔵室戻りダクトから冷却器への流入部分としたものである。 According to a second aspect, in the first aspect, the portion in which the width dimension of the refrigerant pipe is shortened is an inflow portion from the refrigerator return duct to the cooler.
これにより、冷却器の中でも戻り冷気の流入部分の入口に配設されている冷媒管と最初に熱交換し、除湿することで霜が付着するが、湿度の高い冷蔵室から冷蔵室戻りダクトを通して流入する冷蔵室戻り冷気が流入する部分は霜が付着しやすい。本発明では冷蔵室戻り冷気が流入する部分の冷媒管を短くしたことで、霜の付着と成長による風路阻害を抑制
できる。よって、夏場等の高温多湿の条件におけるドア開閉等で庫内に侵入した水分による過負荷な条件においても、霜の成長による風路阻害での鈍冷となることはない。
As a result, heat exchange is first performed with the refrigerant pipe disposed at the inlet of the return cold air inflow part in the cooler, and frost adheres by dehumidification, but from the high temperature cold room through the cold room return duct Frost is likely to adhere to the portion of the cold room return cold air that flows in. In the present invention, the portion of the refrigerant pipe through which the cold air returning from the refrigerator compartment flows is shortened, so that air path obstruction due to frost adhesion and growth can be suppressed. Therefore, even in an overload condition due to moisture that has entered the cabinet due to opening and closing of the door in a hot and humid condition such as in summer, there is no slow cooling due to wind path inhibition due to frost growth.
また、冷蔵室の戻りダクトから冷却器への流入部分の冷媒管を短くしているため、流入部の空間拡大による風路圧損(通風抵抗)の低減が図れる。よって、戻り冷気の通風抵抗を下げることで循環風量も増加でき、冷却器での熱交換量が増えて蒸発温度が上昇し、冷凍サイクル効率の向上によって省エネを図ることができる。 In addition, since the refrigerant pipe at the inflow portion from the return duct of the refrigerator compartment to the cooler is shortened, the air path pressure loss (ventilation resistance) can be reduced by expanding the space of the inflow portion. Therefore, the circulation air volume can be increased by lowering the return resistance of the return cold air, the heat exchange amount in the cooler is increased, the evaporation temperature is increased, and the energy can be saved by improving the efficiency of the refrigeration cycle.
更に、冷蔵室戻り冷気の冷却器への流入部分に冷媒管が無いことと循環風量の増加とあわせ、冷蔵室戻り冷気は範囲を拡大して冷却器と熱交換できる。よって、冷蔵室戻り冷気は冷蔵庫の中でも冷却器との温度差が大きいため、冷却器の熱交換効率を高めて省エネを図ることができると共に、熱交換面積が拡大することは除湿面積即ち、冷却器に着霜させる面積も拡大することであるため、着霜時の冷却能力の劣化も抑制することができる。これによって、冷蔵庫を運転し除霜を必要とするまでの時間を延ばす事が可能となり、除霜ヒータの入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。 Furthermore, in combination with the absence of the refrigerant pipe at the inflow portion of the cold room return cold air into the cooler and the increase in the circulation air volume, the cold room return cold air can be expanded to exchange heat with the cooler. Therefore, the return temperature of the refrigerator compartment has a large temperature difference with the cooler in the refrigerator. Therefore, the heat exchange efficiency of the cooler can be increased to save energy, and the expansion of the heat exchange area means the dehumidification area, that is, the cooling Since the area for frosting the vessel is also increased, it is possible to suppress deterioration of the cooling capacity during frosting. This makes it possible to extend the time required to operate the refrigerator and require defrosting, to reduce the number of inputs of the defrosting heater and reduce the input required for cooling the interior after the temperature rise in the interior due to defrosting, Further energy saving can be performed.
第3の発明は、第1または第2の発明において、冷媒管の幅寸法を短くした部分の上部のフィンを間引いたものである。 According to a third aspect of the present invention, in the first or second aspect, the fins at the top of the portion where the width of the refrigerant pipe is shortened are thinned out.
これにより、冷却器はフィンを有する冷媒管を上下方向に積層しているため、戻り冷気の上流側で霜による風路閉塞が生じると下流側部分は熱交換しない状態となり冷却効率のロスが発生する。そのため、フィンを間引くことにより、戻り冷気の通風抵抗を下げて循環風量を増加させるだけでなく、着霜時の霜による風路閉塞を軽減させ、霜の付着時の性能劣化を抑制することが出来るため着霜耐力性能の向上を図ることが出来る。 As a result, since the cooler has stacked refrigerant tubes with fins in the vertical direction, if the air path is blocked by frost on the upstream side of the return cold air, the downstream portion will not be in heat exchange and a loss of cooling efficiency will occur. To do. Therefore, thinning the fins not only lowers the return resistance of the return cold air and increases the circulating air volume, but also reduces airflow blockage caused by frost during frost formation and suppresses performance deterioration when frost adheres. Therefore, it is possible to improve the frost resistance performance.
第4の発明は、第1から第3のいずれかの発明において、冷蔵室戻りダクトの開口部の上端を冷却器の下端より上方に配置したものである。 According to a fourth invention, in any one of the first to third inventions, the upper end of the opening of the refrigerating chamber return duct is disposed above the lower end of the cooler.
これにより、冷蔵室戻りダクトの開口部が拡大されるため、冷却器への風路圧損の更なる低減が図れることでの循環風量増加による冷蔵室を主とした冷却性能の向上と、熱交換効率向上による省エネ性の向上を図ることが出来る。また、冷却器の下端よりも上方に冷蔵室戻りダクトの開口部の上端を配置することで、戻り冷気を冷却器に導きやすくなるだけでなく、冷却器側面の一部を風路として活用できるため無効空間を減少させ、庫内容量を確保することが出来る。 As a result, the opening of the refrigeration room return duct is enlarged, so that the airflow pressure loss to the cooler can be further reduced, thereby improving the cooling performance mainly in the refrigeration room by increasing the circulation air volume, and heat exchange. Energy efficiency can be improved by improving efficiency. Also, by arranging the upper end of the opening of the refrigerator return duct above the lower end of the cooler, not only the return cold air can be easily guided to the cooler, but also a part of the side surface of the cooler can be used as an air path Therefore, the invalid space can be reduced and the capacity in the cabinet can be secured.
第5の発明は、第1または第2の発明において、冷却器カバーの下部に冷凍室からの冷気を冷却室に戻す冷凍室冷気戻り口を備え、冷凍室冷気戻り口の上端を冷却器の下端より上方に配置したものである。 According to a fifth invention, in the first or second invention, the lower part of the cooler cover is provided with a freezer compartment cool air return port for returning the cool air from the freezer compartment to the cooler chamber, and the upper end of the freezer compartment cool air return port is connected to the cooler. It is arranged above the lower end.
これによって、戻り冷気の冷却器に対する熱交換面積を大きく取ることができると共に、戻り冷気の通風抵抗を下げることで循環風量も増加でき、冷却器での熱交換量が増えて蒸発温度が上昇し、冷凍サイクル効率の向上によって省エネを図ることができる。 As a result, it is possible to increase the heat exchange area for the cooler of the return cold air, and to increase the circulating air volume by lowering the ventilation resistance of the return cold air, increasing the heat exchange amount in the cooler and increasing the evaporation temperature. Energy saving can be achieved by improving the refrigeration cycle efficiency.
また、冷却器の熱交換量の向上と循環風量の増加によって、庫内を冷却する時間を減らすことができるため、冷却運転時間の短縮による冷却器への着霜量も減らすことができる。これによって、冷却器の除霜周期を延ばす事が可能となり、除霜ヒータの入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。 Moreover, since the time for cooling the inside of the warehouse can be reduced by improving the heat exchange amount of the cooler and increasing the circulating air volume, the amount of frost formation on the cooler due to the shortening of the cooling operation time can also be reduced. As a result, the defrost cycle of the cooler can be extended, the number of inputs of the defrost heater can be reduced, the input required for cooling the inside after the temperature rise due to defrosting can be reduced, and further energy saving can be performed. it can.
また、風路の改善により冷却器の熱交換面積を大きく取れることは、冷却器に着霜させる面積を大きくすることであるため、着霜時の冷却能力の劣化も抑制することができる。これによって、冷蔵庫を運転し除霜を必要とするまでの時間を延ばす事が可能となり、除霜ヒータの入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。 Moreover, since the heat exchange area of the cooler can be increased by improving the air path is to increase the area to be frosted on the cooler, it is possible to suppress deterioration of the cooling capacity during frosting. This makes it possible to extend the time required to operate the refrigerator and require defrosting, to reduce the number of inputs of the defrosting heater and reduce the input required for cooling the interior after the temperature rise in the interior due to defrosting, Further energy saving can be performed.
第6の発明は、第1から第5のいずれかの発明において、冷蔵室戻りダクトから前記冷却器への冷気の進行方向に対して左右の前記冷媒管のフィンを間引いたものである。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the left and right refrigerant pipe fins are thinned out with respect to a direction of cold air flowing from the refrigerating chamber return duct to the cooler.
これによって、冷気の進行方向に対してフィンを間引いているので、戻り冷気の通風抵抗を更に下げて循環風量を増加させるだけでなく、特に、冷蔵室や野菜室の湿度の高い戻り冷気に対しての着霜時の霜による風路閉塞を軽減させ、霜の付着時の性能劣化を更に抑制することが出来るため、着霜耐力性能の更なる向上を図ることが出来る。着霜耐力性能を向上させるには、冷却器に霜が均一に付着させることが必要である。単位時間当たりに循環する冷気に含まれる水分量が同じと仮定すると、冷却器への均一着霜によって、着霜による風路阻害が遅延されると共に、霜の厚みは概ね同等となるため除霜時に霜を融解させる除霜効率が向上し、除霜時間は短縮される。 As a result, the fins are thinned out in the direction of the cold air flow, so that not only the resistance to return air flow is further reduced to increase the circulating air volume, but also especially in the case of return cold air with high humidity in the refrigerator room or vegetable room. Since the air passage blockage due to frost at the time of all frost formation can be reduced and the performance deterioration at the time of frost adhesion can be further suppressed, the frost proof strength performance can be further improved. In order to improve the frost proof strength performance, it is necessary for frost to uniformly adhere to the cooler. Assuming that the amount of water contained in the cold air circulated per unit time is the same, the uniform frost formation on the cooler delays the air path obstruction due to frost formation, and the frost thickness is approximately the same. The defrosting efficiency that sometimes melts frost is improved, and the defrosting time is shortened.
第7の発明は、第1から第6のいずれかの発明において、前記冷却器の下方に除霜用ガラス管ヒータを備え、前記ガラス管ヒータの中心高さは前記冷凍室の基本底面より上方に位置するものである。 In a seventh invention according to any one of the first to sixth inventions, a defrosting glass tube heater is provided below the cooler, and a center height of the glass tube heater is higher than a basic bottom surface of the freezer compartment. It is located in.
これによって、冷凍室底基本面と一体となったドレンパンの形状を、略水平とすることが出来、除霜ヒータを設置するための無効空間を減少させることが可能となるため内容積の増加を図ることが出来る。また、ドレンパンの深さを浅く出来ることは、構成する部品を成型する際の金型費用を抑えることが出来るため、コストダウンにも繋がる。 As a result, the shape of the drain pan integrated with the freezer compartment bottom basic surface can be made substantially horizontal, and the ineffective space for installing the defrost heater can be reduced, so the internal volume is increased. I can plan. In addition, the fact that the depth of the drain pan can be reduced can reduce the cost of the mold when molding the constituent parts, which leads to cost reduction.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成及び差異がない部分については、詳細な説明を省略する。また、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that detailed descriptions of parts that are the same as those in the conventional configuration and that have no difference are omitted. Further, the present invention is not limited to the embodiments.
(実施の形態1)
以下、本発明の実施の形態について図面を用いて詳細に説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は本発明の実施の形態1による冷蔵庫の斜視図である。図2は本発明の実施の形態1による冷蔵庫の縦断面図である。図3は本発明の実施の形態1による冷蔵庫の冷却器周辺の正面断面図である。図4は本発明の実施の形態1における冷蔵庫の冷却器周辺の縦断面詳細図である。図5は本発明の実施の形態1による冷蔵庫の冷却器詳細図である。 FIG. 1 is a perspective view of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 3 is a front sectional view of the vicinity of the refrigerator cooler according to the first embodiment of the present invention. FIG. 4 is a detailed longitudinal sectional view around the refrigerator cooler in the first embodiment of the present invention. FIG. 5 is a detailed view of the refrigerator cooler according to the first embodiment of the present invention.
図1から図5に示すように、冷蔵庫本体101は、前方に開口する金属製(例えば鉄板)の外箱124と硬質樹脂製(例えばABS)の内箱125と、外箱124と内箱125の間に発泡充填された硬質ウレタンフォーム126からなる断熱本体で、この冷蔵庫本体101の上部に設けられた冷蔵室102と、冷蔵室102の下に設けられた上段冷凍室103と、冷蔵室102の下で上段冷凍室103に並列に設けられた製氷室104と、本体下部に設けられた野菜室106と、並列に設置された上段冷凍室103及び製氷室104と野菜室106の間に設けられた下段冷凍室105で構成されている。上段冷凍室103と製氷室104と下段冷凍室105と野菜室106の前面部は引き出し式の図示しない扉により開閉自由に閉塞されると共に、冷蔵室102の前面は、例えば観音開き式の図示しない扉により開閉自由に閉塞される。 As shown in FIGS. 1 to 5, the refrigerator main body 101 includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, an outer box 124, and an inner box 125. The refrigerator main body 101 is a heat insulating main body made of foamed urethane foam 126. The refrigerator compartment 102 is provided above the refrigerator main body 101, the upper freezer compartment 103 is provided below the refrigerator compartment 102, and the refrigerator compartment 102. The ice making chamber 104 provided in parallel to the upper freezing chamber 103, the vegetable chamber 106 provided in the lower part of the main body, and the upper freezing chamber 103 and the ice making chamber 104 installed in parallel with the vegetable chamber 106 are provided. The lower freezing room 105 is configured. Front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are freely opened and closed by a drawer type door (not shown), and the front side of the refrigerator compartment 102 is, for example, a double door type door (not shown). Is closed freely.
冷蔵室102は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。野菜室106は冷蔵室102と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。 The refrigerator compartment 102 is normally set at 1 to 5 ° C. with the temperature that does not freeze for refrigerated storage as the lower limit. The vegetable room 106 is often set to a temperature setting of 2 ° C. to 7 ° C. that is the same as or slightly higher than that of the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.
上段冷凍室103と下段冷凍室105は冷凍保存のために通常−22から−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30から−25℃の低温で設定されることもある。 The upper freezing chamber 103 and the lower freezing chamber 105 are normally set at −22 to −18 ° C. for frozen storage, but are set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state. Sometimes.
冷蔵室102や野菜室106は庫内をプラス温度で設定されるので、冷蔵温度帯を呼ばれる。また、上段冷凍室103や下段冷凍室105や製氷室104は庫内をマイナス温度で設定されるので、冷凍温度帯と呼ばれる。また、上段冷凍室103は切替室として、ダンパ機構等を用いることで、冷蔵温度帯から冷凍温度帯まで選択可能な部屋としても良い。 The refrigerator compartment 102 and the vegetable compartment 106 are called a refrigerator temperature zone because the inside of the refrigerator is set at a plus temperature. The upper freezer compartment 103, the lower freezer compartment 105, and the ice making room 104 are called freezing temperature zones because the interior is set at a minus temperature. Further, the upper freezer compartment 103 may be a room that can be selected from a refrigeration temperature zone to a freezing temperature zone by using a damper mechanism or the like as a switching chamber.
冷蔵庫本体101の天面部は、冷蔵庫の背面方向に向かって階段状に凹みを設けて機械室119があり、第一の天面部108と第二の天面部109で構成されている。この階段状の凹部に配置された圧縮機117と、水分除去を行うドライヤ(図示せず)と、コンデンサ(図示せず)と、放熱用の放熱パイプ(図示せず)と、キャピラリーチューブ118と、冷却器107とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。前記冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することも出来る。 The top surface portion of the refrigerator main body 101 is provided with a machine room 119 provided with a step-like recess toward the back surface of the refrigerator, and includes a first top surface portion 108 and a second top surface portion 109. A compressor 117 disposed in the stepped recess, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe (not shown), a capillary tube 118, Then, the refrigerant is sealed in a refrigeration cycle in which the cooler 107 is sequentially connected in an annular manner, and a cooling operation is performed. In recent years, a flammable refrigerant is often used as the refrigerant for environmental protection. In the case of a refrigeration cycle using a three-way valve or a switching valve, these functional parts can be arranged in the machine room.
また、冷蔵室102と製氷室104および上段冷凍室103とは第一の断熱仕切り部110で区画されている。また、製氷室104と上段冷凍室103とは第二の断熱仕切り部111で区画されている。また、製氷室104および上段冷凍室103と、下段冷凍室105とは第三の断熱仕切り部112で区画されている。 The refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110. Further, the ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111. In addition, the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.
第二の断熱仕切り部111および第三の断熱仕切り部112は、冷蔵庫本体101の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために硬質ウレタンフォームを用いてもよく、更には高断熱性の真空断熱材を挿入して、仕切り構造のさらなる薄型化を図ってもよい。 Since the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the refrigerator main body 101, expanded polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid urethane foam may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the partition structure.
また、ドアフレームの稼動部を確保して第二の断熱仕切り部111および第三の断熱仕切り部112の形状の薄型化や廃止を行うことで、冷却風路を確保でき冷却能力の向上を図ることもできる。また、第二の断熱仕切り部111および第三の断熱仕切り部112の内部をくりぬき、風路とすることで材料の低減にもつながりコストダウンが可能となる。 In addition, by securing the operating part of the door frame and thinning or eliminating the shapes of the second heat insulating partition part 111 and the third heat insulating partition part 112, a cooling air passage can be secured and the cooling capacity can be improved. You can also. Further, by hollowing out the inside of the second heat insulating partition part 111 and the third heat insulating partition part 112 to form an air passage, the material can be reduced and the cost can be reduced.
また、下段冷凍室105と野菜室106とは第四の仕切り部113で区画されている。 Further, the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.
次に、本実施の形態での冷却器周囲の構成について説明する。 Next, the configuration around the cooler in the present embodiment will be described.
冷蔵庫本体101の背面には冷却室123が設けられ、冷却室123内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する冷却器107が断熱仕切壁である第二および第三の仕切り部111、112の後方領域を含めて下段冷凍室105の背面に上下方向に縦長に配設されている。冷却室123の前面庫内側には、冷凍室を冷却した冷気が冷却器へ戻るための冷気戻り口135を備えた冷却器107を覆う冷却器カバー120が配置されている。また、冷却器107の材質は、アルミや銅が用いられる。 A cooling chamber 123 is provided on the back surface of the refrigerator main body 101, and in the cooling chamber 123, a cooler 107 that generates fin-and-tube type cool air is typically a heat insulating partition wall. The rear part of the lower freezer compartment 105 including the rear area of the partition parts 111 and 112 is vertically arranged in the vertical direction. A cooler cover 120 that covers the cooler 107 having a cool air return port 135 through which the cool air that has cooled the freezer room returns to the cooler is disposed inside the front chamber of the cooling chamber 123. The material of the cooler 107 is aluminum or copper.
冷却器カバー120は、庫内側の冷却器前側カバー137と冷却器側の冷却器後側カバ
ー138で構成されており、冷却器後側カバー138の冷却器側には、金属製の伝熱促進部材140を配置している。本実施の形態では、コストを考慮して除霜時の伝熱促進用としてはt=8μmのアルミ箔を、上下寸法は冷却器107の下端から上端まで、左右寸法は冷却器107のフィン間から+15mm程度までの大きめの寸法で貼り付けることで、除霜時の伝熱を促進し除霜効率向上での除霜時間短縮効果を得ている。なお、更なる効果を得るために、冷却器107の背面側の内箱125にアルミ箔を配置しても良い。更には、アルミ箔よりも厚みが大きいアルミプレート板や、アルミよりも熱伝導率の高い材料(例えば銅)で構成すると伝熱促進としての効果を更に発揮する。
The cooler cover 120 is configured by a cooler front cover 137 inside the refrigerator and a cooler rear cover 138 on the cooler side, and the heat transfer promotion made of metal is provided on the cooler side of the cooler rear cover 138. The member 140 is arranged. In this embodiment, considering the cost, aluminum foil of t = 8 μm is used for heat transfer promotion during defrosting, the vertical dimension is from the lower end to the upper end of the cooler 107, and the left and right dimension is between the fins of the cooler 107. By sticking with a larger dimension up to about +15 mm, heat transfer at the time of defrosting is promoted, and the effect of shortening the defrosting time by improving the defrosting efficiency is obtained. In order to obtain further effects, an aluminum foil may be disposed in the inner box 125 on the back side of the cooler 107. Furthermore, when it is made of an aluminum plate having a thickness larger than that of the aluminum foil or a material having a higher thermal conductivity than aluminum (for example, copper), the effect of promoting heat transfer is further exhibited.
冷却器107の近傍(例えば上部空間)には強制対流方式により冷蔵室102、製氷室104、上段冷凍室103、下段冷凍室105、野菜室106の各貯蔵室に冷却器107で生成した冷気を送風する冷気送風ファン116が配置され、冷却器107の下方には冷却時に冷却器107や冷気送風ファン116に付着する霜を除霜する除霜ヒータとしてガラス管製のガラス管ヒータ132が設けられている。ガラス管ヒータ132の上方には、ガラス管ヒータ132を覆うカバーヒータ133が配置され、除霜時に冷却器107から滴下した水滴が除霜によって高温になったガラス管表面に直接落ちることで、ジュージューといった音が発生しないようにガラス管径および幅と同等以上の寸法としている。 In the vicinity of the cooler 107 (for example, the upper space), the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method. A cool air blow fan 116 for blowing air is disposed, and a glass tube heater 132 made of glass tube is provided below the cooler 107 as a defrost heater for defrosting the frost adhering to the cooler 107 and the cool air blow fan 116 during cooling. ing. A cover heater 133 that covers the glass tube heater 132 is disposed above the glass tube heater 132, and water drops dripped from the cooler 107 during defrosting fall directly to the glass tube surface that has become high temperature due to defrosting, so The size is equal to or greater than the glass tube diameter and width so that no sound is generated.
ガラス管ヒータ132の下方には、冷却器107に付着した霜が解けて落下する除霜水を受ける冷凍室下面である第四の仕切り部113の上面と一体となったドレンパン134が配置されている。 Below the glass tube heater 132, a drain pan 134 integrated with the upper surface of the fourth partition 113, which is the lower surface of the freezing chamber that receives the defrosted water that falls after the frost attached to the cooler 107 is melted, is disposed. Yes.
ここで、第四の仕切り部113の上面と一体となったドレンパン134には、冷凍室下面に庫内側に向かって突起部136があり、冷却器カバー120の下部を引っ掛けて固定している。突起部136は、冷気戻り口135の下端とガラス管ヒータ132の間に配置されているため、庫内への赤熱も見えなくするとともに、庫内側から見たときに突起部136は冷却器カバー120の冷気戻り口下端に隠れるため、見栄えも良く外観品位の向上に繋がる。 Here, the drain pan 134 integrated with the upper surface of the fourth partition 113 has a protrusion 136 on the lower surface of the freezer compartment toward the inside of the refrigerator, and the lower portion of the cooler cover 120 is hooked and fixed. Since the protrusion 136 is disposed between the lower end of the cool air return port 135 and the glass tube heater 132, red heat to the inside of the refrigerator is not visible, and the protrusion 136 is not covered with the cooler cover when viewed from the inside of the refrigerator. Since it is hidden at the lower end of the cool air return port 120, the appearance is good and the appearance quality is improved.
ここで、近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。これにより従来に比して冷媒充填量を低減でき、低コストであると共に、可燃性冷媒が万が一に漏洩した場合の漏洩量が少なくなり安全性をより向上できる。 Here, isobutane, which is a flammable refrigerant having a low global warming potential, is used as a refrigerant in recent refrigeration cycles from the viewpoint of global environmental conservation. This hydrocarbon, isobutane, has a specific gravity of about twice that at normal temperature and atmospheric pressure (at 2.04 and 300K) compared to air. As a result, the refrigerant charge amount can be reduced as compared with the conventional case, the cost is low, and the leakage amount when the flammable refrigerant leaks is reduced, thereby improving the safety.
本実施の形態では、冷媒にイソブタンを用いており、防爆対応として除霜時のガラス管ヒータ132の外郭であるガラス管表面の最大温度を規制している。そのため、ガラス管表面の温度を低減させるため、ガラス管を2重に形成された2重ガラス管ヒータを採用している。このほか、ガラス管表面の温度を低減させる手段としては、ガラス管表面に放熱性の高い部材(例えばアルミフィン)を巻きつけることも出来る。このとき、ガラス管を1重とすることで、ガラス管ヒータ132の外形寸法を小さく出来る。 In the present embodiment, isobutane is used as the refrigerant, and the maximum temperature on the surface of the glass tube, which is the outline of the glass tube heater 132 during defrosting, is regulated as an explosion-proof measure. Therefore, in order to reduce the temperature of the glass tube surface, a double glass tube heater in which glass tubes are formed in a double manner is employed. In addition, as a means for reducing the temperature on the surface of the glass tube, a member (for example, an aluminum fin) having high heat dissipation can be wound around the surface of the glass tube. At this time, the external dimensions of the glass tube heater 132 can be reduced by using a single glass tube.
除霜時の効率を向上させる手段としては、ガラス管ヒータ132に加えて、冷却器107に密着したパイプヒータを併用しても良い。この場合、パイプヒータからの直接の伝熱によって冷却器107の除霜は効率的に行われると共に、冷却器107の周囲のドレンパン134や冷気送風ファン116に付着した霜をガラス管ヒータ132で溶かすことが出来るため、除霜時間の短縮が図れ、省エネや除霜時間における庫内温度の上昇を抑制することが出来る。 As a means for improving the efficiency at the time of defrosting, a pipe heater in close contact with the cooler 107 may be used in addition to the glass tube heater 132. In this case, defrosting of the cooler 107 is efficiently performed by direct heat transfer from the pipe heater, and frost adhering to the drain pan 134 and the cool air blowing fan 116 around the cooler 107 is melted by the glass tube heater 132. Therefore, the defrosting time can be shortened, and the rise of the internal temperature during the energy saving and defrosting time can be suppressed.
なお、ガラス管ヒータ132とパイプヒータを組み合わせた場合、お互いのヒータ容量
を適正化することで、ガラス管ヒータ132の容量を低くすることが可能となる。ヒータ容量を低くすると除霜時のガラス管ヒータ132の外郭の温度も低くすることが出来るため、除霜時の赤熱も抑制できる。
When the glass tube heater 132 and the pipe heater are combined, it is possible to reduce the capacity of the glass tube heater 132 by optimizing each other's heater capacity. If the heater capacity is lowered, the outer temperature of the glass tube heater 132 at the time of defrosting can also be lowered, so that red heat at the time of defrosting can also be suppressed.
次に、冷蔵庫の冷却について説明する。例えば冷凍室が外気からの侵入熱およびドア開閉などにより、庫内温度が上昇して冷凍室センサ(図示せず)が起動温度以上になった場合に、圧縮機117が起動し冷却が開始される。圧縮機117から吐出された高温高圧の冷媒は、最終的に機械室119に配置されたドライヤ(図示せず)まで到達する間、特に外箱124に設置される放熱パイプ(図示せず)において、外箱124の外側の空気や庫内の硬質ウレタンフォーム126との熱交換により、冷却されて液化する。 Next, cooling of the refrigerator will be described. For example, when the freezer compartment temperature rises due to intrusion heat from outside air and door opening and closing, and the freezer compartment sensor (not shown) reaches the start temperature or higher, the compressor 117 is started and cooling is started. The While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, particularly in a heat radiating pipe (not shown) installed in the outer box 124. The liquid is cooled and liquefied by heat exchange with the air outside the outer box 124 and the hard urethane foam 126 in the cabinet.
次に液化した冷媒はキャピラリーチューブ118で減圧されて、冷却器107に流入し冷却器107周辺の庫内冷気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン116により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱され、ガス化して圧縮器117に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機117の運転が停止する。 Next, the liquefied refrigerant is decompressed by the capillary tube 118, flows into the cooler 107, and exchanges heat with the cool air in the vicinity of the cooler 107. The cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet. Thereafter, the refrigerant is heated, gasified, and returned to the compressor 117. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.
冷気送風ファン116は、内箱125に直接配設されることもあるが、発泡後に組み立てられる第二の仕切り部111に配設し、部品のブロック加工を行うことで製造コストの低減を図ることもできる。また、冷気送風ファン116前には冷却器前側カバー137で構成されたディフューザー(図示しない)が配置されており、冷気送風ファン116からの静圧の高くなった風を、そのままロスすることなく庫内へ吐出される。 Although the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also. In addition, a diffuser (not shown) composed of a cooler front cover 137 is disposed in front of the cool air blower fan 116, and the air with a high static pressure from the cool air blower fan 116 is stored without loss. It is discharged into the inside.
以上のように構成された冷蔵庫について、以下その動作、作用について説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
本実施の形態のように、野菜室106が下方に設置され、真ん中に下段冷凍室105が設置され、冷蔵室102が上方に設置された冷蔵庫のレイアウト構成が使い勝手と省エネの観点からよく用いられている。また、庫内容量の観点や、冷凍食品の使用量増加傾向に伴い、下段冷凍室105の庫内ケース寸法を大きく取って容量を向上させた冷蔵庫も発売されている。 As in this embodiment, a refrigerator layout configuration in which the vegetable compartment 106 is installed below, the lower freezer compartment 105 is installed in the middle, and the refrigerator compartment 102 is installed above is often used from the viewpoint of usability and energy saving. ing. In addition, in accordance with the viewpoint of the internal capacity and the trend of increasing the amount of frozen food used, refrigerators that increase the capacity by increasing the internal case size of the lower freezer compartment 105 are also on the market.
この場合の風路構成としては、まず、冷却器107で生成された冷気は冷却器近傍の冷気送風ファン116により、冷蔵室102、冷凍室103、105に冷気が送風される。冷凍室103、105には冷却器カバー120を介して送風された冷気が冷凍室庫内を循環冷却し、冷却器カバー下部の冷気戻り口135から冷却室123に冷気が戻る。一方、冷蔵室102に向かって送風された冷気は、ダンパ(図示せず)によって、庫内温度に同等となるようにダンパを開閉しながら制御される。ダンパを通過後、冷気は冷蔵室102に送風され、冷蔵室庫内を冷却循環した後、冷却器側面を通過する冷蔵室戻りダクト129を通って冷却室123に戻る。また、野菜室106は冷蔵室102に送風される冷気の一部を分流させ、冷却器側面を通過する野菜室吐出ダクト(図示せず)を通って野菜室106に流入する。野菜室106を冷却循環した後、冷却室123に冷気が戻る構成となっている。なお、野菜室106の冷却については、本実施の形態では、冷蔵室102への冷気の一部を野菜室106の冷却用として分流させたが、野菜室冷却用のダンパを用いて独立して冷却する方法を用いても良い。 As an air path configuration in this case, first, the cold air generated by the cooler 107 is blown into the refrigerator compartment 102 and the freezer compartments 103 and 105 by the cool air blowing fan 116 in the vicinity of the cooler. The cool air blown through the cooler cover 120 circulates and cools in the freezer compartments 103 and 105 through the cooler cover 120, and the cool air returns to the cooler chamber 123 from the cool air return port 135 below the cooler cover. On the other hand, the cool air blown toward the refrigerator compartment 102 is controlled by a damper (not shown) while opening and closing the damper so as to be equal to the internal temperature. After passing through the damper, the cold air is blown into the refrigerating chamber 102, circulates in the refrigerating chamber, and returns to the cooling chamber 123 through the refrigerating chamber return duct 129 passing through the side of the cooler. In addition, the vegetable compartment 106 divides a part of the cool air blown into the refrigerator compartment 102 and flows into the vegetable compartment 106 through a vegetable compartment discharge duct (not shown) passing through the side of the cooler. After cooling and circulating through the vegetable compartment 106, the cool air returns to the cooling compartment 123. As for the cooling of the vegetable compartment 106, in this embodiment, a part of the cold air to the refrigerator compartment 102 is shunted for cooling the vegetable compartment 106. However, the vegetable compartment cooling damper is used independently. A cooling method may be used.
一般的に、冷凍室の背面に冷却室があり、上部の冷蔵室からの冷気を冷却室に戻す際、ダクトが必要となる。ダクトは無効空間であるため、内容積の減少抑制には冷却室側面にダクトを配設することが一般的であるが、この場合、湿度の高い冷蔵室戻り冷気127の流入は冷却器側面からとなるため、着霜の均一化は難しく、冷却器107への偏着霜が課題となる。 Generally, there is a cooling chamber on the back of the freezer compartment, and a duct is required when returning the cool air from the upper refrigerator compartment to the cooling chamber. Since the duct is an ineffective space, it is common to arrange a duct on the side of the cooling chamber in order to suppress the decrease in the internal volume. In this case, the inflow of the high-humidity cold room return cold air 127 is from the side of the cooler. Therefore, it is difficult to make the frost uniform, and uneven frost on the cooler 107 becomes a problem.
その中で、本実施の形態での冷却器107は、一般的に使用される冷却器107と同様に、代表的なフィンアンドチューブ式の冷却器107であり、フィン146を有する冷媒管145を上下方向に積層した冷却器107である。冷却器107は、概ね上下方向に10段の冷媒管145と、前後方向に3列の冷媒管145からの30本の冷媒管145が冷却器107に配置した構成としており、本実施の形態での冷却器107での冷媒管は上部より下部の幅寸法を短くした構成としている。 Among them, the cooler 107 in the present embodiment is a typical fin-and-tube cooler 107 similar to the commonly used cooler 107, and includes a refrigerant pipe 145 having fins 146. The cooler 107 is stacked in the vertical direction. The cooler 107 has a configuration in which ten refrigerant pipes 145 in a generally vertical direction and 30 refrigerant pipes 145 from three rows of refrigerant pipes 145 in the front-rear direction are arranged in the cooler 107. The refrigerant pipe in the cooler 107 is configured such that the width dimension of the lower part is shorter than the upper part.
これによって、通常、冷却器107に付着する霜は、冷却器107に流入する庫内からの戻り冷気の流入口に多く付着し、特に、湿度の高い冷蔵室から冷蔵室戻りダクト129を通して流入する冷蔵室戻り冷気127の流入する部分に霜が付着しやすい。本実施の形態では冷媒管145を短くしたことで、霜の付着と成長による風路阻害を抑制できる。よって、夏場等の高温多湿の条件におけるドア開閉等で庫内に侵入した水分による過負荷な条件においても、霜の成長による風路阻害での鈍冷になりにくく、製品の品質向上という効果を有する。 As a result, a large amount of frost adhering to the cooler 107 usually adheres to the inlet of the return cold air from the inside that flows into the cooler 107, and particularly flows from the refrigerator compartment having a high humidity through the refrigerator compartment return duct 129. Frost tends to adhere to the part where the cold air 127 returns from the refrigerator compartment. In the present embodiment, the refrigerant pipe 145 is shortened, so that air path obstruction due to frost adhesion and growth can be suppressed. Therefore, even in overload conditions due to moisture that has entered the cabinet due to opening and closing of doors in hot and humid conditions such as in summer, it is difficult to cause slow cooling due to wind path inhibition due to frost growth, and the effect of improving product quality Have.
また、冷蔵室戻りダクト129から冷却器107への流入部分の冷媒管145を短くしているため、流入部の空間拡大による風路圧損(通風抵抗)の低減が図れる。よって、戻り冷気の通風抵抗を下げることで循環風量も増加でき、冷却器107での熱交換量が増えて蒸発温度が上昇し、冷凍サイクル効率の向上によって省エネを図ることができる。加えて、冷蔵室戻り冷気127の冷却器107への流入部分に冷媒管145が無いことと循環風量の増加とあわせ、冷蔵室戻り冷気127は範囲を拡大して冷却器107と熱交換できることとなる。一般的に、冷却器の能力:Qは、Q=K*A*△Tで表せる。ここで、K:熱通過率、A:伝熱面積、△T:冷却器と通過空気の温度差である。そのため、冷蔵庫の中でも冷却器との温度差が大きい冷蔵室戻り冷気127は、冷却器107の熱交換効率を高めて省エネを図ることができると共に、熱交換面積が拡大することは除湿面積即ち、冷却器107に着霜させる面積も拡大することであるため、着霜時の冷却能力の劣化も抑制することができる。これによって、冷蔵庫を運転し除霜を必要とするまでの時間を延ばす事が可能となり、ガラス管ヒータ132の入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができるのである。 In addition, since the refrigerant pipe 145 at the inflow portion from the refrigerating chamber return duct 129 to the cooler 107 is shortened, the air path pressure loss (ventilation resistance) can be reduced by expanding the space at the inflow portion. Therefore, the circulation air volume can be increased by lowering the return resistance of the return cold air, the heat exchange amount in the cooler 107 is increased, the evaporation temperature is increased, and the energy can be saved by improving the refrigeration cycle efficiency. In addition, together with the absence of the refrigerant pipe 145 in the inflow portion of the cold room return cold air 127 into the cooler 107 and the increase in the circulation air volume, the cold room return cold air 127 can be expanded to exchange heat with the cooler 107. Become. Generally, the capacity of the cooler: Q can be expressed by Q = K * A * ΔT. Here, K: heat transfer rate, A: heat transfer area, ΔT: temperature difference between cooler and passing air. Therefore, the refrigerating room return cold air 127 having a large temperature difference with the cooler among the refrigerators can improve the heat exchange efficiency of the cooler 107 to save energy, and the expansion of the heat exchange area means dehumidification area, that is, Since the area to be frosted by the cooler 107 is also increased, it is possible to suppress the deterioration of the cooling capacity at the time of frosting. As a result, it is possible to extend the time required to operate the refrigerator and require defrosting, and to reduce the number of inputs of the glass tube heater 132 and to reduce the input required for cooling the chamber after the chamber temperature rises due to defrosting. Therefore, further energy saving can be performed.
更に、除霜時におけるガラス管ヒータ132の入力回数や入力時間を低減できるということは、非冷却運転時間短縮での温度上昇抑制や、ガラス管ヒータ自身の発熱による温度上昇抑制となることが、庫内で保存されている食品にも該当する。庫内に保存されている冷凍食品は、除霜時の非冷却運転時間での温度上昇やガラス管ヒータ自身の温度からの伝熱、及び除霜時の暖気の庫内流入等により、霜焼けや熱の変動による影響で劣化していくが、本実施の形態において、長期間保存した場合でも食品の劣化を抑えることが出来る。 Furthermore, the fact that the number of inputs and the input time of the glass tube heater 132 during defrosting can be reduced means that the temperature rise can be suppressed by shortening the non-cooling operation time and the temperature increase can be suppressed by the heat generation of the glass tube heater itself. This also applies to food stored in the warehouse. Frozen foods stored in the refrigerator are frost burned due to temperature rise during the non-cooling operation time during defrosting, heat transfer from the temperature of the glass tube heater itself, inflow of warm air during defrosting, etc. Although it deteriorates due to the influence of heat fluctuation, in this embodiment, even when stored for a long period of time, deterioration of food can be suppressed.
また、冷蔵庫を冷却運転すると、時間経過と共に、ドア開閉時に侵入した空気中の水分や、庫内に投入された食品に付着している水分、さらに野菜室106に保存されている野菜からの水分等で冷却器107には、霜が付着する。この霜が成長を遂げると冷却器107と循環冷気との間で熱交換効率が低下し庫内を十分に冷却できず、最終的に鈍冷や不冷状態となる。よって、冷蔵庫では、冷却器107に付着した霜を定期的に除霜する必要がある。 In addition, when the refrigerator is cooled, as time passes, the moisture in the air that has entered when the door is opened, the moisture adhering to the food put in the cabinet, and the moisture from the vegetables stored in the vegetable compartment 106 For example, frost adheres to the cooler 107. When this frost grows, the heat exchange efficiency is lowered between the cooler 107 and the circulating cold air, and the inside of the cabinet cannot be cooled sufficiently, and finally it becomes a slow cooling or uncooled state. Therefore, in the refrigerator, it is necessary to periodically defrost frost adhering to the cooler 107.
本実施の冷蔵庫でも、冷蔵庫を運転し、一定時間経過後に自動的に除霜を行っている。除霜時には、圧縮機117、冷気送風ファン116の運転を停止し、除霜ヒータであるガラス管ヒータ132を通電する。冷却器107は、冷却器107の内部に滞留している冷媒や冷却器107に付着した霜の融解によって、概ね、−30℃から0℃への顕熱変化、0℃での潜熱変化、0℃からの顕熱変化を介し、昇温していく。ここで、冷却器に107
は、除霜センサー(図示せず)が取り付けられており、所定の温度になるとガラス管ヒータ132の通電を停止するようにしている。本実施の形態では、除霜センサーが10℃を検知した時点でガラス管ヒータ132の通電を停止するようにしている。
Even in the refrigerator of the present embodiment, the refrigerator is operated and defrosting is automatically performed after a certain period of time. At the time of defrosting, the operation of the compressor 117 and the cold air blowing fan 116 is stopped, and the glass tube heater 132 which is a defrosting heater is energized. The cooler 107 generally has a sensible heat change from −30 ° C. to 0 ° C., a latent heat change at 0 ° C., and 0 by the melting of the refrigerant staying in the cooler 107 and the frost attached to the cooler 107. The temperature rises through a sensible heat change from ℃. Here, the cooler 107
Is equipped with a defrost sensor (not shown) and stops energization of the glass tube heater 132 when a predetermined temperature is reached. In the present embodiment, energization of the glass tube heater 132 is stopped when the defrost sensor detects 10 ° C.
このとき、ガラス管ヒータ132の通電によって、ガラス管表面が高温となり、輻射熱によって冷却器107や冷却器周囲の冷却器107の周囲のドレンパン134や冷気送風ファン116に付着した霜を溶かすことで、冷却器107をリフレッシュしている。 At this time, by energizing the glass tube heater 132, the surface of the glass tube becomes high temperature, and by melting frost attached to the drain pan 134 and the cool air blowing fan 116 around the cooler 107 and the cooler 107 around the cooler by radiant heat, The cooler 107 is refreshed.
なお、例えば外気温5℃程度や以下の低外気では、冷却器107の霜が十分に除霜されていても、外気の影響で除霜時に除霜センサー(図示せず)の温度が十分に昇温しにくく、除霜時間が長くなる傾向にある。この場合には、0℃以上の顕熱変化の状態をみて、一定時間以上経過していれば除霜を終了する制御を組み合わせることも出来る。これによって、十分に除霜されているにもかかわらず、低外気での冷却器107の昇温不足で除霜時間が長くなってしまい、不必要なヒータ入力や庫内への輻射熱での昇温、更には、除霜時の冷却停止による昇温を抑制することが出来る。 For example, in the case of the outside air temperature of about 5 ° C. or the following low outside air, even if the frost in the cooler 107 is sufficiently defrosted, the temperature of the defrost sensor (not shown) is sufficiently high during the defrosting due to the outside air. It is difficult to raise the temperature and the defrosting time tends to be longer. In this case, the state of sensible heat change of 0 ° C. or higher can be seen, and control for terminating the defrosting can be combined if a certain time or more has elapsed. As a result, although the defrosting is sufficiently performed, the defrosting time becomes longer due to insufficient temperature rise of the cooler 107 with low outside air, and the temperature rise due to unnecessary heater input or radiant heat into the chamber. Further, the temperature rise due to the cooling stop at the time of defrosting can be suppressed.
本実施の冷却器107でも、除霜周期の間隔の間で着霜による霜の影響で徐々に冷却能力が低下していくため、霜の付着しやすい部分の、冷蔵室戻りダクト129から冷却器107への冷気流入部分である冷媒管145の幅寸法を短くした上部のフィン146を間引くことで、戻り冷気の通風抵抗を下げて循環風量を増加させるだけでなく、着霜時の霜による風路閉塞を軽減させ、霜の付着時の性能劣化を抑制することが出来るため着霜耐力性能の向上を図っている。 Even in the cooler 107 of the present embodiment, the cooling capacity gradually decreases due to the influence of frost due to frost formation during the interval of the defrost cycle, and therefore, the cooler from the refrigerator compartment return duct 129 in the portion where frost easily attaches. By thinning out the upper fins 146 in which the width of the refrigerant pipe 145, which is the cold air inflow portion 107, is reduced, the flow resistance of the return cold air is reduced and the circulation air volume is increased. Since the road blockage can be reduced and the performance deterioration at the time of frost adhesion can be suppressed, the frost proof strength performance is improved.
更に、冷気の進行方向に対してフィン146を間引くことで、通風抵抗を更に下げて循環風量を増加させるだけでなく、着霜時の霜による風路閉塞を軽減させて霜の付着時の性能劣化を更に抑制する効果を有している。 Furthermore, by thinning the fins 146 in the direction of the cold air, not only lowering the ventilation resistance and increasing the circulating air volume, but also reducing the air passage blockage due to frost during frost formation, and performance when frost adheres It has the effect of further suppressing deterioration.
なお、本実施の形態での冷却器107のフィン146は、上下方向で積層された冷媒管145に対して分割したフィンを用いているが、フィン枚数が多くなるため、冷却器107の製造工程でのフィン取り付けの工数が必要である。そのため、上下方向で1体となったフィンを用いても良い。これにより、冷却器に付属されるフィンの枚数が低減できるため、工数低減による生産性向上でコストダウンを図ることが出来る。 In addition, although the fin 146 of the cooler 107 in this Embodiment uses the fin divided | segmented with respect to the refrigerant | coolant pipe | tube 145 laminated | stacked in the up-down direction, since the number of fins increases, the manufacturing process of the cooler 107 The man-hours for mounting the fins are required. Therefore, you may use the fin which became 1 body in the up-down direction. Thereby, since the number of fins attached to the cooler can be reduced, the cost can be reduced by improving productivity by reducing the number of man-hours.
なお、本実施の形態での冷却器107の冷媒管145は、管内がベア管と呼ばれる管内の加工のされていない冷媒管145である。そのため、管内の熱伝達率を向上させるため、例えば溝付き管を用いても良い。溝付管には、ストレート溝や螺旋溝で構成されたものがあり、溝付き管を用いることで冷却器の性能向上が図れ、更なる省エネとなる。 Note that the refrigerant pipe 145 of the cooler 107 in the present embodiment is a refrigerant pipe 145 in which the inside of the pipe is called a bare pipe and is not processed. Therefore, for example, a grooved tube may be used to improve the heat transfer coefficient in the tube. Some grooved pipes are constituted by straight grooves or spiral grooves, and by using the grooved pipes, the performance of the cooler can be improved, thereby further saving energy.
なお、本実施の形態での冷却器の冷媒管145は、アルミ材質を用いている。近年の材料費高騰によるコストダウンの観点からアルミが使われることが多いが、銅を用いても良い。この場合、熱伝導率が向上するため、冷媒管145の内外での熱交換効率が向上し更なる省エネとなる。 Note that the refrigerant pipe 145 of the cooler in the present embodiment is made of an aluminum material. Aluminum is often used from the viewpoint of cost reduction due to the recent rise in material costs, but copper may also be used. In this case, since the thermal conductivity is improved, the heat exchange efficiency inside and outside the refrigerant pipe 145 is improved, thereby further saving energy.
また、冷却器側面に配設された冷蔵室戻りダクト129の冷却器107への開口において、冷蔵室戻りダクト開口部上端143は、冷却器下端144より上方に配置している。これにより、冷蔵室戻りダクト129の開口部が拡大され、冷却器107への風路圧損の更なる低減が図れることでの循環風量増加による冷蔵室102を主とした冷却性能の向上と、熱交換効率向上による省エネ性の向上を図ることが出来る。また、冷却器下端144よりも上方に冷蔵室戻りダクト開口部上端143を配置することで、戻り冷気を冷却器107に導きやすくなるだけでなく、冷却器側面の一部を風路として活用できるため無効空
間を減少させ、庫内容量を確保することが出来る。
Further, in the opening to the cooler 107 of the refrigerator compartment return duct 129 disposed on the side surface of the cooler, the refrigerator chamber return duct opening upper end 143 is arranged above the cooler lower end 144. As a result, the opening of the refrigerating chamber return duct 129 is enlarged, and the cooling performance mainly for the refrigerating chamber 102 is improved by increasing the circulating air volume by further reducing the air path pressure loss to the cooler 107, and the heat Energy savings can be improved by improving exchange efficiency. In addition, by disposing the refrigeration chamber return duct opening upper end 143 above the cooler lower end 144, not only the return cool air can be easily guided to the cooler 107, but also a part of the cooler side surface can be used as an air path. Therefore, the invalid space can be reduced and the capacity in the cabinet can be secured.
また、冷却器カバー120は、下部に冷凍室冷気戻り口135を備えており、冷凍室冷気戻り口上端139は冷却器下端144より上方に配置しているため、庫内を循環した戻り冷気は冷却器107に対して熱交換面積を大きく取ることができるため、冷却器107での熱交換量が増え、冷却器107の能力向上を図ることができる。 In addition, the cooler cover 120 includes a freezer compartment cool air return port 135 in the lower portion, and the freezer compartment cool air return port upper end 139 is disposed above the cooler lower end 144, so that the return cold air circulated in the refrigerator is Since a large heat exchange area can be taken with respect to the cooler 107, the amount of heat exchange in the cooler 107 is increased, and the capacity of the cooler 107 can be improved.
また、冷却器107の熱交換量の向上と循環風量の増加によって、庫内を冷却する時間を減らすことができるため、冷却運転時間の短縮による冷却器への着霜量も減らすことができる。これによって、冷却器の除霜周期を延ばす事が可能となり、ガラス管ヒータ132の入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。 In addition, since the time for cooling the interior can be reduced by improving the heat exchange amount of the cooler 107 and increasing the circulating airflow, the amount of frost formation on the cooler due to the shortening of the cooling operation time can also be reduced. This makes it possible to extend the defrost cycle of the cooler, reduce the number of inputs to the glass tube heater 132, reduce the input required for cooling the inside of the cabinet after the temperature rise due to defrosting, and further save energy Can do.
また、風路の改善により冷却器107の熱交換面積を大きく取れることは、冷却器107に着霜させる面積を大きくすることであるため、着霜時の冷却能力の劣化も抑制することができる。これによって、冷蔵庫を運転し除霜を必要とするまでの時間を延ばす事が可能となり、ガラス管ヒータ132の入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。 Moreover, since the heat exchange area of the cooler 107 can be increased by improving the air path is to increase the area to be frosted on the cooler 107, it is possible to suppress deterioration of the cooling capacity at the time of frost formation. . As a result, it is possible to extend the time required to operate the refrigerator and require defrosting, and to reduce the number of inputs of the glass tube heater 132 and to reduce the input required for cooling the chamber after the chamber temperature rises due to defrosting. Further energy saving can be performed.
なお、冷気戻り口135には風向ガイド部122が設けられている。この風向ガイド部122の間隔は、5mmであり、指の侵入防止や、金型及び冷却器カバー120の強度確保に配慮している。なお、風向ガイド部122も庫内側から冷却器側に向かって上向きの角度を付けている。 Note that a wind direction guide portion 122 is provided in the cold air return port 135. The interval between the wind direction guide portions 122 is 5 mm, and consideration is given to preventing the intrusion of fingers and securing the strength of the mold and the cooler cover 120. In addition, the wind direction guide part 122 also has an upward angle from the inner side toward the cooler side.
なお、風向ガイド部122の傾きが上方向であるため、戻り冷気の吸込み風路の通風抵抗を下げることに加えて、流れの均一化も出来、冷却効率の向上で更なる省エネも図れる。 In addition, since the inclination of the airflow direction guide part 122 is upward, in addition to lowering the ventilation resistance of the return cold air suction air passage, the flow can be made uniform, and further energy saving can be achieved by improving the cooling efficiency.
また、本実施の形態でガラス管ヒータ132の中心は冷凍室底基本面よりも上に位置している。これによって、冷凍室底基本面と一体となったドレンパン134の形状を、略水平とすることが出来、ガラス管ヒータ132を設置するための無効空間を減少させることが可能となるため内容積の増加を図ることが出来る。また、ドレンパン134の深さを浅く出来ることは、構成する部品を成型する際の金型費用を抑えることが出来るため、コストダウンにも繋がる。 In the present embodiment, the center of the glass tube heater 132 is located above the freezer compartment bottom basic surface. As a result, the shape of the drain pan 134 integrated with the freezer compartment bottom basic surface can be made substantially horizontal and the ineffective space for installing the glass tube heater 132 can be reduced. Increase. In addition, the fact that the depth of the drain pan 134 can be reduced can reduce the cost of the mold when molding the component parts, which leads to cost reduction.
なお、本実施の形態では、冷凍室基本面を構成する第四の仕切り部113は別部品として構成している。サブ工程として第四の仕切り部113のみを構成し、後工程にて内箱に挿入し組み立てることで作業工程の分担化が図れ、生産効率が向上する方法を取っている。本構成以外でも、第四の仕切り部113を内箱によって構成することも出来る。その場合は、内箱材料であるABSシートを成型機で延ばし、内箱と仕切り部を含めた一体成型として作成する方法がある。この方法は、内箱の奥行き(深さ)が小さいものによく適用させるが、シートの延びによる厚み均一化を図ることで、奥行きの深い冷蔵庫の作成にも展開できる。これにより、仕切り部を作成する材料費、作業工数、管理費、運送費等が減減らすことが出来、大幅なコストダウンが図れると共に、生産効率も向上するので製品としてのコストダウンを図れ、販売価格の低下にも繋がり、販売率の向上を図ることが出来る。 In the present embodiment, the fourth partition 113 constituting the freezer basic surface is configured as a separate part. Only the fourth partition 113 is formed as a sub-process, and the work process is shared by inserting and assembling it into the inner box in a subsequent process, thereby improving the production efficiency. In addition to this configuration, the fourth partition 113 can be configured by an inner box. In that case, there is a method in which an ABS sheet, which is an inner box material, is stretched by a molding machine and is formed as an integral molding including the inner box and the partition portion. This method is often applied to an inner box having a small depth (depth), but it can also be applied to making a deep refrigerator by making the thickness uniform by extending the sheet. As a result, material costs, work man-hours, management costs, transportation costs, etc. for creating the partition can be reduced and reduced, leading to significant cost reductions and improved production efficiency. This also leads to a decrease in price, and can improve the sales rate.
以上のように、本発明にかかる冷蔵庫は、フィンを有する冷媒管を上下方向に積層した冷却器と、冷却器を覆う冷却器カバーと、冷却器の側面に位置し冷蔵室からの戻り冷気を
冷却室に戻す冷蔵室戻りダクトを備えた冷蔵庫で、上部より下部の幅寸法を短くした冷却器の冷媒管としたことで、庫内風路圧損の低減による冷却効率向上と、霜の均一着霜による除霜効率向上が図れるため、省エネ性や冷凍保鮮性能の向上、庫内容量拡大を目的とする家庭用冷蔵庫などに利用ができる。
As described above, the refrigerator according to the present invention includes a cooler in which refrigerant tubes having fins are stacked in the vertical direction, a cooler cover that covers the cooler, and a return cold air that is located on the side of the cooler from the refrigerator compartment. Refrigerator equipped with a refrigeration chamber return duct that returns to the cooling chamber, and by using a refrigerant pipe for the cooler with a lower width from the upper part, the cooling efficiency is improved by reducing the internal airway pressure loss and the frost is evenly deposited. Since the defrosting efficiency can be improved by frost, it can be used for household refrigerators and the like for the purpose of improving energy saving and freezing / keeping performance, and expanding the storage capacity.
102 冷蔵室
105 下段冷凍室
107 冷却器
120 冷却器カバー
123 冷却室
129 冷蔵室戻りダクト
132 ガラス管ヒータ
135 冷気戻り口
139 冷凍室冷気戻り口上端
143 冷蔵室戻りダクト開口部上端
144 冷却器下端
145 冷媒管
146 フィン
102 refrigerator compartment 105 lower freezer compartment 107 cooler 120 cooler cover 123 cooling chamber 129 refrigerator compartment return duct 132 glass tube heater 135 cold air return port 139 freezer compartment cold air return upper end 143 refrigerator compartment return duct opening upper end 144 cooler lower end 145 Refrigerant tube 146 Fin
Claims (7)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205272A JP6089222B2 (en) | 2012-09-19 | 2012-09-19 | refrigerator |
CN201380048835.8A CN104641190B (en) | 2012-09-19 | 2013-09-19 | Freezer |
EP13838191.8A EP2899481A4 (en) | 2012-09-19 | 2013-09-19 | Refrigerator |
PCT/JP2013/005525 WO2014045576A1 (en) | 2012-09-19 | 2013-09-19 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012205272A JP6089222B2 (en) | 2012-09-19 | 2012-09-19 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014059115A true JP2014059115A (en) | 2014-04-03 |
JP6089222B2 JP6089222B2 (en) | 2017-03-08 |
Family
ID=50340912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012205272A Active JP6089222B2 (en) | 2012-09-19 | 2012-09-19 | refrigerator |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2899481A4 (en) |
JP (1) | JP6089222B2 (en) |
CN (1) | CN104641190B (en) |
WO (1) | WO2014045576A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178025A1 (en) * | 2014-05-22 | 2015-11-26 | パナソニックIpマネジメント株式会社 | Refrigerator |
WO2023185742A1 (en) * | 2022-03-31 | 2023-10-05 | 青岛海尔电冰箱有限公司 | Liner for refrigerator, and refrigerator having same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10184713B2 (en) | 2016-01-06 | 2019-01-22 | Electrolux Home Products, Inc. | Evaporator shields |
CN105737454A (en) * | 2016-04-18 | 2016-07-06 | 合肥太通制冷科技有限公司 | Freezing finned evaporator with parallel end part centre lines |
CN105758068A (en) * | 2016-04-19 | 2016-07-13 | 合肥太通制冷科技有限公司 | Six-layer stacked dense denoising and defrosting finned evaporator |
CN105674630A (en) * | 2016-04-19 | 2016-06-15 | 合肥太通制冷科技有限公司 | Novel side plate-free dense-fin clamping position finned evaporator |
CN106766397A (en) * | 2017-02-13 | 2017-05-31 | 合肥美的电冰箱有限公司 | Finned evaporator and refrigeration plant |
TR201706215A3 (en) | 2017-04-27 | 2019-01-21 | Bsh Ev Aletleri San Ve Tic As | A cooling device having an evaporator |
CN110285630B (en) * | 2019-02-26 | 2020-03-06 | 青岛海尔电冰箱有限公司 | Refrigerator with a door |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205737A (en) * | 1999-01-19 | 2000-07-28 | Mitsubishi Electric Corp | Refrigerator |
JP2002208906A (en) * | 1993-03-25 | 2002-07-26 | Matsushita Electric Ind Co Ltd | Transmitter, receiver, transmission system, transmitting method, and receiving method |
JP2011038714A (en) * | 2009-08-12 | 2011-02-24 | Hitachi Appliances Inc | Refrigerator |
JP2012042192A (en) * | 2011-05-24 | 2012-03-01 | Mitsubishi Electric Corp | Refrigerator |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07270028A (en) | 1994-03-31 | 1995-10-20 | Toshiba Corp | Refrigerator |
JPH11183011A (en) | 1997-12-18 | 1999-07-06 | Hitachi Ltd | Refrigerator |
JP2002318055A (en) * | 2001-04-20 | 2002-10-31 | Fujitsu General Ltd | Refrigerator |
KR100431348B1 (en) * | 2002-03-20 | 2004-05-12 | 삼성전자주식회사 | refrigerator |
EP1637822A4 (en) * | 2003-06-23 | 2011-07-27 | Air Operation Technologies Inc | Cooling device |
CN100513950C (en) * | 2005-05-12 | 2009-07-15 | 松下电器产业株式会社 | Cooler with defroster, and refrigerator having cooler with defroster |
BR112012002489B1 (en) * | 2009-08-26 | 2020-05-19 | Panasonic Corp | cooler |
JP5402779B2 (en) * | 2010-03-30 | 2014-01-29 | パナソニック株式会社 | refrigerator |
JP5447438B2 (en) * | 2011-05-24 | 2014-03-19 | 三菱電機株式会社 | refrigerator |
-
2012
- 2012-09-19 JP JP2012205272A patent/JP6089222B2/en active Active
-
2013
- 2013-09-19 WO PCT/JP2013/005525 patent/WO2014045576A1/en active Application Filing
- 2013-09-19 CN CN201380048835.8A patent/CN104641190B/en active Active
- 2013-09-19 EP EP13838191.8A patent/EP2899481A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002208906A (en) * | 1993-03-25 | 2002-07-26 | Matsushita Electric Ind Co Ltd | Transmitter, receiver, transmission system, transmitting method, and receiving method |
JP2000205737A (en) * | 1999-01-19 | 2000-07-28 | Mitsubishi Electric Corp | Refrigerator |
JP2011038714A (en) * | 2009-08-12 | 2011-02-24 | Hitachi Appliances Inc | Refrigerator |
JP2012042192A (en) * | 2011-05-24 | 2012-03-01 | Mitsubishi Electric Corp | Refrigerator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015178025A1 (en) * | 2014-05-22 | 2015-11-26 | パナソニックIpマネジメント株式会社 | Refrigerator |
JP2015222128A (en) * | 2014-05-22 | 2015-12-10 | パナソニックIpマネジメント株式会社 | refrigerator |
WO2023185742A1 (en) * | 2022-03-31 | 2023-10-05 | 青岛海尔电冰箱有限公司 | Liner for refrigerator, and refrigerator having same |
Also Published As
Publication number | Publication date |
---|---|
EP2899481A1 (en) | 2015-07-29 |
CN104641190A (en) | 2015-05-20 |
EP2899481A4 (en) | 2016-06-01 |
JP6089222B2 (en) | 2017-03-08 |
WO2014045576A1 (en) | 2014-03-27 |
CN104641190B (en) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6089222B2 (en) | refrigerator | |
JP5178642B2 (en) | refrigerator | |
KR101306536B1 (en) | Refrigerator | |
WO2013084460A1 (en) | Refrigerator | |
JP5507511B2 (en) | refrigerator | |
JP2010060188A (en) | Refrigerator | |
CN210036003U (en) | Refrigerator with evaporator matched with water pan | |
JP2013061089A (en) | Refrigerator | |
JP6364221B2 (en) | refrigerator | |
JP6752107B2 (en) | refrigerator | |
CN112984918A (en) | Refrigerator with refrigeration module beneficial to defrosting and draining structure | |
JP5966145B2 (en) | refrigerator | |
JP2019039586A (en) | refrigerator | |
JP5838238B2 (en) | refrigerator | |
JP2019027649A (en) | refrigerator | |
JP5487054B2 (en) | refrigerator | |
JP2011058687A (en) | Refrigerator | |
JP5909623B2 (en) | refrigerator | |
JP2013119952A (en) | Refrigerator | |
JP6844418B2 (en) | refrigerator | |
JP2017187246A (en) | refrigerator | |
WO2011036870A1 (en) | Refrigerator | |
JP6282255B2 (en) | refrigerator | |
JP5315788B2 (en) | refrigerator | |
JP2013108707A (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141003 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150904 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160517 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170109 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6089222 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |