JP2014058820A - Composite column structure and construction method for composite column - Google Patents
Composite column structure and construction method for composite column Download PDFInfo
- Publication number
- JP2014058820A JP2014058820A JP2012204732A JP2012204732A JP2014058820A JP 2014058820 A JP2014058820 A JP 2014058820A JP 2012204732 A JP2012204732 A JP 2012204732A JP 2012204732 A JP2012204732 A JP 2012204732A JP 2014058820 A JP2014058820 A JP 2014058820A
- Authority
- JP
- Japan
- Prior art keywords
- column
- central portion
- concrete
- strength
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Joining Of Building Structures In Genera (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
Description
本発明は、断面中央部が高強度コンクリートからなり断面外周部が比較的低強度のコンクリートからなる異種強度コンクリートによる複合柱構造および複合柱の構築方法に関する。 The present invention relates to a composite column structure and a method for constructing a composite column using different-strength concrete in which the central portion of the cross section is made of high-strength concrete and the outer peripheral portion of the cross-section is made of relatively low strength concrete.
近年、コンクリートの高強度化に関する研究開発が盛んに行われており、高性能AE減水剤による水セメント比の低減や各種混和材の配合による水結合材比の低減によってコンクリート強度が飛躍的に高くなっている。高強度コンクリートの強度は、セメントや混和材の種類にもよるが、一般に、水結合材比が小さくなるほど高くなる。このようなコンクリートの高強度化は、建物の超高層化や柱断面の縮小化を可能にし、現在では高層建物において広く使用されるまでに至っている。 In recent years, research and development on increasing the strength of concrete has been actively conducted, and concrete strength has been dramatically increased by reducing the water cement ratio with high-performance AE water reducing agents and reducing the water binder ratio by blending various admixtures. It has become. The strength of high-strength concrete generally depends on the type of cement and admixture, but generally increases as the water binder ratio decreases. Such high strength of concrete makes it possible to increase the height of buildings and reduce the cross section of columns, and is now widely used in high-rise buildings.
一方で、高強度コンクリートは組織が緻密になるために火災時に表面部分が爆裂を起こし易いことが指摘されている。爆裂のメカニズムは必ずしも明らかになっているとは言えないが、火災による熱応力の上昇および水蒸気圧の上昇が爆裂の主な原因と考えられている。そのため、建物の躯体に高強度コンクリートを用いる場合には、火災時の熱応力を緩和するべく躯体の表面を耐火被覆する、或いは火災時の水蒸気圧を緩和すべくコンクリート中に合成繊維を混入するなどといった対策を採る必要がある。 On the other hand, it has been pointed out that the surface of high-strength concrete tends to explode in the event of a fire due to the dense structure. The mechanism of the explosion is not necessarily clear, but the increase in thermal stress and the increase in water vapor pressure due to fire are thought to be the main cause of the explosion. Therefore, when using high-strength concrete for the building frame, cover the surface of the frame with fireproofing to mitigate thermal stress during a fire, or mix synthetic fibers into the concrete to mitigate water vapor pressure during a fire. It is necessary to take measures such as.
このような耐火性能を考慮したものではないが、躯体の芯部分に高強度コンクリートを用い、躯体の表面を高強度コンクリート以外の素材で構成した構造として、躯体の芯部分を構成するプレキャストコンクリート部材の外方に主筋を配置し、主筋とプレキャストコンクリート部材とを被覆するように現場打ちコンクリートによって躯体の外側部分を構築した複合鉄筋コンクリート構造が提案されている(特許文献1参照)。この複合鉄筋コンクリート構造では、芯部分のプレキャストコンクリート部材に高強度コンクリートを用いる他、プレキャストコンクリート部材に高強度鉄筋からなる主筋を配置することで、通常の鉄筋コンクリート造に対してさらなる高強度化を図っている。 Although not considering such fireproof performance, precast concrete members that use high-strength concrete for the core of the frame and the surface of the frame made of materials other than high-strength concrete constitute the core of the frame A composite reinforced concrete structure has been proposed in which the main bars are arranged outside the main frame and the outer part of the frame is constructed by cast-in-place concrete so as to cover the main bars and the precast concrete members (see Patent Document 1). In this composite reinforced concrete structure, in addition to using high-strength concrete for the precast concrete member of the core part, the main reinforcement made of high-strength rebar is placed on the precast concrete member to further increase the strength of ordinary reinforced concrete structures. Yes.
同様に耐火性能は考慮していないが、柱の断面積を小さくするために類似の構造を採用した例として、鉄筋コンクリート柱の内部にプレキャスト高強度コンクリート芯材を配置した高軸力用の鉄筋コンクリート柱が提案されている(特許文献2参照)。この鉄筋コンクリート柱では、プレキャスト高強度コンクリート芯材にPCケーブルやPC鋼棒を配置することで引張応力の緩和をも図っている。 Similarly, refractory performance is not considered, but as an example of adopting a similar structure to reduce the cross-sectional area of the column, a reinforced concrete column for high axial force in which a precast high-strength concrete core is placed inside the reinforced concrete column Has been proposed (see Patent Document 2). In this reinforced concrete column, the tensile stress is mitigated by arranging a PC cable and a PC steel bar on a precast high-strength concrete core material.
ところで、高強度コンクリートでは、強度が高くなるにつれて弾性ひずみやクリープひずみ、乾燥収縮ひずみが小さくなる一方、自己収縮ひずみが大きくなる傾向がある。したがって、高強度コンクリートは、自己収縮を拘束されると通常のコンクリートに比べてひび割れを生じやすい。つまり、特許文献1や2のように、高強度コンクリートからなる躯体の芯部分に材軸方向に延びる主筋やPC鋼材が配置されていると、これらが高強度コンクリートの材軸方向の自己収縮を拘束してしまい、ひび割れが発生し易くなる。
By the way, in high-strength concrete, as the strength increases, the elastic strain, creep strain, and drying shrinkage strain tend to decrease, while the self-shrinkage strain tends to increase. Therefore, high-strength concrete is more likely to crack when compared with normal concrete when self-shrinkage is restricted. That is, as in
本発明は、このような背景に鑑みなされたものであり、柱の断面積を小さくできるうえ、耐火性能を確保するとともにひび割れの発生を効果的に防止できる柱構造およびその構築方法を提供することをその目的とする。 The present invention has been made in view of such a background, and provides a column structure that can reduce the cross-sectional area of a column and that can effectively prevent the occurrence of cracks while ensuring fire resistance and a method for constructing the column structure. Is the purpose.
上記課題を解決するために、本発明の一側面によれば、水結合材比が比較的高い高強度コンクリートからなり、柱の断面中央部に配置される柱中央部(2)と、前記高強度コンクリートに比べて水結合材比が低い比較的低強度のコンクリートからなり、前記柱中央部の側面の全面を覆うように柱の断面外周部に配置される柱外周部(3)とを有する複合柱(1)であって、柱主筋(4)が前記柱外周部のみに配置されている構成とする。ここで、高強度コンクリートとは、水結合材比が比較的高いことによって高強度を実現するコンクリートのことであり、結合材以外の物質を混入することによって高強度を実現するコンクリートは含まない。 In order to solve the above-described problem, according to one aspect of the present invention, a column center portion (2) made of high-strength concrete having a relatively high water binder ratio and disposed at a center portion of a cross section of the column, A column outer peripheral portion (3) made of a relatively low strength concrete having a lower water binder ratio than that of high strength concrete and arranged on the outer peripheral portion of the cross section of the column so as to cover the entire side surface of the central portion of the column. It is a composite pillar (1), Comprising: It is set as the structure by which the column main reinforcement (4) is arrange | positioned only at the said column outer peripheral part. Here, the high-strength concrete is concrete that realizes high strength by having a relatively high water binder ratio, and does not include concrete that realizes high strength by mixing substances other than the binder.
このような構成の複合柱とすることにより、柱の断面積を小さくすることができるうえ、柱の耐火性能を確保することもできる。また、柱中央部は柱主筋に拘束されることがないため、高強度コンクリートを自由に自己収縮させることができ、自己収縮に起因するひび割れが柱中央部に発生することを防止できる。 By setting it as the composite pillar of such a structure, the cross-sectional area of a pillar can be made small, and the fire resistance performance of a pillar can also be ensured. In addition, since the central part of the column is not constrained by the column main reinforcement, the high-strength concrete can be freely self-contracted, and cracks due to self-contraction can be prevented from occurring in the central part of the column.
また、本発明の一側面によれば、前記柱中央部(2)が2階層分の長さ(L2)を有するプレキャストコンクリートである構成とすることができる。 Moreover, according to one side of this invention, it can be set as the structure which is the precast concrete in which the said pillar center part (2) has the length (L2) for two layers.
この構成によれば、柱中央部の製品本数を減らすことができ、柱中央部の運搬や設置に要する労力および時間を削減できる。 According to this configuration, the number of products in the central part of the pillar can be reduced, and labor and time required for transportation and installation of the central part of the pillar can be reduced.
また、本発明の一側面によれば、前記柱中央部と前記柱外周部とが仕口部(2A)に設けられたコッター式継手(8)により一体結合されている構成とすることができる。 Moreover, according to one side of this invention, it can be set as the structure by which the said column center part and the said column outer peripheral part are integrally connected by the cotter type joint (8) provided in the joint part (2A). .
この構成によれば、梁から柱外周部に伝達する荷重を柱中央部にも確実に伝達させることができ、複合柱の圧縮強度を有効に高めることができる。 According to this configuration, the load transmitted from the beam to the column outer peripheral portion can be reliably transmitted to the column central portion, and the compressive strength of the composite column can be effectively increased.
また、上記課題を解決するために、本発明の一側面によれば、複合柱(1)の構築方法であって、水結合材比が比較的高い高強度コンクリートを打設し、柱主筋(4)が配置されない柱の断面中央部に配置される柱中央部(2)を構築するステップと、柱の外周縁近傍に配置される柱主筋(4)および当該柱主筋を囲繞する帯鉄筋(5)を含む鉄筋を組立てるステップと、前記高強度コンクリートに比べて水結合材比が低い比較的低強度のコンクリートを打設し、柱の断面外周部の全周にわたって配置され且つ前記柱主筋および帯鉄筋を埋め込む柱外周部(3)を構築するステップとを含む構成とすることができる。 Moreover, in order to solve the said subject, according to 1 side surface of this invention, it is a construction method of a composite pillar (1), Comprising: High strength concrete with a comparatively high water binder ratio is laid, and pillar main reinforcement ( 4) the step of constructing the column central portion (2) disposed in the central portion of the cross section of the column where the column is not disposed, the column main reinforcement (4) disposed in the vicinity of the outer peripheral edge of the column, and the belt reinforcing bar surrounding the column main reinforcement ( A step of assembling the reinforcing bar including 5), placing relatively low-strength concrete having a lower water-binding material ratio than that of the high-strength concrete, arranged over the entire circumference of the cross-sectional outer periphery of the column, and And a step of constructing a column outer peripheral portion (3) for embedding the band rebar.
このような手順で複合柱を構築することにより、柱の断面積を小さくすることができるうえ、柱の耐火性能を確保することもできる。また、柱中央部は柱主筋に拘束されることがないため、高強度コンクリートを自由に自己収縮させることができ、自己収縮に起因するひび割れが柱中央部に発生することを防止できる。 By constructing the composite column in such a procedure, the cross-sectional area of the column can be reduced, and the fire resistance performance of the column can be ensured. In addition, since the central part of the column is not constrained by the column main reinforcement, the high-strength concrete can be freely self-contracted, and cracks due to self-contraction can be prevented from occurring in the central part of the column.
また、本発明の一側面によれば、前記建物が多層建物(10)であり、前記柱中央部(2)を構築するステップは、プレキャストコンクリートで前記柱中央部を製作するステップと、柱の断面中央部に当該製作された柱中央部を配置するステップとを含み、前記柱中央部を構築するステップと前記鉄筋を配置するステップと前記柱外周部を構築するステップとを繰り返し、前記柱中央部(2)が複数階にわたって連続するように前記多層建物の少なくとも下層の複数階に前記複合柱を構築する構成とすることができる。 Also, according to one aspect of the present invention, the building is a multi-layer building (10), and the step of constructing the column central portion (2) includes the step of manufacturing the column central portion with precast concrete, Placing the manufactured column center in the center of the cross section, repeating the steps of building the column center, placing the reinforcing bar, and building the column outer periphery, It can be set as the structure which construct | assembles the said composite pillar in the several floor of the lower layer of the said multilayer building so that a part (2) may continue over several floors.
この方法によれば、柱中央部の製作を工場などで行えるため、高強度コンクリートの品質管理を容易にすることができる。また、高強度コンクリートは供給地や供給時間などに制限があるため、多層建物の立地や工程によってはその使用自体が困難な場合もあるが、柱中央部をプレキャストコンクリートとすることでこのような問題を解消することができる。 According to this method, since the center part of the column can be manufactured at a factory or the like, quality control of high-strength concrete can be facilitated. In addition, because high strength concrete is limited in terms of supply area and supply time, its use itself may be difficult depending on the location and process of the multi-layer building. The problem can be solved.
また、本発明の一側面によれば、前記柱中央部を2階層分の長さ(L2)に製作する構成とすることができる。 In addition, according to one aspect of the present invention, the column central portion can be manufactured to a length (L2) corresponding to two layers.
この方法によれば、柱中央部の製品本数を減らすことができ、柱中央部の運搬や設置に要する労力および時間を削減できる。 According to this method, the number of products in the central part of the pillar can be reduced, and labor and time required for transportation and installation of the central part of the pillar can be reduced.
また、本発明の一側面によれば、前記柱中央部を製作するステップでは、前記柱中央部(2)の側面から突出するように中間帯鉄筋(6)を配置し、前記柱中央部を配置するステップでは、上部に配置された中間帯鉄筋を係止して前記柱中央部を揚重するとともに、下部に配置された中間帯鉄筋に下階の柱主筋(4)を係合させて前記柱中央部の位置決めを行う構成とすることができる。 Further, according to one aspect of the present invention, in the step of manufacturing the column central portion, the intermediate strip reinforcing bar (6) is disposed so as to protrude from the side surface of the column central portion (2), and the column central portion is In the arranging step, the middle strip reinforcing bar arranged at the upper portion is locked to lift the central portion of the column, and the lower middle column reinforcing bar (4) is engaged with the middle belt reinforcing rod arranged at the lower portion. It can be set as the structure which positions the said column center part.
柱中央部のひび割れは、材軸方向の自己収縮を拘束されることが主な発生原因である。そこで、このように材軸直角方向に延在する中間帯鉄筋を柱中央部に配置することにより、ひび割れの発生を招くことなく、中間帯鉄筋を利用した柱中央部の揚重や位置決めが可能になり、施工を容易にすることができる、或いは、専用の吊り治具や位置決め治具の設置を省略することができる。 The main cause of cracks at the center of the column is that self-shrinkage in the direction of the material axis is constrained. Therefore, by placing the intermediate strip reinforcing bar extending in the direction perpendicular to the material axis in the center of the column, it is possible to lift and position the central portion of the column using the intermediate strip without causing cracks. Thus, the construction can be facilitated, or the installation of a dedicated hanging jig or positioning jig can be omitted.
このように本発明によれば、柱の断面積を小さくできるうえ、耐火性能を確保するとともにひび割れの発生を効果的に防止できる複合柱構造および複合柱の構築方法を提供することができる。 Thus, according to the present invention, it is possible to provide a composite column structure and a method for constructing a composite column that can reduce the cross-sectional area of the column, as well as ensure fire resistance and effectively prevent the occurrence of cracks.
以下、本発明に係る複合柱構造の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of a composite column structure according to the present invention will be described in detail with reference to the drawings.
図1に示すように、複合柱1は、断面中央部に配置される方形断面の柱中央部2と、柱中央部2の側面の全面を覆うように断面外周部に配置される外縁が方形の柱外周部3とを有する。柱中央部2は、水結合材比および強度が比較的高い高強度コンクリートからなり、実質的に無筋コンクリート造である。一方、柱外周部3は、柱中央部2に比べて水結合材比および強度が低いコンクリート(以下、普通コンクリートと称する。)からなる鉄筋コンクリート造である。ここで、高強度コンクリートとは、普通コンクリートに比べて水結合材比および強度が高いコンクリートを意味しており、水結合材比および強度の下限値を定めるものではない。柱中央部2を構成する高強度コンクリートと柱外周部3を構成する普通コンクリートとは、どちらが先に打設されていてもよいが、後に打設される側のコンクリートの付着によって一体となっている。
As shown in FIG. 1, the
柱外周部3には、複合柱1の外周縁近傍に配置され、材軸方向に延在する複数(ここでは24本)の柱主筋4と、複数の柱主筋4を囲繞するように材軸方向に所定間隔をおいて配置された方形の複数の帯鉄筋5(せん断補強筋)とが埋め込まれている。つまり、柱主筋4および帯鉄筋5が柱外周部3のみに配置されている。柱外周部3は、柱主筋4および帯鉄筋5の内方および外方に所定のかぶり厚t1、t2を確保できる厚さとされる。
The column outer
このように、複合柱1は、断面の一部に高強度コンクリートが用いられていることにより、高強度コンクリートが用いられていない形態(柱外周部3を構成する普通コンクリートにより全断面が構成されている形態)に比べ、圧縮強度を大きくでき、同一圧縮強度を得るために必要な柱断面積を小さくすることができる。また、高強度コンクリートからなる柱中央部2が柱外周部3により被覆されているため、複合柱1の表面部分は火災時に爆裂を起こし難くなっており、複合柱1の耐火性能が確保される。
As described above, the
さらに、柱中央部2の高強度コンクリートは、柱主筋4に拘束されることがないため、自由に自己収縮でき、ひび割れが発生することを防止できる。なお、柱中央部2は、完全な無筋コンクリートである必要はなく、ここで言う無筋コンクリートとは、高強度コンクリートの材軸方向の自己収縮を拘束する柱主筋4やPC鋼材を含まないことを意味しており、断面方向に延在する後述する中間帯鉄筋6が埋め込まれたものや、材軸方向に延在する鉄筋であっても段取り筋のように構造計算で考慮されない鉄筋が埋め込まれたものと排除するものではない。
Furthermore, since the high-strength concrete in the column
ひび割れ防止の観点からすれば、複合柱1は次のようにするのが好ましい。すなわち、先に柱外周部3の普通コンクリートを打設した後にその内側に柱中央部2の高強度コンクリートを打設する場合、高強度コンクリートの柱外周部3への付着が高強度コンクリートの材軸方向の自己収縮を拘束することのないように、柱外周部3の内側面すなわち柱外周部3と柱中央部2との接合面を材軸方向について平坦にするとよい。
From the viewpoint of preventing cracks, the
一方、先に柱中央部2の高強度コンクリートを打設した後にその外側に柱外周部3の普通コンクリートを打設する場合、柱中央部2に付着する柱外周部3の普通コンクリートが柱中央部2の高強度コンクリートの自己収縮を拘束しないように、柱外周部3との接合面を材軸方向について平坦にすることに加え、高強度コンクリートの自己収縮がある程度進行した後に柱外周部3の普通コンクリートを打設するようにするとよい。
On the other hand, when high-strength concrete in the column
先に高強度コンクリートを打設する場合には、柱中央部2をプレキャストコンクリート製品として工場などで予め製作しておくとよい。このようにすれば、品質管理が普通コンクリートに比べて煩雑な高強度コンクリートの品質管理を容易にすることができる。そのうえ、柱外周部3の普通コンクリートを現場打ちとする場合にも、現場施工時に待ち時間を発生させることなく高強度コンクリートの自己収縮を相当程度進行させることができる。一方、柱外周部3の普通コンクリートをも工場などで打設し、複合柱1の全体をプレキャストコンクリート製品とすることももちろん可能である。
In the case where high-strength concrete is placed first, the column
一方、先に柱外周部3の普通コンクリートを打設する場合にも、両コンクリートをプレキャストコンクリートとして工場などで予め製作してもよい。また、先に柱外周部3の普通コンクリートを打設する場合にも、先にコンクリートを打設する柱外周部3のみをプレキャストコンクリートとして工場などで予め製作してもよい。
On the other hand, even when the ordinary concrete of the column outer
先に柱中央部2の高強度コンクリートを工場などで打設し、後に打設する柱外周部3の普通コンクリートを現場打ちとする場合には、さらに、柱中央部2のプレキャストコンクリート製品を2階層分の長さL2(図12参照)を有するようにするとよい。柱中央部2の断面は比較的小さいため、このようにすることにより、通常の運搬車両や揚重設備での運搬や揚重を可能にしたまま柱中央部2の製品本数を減らすことができるため、柱中央部2の運搬や設置に要するコスト、労力および時間が削減される。
When high-strength concrete in the
図2および図3を参照して、図1に示した複合柱1の変形例について説明する。なお、上記実施形態と重複する要素には同一の符号を付し、重複する説明は省略する。以下に示す複合柱構造の変形例および複合柱構築方法の変形例においても同様とする。
With reference to FIG. 2 and FIG. 3, the modification of the
図2に示すように、この複合柱1は、すべての柱主筋4を囲繞する帯鉄筋5に加え、一部の柱主筋4のみを囲繞する長方形の中間帯鉄筋6(せん断補強筋)を有している。中間帯鉄筋6は、材軸に直交する平面上に延在し且つ柱中央部2を一方向に貫通して柱中央部2の互いに対向する一対の側面から突出するように配置される。
As shown in FIG. 2, this
この複合柱1を構築する際には、少なくとも柱中央部2をプレキャストコンクリートとして予め工場などで製作し、柱外周部3の普通コンクリートを後から打設するとよい。このようにすることにより、柱中央部2から突出する鉄筋が配置されていても、高強度コンクリートが材軸方向に自由に自己収縮できる。なお、柱中央部2の高強度コンクリートを打設した後には、中間帯鉄筋6が型枠により拘束されることを回避するために、所期の強度が発現した後速やかに脱型するのが好ましい。
When constructing this
図3に示すように、柱中央部2はここでは1階層分の長さL1(図9を併せて参照)を有するプレキャストコンクリート製品とされている。柱中央部2の上端は、複合柱1と梁11との接続部である仕口部2Aを構成しており、この仕口部2Aには、梁主筋13(図9参照)を挿通させるための貫通孔7が形成されるとともに、梁11が接合する各側面(ここでは4面)にコッター式継手8を構成する凹部9が形成されている。つまり、想像線で示す柱外周部3がコッター式継手8により柱中央部2と一体結合される。中間帯鉄筋6は、仕口部2Aの梁主筋13が通る部分を除いた部分と仕口部2Aの下方の柱主部2Bとに、帯鉄筋5(図2)と同じピッチで上下方向に一列に複数配置される。
As shown in FIG. 3, the
複合柱1をこのように構成しても、図1に示す複合柱1と同様の効果を得ることができる。また、プレキャストコンクリート製品である柱中央部2の取り扱いを容易にすることができる。つまり、柱中央部2の運搬時には一側面から突出する上下一対の中間帯鉄筋6を係止して柱中央部2を揚重することができ、柱中央部2の現場設置時には、上部に配置された中間帯鉄筋6の両端部(対向する側面からそれぞれ突出する部分)を係止して柱中央部2を揚重できるとともに、下部に配置された中間帯鉄筋6に下階の柱主筋4を係合させて柱中央部2の位置決めを行うことができる。
Even if the
或いは図2に示す複合柱1を図4や図5に示すように構成してもよい。図4に示す複合柱1では、中間帯鉄筋6が、仕口部2Aの梁主筋13が通る部分を除いた部分に適宜の数量(ここでは3本)配置されるとともに、柱主部2Bの最下部に適宜の数量(ここでは1本)配置される。複合柱1をこのように構成しても、図3に示す複合柱1と同様の効果を得ることができる。
Or you may comprise the
図5に示す複合柱1では、中間帯鉄筋6が、柱主部2Bの最上部と柱主部2Bの下部中央寄りと柱主部2Bの最下部との3箇所に配置される。複合柱1をこのように構成しても、図3および図4に示す複合柱1と同様の効果を得ることができる。すなわち、柱中央部2の運搬時には、図6に実線で示すうように、一側面から突出する上側2つの中間帯鉄筋6を吊り金具15で係止して柱中央部2を揚重することができ、柱中央部2の現場設置時には、図6に想像線で示すように、最上部に配置された中間帯鉄筋6の両端部(対向する側面からそれぞれ突出する部分)を吊り金具15で係止して柱中央部2を揚重できるとともに、最下部に配置された中間帯鉄筋6に下階の柱主筋4を係合させて柱中央部2の位置決めを行うことができる。
In the
図3〜図5には、梁主筋13を配置できるように柱中央部2に梁主筋13を挿通させるための貫通孔7を形成する形態を示したが、図7に示すように、高強度コンクリートの打設前に適宜な長さの差込梁主筋14を予め配置しておき、柱中央部2に差込む形態としてもよい。
3 to 5 show a form in which the through-
図8を参照して、図1に示した複合柱1の他の変形例について説明する。この複合柱1は、すべての柱主筋4を囲繞する帯鉄筋5に加え、一部の柱主筋4のみを囲繞する長方形の中間帯鉄筋6を、互いに直交する2方向に有している。両中間帯鉄筋6はそれぞれ、材軸に直交する平面上に延在し且つ柱中央部2を一方向に貫通して柱中央部2の互いに対向する一対の側面から突出するように配置される。
With reference to FIG. 8, another modification of the
両中間帯鉄筋6の材軸方向の配置は、図3〜図5に示したいずれかの形態のようにしてもよく、他の形態としてもよい。図3のように帯鉄筋5と同じピッチで中間帯鉄筋6を設ける場合には、帯鉄筋5のピッチで両中間帯鉄筋6を配置してもよく、それ以外のピッチ、例えば両中間帯鉄筋6のピッチを帯鉄筋5の2倍のピッチとし、各方向の中間帯鉄筋6を交互に配置したり、或いは両中間帯鉄筋6を同一位置に配置したりしてもよい。
The arrangement of both intermediate
次に、本発明に係る複合柱1の構築手順について説明する。
Next, the construction procedure of the
まず、図9を参照しながら多層建物10に適用される複合柱1の一構築手順について説明する。この例では、柱中央部2を1階層分の長さL1(下階の梁11の上面からその階の梁11の上面までの階高)のプレキャストコンクリート製品とし、柱外周部3の普通コンクリートを現場打ちとしている。
First, one construction procedure of the
まず、プレキャスト工場にて、図2〜図8に示したような柱中央部2を製作する。すなわち、中間帯鉄筋6を柱中央部2の型枠の側面から突出するように配置し、主筋を配置しない状態で、柱中央部2の型枠内に水結合材比が比較的高い高強度コンクリートを打設し、柱中央部2の材軸方向の自己収縮を拘束しないように所定のコンクリート強度の発現を待って型枠を速やかに解体する。なお、コッター式継手8を構成する凹部9は柱中央部2の上端近傍に配置されるが、凹部9を形成する型枠凸部が柱中央部2の初期の自己収縮を拘束することを勘案すると、型枠を上下逆さまにした状態(凹部9が下端近傍に位置する状態)で高強度コンクリートを打設するとよい。
First, the
次に、製作した柱中央部2を現場に搬入して複合柱1の断面中央部に配置する。この際、図6に関連して説明したように、上部に配置された中間帯鉄筋6を係止して柱中央部2を揚重するとともに、下部に配置された中間帯鉄筋6に下階から延びる柱主筋4を係合させて柱中央部2の位置決めを行うとよい。なお、柱中央部2を載置する面には、高強度無収縮モルタルなどを敷設するとよい。柱中央部2の固定は、柱主筋4および柱型枠の位置固定により行われるが、このような固定を行うまでは、後述する梁主筋13の接合などの適宜な仮固定手段により柱中央部2を仮固定する。
Next, the manufactured column
その後、柱中央部2の外周に柱主筋4および当該柱主筋4を囲繞する帯鉄筋5を含む鉄筋を配置するとともに梁鉄筋12を組立て、複合柱1および梁11の図示しない型枠を組立てる。柱中央部2に適宜な長さの差込梁主筋14を差込んでいる場合、この差込梁主筋14に継手手段を介して梁主筋13を接合する。一方、柱中央部2に梁主筋13を挿通するための貫通孔7を設けている場合、この貫通孔7に梁主筋13を挿通した状態で貫通孔7にグラウトを注入し、梁主筋13を柱中央部2に接合する。柱型枠は控えサポートを設置して傾きを防止し、柱型枠と帯鉄筋5との間および柱主筋4と柱中央部2の外側面との間のかぶり厚t1、t2(図1)を確保するための図示しないスペーサを設置することで柱中央部2を固定し、高強度コンクリート打設時における柱中央部2の転倒を防止する。
Thereafter, the reinforcing bars including the column main reinforcing
そして、柱中央部2に比べて水結合材比および強度が低い普通コンクリートを型枠内に打設し、普通コンクリートによって柱主筋4および帯鉄筋5を埋め込み且つ柱中央部2の側面の全面を覆うように柱外周部3および梁11を構築する。なお、梁11とともにスラブについても同時にコンクリートを打設するとよい。その後、型枠を取り外し、上層階について上記手順を繰り返し、柱中央部2が複数階にわたって連続するように多層建物10の少なくとも下層の複数階に複合柱1を構築する。
Then, ordinary concrete having a lower water binder ratio and strength than that of the column
このように柱中央部2が主筋を有しない高強度コンクリートにより構築され、柱外周部3が柱主筋4を有する比較的低強度の普通コンクリートにより構築された複合柱1における荷重負担について図10および図11を参照して説明する。
The load burden on the
図10に示すように、平常時の長期荷重は、上方から伝達される荷重Nに加え、柱外周部3に伝達する各階の梁11の荷重QR1、QL1〜QR3、QL3がコッター式継手8を介して柱中央部2に伝達する。したがって、下層階ほど荷重が大きくなり、上方から荷重Nが加わっている図示の複合柱1の最下階では、荷重はN+Σ(Q1+Q2+Q3)となる。柱中央部2は、圧縮強度が柱外周部3よりも大きいため、弾性ひずみやクリープひずみが小さく、単位面積当たりの荷重が柱外周部3の単位面積当たりの荷重よりも大きくなる。つまり、長期荷重は主として高強度の柱中央部2が負担することになる。
As shown in FIG. 10, in addition to the load N transmitted from above, the loads Q R1 , Q L1 to Q R3 , Q L3 of the
一方、地震荷重時には、図11に示すように、複合柱1に軸方向力が付加され、圧縮ストラット16が柱頭(仕口の下端)および柱脚(仕口の上端)において左右の異なる端部を通るようになる。つまり、曲げモーメントが大きくなる柱頭および柱脚では、低強度側の柱外周部3が曲げ圧縮域となり、地震時の圧縮荷重は主として柱外周部3が負担することになる。
On the other hand, during an earthquake load, as shown in FIG. 11, an axial force is applied to the
このように、主筋が配置されない断面中央部に高強度コンクリートからなる柱中央部2を構築し、柱中央部2の外周に柱主筋4などを配置したうえで柱中央部2に比べて水結合材比および強度が低い普通コンクリートからなる柱外周部3を構築して複合柱1を構築することにより、所定の長期荷重および地震荷重に対応した柱の断面積を小さくすることができるうえ、柱の耐火性能を確保することができる。また、柱中央部2は柱主筋4に拘束されないため、高強度コンクリートが自由に自己収縮でき、柱中央部2にひび割れが発生することもない。
As described above, the column
なお、上記したように高強度コンクリートとは、水結合材比が比較的高いことによって高強度を実現するコンクリートのことであり、結合材以外の物質を混入することによって高強度を実現するコンクリートは含まないため、高強度コンクリートの混合攪拌や取り扱いが困難になったり、材料コストがむやみに高くなったりすることはない。 As described above, high-strength concrete is concrete that achieves high strength by having a relatively high water binder ratio, and concrete that achieves high strength by mixing substances other than binder. Since it is not included, mixing and stirring of high-strength concrete and handling are not difficult, and the material cost is not increased unnecessarily.
また上記実施形態では、柱中央部2を工場などで製作するプレキャストコンクリートとしており、これにより、高強度コンクリートの品質管理を容易にすることができるうえ、多層建物10の建設地や施工時間などに制限がある場合であっても高強度コンクリートを用いた柱中央部2の構築が可能になる。
Moreover, in the said embodiment, the
さらに上記実施形態では、柱中央部2に中間帯鉄筋6を配置し、図6に示したように、柱中央部2を配置する際には上部に配置された中間帯鉄筋6を係止して揚重し、柱中央部2の位置決めを行う際には下部に配置された中間帯鉄筋6に下階の柱主筋4を係合させるようにしたことにより、柱中央部2におけるひび割れの発生を招くことなく、施工の容易化、或いは、専用の吊り治具や位置決め治具の省略が可能となっている。
Furthermore, in the above-described embodiment, the
多層建物10に適用される複合柱1の一構築手順の変形例として、図12に示すように、柱中央部2を2階層分の長さL2(下階の梁11の上面から構築しようとする階の1階上の階の梁11の上面までの2階層分の階高)のプレキャストコンクリート製品とし、柱外周部3の普通コンクリートを1階層ごとの現場打ちとして複合柱1を構築してもよい。このような構築方法においては、各手順を上記構築手順と同様に行えばよいが、1階層目の柱外周部3の構築の後、柱中央部2の配置を行うことなく2階層目の柱外周部3の構築を行う。このように柱中央部2を2階層分の長さL2のプレキャストコンクリート製品とすることにより、柱中央部2を構成するプレキャストコンクリート製品の本数を減らすことができ、柱中央部2の運搬や設置に要する労力および時間を削減することができる。
As a modification of one construction procedure of the
さらに、図13に示すように、複合柱1全体をプレキャストコンクリート製品として構築する形態とすることもできる。この場合、上記手順と同様に、プレキャスト工場にて、まず中間帯鉄筋6を柱中央部2の型枠の側面から突出するように配置し、主筋を配置しない状態で高強度コンクリートを打設して柱中央部2を製作した後、続けてプレキャスト工場にて、図13(A)に示すように、柱中央部2の外周に柱主筋4および当該柱主筋4を囲繞する帯鉄筋5を含む鉄筋を配置し、図示しない柱外周部3の型枠を組立てる。柱主筋4の下端には継手4aを取り付けておき、柱主筋4の上端を、上層階の柱主筋4の継手4aに接続できるように柱外周部3の上面よりも上方に突出させておく。その後、柱中央部2に比べて水結合材比および強度が低い普通コンクリートを型枠内に打設し、図13(B)に示すように、柱中央部2の側面の全面が柱外周部3により覆われた複合柱1を製作する。複合柱1全体をプレキャストコンクリート製品とする場合には、複合柱1と梁11(図9〜図12)とをコッター式継手により接合するために、柱外周部3の側面にも凹部17を形成する。
Furthermore, as shown in FIG. 13, it can also be set as the form which builds the
このように複合柱1の全体をプレキャストコンクリートとする場合、柱外周部3の普通コンクリートは自己収縮が小さいこと、および柱主筋4の上端が上方に突出していることから、柱外周部3の普通コンクリートを打設する際には、図13(B)に示すように仕口部2Aを上方にした状態(設置状態の向き)で行えばよい。一方、図13(A)に示す柱中央部2の高強度コンクリートを打設する際には、上記同様に自己収縮の拘束を回避するために、コッター式継手8を構成する凹部9が下端近傍に位置する状態(図示の状態と上下逆さまの状態)で行うとよい。
In this way, when the entire
製作した複合柱1は、現場に搬入した後、柱中央部2が下階の柱中央部2と連続するように配置されるとともに、柱主筋4がその下端に設けられた継手4aを介して下階の柱主筋4と接続されることにより、所定の位置に構築される。
After the produced
複合柱1をこのように構築しても、断面積を小さくすることができるうえ、耐火性能を確保することができる。また、柱中央部2が柱主筋4に拘束されないため、高強度コンクリートを自由に自己収縮させることができ、柱中央部2でのひび割れの発生を防止できる。
Even if the
以上で具体的実施形態についての説明を終えるが、本発明はこれらの実施形態に限定されるものではなく、各要素の具体的形状や、配置、数量、および作業手順の順序などは、本発明の趣旨を逸脱しない範囲で適宜変更可能である。また、上記実施形態に示した本発明に係る複合柱1構造の各要素や複合柱1の構築手順の各要素は、必ずしも全てが必須ではなく、適宜取捨選択可能である。
This is the end of the description of the specific embodiments. However, the present invention is not limited to these embodiments, and the specific shape of each element, the arrangement, the quantity, the order of work procedures, and the like are described in the present invention. Any change can be made without departing from the scope of the present invention. In addition, all the elements of the
1 複合柱
2 柱中央部
2A 仕口部
3 柱外周部
4 柱主筋
5 帯鉄筋
6 中間帯鉄筋
8 コッター式継手
10 多層建物
DESCRIPTION OF
Claims (7)
前記高強度コンクリートに比べて水結合材比および強度が低いコンクリートからなり、前記柱中央部の側面の全面を覆うように柱の断面外周部に配置される柱外周部とを有し、
柱主筋が前記柱外周部のみに配置されていることを特徴とする複合柱構造。 A column central portion made of high-strength concrete having a predetermined water binder ratio and strength, and arranged in the central portion of the cross section of the column,
A column outer peripheral portion that is made of concrete having a low water binder ratio and strength compared to the high-strength concrete, and that is disposed in the outer peripheral portion of the cross section of the column so as to cover the entire side surface of the central portion of the column,
A column structure comprising a column main bar arranged only in the outer periphery of the column.
所定の水結合材比および強度を有する高強度コンクリートを打設し、柱主筋が配置されない柱の断面中央部に配置される柱中央部を構築するステップと、
柱の外周縁近傍に配置される柱主筋および当該柱主筋を囲繞する帯鉄筋を含む鉄筋を組立てるステップと、
前記高強度コンクリートに比べて水結合材比および強度が低いコンクリートを打設し、柱の断面外周部の全周にわたって配置され且つ前記柱主筋および帯鉄筋を埋め込む柱外周部を構築するステップと
を含むことを特徴とする複合柱の構築方法。 A method for constructing a composite pillar,
Placing a high-strength concrete having a predetermined water binder ratio and strength, and constructing a column central portion disposed in a central portion of the cross section of the column where the column main reinforcement is not disposed;
Assembling a reinforcing bar including a column reinforcing bar arranged in the vicinity of the outer periphery of the column and a belt reinforcing bar surrounding the column reinforcing bar;
Placing a concrete having a lower water binder ratio and strength than the high-strength concrete, and constructing a column outer peripheral portion that is arranged over the entire outer periphery of the cross-section of the column and embeds the column main reinforcing bar and the strip reinforcement. A method of constructing a composite pillar characterized by including.
前記柱中央部を構築するステップは、プレキャストコンクリートで前記柱中央部を製作するステップと、柱の断面中央部に当該製作された柱中央部を配置するステップとを含み、
前記柱中央部を構築するステップと前記鉄筋を組立てるステップと前記柱外周部を構築するステップとを繰り返し、前記柱中央部が複数階にわたって連続するように前記多層建物の少なくとも下層の複数階に前記複合柱を構築することを特徴とする、請求項4に記載の複合柱の構築方法。 The building is a multi-story building;
The step of building the column central portion includes the step of manufacturing the column central portion with precast concrete, and the step of arranging the manufactured column central portion in the cross-sectional central portion of the column,
The steps of constructing the pillar central portion, assembling the reinforcing bars, and constructing the outer periphery of the pillar are repeated, and the pillar central portion is continuous over a plurality of floors, so that the at least a plurality of lower floors of the multi-layered building The method for constructing a composite pillar according to claim 4, wherein the composite pillar is constructed.
前記柱中央部を配置するステップでは、上部に配置された中間帯鉄筋を係止して前記柱中央部を揚重するとともに、下部に配置された中間帯鉄筋に下階の柱主筋を係合させて前記柱中央部の位置決めを行うことを特徴とする、請求項5または請求項6に記載の柱構造。 In the step of producing the column central portion, an intermediate strip reinforcing bar is disposed so as to protrude from the side surface of the column central portion,
In the step of disposing the central part of the column, the middle band reinforcing bar arranged at the upper part is locked to lift the central part of the column, and the lower part of the column main reinforcing bar is engaged with the intermediate belt reinforcing bar arranged at the lower part. The column structure according to claim 5 or 6, wherein the column central part is positioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012204732A JP6012353B2 (en) | 2012-09-18 | 2012-09-18 | Composite column structure and composite column construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012204732A JP6012353B2 (en) | 2012-09-18 | 2012-09-18 | Composite column structure and composite column construction method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2014058820A true JP2014058820A (en) | 2014-04-03 |
JP2014058820A5 JP2014058820A5 (en) | 2015-04-16 |
JP6012353B2 JP6012353B2 (en) | 2016-10-25 |
Family
ID=50615515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012204732A Active JP6012353B2 (en) | 2012-09-18 | 2012-09-18 | Composite column structure and composite column construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6012353B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016160617A (en) * | 2015-02-27 | 2016-09-05 | 三井住友建設株式会社 | COMPOSITE BEAM AND PCa COMPOSITE BEAM MEMBER CONSTITUTING THE SAME, AND COMPOSITE RIGID-FRAME STRUCTURE |
JP2016160618A (en) * | 2015-02-27 | 2016-09-05 | 三井住友建設株式会社 | Construction method for composite rigid-framed structure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5456917U (en) * | 1977-09-29 | 1979-04-19 | ||
JPS58199957A (en) * | 1982-05-13 | 1983-11-21 | 株式会社長谷工コーポレーション | Composite reinforced concrete structure |
JPH03212562A (en) * | 1990-01-16 | 1991-09-18 | Shimizu Corp | Pc-form for pillar |
JPH04302640A (en) * | 1991-03-28 | 1992-10-26 | Taisei Corp | Flexible cast concrete member |
JPH04357241A (en) * | 1991-06-03 | 1992-12-10 | Tokyu Constr Co Ltd | Hollow pca column |
JP2003313958A (en) * | 2002-04-26 | 2003-11-06 | Shimizu Corp | Joint structure of precast concrete member |
JP2007154565A (en) * | 2005-12-07 | 2007-06-21 | Taisei Corp | Joint structure and construction method of column and beam-less slab |
JP2011094476A (en) * | 2010-12-13 | 2011-05-12 | Fujita Corp | Method for manufacturing reinforced concrete member |
-
2012
- 2012-09-18 JP JP2012204732A patent/JP6012353B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5456917U (en) * | 1977-09-29 | 1979-04-19 | ||
JPS58199957A (en) * | 1982-05-13 | 1983-11-21 | 株式会社長谷工コーポレーション | Composite reinforced concrete structure |
JPH03212562A (en) * | 1990-01-16 | 1991-09-18 | Shimizu Corp | Pc-form for pillar |
JPH04302640A (en) * | 1991-03-28 | 1992-10-26 | Taisei Corp | Flexible cast concrete member |
JPH04357241A (en) * | 1991-06-03 | 1992-12-10 | Tokyu Constr Co Ltd | Hollow pca column |
JP2003313958A (en) * | 2002-04-26 | 2003-11-06 | Shimizu Corp | Joint structure of precast concrete member |
JP2007154565A (en) * | 2005-12-07 | 2007-06-21 | Taisei Corp | Joint structure and construction method of column and beam-less slab |
JP2011094476A (en) * | 2010-12-13 | 2011-05-12 | Fujita Corp | Method for manufacturing reinforced concrete member |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016160617A (en) * | 2015-02-27 | 2016-09-05 | 三井住友建設株式会社 | COMPOSITE BEAM AND PCa COMPOSITE BEAM MEMBER CONSTITUTING THE SAME, AND COMPOSITE RIGID-FRAME STRUCTURE |
JP2016160618A (en) * | 2015-02-27 | 2016-09-05 | 三井住友建設株式会社 | Construction method for composite rigid-framed structure |
Also Published As
Publication number | Publication date |
---|---|
JP6012353B2 (en) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111622374B (en) | Composite structural wall and method of construction thereof | |
KR101570484B1 (en) | Half-PC Column using lightweight Encased Inner Form And Manufacturing Method Thereof, And Construction Method Using The Same | |
JP6652754B2 (en) | Joint structure of precast concrete slab for rapid construction and its construction method | |
KR101286557B1 (en) | Steel-concrete composite beam for reducing story height and flatplate structure | |
CN110805169A (en) | Vertical seam splicing structure of prefabricated wall board and assembling method thereof | |
JP6422795B2 (en) | Composite beam, PCa composite beam member constituting the same, and composite ramen structure | |
JP2011231543A (en) | Floor framing structure, precast concrete slab and its construction method, composite floor slab, and fireproof building | |
JP6538576B2 (en) | Joint structure of shear wall and slab of RC structure | |
AU2023219854A1 (en) | Reinforcing framework and slab design | |
JP6012353B2 (en) | Composite column structure and composite column construction method | |
CN215054263U (en) | L-shaped connecting joint of prefabricated wall panel | |
JP6636345B2 (en) | RC building and construction method of RC building | |
KR102197994B1 (en) | Construction method using beam-reinforced deck plate | |
KR102548457B1 (en) | Precast fireproof hollow core slab, and construction method for the same | |
JP2023022183A (en) | Joint structure between concrete-filled steel pipe columns and reinforced concrete slab | |
JP2004019306A (en) | Tower-shaped building and its construction method | |
JP6340467B1 (en) | Ramen structure using sleeve wall and joining method thereof | |
WO2017187452A1 (en) | System for connecting a precast column to a precast beam and method therefor | |
JP5520527B2 (en) | Reinforced concrete structures | |
JP2009108500A (en) | Precast beam construction method, precast beam, precast beam joint structure, and building | |
CN211421451U (en) | Vertical seam connection structure of two perpendicular prefabricated wallboards | |
JP2023106051A (en) | Joint structure between column and beam, and method for constructing joint structure between column and beam | |
JP2024009253A (en) | Fire-resistant stress transmission member | |
JP2023132791A (en) | Joining method and floor slab structure | |
JP5395292B2 (en) | Shear reinforcement structure of beam and prestressed concrete beam having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150227 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6012353 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |