JP2014053545A - SINGLE CRYSTAL SiGe LAYER MANUFACTURING METHOD AND SOLAR CELL USING THE SAME - Google Patents

SINGLE CRYSTAL SiGe LAYER MANUFACTURING METHOD AND SOLAR CELL USING THE SAME Download PDF

Info

Publication number
JP2014053545A
JP2014053545A JP2012198489A JP2012198489A JP2014053545A JP 2014053545 A JP2014053545 A JP 2014053545A JP 2012198489 A JP2012198489 A JP 2012198489A JP 2012198489 A JP2012198489 A JP 2012198489A JP 2014053545 A JP2014053545 A JP 2014053545A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
light absorption
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012198489A
Other languages
Japanese (ja)
Other versions
JP6004429B2 (en
Inventor
Ryuji Oshima
隆治 大島
Mitsuyuki Yamanaka
光之 山中
Hidetaka Takato
秀尚 高遠
Hitoshi Kawanami
仁志 川浪
Koji Matsubara
浩司 松原
Isao Sakata
功 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012198489A priority Critical patent/JP6004429B2/en
Publication of JP2014053545A publication Critical patent/JP2014053545A/en
Application granted granted Critical
Publication of JP6004429B2 publication Critical patent/JP6004429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of manufacturing a single crystal SiGe layer on an Si substrate, which is excellent in surface flatness and eliminates the need for complicated and precise control and a solar cell using the same.SOLUTION: A single SiGe layer 100 has a structure in which an SiGebuffer layer 102, an SiGestrain inversion layer 103, an SiGelight absorption layer 104 are stacked on an Si substrate 101. The Si substrate 101 is P-type or N-type and included as an electrode. The SiGebuffer layer 102 has a structure in which a plurality of SiGesemiconductor layers are stacked and is used for matching grating constants of the base Si substrate and the plurality of SiGesemiconductor layers in a step-by-step manner while minimizing a dislocation density. The SiGestrain inversion layer 103 generates a compressive strain stress against a tensile stress generated in the SiGelight absorption layer 104. The SiGelight absorption layer 104 absorbs external light and is used for generating carriers.

Description

本発明は単結晶SiGe層の製造方法及びそれを用いた太陽電池に係り、特にシリコン基板上に単結晶シリコン・ゲルマニウム(SiGe)層を形成した単結晶SiGe層の製造方法及びそれを用いた太陽電池に関する。   The present invention relates to a method for manufacturing a single crystal SiGe layer and a solar cell using the same, and more particularly, to a method for manufacturing a single crystal SiGe layer in which a single crystal silicon-germanium (SiGe) layer is formed on a silicon substrate and a solar cell using the same. It relates to batteries.

現在主流の太陽電池は、シリコン(Si)基板を用い、Si基板にpn接合を形成し、光吸収層にSi半導体を用いた構造である。しかし、Si半導体は間接遷移半導体であり、光吸収係数が低く、上記主流の太陽電池の光吸収層は十分な光電変換効率を得るために数100μmと厚い。   The current mainstream solar cell has a structure in which a silicon (Si) substrate is used, a pn junction is formed on the Si substrate, and a Si semiconductor is used for the light absorption layer. However, the Si semiconductor is an indirect transition semiconductor and has a low light absorption coefficient, and the light absorption layer of the mainstream solar cell is as thick as several hundred μm in order to obtain sufficient photoelectric conversion efficiency.

一方、低価格化、省資源化を目的として、数μm〜数10μmの厚さの半導体材料を用いた薄膜太陽電池が開発されている。この薄膜太陽電池の材料として、光吸収係数が高い化合物半導体(例えば、GaAs、CuInGaSSe)などが挙げられるが、単結晶Si太陽電池の光吸収層の厚さを数μmとした場合、十分な光吸収が得られないため、高い光電変換効率を得ることは困難である。   On the other hand, a thin film solar cell using a semiconductor material having a thickness of several μm to several tens of μm has been developed for the purpose of reducing the price and saving resources. Examples of the material of the thin film solar cell include a compound semiconductor (eg, GaAs, CuInGaSSe) having a high light absorption coefficient. However, when the thickness of the light absorption layer of the single crystal Si solar cell is set to several μm, sufficient light is obtained. Since absorption cannot be obtained, it is difficult to obtain high photoelectric conversion efficiency.

薄膜太陽電池の応用例として、異なる禁制帯幅を有するIII-V族化合物半導体を用いた太陽電池を多層積層させた多接合太陽電池がある。例えば3接合太陽電池の場合、入射光側から禁制帯幅1.8〜2.0eV/1.2〜1.6eV/0.7〜0.9eVの太陽電池を積層させた場合、従来のSi太陽電池に比べて高い光電変換効率が得られるが、高価であり、IV族半導体を用いた多接合太陽電池の開発が望まれている。   As an application example of a thin film solar cell, there is a multi-junction solar cell in which solar cells using III-V group compound semiconductors having different forbidden band widths are stacked. For example, in the case of a three-junction solar cell, when a solar cell having a forbidden band width of 1.8 to 2.0 eV / 1.2 to 1.6 eV / 0.7 to 0.9 eV is stacked from the incident light side, Although high photoelectric conversion efficiency can be obtained as compared with a solar cell, it is expensive and development of a multijunction solar cell using a group IV semiconductor is desired.

ところで、単結晶Si1-xGex半導体はGe組成比xが0〜1.0の任意値での単結晶エピタキシャル成長が可能であり、禁制帯幅は約0.7eV〜1.1eVまで任意の禁制帯幅に設計できる。また、単結晶Si1-xGex半導体は、単結晶Si半導体に比べて光吸収係数が高く、光吸収層の薄膜化に適した半導体材料である。そこで、Si基板上にSi1-xGex半導体を形成した太陽電池が考えられる。 By the way, the single crystal Si 1-x Ge x semiconductor can be single crystal epitaxially grown at an arbitrary value of Ge composition ratio x of 0 to 1.0, and the forbidden band width is arbitrarily set to about 0.7 eV to 1.1 eV. Can be designed with forbidden bandwidth. The single crystal Si 1-x Ge x semiconductor has a higher light absorption coefficient than the single crystal Si semiconductor, and is a semiconductor material suitable for reducing the thickness of the light absorption layer. Therefore, a solar cell in which a Si 1-x Ge x semiconductor is formed on a Si substrate can be considered.

しかし、Si基板(格子定数5.430オングストローム(Å))に対して、Si1-xGex半導体の格子定数はSiとGeの組成比に応じて、最大で5.658Å(Ge組成x=1.0)となるため、例えば、Si基板を用いて単結晶SiGe層のエピタキシャル成長する場合、その格子定数差に応じた圧縮歪み応力がエピタキシャル層に発生し、応力緩和に伴って高密度の転位が発生するために、結晶性を高めることが難しく、そのままではSi基板上に特性に優れたSi1-xGex単結晶を作製することは困難であった。そこで、Si基板上に特性に優れたSi1-xGex単結晶を作製する方法が従来提案されている(例えば、非特許文献1、特許文献1参照)。 However, with respect to the Si substrate (lattice constant 5.430 angstrom (Å)), the lattice constant of Si 1-x Ge x semiconductor is 5.658Å (Ge composition x = max) depending on the composition ratio of Si and Ge. For example, when a single-crystal SiGe layer is epitaxially grown using a Si substrate, compressive strain stress corresponding to the difference in lattice constant is generated in the epitaxial layer, and high-density dislocations accompany stress relaxation. Therefore, it is difficult to improve the crystallinity, and as it is, it is difficult to produce a Si 1-x Ge x single crystal having excellent characteristics on a Si substrate. Therefore, a method for producing a Si 1-x Ge x single crystal having excellent characteristics on a Si substrate has been proposed in the past (for example, see Non-Patent Document 1 and Patent Document 1).

すなわち、非特許文献1には、Si基板上に300nm厚のSi0.925Ge0.075層を形成し、その上に300nm厚のSi0.85Ge0.15層を形成し、その上に300nm厚のSi0.775Ge0.225層を形成し、その上に300nm厚のSi0.7Ge0.3層を形成し、各層形成後に約900℃,5分の熱処理を施すことにより、低転位密度のSi0.7Ge0.3単結晶が得られる方法を開示している。 That is, in Non-Patent Document 1, a Si 0.925 Ge 0.075 layer having a thickness of 300 nm is formed on a Si substrate, a Si 0.85 Ge 0.15 layer having a thickness of 300 nm is formed thereon, and a Si 0.775 Ge 0.225 layer having a thickness of 300 nm is formed thereon. A method in which a Si 0.7 Ge 0.3 single crystal having a low dislocation density is obtained by forming a layer, forming a Si 0.7 Ge 0.3 layer having a thickness of 300 nm thereon, and subjecting each layer to heat treatment at about 900 ° C. for 5 minutes Is disclosed.

また、特許文献1には、例えば、Si基板上に組成を傾斜させたSiGe緩衝層を形成し、その上にSi歪み層を形成し、更にSiGe緩衝層を形成させることにより、Si基板とは異なる格子定数を有する表面平坦性に優れた半導体層を形成させる方法が示されている。   Further, in Patent Document 1, for example, a SiGe buffer layer having a composition gradient is formed on a Si substrate, a Si strained layer is formed thereon, and a SiGe buffer layer is further formed. A method of forming a semiconductor layer having different lattice constants and excellent surface flatness is shown.

P.I.Gaiduket.al,“Strain-relaxed SiGe/Si heteroepitaxialstructures of low threading-dislocation density”,Thin Solid Films 367(2000)120-125P.I.Gaiduket.al, “Strain-relaxed SiGe / Si heteroepitaxialstructures of low threading-dislocation density”, Thin Solid Films 367 (2000) 120-125

特開2008−153671号公報JP 2008-153671 A

しかしながら、上記非特許文献1に示される構造は、転位密度の低減が認められるが、緩衝層で発生する転位に起因した特有の斜行平行線(クロスハッチ)構造が残存する。このクロスハッチ構造は転位の集中部分であるため、太陽電池応用の観点から、平坦性に優れた表面の形成が必要不可欠であるが、平坦性に優れた表面を得ることが困難である。   However, although the structure shown in Non-Patent Document 1 shows a reduction in dislocation density, a characteristic oblique parallel line (cross hatch) structure resulting from dislocations generated in the buffer layer remains. Since this cross-hatch structure is a dislocation concentration part, it is indispensable to form a surface with excellent flatness from the viewpoint of solar cell application, but it is difficult to obtain a surface with excellent flatness.

また、特許文献1には、Ge組成比20%までの実施例が示されているが、特許文献1に開示された構造は、Si基板上にSi1-xGex緩衝層とSi歪み層との交互多重積層させた構造であり、複雑かつ精密制御が必要である。 Patent Document 1 discloses an example with a Ge composition ratio of up to 20%. However, the structure disclosed in Patent Document 1 has a Si 1-x Ge x buffer layer and a Si strained layer on a Si substrate. It is a structure in which multiple layers are stacked alternately, and complicated and precise control is required.

本発明は以上の点に鑑みなされたもので、Si基板上に表面平坦性に優れ、複雑かつ精密制御が不要な単結晶SiGe層を製造する製造方法及びそれを用いた太陽電池を提供することを目的とする。   The present invention has been made in view of the above points, and provides a manufacturing method for manufacturing a single-crystal SiGe layer having excellent surface flatness on a Si substrate and requiring no complicated and precise control, and a solar cell using the same. With the goal.

上記の目的を達成するため、本発明の単結晶SiGe層の製造方法は、P型又はN型のSi基板上に、格子定数が段階的に異なる複数のSi1-xGex半導体層(ただし、0≦x≦0.95;以下同じ)を積層して、前記Si基板と前記複数のSi1-xGex半導体層の格子定数を段階的に適合させるためのSi1-xGex緩衝層を形成する緩衝層形成工程と、前記Si1-xGex緩衝層の上に圧縮歪み応力を発生するSi1-xGex歪み反転層を形成する歪み反転層形成工程と、前記Si1-xGex半導体層の上に外部光を吸収しキャリアを生成するSi1-xGex光吸収層を形成する光吸収層形成工程とを含み、前記Si基板上に、それぞれ前記Si基板と同じ導電型の前記緩衝層、前記歪み反転層及び前記光吸収層が積層された単結晶SiGe層を製造することを特徴とする。 In order to achieve the above object, a method for producing a single crystal SiGe layer according to the present invention includes a plurality of Si 1-x Ge x semiconductor layers (provided that the lattice constants are different in stages on a P-type or N-type Si substrate). , 0 ≦ x ≦ 0.95; the same shall apply hereinafter), and a Si 1-x Ge x buffer for adapting the lattice constant of the Si substrate and the plurality of Si 1-x Ge x semiconductor layers in stages. A buffer layer forming step of forming a layer, a strain inversion layer forming step of forming a Si 1-x Ge x strain inversion layer that generates compressive strain stress on the Si 1-x Ge x buffer layer, and the Si 1 a light-absorbing layer forming step of forming a Si 1-x Ge x light-absorbing layer that absorbs external light and generates carriers on the -x Ge x semiconductor layer, and on the Si substrate, Single-crystal SiGe layer in which the buffer layer, the strain inversion layer, and the light absorption layer of the same conductivity type are stacked Characterized in that it produced.

また、上記の目的を達成するため、本発明の単結晶SiGe層の製造方法は、前記緩衝層形成工程は、前記複数のSi1-xGex半導体層の格子定数が、前記Si基板側から順に大きくなり、格子定数が最も大きなSi1-xGex半導体層を最上層に形成し、前記歪み反転層形成工程は、前記緩衝層形成工程で形成された前記格子定数が最も大きな最上層のSi1-xGex半導体層の上に、格子定数が前記最上層のSi1-xGex半導体層の格子定数よりも0.017Å〜0.019Å大きなSi1-xGex半導体層を前記歪み反転層として形成することを特徴とする。 In order to achieve the above object, according to the method for producing a single crystal SiGe layer of the present invention, in the buffer layer forming step, the lattice constant of the plurality of Si 1-x Ge x semiconductor layers is determined from the Si substrate side. The Si 1-x Ge x semiconductor layer having the largest lattice constant is formed in the uppermost layer in order, and the strain inversion layer forming step includes the step of forming the uppermost layer having the largest lattice constant formed in the buffer layer forming step. On the Si 1-x Ge x semiconductor layer, an Si 1-x Ge x semiconductor layer having a lattice constant 0.017Å to 0.019Å larger than that of the uppermost Si 1-x Ge x semiconductor layer is formed. It is formed as a strain inversion layer.

ここで、上記の光吸収層形成工程は、格子定数が前記緩衝層形成工程で形成された前記格子定数が最も大きな最上層のSi1-xGex半導体層の格子定数と等しいSi1-xGex半導体層を前記Si1-xGex光吸収層として形成するようにしてもよい。また、上記の緩衝層形成工程は、前記複数のSi1-xGex半導体層の各半導体層形成毎に、超高真空内で900℃で3分間の急速加熱処理を施してもよい。 Here, in the light absorption layer forming step, Si 1-x having a lattice constant equal to the lattice constant of the uppermost Si 1-x Ge x semiconductor layer having the largest lattice constant formed in the buffer layer forming step. A Ge x semiconductor layer may be formed as the Si 1-x Ge x light absorption layer. In the buffer layer forming step, a rapid heat treatment at 900 ° C. for 3 minutes may be performed in an ultrahigh vacuum every time the semiconductor layers of the plurality of Si 1-x Ge x semiconductor layers are formed.

また、上記の目的を達成するため、本発明の太陽電池は、P型又はN型のSi基板上に形成された、格子定数が前記Si基板側から順に大きくなり、かつ、前記Si基板と同じ導電型の複数のSi1-xGex半導体層(ただし、0≦x≦0.95;以下同じ)が積層されたSi1-xGex緩衝層と、前記Si1-xGex緩衝層の上に形成された、圧縮歪み応力を発生する前記Si基板と同じ導電型のSi1-xGex歪み反転層と、前記Si1-xGex半導体層の上に形成された、外部光を吸収しキャリアを生成するための前記Si基板と同じ導電型のSi1-xGex光吸収層と、前記Si1-xGex光吸収層の上に形成された、前記光吸収層で生成されたキャリアを収集するためのpn接合を構成するための半導体接合層と、前記半導体接合層の上に形成された、前記キャリアを外部へ取り出すための透明電極層とを有することを特徴とする。 In order to achieve the above object, the solar cell of the present invention is formed on a P-type or N-type Si substrate, and the lattice constant increases in order from the Si substrate side, and is the same as the Si substrate. A Si 1-x Ge x buffer layer in which a plurality of conductivity type Si 1-x Ge x semiconductor layers (where 0 ≦ x ≦ 0.95; the same shall apply hereinafter) are stacked; and the Si 1-x Ge x buffer layer An Si 1-x Ge x strain inversion layer of the same conductivity type as the Si substrate that generates compressive strain stress, and an external light formed on the Si 1-x Ge x semiconductor layer. A Si 1-x Ge x light absorption layer of the same conductivity type as the Si substrate for absorbing carriers and the light absorption layer formed on the Si 1-x Ge x light absorption layer A semiconductor junction layer for forming a pn junction for collecting the generated carriers, and a shape formed on the semiconductor junction layer; Has been characterized as having a transparent electrode layer for taking out the carrier to the outside.

ここで、上記の半導体接合層は、ヘテロ接合層又はホモ接合層であり、上記ヘテロ接合層は、前記Si1-xGex光吸収層の上に形成された真性アモルファスシリコン層と、前記真性アモルファスシリコン層の上に形成された前記Si1-xGex光吸収層と反対導電型のアモルファスシリコン層とからなるアモルファスシリコン層、若しくは前記Si1-xGex光吸収層と反対導電型のIII-V族化合物半導体とで構成され、上記ホモ接合層は、前記Si1-xGex光吸収層と反対導電型のSi1-xGex単結晶とで構成されることを特徴とする。 Here, the semiconductor junction layer is a heterojunction layer or a homojunction layer, and the heterojunction layer includes an intrinsic amorphous silicon layer formed on the Si 1-x Ge x light absorption layer and the intrinsic junction layer. An amorphous silicon layer composed of an amorphous silicon layer opposite to the Si 1-x Ge x light absorption layer formed on the amorphous silicon layer, or an opposite conductivity type to the Si 1-x Ge x light absorption layer. The homojunction layer is composed of a Si 1-x Ge x light absorption layer and a Si 1-x Ge x single crystal having a conductivity type opposite to that of the Si 1-x Ge x light absorption layer. .

本発明によれば、表面平坦性に優れ、低転位密度で任意組成の高品質の単結晶SiGe層を製造でき、また、製造の際に複雑かつ精密制御を不要にできる。また、本発明によれば、本発明の単結晶SiGe層を用いることで良好な整流性を備える太陽電池を得ることができる。   According to the present invention, a high-quality single-crystal SiGe layer having an excellent surface flatness, a low dislocation density and an arbitrary composition can be manufactured, and complicated and precise control can be dispensed with during manufacturing. Moreover, according to this invention, a solar cell provided with favorable rectification | straightening property can be obtained by using the single crystal SiGe layer of this invention.

本発明の単結晶SiGe層の製造方法の一実施の形態により製造された半導体素子の断面図である。It is sectional drawing of the semiconductor element manufactured by one Embodiment of the manufacturing method of the single-crystal SiGe layer of this invention. 本発明の太陽電池の一実施の形態の概略構成図である。It is a schematic block diagram of one embodiment of the solar cell of the present invention. 図2に示した単結晶SiGeヘテロ接合型太陽電池を構成する単結晶SiGe層の実施例1の断面図である。It is sectional drawing of Example 1 of the single-crystal SiGe layer which comprises the single-crystal SiGe heterojunction type solar cell shown in FIG. 図3中の各層のGe組成比対膜厚特性図である。It is a Ge composition ratio versus film thickness characteristic diagram of each layer in FIG. 単結晶SiGe層の高分解エックス線回折における224回折面の逆格子マッピング図である。It is a reciprocal lattice mapping figure of the 224 diffraction surface in the high resolution X-ray diffraction of a single crystal SiGe layer. 試料A、Dをそれぞれ用いて作製された太陽電池の電圧対電流密度特性を示す図である。It is a figure which shows the voltage versus current density characteristic of the solar cell produced using each of the samples A and D. 本発明の単結晶Si0.58Ge0.42ヘテロ接合型太陽電池とSiヘテロ接合型太陽電池の波長対外部量子効率特性図を対比して示す図である。It is a diagram showing a comparison wavelength versus external quantum efficiency characteristic diagram of the single-crystal Si 0.58 Ge 0.42 heterojunction solar cell and Si heterojunction solar cell of the present invention.

次に、本発明の実施の形態について図面を参照して説明する。
図1は、本発明の単結晶SiGe層の製造方法の一実施の形態により製造された半導体素子の断面図を示す。同図において、本実施の形態の単結晶SiGe層100は、Si基板101上に、Si1-xGex緩衝層102、Si1-xGex歪み反転層103、及びSi1-xGex光吸収層104が積層された構造である。なお、Ge組成比xは後述するように、0≦x≦0.95である。また、Si基板101はP型又はN型であり、電極として備えられる。また、Si1-xGex緩衝層102、Si1-xGex歪み反転層103、及びSi1-xGex光吸収層104は、それぞれSi基板101と同じ導電型である。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross-sectional view of a semiconductor device manufactured according to an embodiment of a method for manufacturing a single crystal SiGe layer of the present invention. In the figure, a single crystal SiGe layer 100 according to the present embodiment includes a Si 1-x Ge x buffer layer 102, a Si 1-x Ge x strain inversion layer 103, and a Si 1-x Ge x on a Si substrate 101. In this structure, the light absorption layer 104 is laminated. The Ge composition ratio x is 0 ≦ x ≦ 0.95, as will be described later. The Si substrate 101 is P-type or N-type and is provided as an electrode. Further, the Si 1-x Ge x buffer layer 102, the Si 1-x Ge x strain inversion layer 103, and the Si 1-x Ge x light absorption layer 104 have the same conductivity type as the Si substrate 101, respectively.

Si1-xGex緩衝層102は、互いに格子定数が異なる複数のSi1-xGex半導体層が積層されてなる構造であり、例えばそれら複数のSi1-xGex半導体層の格子定数は、基板101側からSi1-xGex歪み反転層103側方向へ等間隔に順に大きくなるようにされている。このSi1-xGex緩衝層102は、転位の密度を最小にするようにしながら、下地のSi基板と複数のSi1-xGex半導体層の格子定数を段階的に適合させるために用いられる。 Si 1-x Ge x buffer layer 102 has a structure in which a plurality of Si 1-x Ge x semiconductor layer have different lattice constants from each other are laminated, for example, the lattice constant of the plurality of Si 1-x Ge x semiconductor layer Are sequentially increased from the substrate 101 side toward the Si 1-x Ge x strain inversion layer 103 side at equal intervals. The Si 1-x Ge x buffer layer 102 is used to gradually adapt the lattice constants of the underlying Si substrate and the plurality of Si 1-x Ge x semiconductor layers while minimizing the density of dislocations. It is done.

Si1-xGex歪み反転層103は、Si1-xGex光吸収層104に発生する引張り応力に対して逆の歪み成分である圧縮歪み応力を発生させ、転移の伝搬がより阻害されるために設けられている。Si1-xGex光吸収層104は、外部光を吸収し、電子、正孔対(キャリア)を生成するために用いられる。 The Si 1-x Ge x strain inversion layer 103 generates a compressive strain stress that is a strain component opposite to the tensile stress generated in the Si 1-x Ge x light absorption layer 104, and the propagation of the transition is further inhibited. It is provided for this purpose. The Si 1-x Ge x light absorption layer 104 is used to absorb external light and generate electron-hole pairs (carriers).

また、図1において、Si1-xGex光吸収層104の上には半導体接合層105が形成される。半導体接合層105は、Si1-xGex光吸収層104で生成されたキャリアを収集するためのpn接合を形成するために用いられる。従って、半導体接合層105はSi1-xGex光吸収層104と反対導電型である。半導体接合層105はヘテロ接合層又はホモ接合層である。半導体接合層105の上には透明電極層106が形成される。更に、透明電極層106の上及びSi基板101の裏面に形成された電極層107及び108は、生成されたキャリアを外部に取り出すために用いられる。 In FIG. 1, a semiconductor junction layer 105 is formed on the Si 1-x Ge x light absorption layer 104. The semiconductor junction layer 105 is used to form a pn junction for collecting carriers generated in the Si 1-x Ge x light absorption layer 104. Therefore, the semiconductor bonding layer 105 is of a conductivity type opposite to that of the Si 1-x Ge x light absorption layer 104. The semiconductor junction layer 105 is a hetero junction layer or a homo junction layer. A transparent electrode layer 106 is formed on the semiconductor bonding layer 105. Furthermore, the electrode layers 107 and 108 formed on the transparent electrode layer 106 and on the back surface of the Si substrate 101 are used for taking out the generated carriers to the outside.

次に、図1の単結晶SiGe層100を用いた太陽電池の実施の形態について説明する。
図2は、本発明の太陽電池の一実施の形態の概略構成図を示す。図2において、単結晶SiGeヘテロ接合型太陽電池210は、P型Si基板201上に順次に積層された単結晶Si1-xGex層211、アモルファスシリコン層212、及びITO透明電極層207と、ITO透明電極層207上に形成されたAl電極層208と、P型Si基板201の裏面に形成されたAl電極層209とより構成される。P型Si基板102は正電極として備えられる。
Next, an embodiment of a solar cell using the single crystal SiGe layer 100 of FIG. 1 will be described.
FIG. 2 shows a schematic configuration diagram of an embodiment of the solar cell of the present invention. In FIG. 2, a single crystal SiGe heterojunction solar cell 210 includes a single crystal Si 1-x Ge x layer 211, an amorphous silicon layer 212, and an ITO transparent electrode layer 207, which are sequentially stacked on a P-type Si substrate 201. And an Al electrode layer 208 formed on the ITO transparent electrode layer 207 and an Al electrode layer 209 formed on the back surface of the P-type Si substrate 201. The P-type Si substrate 102 is provided as a positive electrode.

単結晶Si1-xGex層211は、図1の単結晶SiGe層100に相当し、P型Si基板201上に、P型Si1-xGex緩衝層202、P型Si1-xGex歪み反転層203、及びP型Si1-xGex光吸収層204が積層された構成である。P型Si1-xGex緩衝層202、P型Si1-xGex歪み反転層203、及びP型Si1-xGex光吸収層204は、それぞれ図1のSi1-xGex緩衝層102、Si1-xGex歪み反転層103、及びSi1-xGex光吸収層104に相当する。 The single crystal Si 1-x Ge x layer 211 corresponds to the single crystal SiGe layer 100 of FIG. 1, and on the P-type Si substrate 201, a P-type Si 1-x Ge x buffer layer 202, a P-type Si 1-x. In this configuration, a Ge x strain inversion layer 203 and a P-type Si 1-x Ge x light absorption layer 204 are stacked. P-type Si 1-x Ge x buffer layer 202, P-type Si 1-x Ge x strained inversion layer 203 and the P-type Si 1-x Ge x light absorbing layer 204, is respectively Figure 1 Si 1-x Ge x It corresponds to the buffer layer 102, the Si 1-x Ge x strain inversion layer 103, and the Si 1-x Ge x light absorption layer 104.

P型Si1-xGex緩衝層202は、後述するように、互いに格子定数が異なる複数のP型Si1-xGex半導体層が積層された構造である。ここでは、複数のP型Si1-xGex半導体層の格子定数は、P型Si基板201側からP型Si1-xGex歪み反転層203側方向へ等間隔に順に大きくなるようにされており、最もP型Si1-xGex歪み反転層203に近いSi1-xGex半導体層の格子定数はP型Si1-xGex光吸収層204の格子定数と等しい。また、P型Si1-xGex緩衝層202を構成する複数のP型Si1-xGex半導体層の各層の厚さは、上下2層の格子定数の差から推測されるミスフィット転移が発生する臨界膜厚付近であり、3次元島状成長が生じない厚さに設定される。P型Si1-xGex緩衝層202は、転移の密度を最小にするようにしながら、下地のP型Si基板201と複数のP型Si1-xGex半導体層の格子定数を段階的に適合させるために用いられる。 As will be described later, the P-type Si 1-x Ge x buffer layer 202 has a structure in which a plurality of P-type Si 1-x Ge x semiconductor layers having different lattice constants are stacked. Here, the lattice constants of the plurality of P-type Si 1-x Ge x semiconductor layers increase in order from the P-type Si substrate 201 side toward the P-type Si 1-x Ge x strain inversion layer 203 side at equal intervals. The lattice constant of the Si 1-x Ge x semiconductor layer closest to the P-type Si 1-x Ge x strain inversion layer 203 is equal to the lattice constant of the P-type Si 1-x Ge x light absorption layer 204. The thickness of each of the plurality of P-type Si 1-x Ge x semiconductor layers constituting the P-type Si 1-x Ge x buffer layer 202 is a misfit transition estimated from the difference in lattice constant between the upper and lower layers. The thickness is set to a thickness at which the three-dimensional island growth does not occur. The P-type Si 1-x Ge x buffer layer 202 gradually increases the lattice constant of the underlying P-type Si substrate 201 and the plurality of P-type Si 1-x Ge x semiconductor layers while minimizing the density of transition. Used to adapt to

P型Si1-xGex緩衝層202とP型Si1-xGex光吸収層204との間に形成されるP型Si1-xGex歪み反転層203は、P型Si1-xGex光吸収層204に発生する引張り応力に対して逆の歪み成分である圧縮歪み応力を発生させ、転移の伝搬がより阻害されるために設けられている。P型Si1-xGex光吸収層204は、外部光を吸収し、電子、正孔対(キャリア)を生成するために用いられる。 The P - type Si 1-x Ge x strain inversion layer 203 formed between the P-type Si 1-x Ge x buffer layer 202 and the P-type Si 1-x Ge x light absorption layer 204 is composed of a P-type Si 1- It is provided in order to generate a compressive strain stress that is a strain component opposite to the tensile stress generated in the x Ge x light absorption layer 204 and to further inhibit the propagation of the transition. The P-type Si 1-x Ge x light absorption layer 204 is used to absorb external light and generate electron-hole pairs (carriers).

また、アモルファスシリコン層212は、真性アモルファスシリコン層205及びN型アモルファスシリコン層206が積層された構造であり、図1の半導体接合層105に相当する。真性アモルファスシリコン層205は、P型Si1-xGex光吸収層204とヘテロ接合されている。N型アモルファスシリコン層206は、表面にITO透明電極層207が形成されている。アモルファスシリコン層212は、P型Si1-xGex光吸収層204で生成されたキャリアを収集するためのpn接合を形成するために用いられる。また、ITO透明電極層207とAl電極層101とは、生成されたキャリアを外部に取り出すために用いられる。 The amorphous silicon layer 212 has a structure in which an intrinsic amorphous silicon layer 205 and an N-type amorphous silicon layer 206 are stacked, and corresponds to the semiconductor bonding layer 105 in FIG. The intrinsic amorphous silicon layer 205 is heterojunction with the P-type Si 1-x Ge x light absorption layer 204. The N-type amorphous silicon layer 206 has an ITO transparent electrode layer 207 formed on the surface. The amorphous silicon layer 212 is used to form a pn junction for collecting carriers generated in the P-type Si 1-x Ge x light absorption layer 204. The ITO transparent electrode layer 207 and the Al electrode layer 101 are used for taking out the generated carriers to the outside.

次に、本発明の太陽電池の製造方法の一実施の形態について、図2の単結晶SiGeヘテロ接合型太陽電池210を製造する場合を例にとって説明する。   Next, an embodiment of the method for manufacturing a solar cell of the present invention will be described by taking as an example the case of manufacturing the single crystal SiGe heterojunction solar cell 210 of FIG.

まず、P型Si基板201上にP型Si1-xGex緩衝層202、P型Si1-xGex歪み反転層203、及びP型Si1-xGex光吸収層204の順で積層した単結晶Si1-xGex層211が、超高真空蒸着法(例えば、分子線エピタキシー(MBE)法や化学気相堆積(CVD)法など)を利用して作製される。MBE法を採用した場合、例えば、融点の高いSi及びGeは電子ビームにより加熱し、P型ドーピングに用いるガリウム(Ga)はクヌーセンセルにより加熱される。この加熱方法により、単結晶Si1-xGex層211を構成するすべての層202〜204の形成速度は、2.8Å/secの一定の速度で形成される。また、単結晶Si1-xGex層211を構成するすべての層202〜204は550°Cで形成しており、表面にクロスハッチ構造は観測されない。 First, a P - type Si 1-x Ge x buffer layer 202, a P-type Si 1-x Ge x strain inversion layer 203, and a P-type Si 1-x Ge x light absorption layer 204 are sequentially formed on the P-type Si substrate 201. The stacked single crystal Si 1-x Ge x layer 211 is formed using an ultrahigh vacuum deposition method (for example, a molecular beam epitaxy (MBE) method, a chemical vapor deposition (CVD) method, or the like). When the MBE method is adopted, for example, Si and Ge having a high melting point are heated by an electron beam, and gallium (Ga) used for P-type doping is heated by a Knudsen cell. By this heating method, the formation rate of all the layers 202 to 204 constituting the single crystal Si 1-x Ge x layer 211 is formed at a constant rate of 2.8 Å / sec. Further, all the layers 202 to 204 constituting the single crystal Si 1-x Ge x layer 211 are formed at 550 ° C., and no cross-hatch structure is observed on the surface.

単結晶Si1-xGex層211を構成するすべての層202〜204のうち、P型Si1-xGex緩衝層202を構成する複数の半導体層の各層の形成毎に、超高真空内で900℃で3分間の急速加熱処理を施す。この急速加熱処理は、完全な格子緩和と転位のループによる閉じ込め構造の形成を促進させるために行われる。また、P型Si1-xGex緩衝層202とP型Si1-xGex光吸収層204との間に形成されるP型Si1-xGex歪み反転層203の格子定数は、P型Si1-xGex歪み反転層203の上下両面に接して形成されるP型Si1-xGex緩衝層とP型Si1-xGex光吸収層204の各格子定数よりも例えば、0.017Å〜0.019Å程度大きく設定する。 Of all the layers 202 to 204 constituting the single crystal Si 1-x Ge x layer 211, an ultrahigh vacuum is formed each time a plurality of semiconductor layers constituting the P-type Si 1-x Ge x buffer layer 202 are formed. A rapid heat treatment is performed at 900 ° C. for 3 minutes. This rapid heat treatment is performed to promote complete lattice relaxation and formation of confinement structures by dislocation loops. The lattice constant of the P-type Si 1-x Ge x strain inversion layer 203 formed between the P-type Si 1-x Ge x buffer layer 202 and the P-type Si 1-x Ge x light absorption layer 204 is More than the lattice constants of the P-type Si 1-x Ge x buffer layer and the P-type Si 1-x Ge x light absorption layer 204 formed in contact with the upper and lower surfaces of the P-type Si 1-x Ge x strain inversion layer 203. For example, it is set larger by about 0.017 to 0.019 mm.

これは次の理由による。P型Si1-xGex緩衝層202を構成する複数のP型Si1-xGex半導体層は、格子定数が小さいP型Si1-xGex半導体層の上に格子定数の大きいP型Si1-xGex半導体層が形成されることを繰り返され、P型Si1-xGex緩衝層202を構成するすべてのP型Si1-xGex半導体層の形成過程では圧縮歪み応力が発生する。ここで、上記のP型Si1-xGex歪み反転層203を導入した場合、P型Si1-xGex歪み反転層203の格子定数はP型Si1-xGex光吸収層204の格子定数に比べて大きく設定されているので、P型Si1-xGex光吸収層204には引張り歪み応力が発生する。これは、P型Si1-xGex緩衝層202で発生する圧縮歪み応力とは逆の歪み成分であり、P型Si1-xGex光吸収層204への転位の伝搬をより阻害できる。 This is due to the following reason. A plurality of P-type Si 1-x Ge x semiconductor layers constituting the P-type Si 1-x Ge x buffer layer 202, the lattice constant on the lattice constant is small P-type Si 1-x Ge x semiconductor layer greater P repeats that the type Si 1-x Ge x semiconductor layer is formed, compressive strain in all P-type Si 1-x Ge x formation process of semiconductor layers constituting the P-type Si 1-x Ge x buffer layer 202 Stress is generated. Here, when the P-type Si 1-x Ge x strain inversion layer 203 is introduced, the lattice constant of the P - type Si 1-x Ge x strain inversion layer 203 is P-type Si 1-x Ge x light absorption layer 204. Therefore, a tensile strain stress is generated in the P-type Si 1-x Ge x light absorption layer 204. This is a strain component opposite to the compressive strain stress generated in the P-type Si 1-x Ge x buffer layer 202 and can further inhibit dislocation propagation to the P-type Si 1-x Ge x light absorption layer 204. .

次に、単結晶Si1-xGex層211の上に、真性アモルファスシリコン層205、N型アモルファスシリコン層206の順に形成される。真性アモルファスシリコン層205、N型アモルファスシリコン層206からなるアモルファスシリコン層212は、例えばプラズマ化学気相堆積(CVD)法で形成される。 Next, an intrinsic amorphous silicon layer 205 and an N-type amorphous silicon layer 206 are formed in this order on the single crystal Si 1-x Ge x layer 211. The amorphous silicon layer 212 including the intrinsic amorphous silicon layer 205 and the N-type amorphous silicon layer 206 is formed by, for example, a plasma chemical vapor deposition (CVD) method.

続いて、アモルファスシリコン層212の上にITO透明電極層207が形成される。そして、最後にITO透明電極層207の上に櫛形のAl電極層208が形成され、更にP型Si基板201の裏面全面にAl電極層209が形成される。ITO透明電極層207、Al電極層208、P型Si基板201は真空蒸着法により形成される。このようにして図2の断面構造の単結晶SiGeヘテロ接合型太陽電池210が製造される。   Subsequently, an ITO transparent electrode layer 207 is formed on the amorphous silicon layer 212. Finally, a comb-shaped Al electrode layer 208 is formed on the ITO transparent electrode layer 207, and an Al electrode layer 209 is further formed on the entire back surface of the P-type Si substrate 201. The ITO transparent electrode layer 207, the Al electrode layer 208, and the P-type Si substrate 201 are formed by a vacuum deposition method. In this way, the single crystal SiGe heterojunction solar cell 210 having the cross-sectional structure of FIG. 2 is manufactured.

次に、本発明の単結晶SiGe層の実施例について説明する。図3は、図2に示した単結晶SiGeヘテロ接合型太陽電池210を構成する単結晶SiGe層211の実施例1の断面図を示す。図3中、図2と同一構成部分には同一符号を付してある。   Next, examples of the single crystal SiGe layer of the present invention will be described. FIG. 3 shows a cross-sectional view of Example 1 of the single crystal SiGe layer 211 constituting the single crystal SiGe heterojunction solar cell 210 shown in FIG. In FIG. 3, the same components as those in FIG.

図3において、P型Si基板201上に、6つの半導体層の積層構造のP型Si1-xGex緩衝層202、P型Si0.51Ge0.49歪み反転層307及びP型Si0.58Ge0.42光吸収層308が積層されている。P型Si0.51Ge0.49歪み反転層307は図2のP型Si1-xGex歪み反転層203の実施例であり、P型Si0.58Ge0.42光吸収層308は図2のP型Si1-xGex光吸収層204の実施例である。これら図3に示す単結晶SiGe層111を構成するP型Si1-xGex緩衝層202、P型Si0.51Ge0.49歪み反転層307及びP型Si0.58Ge0.42光吸収層308の各形成温度は、2次元成長を促進すること、及び超高真空内の残留不純物の結晶への取り込みを抑制することを目的として、550℃の高温領域に設定される。 In FIG. 3, on a P-type Si substrate 201, a P-type Si 1-x Ge x buffer layer 202, a P-type Si 0.51 Ge 0.49 strain inversion layer 307, and a P-type Si 0.58 Ge 0.42 light having a laminated structure of six semiconductor layers. An absorption layer 308 is stacked. The P-type Si 0.51 Ge 0.49 strain inversion layer 307 is an example of the P-type Si 1-x Ge x strain inversion layer 203 of FIG. 2, and the P-type Si 0.58 Ge 0.42 light absorption layer 308 is the P-type Si 1 in FIG. This is an example of the -x Ge x light absorption layer 204. The formation temperatures of the P-type Si 1-x Ge x buffer layer 202, the P-type Si 0.51 Ge 0.49 strain inversion layer 307, and the P-type Si 0.58 Ge 0.42 light absorption layer 308 constituting the single crystal SiGe layer 111 shown in FIG. Is set in a high temperature region of 550 ° C. for the purpose of promoting two-dimensional growth and suppressing the incorporation of residual impurities in the ultra-high vacuum into the crystal.

P型Si1-xGex緩衝層202は、図3に示すように、P型Si基板201側から順にP型Si0.93Ge0.07半導体層301(厚さ400nm)、P型Si0.86Ge0.14半導体層302(厚さ400nm)、P型Si0.79Ge0.21半導体層303(厚さ400nm)、P型Si0.72Ge0.28半導体層304(厚さ400nm)、P型Si0.65Ge0.35半導体層305(厚さ400nm)、P型Si0.58Ge0.42半導体層306(厚さ400nm)が積層された構造である。また、最上層のP型Si0.58Ge0.42半導体層306の上に、P型Si0.51Ge0.49歪み反転層307(厚さ400nm)が形成される。 As shown in FIG. 3, the P-type Si 1-x Ge x buffer layer 202 includes a P-type Si 0.93 Ge 0.07 semiconductor layer 301 (thickness 400 nm) and a P-type Si 0.86 Ge 0.14 semiconductor in this order from the P-type Si substrate 201 side. Layer 302 (thickness 400 nm), P-type Si 0.79 Ge 0.21 semiconductor layer 303 (thickness 400 nm), P-type Si 0.72 Ge 0.28 semiconductor layer 304 (thickness 400 nm), P-type Si 0.65 Ge 0.35 semiconductor layer 305 (thickness) 400 nm), a P-type Si 0.58 Ge 0.42 semiconductor layer 306 (thickness 400 nm) is laminated. A P-type Si 0.51 Ge 0.49 strain inversion layer 307 (thickness 400 nm) is formed on the uppermost P-type Si 0.58 Ge 0.42 semiconductor layer 306.

図4のGe組成比対膜厚特性に示すように、P型Si0.93Ge0.07半導体層301、P型Si0.86Ge0.14半導体層302、P型Si0.79Ge0.21半導体層303、P型Si0.72Ge0.28半導体層304、P型Si0.65Ge0.35半導体層305、P型Si0.58Ge0.42半導体層306、及びP型Si0.51Ge0.49歪み反転層307は、同一の膜厚400nmで、かつ、Ge組成比が0.07ずつ変化する。これらP型Si0.93Ge0.07半導体層301〜P型Si0.58Ge0.42半導体層306及びP型Si0.51Ge0.49歪み反転層307の格子定数は、SiとGeの組成比により変化するので、これらは階段状かつ等間隔に格子定数が大きくなる。これらP型Si0.93Ge0.07半導体層301〜P型Si0.58Ge0.42半導体層306及びP型Si0.51Ge0.49歪み反転層307は各層の形成毎に900℃で3分間の急速加熱処理を行う。 As shown in the Ge composition ratio versus film thickness characteristic of FIG. 4, a P-type Si 0.93 Ge 0.07 semiconductor layer 301, a P-type Si 0.86 Ge 0.14 semiconductor layer 302, a P-type Si 0.79 Ge 0.21 semiconductor layer 303, and a P-type Si 0.72 Ge The 0.28 semiconductor layer 304, the P-type Si 0.65 Ge 0.35 semiconductor layer 305, the P-type Si 0.58 Ge 0.42 semiconductor layer 306, and the P-type Si 0.51 Ge 0.49 strain inversion layer 307 have the same film thickness of 400 nm and a Ge composition ratio. Changes by 0.07. Since the lattice constants of the P-type Si 0.93 Ge 0.07 semiconductor layer 301 to the P-type Si 0.58 Ge 0.42 semiconductor layer 306 and the P-type Si 0.51 Ge 0.49 strain inversion layer 307 vary depending on the composition ratio of Si and Ge, these are the steps. The lattice constant increases at regular intervals. The P-type Si 0.93 Ge 0.07 semiconductor layer 301 to the P-type Si 0.58 Ge 0.42 semiconductor layer 306 and the P-type Si 0.51 Ge 0.49 strain inversion layer 307 are subjected to a rapid heat treatment at 900 ° C. for 3 minutes every time each layer is formed.

P型Si0.51Ge0.49歪み反転層307の上にはP型Si0.58Ge0.42光吸収層308が厚さ2μmで形成される。このときP型Si0.58Ge0.42光吸収層308の格子定数はP型Si0.51Ge0.49歪み反転層307よりも小さく、その差は0.017Åである。 A P-type Si 0.58 Ge 0.42 light absorption layer 308 is formed with a thickness of 2 μm on the P-type Si 0.51 Ge 0.49 strain inversion layer 307. At this time, the lattice constant of the P-type Si 0.58 Ge 0.42 light absorption layer 308 is smaller than that of the P-type Si 0.51 Ge 0.49 strain inversion layer 307, and the difference is 0.017Å.

図5は、前記手法により作製した単結晶SiGe層211の高分解エックス線回折における224回折面の逆格子マッピングを示す。同図に示すように、単結晶SiGe層202のすべての層は完全に歪み緩和しており、また、P型Si0.51Ge0.49歪み反転層307はマッピング中心が斜め点線より右側にずれており圧縮歪みを示し、一方、P型Si0.58Ge0.42光吸収層308はマッピング中心が斜め点線より左側にずれており引張り歪み応力が発生する様子が示される。この解析法により、P型Si0.51Ge0.49歪み反転層307とP型Si0.58Ge0.42光吸収層308との間には互いに逆の歪み応力が発生していることが分かる。 FIG. 5 shows reciprocal lattice mapping of the 224 diffraction plane in the high-resolution X-ray diffraction of the single crystal SiGe layer 211 produced by the above method. As shown in the figure, all the layers of the single crystal SiGe layer 202 are completely strain-relaxed, and the P-type Si 0.51 Ge 0.49 strain inversion layer 307 is compressed because the mapping center is shifted to the right side from the oblique dotted line. On the other hand, the P-type Si 0.58 Ge 0.42 light absorption layer 308 shows a state where the mapping center is shifted to the left side from the oblique dotted line and a tensile strain stress is generated. By this analysis method, it can be seen that opposite strain stresses are generated between the P-type Si 0.51 Ge 0.49 strain inversion layer 307 and the P-type Si 0.58 Ge 0.42 light absorption layer 308.

次に、P型Si1-xGex緩衝層202の形成条件についての試行実験結果について表1とともに説明する。表1はP型Si1-xGex緩衝層202の構造がP型Si0.58Ge0.42光吸収層308の転位密度、表面粗さ平均(RMS)値に与える影響をまとめたものである。 Next, the results of a trial experiment regarding the conditions for forming the P-type Si 1-x Ge x buffer layer 202 will be described with reference to Table 1. Table 1 summarizes the influence of the structure of the P - type Si 1-x Ge x buffer layer 202 on the dislocation density and surface roughness average (RMS) value of the P-type Si 0.58 Ge 0.42 light absorption layer 308.

Figure 2014053545
Figure 2014053545

表1は、試料A〜試料Fの6つの単結晶SiGe層211におけるGe組成の増分、P型Si1-xGex緩衝層202を構成する各半導体層の膜厚(nm)、層数、P型Si0.51Ge0.49歪み反転層307の有無、P型Si0.58Ge0.42光吸収層308のGe組成比(%)、P型Si1-xGex緩衝層202を構成する各半導体層の形成後の急速加熱処理温度(℃)、表面粗さ平均値(RMS)(nm)、P型Si0.58Ge0.42光吸収層308の転位密度(cm-2)を示している。 Table 1 shows the increment of Ge composition in the six single crystal SiGe layers 211 of Sample A to Sample F, the thickness (nm) of each semiconductor layer constituting the P-type Si 1-x Ge x buffer layer 202, the number of layers, Presence / absence of P-type Si 0.51 Ge 0.49 strain inversion layer 307, Ge composition ratio (%) of P-type Si 0.58 Ge 0.42 light absorption layer 308, and formation of each semiconductor layer constituting P-type Si 1-x Ge x buffer layer 202 The subsequent rapid heat treatment temperature (° C.), average surface roughness (RMS) (nm), and dislocation density (cm −2 ) of the P-type Si 0.58 Ge 0.42 light absorption layer 308 are shown.

試料A〜試料Fのうち試料Aは前述した製造方法で製造された本実施例の単結晶SiGe層211の各パラメータの値を示し、それ以外の試料B〜Fは比較例の各パラメータの値を示す。表1の試料A(本実施例)は、P型Si0.58Ge0.42光吸収層308の表面粗さ平均値(RMS)が0.903nm、転位密度が105cm-2未満であり、試料B〜Eに比べて結晶性に優れた光吸収層308が得られていることが分かった。また、試料Aは緩衝層が多層の半導体層のみで構成されるので、特許文献1記載の方法に比べて簡単な制御で単結晶SiGe層の製造ができる。 Sample A to Sample F show the values of the parameters of the single-crystal SiGe layer 211 of this example manufactured by the above-described manufacturing method, and Samples B to F of the other samples show the values of the parameters of the comparative example. Indicates. Sample A (this example) in Table 1 has an average surface roughness (RMS) of the P-type Si 0.58 Ge 0.42 light absorption layer 308 of 0.903 nm, a dislocation density of less than 10 5 cm −2 , and sample B It turned out that the light absorption layer 308 excellent in crystallinity compared with -E was obtained. In Sample A, since the buffer layer is composed of only a multi-layer semiconductor layer, a single crystal SiGe layer can be manufactured with simple control compared to the method described in Patent Document 1.

これに対し、表1の試料Bは、試料Aと異なりP型Si0.51Ge0.49歪み反転層307を形成しない構成であり、その構成ではP型Si0.58Ge0.42光吸収層308の表面粗さ平均値(RMS)が1.219nm、転位密度が1.1×107cm-2である。このことは、P型Si0.51Ge0.49歪み反転層307の導入が、P型Si0.58Ge0.42光吸収層308への転位の伝播を阻害するのに有効であることを示している。 On the other hand, the sample B in Table 1 has a configuration in which the P-type Si 0.51 Ge 0.49 strain inversion layer 307 is not formed unlike the sample A. In this configuration, the surface roughness average of the P-type Si 0.58 Ge 0.42 light absorption layer 308 is obtained. The value (RMS) is 1.219 nm, and the dislocation density is 1.1 × 10 7 cm −2 . This indicates that the introduction of the P-type Si 0.51 Ge 0.49 strain inversion layer 307 is effective in inhibiting dislocation propagation to the P-type Si 0.58 Ge 0.42 light absorption layer 308.

また、表1の試料Cは、P型Si1-xGex緩衝層202を構成する各半導体層の形成後の急速加熱処理温度が800℃で加熱時間3分間の場合の構成である点で試料Aと異なる。この構成の場合、P型Si0.58Ge0.42光吸収層308の表面粗さ平均値(RMS)が3.302nm、転位密度が3.0×107cm-2である。このことは、試料A、Bとの比較から急速加熱処理は、完全な格子緩和と転位のループによる閉じ込め構造の形成を促進させることを示している。また、この効果を得るのに適した急速加熱処理温度が、900℃付近であることも示している。 Sample C in Table 1 has a configuration in which the rapid heat treatment temperature after the formation of each semiconductor layer constituting the P-type Si 1-x Ge x buffer layer 202 is 800 ° C. and the heating time is 3 minutes. Different from sample A. In this configuration, the P-type Si 0.58 Ge 0.42 light absorption layer 308 has an average surface roughness (RMS) of 3.32 nm and a dislocation density of 3.0 × 10 7 cm −2 . This indicates that the rapid heat treatment promotes the formation of a confinement structure due to complete lattice relaxation and dislocation loops from comparison with Samples A and B. It also shows that the rapid heat treatment temperature suitable for obtaining this effect is around 900 ° C.

また、表1の試料Dは、P型Si1-xGex緩衝層202を構成する各半導体層の膜厚を150nmとした構成である点で試料Aと異なる。この構成の場合、P型Si0.58Ge0.42光吸収層308の表面粗さ平均値(RMS)が2.659nm、転位密度が2.0×108cm-2である。このことは、各半導体層で転位を閉じ込めるためには、ある一定以上の膜厚が必要であり、その膜厚は本実施例のように400nm程度必要であることを示している。 Sample D in Table 1 is different from Sample A in that the thickness of each semiconductor layer constituting the P-type Si 1-x Ge x buffer layer 202 is 150 nm. In this configuration, the P-type Si 0.58 Ge 0.42 light absorption layer 308 has an average surface roughness (RMS) of 2.659 nm and a dislocation density of 2.0 × 10 8 cm −2 . This indicates that in order to confine dislocations in each semiconductor layer, a film thickness of a certain level or more is necessary, and the film thickness is about 400 nm as in this embodiment.

また、表1の試料Eは、P型Si1-xGex緩衝層202を構成する半導体層の数は実施例と同じ6層であるが、その各半導体層のGe組成比の増分を400nm間隔で12.0%に増大させ、また、P型光吸収層の組成はSi0.28Ge0.72である点で試料Aと異なる構成である。この構成の場合、P型Si0.28Ge0.72光吸収層の表面粗さ平均値(RMS)が2.484nm、転位密度が4.9×107cm-2である。このことは、P型Si1-xGex緩衝層202を構成する各半導体層間の格子定数の差が大きく、より多数のミスフィット転位が集中的に発生するために表面平坦性が劣化し、十分な膜厚を堆積しても転位が閉じ込められずに上層へ伝搬することを示している。 In Sample E in Table 1, the number of semiconductor layers constituting the P-type Si 1-x Ge x buffer layer 202 is the same as that in the example, but the increment of the Ge composition ratio of each semiconductor layer is 400 nm. The interval is increased to 12.0%, and the composition of the P-type light absorption layer is different from that of the sample A in that the composition is Si 0.28 Ge 0.72 . In this configuration, the P-type Si 0.28 Ge 0.72 light absorbing layer has an average surface roughness (RMS) of 2.484 nm and a dislocation density of 4.9 × 10 7 cm −2 . This is because the difference in lattice constant between the semiconductor layers constituting the P-type Si 1-x Ge x buffer layer 202 is large, and a larger number of misfit dislocations are intensively generated, so that the surface flatness deteriorates. It shows that even when a sufficient film thickness is deposited, dislocations propagate to the upper layer without being confined.

更に、表1の試料Fは、試料AのP型Si1-xGex緩衝層202の条件に準じており、半導体の層数のみ9層に増加させて、P型光吸収層をSi0.30Ge0.70で形成した構成である。この構成の場合、P型Si0.30Ge0.70光吸収層の表面粗さ平均値(RMS)が1.409nm、転位密度が105cm-2未満である。このことは、試料Aと同様に結晶性に優れた単結晶光吸収層が得られることを示している。 Further, Sample F in Table 1 conforms to the conditions of the P-type Si 1-x Ge x buffer layer 202 of Sample A, and the number of semiconductor layers is increased to 9 to make the P-type light absorption layer Si 0.30. This is a configuration formed of Ge 0.70 . In this configuration, the P-type Si 0.30 Ge 0.70 light absorption layer has an average surface roughness (RMS) of 1.409 nm and a dislocation density of less than 10 5 cm −2 . This indicates that a single crystal light absorption layer having excellent crystallinity similar to Sample A can be obtained.

表1に示した試行実験結果により、本発明の変形例として、前述した製造方法により形成したP型Si1-xGex緩衝層202の条件に準じた構造を拡張した構造、つまりP型Si1-xGex緩衝層202を構成する複数の半導体層の層数の増減により、Ge組成比xは0〜0.95の範囲内の任意の組成比で優れた結晶性を有するP型Si1-xGex光吸収層203の形成が可能である。本発明の更なる変形例として2μm以上の任意の厚さの高品質なP型Si1-xGex光吸収層104を形成させることが可能である。 Based on the results of the trial experiment shown in Table 1, as a modification of the present invention, a structure in which the structure according to the conditions of the P-type Si 1-x Ge x buffer layer 202 formed by the above-described manufacturing method is expanded, that is, P-type Si. By increasing or decreasing the number of semiconductor layers constituting the 1-x Ge x buffer layer 202, the Ge composition ratio x is P-type Si having excellent crystallinity at an arbitrary composition ratio in the range of 0 to 0.95. The 1-x Ge x light absorption layer 203 can be formed. As a further modification of the present invention, it is possible to form a high-quality P-type Si 1-x Ge x light absorption layer 104 having an arbitrary thickness of 2 μm or more.

次に、本発明の単結晶SiGe層を構成する半導体接合層105の実施例について説明する。半導体接合層105に相当する図2に示したアモルファスシリコン層212は単結晶SiGe層211の上に、厚さ10nmの真性アモルファスシリコン層205、厚さ50nmのN型アモルファスシリコン層206の順に積層されたヘテロ接合層の構造である。真性アモルファスシリコン層205及びN型アモルファスシリコン層206は例えばプラズマ化学気相堆積(CVD)法により形成される。   Next, an example of the semiconductor junction layer 105 constituting the single crystal SiGe layer of the present invention will be described. The amorphous silicon layer 212 shown in FIG. 2 corresponding to the semiconductor bonding layer 105 is laminated on the single crystal SiGe layer 211 in this order: an intrinsic amorphous silicon layer 205 having a thickness of 10 nm and an N-type amorphous silicon layer 206 having a thickness of 50 nm. The structure of the heterojunction layer. The intrinsic amorphous silicon layer 205 and the N-type amorphous silicon layer 206 are formed by, for example, a plasma chemical vapor deposition (CVD) method.

次に、本実施例の太陽電池の特性について説明する。図6において、曲線Iは表1の試料Aを用いて作製された単結晶Si0.58Ge0.42ヘテロ接合型太陽電池210の電圧対電流密度特性、曲線IIは比較例として表1の試料Dを用いて作製された太陽電池の電圧対電流密度特性を示す。図6に示すように、試料Aを用いて作製された単結晶Si0.58Ge0.42ヘテロ接合型太陽電池210によれば、良好な整流性が示され、またAM1.5白色バイアス照射下の太陽電池出力特性として、光電変換効率0.98%、開放電圧233mV、短絡電流密度8.251mA/cm2、曲線因子0.509の特性値が得られた。一方、転位密度が高い試料Dを用いて作製された太陽電池は、図6に曲線IIで示すようにリーク電流が大きく整流性に乏しいことが分かる。 Next, the characteristics of the solar cell of this example will be described. In FIG. 6, curve I represents the voltage versus current density characteristics of a single crystal Si 0.58 Ge 0.42 heterojunction solar cell 210 fabricated using sample A in Table 1, and curve II represents sample D in Table 1 as a comparative example. The voltage versus current density characteristics of the solar cell fabricated in this way are shown. As shown in FIG. 6, according to the single-crystal Si 0.58 Ge 0.42 heterojunction solar cell 210 fabricated using the sample A, good rectification is shown, and the solar cell under AM1.5 white bias irradiation As output characteristics, a photoelectric conversion efficiency of 0.98%, an open circuit voltage of 233 mV, a short circuit current density of 8.251 mA / cm 2 , and a characteristic factor of 0.5509 were obtained. On the other hand, it can be seen that the solar cell manufactured using the sample D having a high dislocation density has a large leakage current and poor rectification as shown by a curve II in FIG.

次に、本実施例の太陽電池の外部量子効率について説明する。図7は、本発明の単結晶Si0.58Ge0.42ヘテロ接合型太陽電池とSiヘテロ接合型太陽電池の波長対外部量子効率特性図を対比して示す。図7において、曲線IIIは本発明の単結晶Si0.58Ge0.42ヘテロ接合型太陽電池の波長対外部量子効率特性を示し、曲線IVはSiヘテロ接合型太陽電池の波長対外部量子効率特性を示す。本発明の単結晶Si0.58Ge0.42ヘテロ接合型太陽電池は、図7に曲線IIIで示すように光吸収端は1200nmであるのに対し、光吸収層がSiから構成された従来の太陽電池であるSiヘテロ接合型太陽電池は、図7に曲線IVで示すように光吸収端は1100nmであり、禁制帯幅の変化は理論的にも矛盾がない。 Next, the external quantum efficiency of the solar cell of this example will be described. FIG. 7 shows a comparison of wavelength vs. external quantum efficiency characteristics of the single crystal Si 0.58 Ge 0.42 heterojunction solar cell and the Si heterojunction solar cell of the present invention. In FIG. 7, curve III shows the wavelength vs. external quantum efficiency characteristics of the single crystal Si 0.58 Ge 0.42 heterojunction solar cell of the present invention, and curve IV shows the wavelength vs. external quantum efficiency characteristics of the Si heterojunction solar cell. The single crystal Si 0.58 Ge 0.42 heterojunction solar cell of the present invention is a conventional solar cell in which the light absorption layer is made of Si, whereas the light absorption edge is 1200 nm as shown by curve III in FIG. A certain Si heterojunction solar cell has a light absorption edge of 1100 nm as shown by a curve IV in FIG. 7, and the change in the forbidden bandwidth is theoretically consistent.

本発明の変形例によると、単結晶Si0.4Ge0.6ヘテロ接合型太陽電池、Si0.3Ge0.7ヘテロ接合型太陽電池の外部量子効率測定の吸収端はそれぞれ1250nm、1300nmである。前記実施例1の手法を利用することにより、0.7eV〜1.1eVの間の任意の禁制帯幅に設計した、高品質なSi0.4Ge0.6単結晶ヘテロ接合型太陽電池が得られる。 According to the modification of the present invention, the absorption edges of the external quantum efficiency measurements of the single crystal Si 0.4 Ge 0.6 heterojunction solar cell and the Si 0.3 Ge 0.7 heterojunction solar cell are 1250 nm and 1300 nm, respectively. By using the method of the first embodiment, a high-quality Si 0.4 Ge 0.6 single crystal heterojunction solar cell designed to have an arbitrary forbidden bandwidth between 0.7 eV and 1.1 eV can be obtained.

なお、本発明は以上の実施の形態及び実施例ではSi基板101はP型であるものとして説明したが、Si基板101をN型とした場合は、Si1-xGex緩衝層102、Si1-xGex歪み反転層103、及びSi1-xGex光吸収層104はいずれもN型とする必要があり、半導体接合層105はP型とする必要がある。また、N型のSi1-xGex緩衝層102を構成する複数のSi1-xGex半導体層はいずれもN型とする必要があるが、Ge組成比xは図3に示した実施例と同じでよい。また、P型の半導体接合層105をアモルファスシリコン層で構成する場合には、光吸収層上に真性アモルファスシリコン層を介してP型アモルファスシリコン層を形成する。 In the above embodiment and examples, the present invention has been described on the assumption that the Si substrate 101 is P-type. However, when the Si substrate 101 is N-type, the Si 1-x Ge x buffer layer 102, Si Both the 1-x Ge x strain inversion layer 103 and the Si 1-x Ge x light absorption layer 104 need to be N-type, and the semiconductor junction layer 105 needs to be P-type. Further, all of the plurality of Si 1-x Ge x semiconductor layers constituting the N-type Si 1-x Ge x buffer layer 102 must be N-type, but the Ge composition ratio x is shown in FIG. Same as example. In the case where the P-type semiconductor bonding layer 105 is composed of an amorphous silicon layer, a P-type amorphous silicon layer is formed on the light absorption layer via an intrinsic amorphous silicon layer.

なお、半導体接合層105はアモルファスシリコン層に限定されるものではなく、例えばN型又はP型のSi1-xGex単結晶、N型又はP型のInGaP等のIII-V族化合物半導体を用いることも可能である。すなわち、半導体接合層105は、ヘテロ接合層又はホモ接合層であり、ヘテロ接合層の場合は、Si1-xGex光吸収層の上に形成された真性アモルファスシリコン層と、前記真性アモルファスシリコン層の上に形成された前記Si1-xGex光吸収層と反対導電型のアモルファスシリコン層とからなるアモルファスシリコン層、若しくはSi1-xGex光吸収層と反対導電型のIII-V族化合物半導体で構成され、ホモ接合層の場合は、前記Si1-xGex光吸収層と反対導電型のSi1-xGex単結晶で構成される。また、電極層107及び108はAl以外の導電性のある電極も使用できる。 The semiconductor bonding layer 105 is not limited to an amorphous silicon layer. For example, a III-V group compound semiconductor such as N-type or P-type Si 1-x Ge x single crystal, N-type or P-type InGaP is used. It is also possible to use it. That is, the semiconductor junction layer 105 is a heterojunction layer or a homojunction layer. In the case of a heterojunction layer, the intrinsic amorphous silicon layer formed on the Si 1-x Ge x light absorption layer and the intrinsic amorphous silicon An amorphous silicon layer formed on the Si 1-x Ge x light absorption layer and an amorphous silicon layer of the opposite conductivity type, or III-V of the opposite conductivity type to the Si 1-x Ge x light absorption layer. In the case of a homojunction layer, it is composed of a Si 1-x Ge x single crystal having a conductivity type opposite to that of the Si 1-x Ge x light absorption layer. Further, the electrode layers 107 and 108 can be made of conductive electrodes other than Al.

本発明の単結晶SiGe層は、前述したヘテロ接合型太陽電池のほか、バイポーラトランジスタ、高電子移動度トランジスタ、発光素子、受光素子に応用することができる。   The single crystal SiGe layer of the present invention can be applied to a bipolar transistor, a high electron mobility transistor, a light emitting element, and a light receiving element in addition to the above-described heterojunction solar cell.

100 単結晶SiGe層
101 Si基板
102 S1-xGex緩衝層
103 S1-xGex歪み反転層
104 S1-xGex光吸収層
105 半導体接合層
106 透明電極層
107、108 電極層
201 P型Si基板
202 P型S1-xGex緩衝層
203 P型S1-xGex歪み反転層
204 P型S1-xGex光吸収層
205 真性アモルファスシリコン層
206 N型アモルファスシリコン層
207 ITO透明電極層
208、209 Al電極層
210 単結晶SiGeヘテロ接合型太陽電池
211 単結晶S1-xGex
212 アモルファスシリコン層

100 single-crystal SiGe layer 101 Si substrate 102 S 1-x Ge x buffer layer 103 S 1-x Ge x strained inversion layer 104 S 1-x Ge x light absorbing layer 105 semiconductor junction layer 106 transparent electrode layer 107 electrode layer 201 P-type Si substrate 202 P-type S 1-x Ge x buffer layer 203 P-type S 1-x Ge x strain inversion layer 204 P-type S 1-x Ge x light absorption layer 205 Intrinsic amorphous silicon layer 206 N-type amorphous silicon Layer 207 ITO transparent electrode layer 208, 209 Al electrode layer 210 Single crystal SiGe heterojunction solar cell 211 Single crystal S 1-x Ge x layer 212 Amorphous silicon layer

Claims (6)

P型又はN型のSi基板上に、格子定数が段階的に異なる複数のSi1-xGex半導体層(ただし、0≦x≦0.95;以下同じ)を積層して、前記Si基板と前記複数のSi1-xGex半導体層の格子定数を段階的に適合させるためのSi1-xGex緩衝層を形成する緩衝層形成工程と、
前記Si1-xGex緩衝層の上に圧縮歪み応力を発生するSi1-xGex歪み反転層を形成する歪み反転層形成工程と、
前記Si1-xGex半導体層の上に外部光を吸収しキャリアを生成するSi1-xGex光吸収層を形成する光吸収層形成工程と、
を含み、前記Si基板上に、それぞれ前記Si基板と同じ導電型の前記緩衝層、前記歪み反転層及び前記光吸収層が積層された単結晶SiGe層を製造することを特徴とする単結晶SiGe層製造方法。
A plurality of Si 1-x Ge x semiconductor layers (where 0 ≦ x ≦ 0.95; the same shall apply hereinafter) having different lattice constants are stacked on a P-type or N-type Si substrate, and the Si substrate And a buffer layer forming step of forming a Si 1-x Ge x buffer layer for gradually adapting a lattice constant of the plurality of Si 1-x Ge x semiconductor layers;
A strain inversion layer forming step of forming a Si 1-x Ge x strain inversion layer that generates compressive strain stress on the Si 1-x Ge x buffer layer;
A light absorption layer forming step of forming a Si 1-x Ge x light absorption layer that absorbs external light and generates carriers on the Si 1-x Ge x semiconductor layer;
A single-crystal SiGe layer in which the buffer layer, the strain inversion layer, and the light absorption layer, each having the same conductivity type as the Si substrate, are stacked on the Si substrate. Layer manufacturing method.
前記緩衝層形成工程は、前記複数のSi1-xGex半導体層の格子定数が、前記Si基板側から順に大きくなり、格子定数が最も大きなSi1-xGex半導体層を最上層に形成し、
前記歪み反転層形成工程は、前記緩衝層形成工程で形成された前記格子定数が最も大きな最上層のSi1-xGex半導体層の上に、格子定数が前記最上層のSi1-xGex半導体層の格子定数よりも0.017Å〜0.019Å大きなSi1-xGex半導体層を前記歪み反転層として形成することを特徴とする請求項1記載の単結晶SiGe層製造方法。
In the buffer layer forming step, the lattice constants of the plurality of Si 1-x Ge x semiconductor layers increase in order from the Si substrate side, and the Si 1-x Ge x semiconductor layer having the largest lattice constant is formed as the uppermost layer. And
The strained inversion layer forming step, on the Si 1-x Ge x semiconductor layer of the buffer layer forming step wherein a lattice constant which is formed by the largest uppermost, the lattice constant of the uppermost Si 1-x Ge 2. The method for producing a single crystal SiGe layer according to claim 1, wherein a Si 1-x Ge x semiconductor layer larger than a lattice constant of the x semiconductor layer by 0.017 to 0.019 is formed as the strain inversion layer.
前記光吸収層形成工程は、格子定数が前記緩衝層形成工程で形成された前記格子定数が最も大きな最上層のSi1-xGex半導体層の格子定数と等しいSi1-xGex半導体層を前記Si1-xGex光吸収層として形成することを特徴とする請求項2記載の単結晶SiGe層製造方法。 The light absorbing layer forming step, equal Si 1-x Ge x semiconductor layer lattice constant of the Si 1-x Ge x semiconductor layer of the lattice constant lattice constant is formed in the buffer layer forming step the largest top layer The single crystal SiGe layer manufacturing method according to claim 2, wherein the Si 1-x Ge x light absorption layer is formed. 前記緩衝層形成工程は、前記複数のSi1-xGex半導体層の各半導体層形成毎に、超高真空内で900℃で3分間の急速加熱処理を施すことを特徴とする請求項1又は2記載の単結晶SiGe層製造方法。 2. The buffer layer forming step is characterized by performing a rapid heat treatment at 900 ° C. for 3 minutes in an ultrahigh vacuum for each semiconductor layer formation of the plurality of Si 1-x Ge x semiconductor layers. Or the manufacturing method of the single-crystal SiGe layer of 2. P型又はN型のSi基板上に形成された、格子定数が前記Si基板側から順に大きくなり、かつ、前記Si基板と同じ導電型の複数のSi1-xGex半導体層(ただし、0≦x≦0.95;以下同じ)が積層されたSi1-xGex緩衝層と、
前記Si1-xGex緩衝層の上に形成された、圧縮歪み応力を発生する前記Si基板と同じ導電型のSi1-xGex歪み反転層と、
前記Si1-xGex半導体層の上に形成された、外部光を吸収しキャリアを生成するための前記Si基板と同じ導電型のSi1-xGex光吸収層と、
前記Si1-xGex光吸収層の上に形成された、前記光吸収層で生成されたキャリアを収集するためのpn接合を構成するための半導体接合層と、
前記半導体接合層の上に形成された、前記キャリアを外部へ取り出すための透明電極層と、
を有することを特徴とする太陽電池。
A plurality of Si 1-x Ge x semiconductor layers (provided that the lattice constant increases in order from the Si substrate side and has the same conductivity type as that of the Si substrate). ≦ x ≦ 0.95; the same shall apply hereinafter), and a Si 1-x Ge x buffer layer,
A Si 1-x Ge x strain inversion layer formed on the Si 1-x Ge x buffer layer and having the same conductivity type as the Si substrate generating compressive strain stress;
A Si 1-x Ge x light absorption layer formed on the Si 1-x Ge x semiconductor layer and having the same conductivity type as the Si substrate for absorbing external light and generating carriers;
A semiconductor junction layer for forming a pn junction for collecting carriers generated in the light absorption layer, formed on the Si 1-x Ge x light absorption layer;
A transparent electrode layer formed on the semiconductor bonding layer for extracting the carriers to the outside;
A solar cell comprising:
前記半導体接合層は、ヘテロ接合層又はホモ接合層であり、
前記ヘテロ接合層は、前記Si1-xGex光吸収層の上に形成された真性アモルファスシリコン層と、前記真性アモルファスシリコン層の上に形成された前記Si1-xGex光吸収層と反対導電型のアモルファスシリコン層とからなるアモルファスシリコン層、若しくは前記Si1-xGex光吸収層と反対導電型のIII-V族化合物半導体で構成され、
前記ホモ接合層は、前記Si1-xGex光吸収層と反対導電型のSi1-xGex単結晶で構成されることを特徴とする請求項5記載の太陽電池。
The semiconductor junction layer is a heterojunction layer or a homojunction layer,
The heterojunction layer has a the Si 1-x Ge x absorber layer intrinsic amorphous silicon layer formed on a said formed over the intrinsic amorphous silicon layer Si 1-x Ge x light absorbing layer An amorphous silicon layer composed of an amorphous silicon layer of opposite conductivity type, or a III-V group compound semiconductor of the opposite conductivity type to the Si 1-x Ge x light absorption layer,
The solar cell according to claim 5, wherein the homojunction layer is composed of a Si 1-x Ge x single crystal having a conductivity type opposite to that of the Si 1-x Ge x light absorption layer.
JP2012198489A 2012-09-10 2012-09-10 Method for producing single-crystal SiGe layer and solar cell using the same Active JP6004429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198489A JP6004429B2 (en) 2012-09-10 2012-09-10 Method for producing single-crystal SiGe layer and solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198489A JP6004429B2 (en) 2012-09-10 2012-09-10 Method for producing single-crystal SiGe layer and solar cell using the same

Publications (2)

Publication Number Publication Date
JP2014053545A true JP2014053545A (en) 2014-03-20
JP6004429B2 JP6004429B2 (en) 2016-10-05

Family

ID=50611717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198489A Active JP6004429B2 (en) 2012-09-10 2012-09-10 Method for producing single-crystal SiGe layer and solar cell using the same

Country Status (1)

Country Link
JP (1) JP6004429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009960A1 (en) * 2015-07-14 2017-01-19 株式会社日立製作所 Solar battery cell and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539613A (en) * 1999-03-12 2002-11-19 インターナショナル・ビジネス・マシーンズ・コーポレーション High-speed Ge channel heterostructure for field effect devices
JP2003209229A (en) * 2002-01-17 2003-07-25 Hitachi Cable Ltd Method of manufacturing silicon crystalline thin film
JP2003347229A (en) * 2002-05-31 2003-12-05 Renesas Technology Corp Method of manufacturing semiconductor device and semiconductor device
JP2004273829A (en) * 2003-03-10 2004-09-30 Sharp Corp Photoelectric converter and its fabricating process
JP2005303246A (en) * 2004-04-14 2005-10-27 Witty Mate Corp METHOD OF GROWING HIGH QUALITY ZnSe EPITAXIAL LAYER ONTO NEW Si SUBSTRATE
JP2006073833A (en) * 2004-09-02 2006-03-16 Sharp Corp Solar battery cell and method of manufacturing the same
US20110120538A1 (en) * 2009-10-23 2011-05-26 Amberwave, Inc. Silicon germanium solar cell
JP2011142294A (en) * 2010-01-08 2011-07-21 Taiwan Semiconductor Manufacturing Co Ltd Photonic device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539613A (en) * 1999-03-12 2002-11-19 インターナショナル・ビジネス・マシーンズ・コーポレーション High-speed Ge channel heterostructure for field effect devices
JP2003209229A (en) * 2002-01-17 2003-07-25 Hitachi Cable Ltd Method of manufacturing silicon crystalline thin film
JP2003347229A (en) * 2002-05-31 2003-12-05 Renesas Technology Corp Method of manufacturing semiconductor device and semiconductor device
JP2004273829A (en) * 2003-03-10 2004-09-30 Sharp Corp Photoelectric converter and its fabricating process
JP2005303246A (en) * 2004-04-14 2005-10-27 Witty Mate Corp METHOD OF GROWING HIGH QUALITY ZnSe EPITAXIAL LAYER ONTO NEW Si SUBSTRATE
JP2006073833A (en) * 2004-09-02 2006-03-16 Sharp Corp Solar battery cell and method of manufacturing the same
US20110120538A1 (en) * 2009-10-23 2011-05-26 Amberwave, Inc. Silicon germanium solar cell
JP2011142294A (en) * 2010-01-08 2011-07-21 Taiwan Semiconductor Manufacturing Co Ltd Photonic device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017009960A1 (en) * 2015-07-14 2017-01-19 株式会社日立製作所 Solar battery cell and method for producing same
JPWO2017009960A1 (en) * 2015-07-14 2018-04-19 株式会社日立製作所 Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP6004429B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
Wierer et al. Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells
US10256305B2 (en) High mobility transport layer structures for rhombohedral Si/Ge/SiGe devices
JP2001230431A (en) Photoelectric conversion device
Islam et al. MOVPE growth of InxGa1− xN (x∼ 0.4) and fabrication of homo-junction solar cells
Hadi et al. Thin-film Si1− xGex HIT solar cells
JP5001985B2 (en) A method of forming a GexSi1-x buffer layer of a solar energy battery on a silicon wafer.
Blasco et al. Design of AlInN on silicon heterojunctions grown by sputtering for solar devices
US20150325711A1 (en) Semiconductor component having hardness buffer and use thereof
Mansoori et al. Reducing threading dislocation density in GaSb photovoltaic devices on GaAs by using AlSb dislocation filtering layers
JP2011198975A (en) Tandem type solar cell
El‐Huni et al. High‐efficiency indium gallium nitride/Si tandem photovoltaic solar cells modeling using indium gallium nitride semibulk material: monolithic integration versus 4‐terminal tandem cells
JP2014220351A (en) Multi-junction solar cell
JP6335784B2 (en) Variable band gap solar cell
KR20120012719A (en) Solar cells with III-V compound semiconductor quantum dots as absorption layer and method of preparing the same
JP6004429B2 (en) Method for producing single-crystal SiGe layer and solar cell using the same
JP5382696B2 (en) Semiconductor optical device and semiconductor solar cell
JP5669228B2 (en) Multi-junction solar cell and manufacturing method thereof
CN105355668A (en) In(0.3)Ga(0.7)As cell with amorphous buffer layer structure and preparation method thereof
Lackner et al. Status of four-junction cell development at fraunhofer ISE
Sasaki et al. Characterization of carrier recombination in lattice-mismatched InGaAs solar cells on GaAs substrates
MANZOOR et al. Carrier Density and Thickness Optimization of In
JP2014187235A (en) Solar cell
JP5876562B1 (en) Manufacturing method of solar cell
Mansoori Reducing threading dislocation in GaSb epilayer grown on GaAs substrate for photovoltaic and thermophotovoltaic application
Hossain et al. Dislocation reduction in heteroepitaxial In x Ga 1-x N using step-graded interlayer for future solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6004429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250