JP2014053230A - Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same - Google Patents

Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same Download PDF

Info

Publication number
JP2014053230A
JP2014053230A JP2012198208A JP2012198208A JP2014053230A JP 2014053230 A JP2014053230 A JP 2014053230A JP 2012198208 A JP2012198208 A JP 2012198208A JP 2012198208 A JP2012198208 A JP 2012198208A JP 2014053230 A JP2014053230 A JP 2014053230A
Authority
JP
Japan
Prior art keywords
conductor
lead member
plating
insulating film
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012198208A
Other languages
Japanese (ja)
Inventor
Akinobu Chiba
昭伸 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012198208A priority Critical patent/JP2014053230A/en
Publication of JP2014053230A publication Critical patent/JP2014053230A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a lead member for a nonaqueous electrolyte power storage device using aluminum or aluminum alloy as a lead conductor to be used as not only for a positive electrode but also for a negative electrode.SOLUTION: A lead member 4 is formed by pasting an insulation film 5 on both conductor surfaces so as to protrude from both sides of the conductor width in an intermediate region of a flat conductor 4a made of aluminum or aluminum alloy. Then, the flat conductor 4a has a portion where a conductive plating 4b is applied to the whole surface of a conductive portion III exposed into at least a nonaqueous electrolyte power storage device of conductive portions I, III exposed without pasting of the insulation film 5, and a portion where the plating 4b is not applied to a part 4c of a conductive portion II (intermediate region) to which the insulation film 5 is pasted.

Description

本発明は、非水電解質蓄電デバイス用のリード部材及びその製造方法に関する。   The present invention relates to a lead member for a non-aqueous electrolyte electricity storage device and a method for manufacturing the same.

小型電子機器の電源として、例えば、リチウムイオン電池などの非水電解質電池が用いられている。この非水電解質電池としては、正極板、負極板、及び電解液を、多層フィルムからなる封入体に収納し、正極板、負極板に接続したリード部材を密封封止して外部に取り出す構造のものが知られている。封入体を形成する多層フィルムは、最内層フィルムと最外層フィルムとの間に、少なくともアルミニウム等の金属からなる金属箔層をサンドイッチ状に貼り合わせた密封性の高い多層フィルムが用いられている。   For example, non-aqueous electrolyte batteries such as lithium ion batteries are used as power sources for small electronic devices. This non-aqueous electrolyte battery has a structure in which a positive electrode plate, a negative electrode plate, and an electrolytic solution are accommodated in an enclosure made of a multilayer film, and lead members connected to the positive electrode plate and the negative electrode plate are sealed and taken out to the outside. Things are known. As the multilayer film forming the encapsulant, a highly hermetic multilayer film in which a metal foil layer made of a metal such as aluminum is sandwiched between the innermost layer film and the outermost layer film is used.

そして、正極用のリード部材としては、高電位で溶解しない材質が好ましく、アルミニウム、チタン、或いはこれらの金属の合金が使用されている。
例えば、特許文献1には、リード導体としてアルミニウムを用いたリード部材が開示されている。このリード部材には、非水電解質蓄電デバイスの外側となる導体部分にニッケルメッキが施されている。この理由は、複数の非水電解質蓄電デバイスを複数直列に接続するために封入体の外部に出た正極用のリード部材を負極用のリード部材に接続する場合や、蓄電デバイスの電圧モニタ用にリード線を接続する場合に、アルミニウムは半田付けがし難く両者を半田付けで接続することが難しいためである。
The lead member for the positive electrode is preferably a material that does not melt at a high potential, and aluminum, titanium, or an alloy of these metals is used.
For example, Patent Document 1 discloses a lead member using aluminum as a lead conductor. The lead member is nickel-plated on the conductor portion that is the outside of the nonaqueous electrolyte electricity storage device. This is because when connecting a plurality of non-aqueous electrolyte electricity storage devices in series to a negative electrode lead member that is connected to the negative electrode lead member, or for monitoring the voltage of the electricity storage device. This is because when connecting lead wires, aluminum is difficult to solder and it is difficult to connect the two by soldering.

一方で、特許文献1に記載のようなリード導体としてアルミニウムを用いたリード部材を、リチウムイオン電池などの非水電解質電池の負極用として用いると、過充電により電解液中のリチウム等の成分が析出してリード部材の形状が変化してしまう。
そのため、負極用のリード部材としては、リチウムと合金を形成し難く且つ比較的高電位で溶解し難い材質が好ましく、ニッケル、銅、或いはこれらの金属の合金が使用されている。
On the other hand, when a lead member using aluminum as a lead conductor as described in Patent Document 1 is used for a negative electrode of a non-aqueous electrolyte battery such as a lithium ion battery, components such as lithium in the electrolytic solution are caused by overcharging. It precipitates and the shape of the lead member changes.
Therefore, the lead member for the negative electrode is preferably made of a material that hardly forms an alloy with lithium and is difficult to dissolve at a relatively high potential, and nickel, copper, or an alloy of these metals is used.

特開2011−181300号公報JP 2011-181300 A

上述のように、特許文献1に記載のリード部材を、リチウムイオン電池などの非水電解質電池の負極用として用いると、過充電により電解液中のリチウム等の成分が析出してリード部材の形状が変化してしまうため、リード部材としては銅やニッケルなどをリード導体として用いる必要があった。   As described above, when the lead member described in Patent Document 1 is used for a negative electrode of a non-aqueous electrolyte battery such as a lithium ion battery, components such as lithium in the electrolytic solution are precipitated due to overcharge, and the shape of the lead member Therefore, it is necessary to use copper, nickel or the like as the lead conductor as the lead member.

本発明は、上述のような実状に鑑みてなされたものであり、その目的は、リード導体としてアルミニウム又はアルミニウム合金を用いた非水電解質蓄電デバイス用のリード部材において、正極用だけでなく負極用としても使用可能にすること、並びにそのようなリード部材を効率良く製造する製造方法を提供することにある。   The present invention has been made in view of the actual situation as described above, and its purpose is not only for the positive electrode but also for the negative electrode in a lead member for a non-aqueous electrolyte electricity storage device using aluminum or an aluminum alloy as a lead conductor. And a manufacturing method for efficiently manufacturing such a lead member.

本発明に係る非水電解質蓄電デバイス用のリード部材は、アルミニウム又はアルミニウム合金からなる平形導体の中間領域に、導体幅の両側から張り出すように導体両面に絶縁フィルムが貼り合わされてなる。そして、本発明は、上記平形導体には、上記絶縁フィルムが貼られず露出している導体部分のうち少なくとも非水電解質蓄電デバイス内に露出する導体部分の全面に導電性のメッキが施され、且つ上記絶縁フィルムが貼り合わされる導体部分の一部に上記メッキが施されていない部分を有することを特徴とする。   The lead member for a nonaqueous electrolyte electricity storage device according to the present invention is formed by bonding insulating films on both sides of a conductor so as to protrude from both sides of the conductor width in an intermediate region of a flat conductor made of aluminum or an aluminum alloy. And, the present invention, the flat conductor is subjected to conductive plating on the entire surface of the conductor portion exposed in the non-aqueous electrolyte electricity storage device among the conductor portions exposed without the insulating film being affixed, And it has the part which the said plating is not given to a part of conductor part to which the said insulating film is bonded together.

ここで、上記メッキが施されていない部分が上記平形導体の主面上にあること、及び/又は、上記メッキが施されていない部分が上記平形導体の側面上にあることが好ましい。また、上記メッキは、ニッケルメッキであることが好ましい。   Here, it is preferable that the portion not plated is on the main surface of the flat conductor and / or the portion not plated is on the side surface of the flat conductor. The plating is preferably nickel plating.

本発明に係る製造方法は、アルミニウム又はアルミニウム合金からなる平形導体の中間領域に、導体幅の両側から張り出すように導体両面に絶縁フィルムを貼り合わせてなる非水電解質蓄電デバイス用のリード部材を製造する製造方法であり、少なくとも上記平形導体を含む導体に導電性のメッキを施すメッキ工程と、上記平形導体に、導体幅の両側から張り出すように導体両面に絶縁フィルムを貼り合わせる貼り合わせ工程と、を有する。そして、上記メッキ工程は、上記平形導体を、絶縁フィルムが貼られず露出する導体部分のうち少なくとも非水電解質蓄電デバイス内に露出する導体部分の全面と上記中間領域のうち一部を除いた全面とにメッキが施されるようにし、上記貼り合わせ工程は、上記平形導体に、メッキが施されていない部分を覆うように導体両面から絶縁フィルムを貼り合わせることを特徴とする。   The manufacturing method according to the present invention includes a lead member for a nonaqueous electrolyte electricity storage device in which an insulating film is bonded to both sides of a conductor so as to protrude from both sides of the conductor width in an intermediate region of a flat conductor made of aluminum or an aluminum alloy. It is a manufacturing method to manufacture, a plating step of conducting conductive plating on a conductor including at least the flat conductor, and a bonding step of attaching an insulating film to both sides of the flat conductor so as to protrude from both sides of the conductor width And having. Then, the plating step is performed by removing the flat conductor from the entire conductive portion exposed in the non-aqueous electrolyte electricity storage device and the intermediate region except for a portion of the conductive portion exposed without the insulating film. In the bonding step, an insulating film is bonded to the flat conductor from both sides of the conductor so as to cover a portion where the plating is not performed.

ここで、上記メッキは、上記平形導体の主面上に電極を当てて施すことが好ましい。
若しくは、アルミニウム又はアルミニウム合金からなる帯状導体をその所定形状の部分を複数箇所打ち抜くことで複数の上記平形導体が取り付け足により連結された状態とし、上記メッキ工程でこの帯状導体をメッキし、次いで上記取り付け足の部分をカットすることで、カットされた面を除く全面にメッキが施された平形導体を生成し、上記貼り合わせ工程は、カットされた面が絶縁フィルムで覆われるように、絶縁フィルムを貼り合わせることが好ましい。
Here, the plating is preferably performed by applying an electrode to the main surface of the flat conductor.
Alternatively, a plurality of the flat conductors are connected to each other by mounting legs by punching a plurality of portions of a predetermined shape of a strip-shaped conductor made of aluminum or aluminum alloy, and then plating the strip-shaped conductor in the plating step, and then By cutting the part of the mounting foot, a flat conductor plated on the entire surface excluding the cut surface is generated, and the above bonding process is performed so that the cut surface is covered with the insulating film. Are preferably bonded together.

本発明に係る非水電解質蓄電デバイス用のリード部材によれば、アルミニウム又はアルミニウム合金に絶縁フィルムを両面から貼り合わせ、絶縁フィルムが貼り合わされた領域以外でアルミニウム又はアルミニウム合金に導電性メッキを施すことにより、正極用だけでなく負極用としても使用できるようになる。また、アルミニウムやアルミニウム合金を使用することでリード部材が軽量になる。また、本発明に係る製造方法によれば、このようなリード部材を効率良く製造することができる。   According to the lead member for a non-aqueous electrolyte electricity storage device according to the present invention, an insulating film is bonded to aluminum or an aluminum alloy from both sides, and conductive plating is applied to the aluminum or aluminum alloy in a region other than the region where the insulating film is bonded. Thus, it can be used not only for the positive electrode but also for the negative electrode. Further, the use of aluminum or an aluminum alloy makes the lead member lightweight. Moreover, according to the manufacturing method which concerns on this invention, such a lead member can be manufactured efficiently.

本発明に係るリード部材及びそのリード部材を用いた非水電解質蓄電デバイスの一構成例を示す概略図である。It is the schematic which shows one structural example of the lead member which concerns on this invention, and the nonaqueous electrolyte electrical storage device using the lead member. 本発明に係るリード部材の一構成例を示す図である。It is a figure which shows one structural example of the lead member which concerns on this invention. 図2のリード部材を製造する製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method which manufactures the lead member of FIG. 本発明に係るリード部材の他の構成例を示す図である。It is a figure which shows the other structural example of the lead member which concerns on this invention. 本発明に係るリード部材の他の構成例を示す図である。It is a figure which shows the other structural example of the lead member which concerns on this invention. 図5のリード部材を製造する製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method which manufactures the lead member of FIG. 図5のリード部材を製造する製造方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the manufacturing method which manufactures the lead member of FIG. 本発明に係るリード部材を製造する製造方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the manufacturing method which manufactures the lead member which concerns on this invention.

本発明に係るリード部材は、非水電解質蓄電デバイスに用いられ、タブリードとも呼ばれる。
以下、図面に基づき、本発明に係るリード部材及びそのリード部材を用いた非水電解質蓄電デバイスの概略を説明する。
The lead member according to the present invention is used for a non-aqueous electrolyte electricity storage device and is also called a tab lead.
Hereinafter, an outline of a lead member according to the present invention and a nonaqueous electrolyte electricity storage device using the lead member will be described with reference to the drawings.

まず、図1及び図2に示す構成例を説明する。図1(A)は非水電解質蓄電デバイスの一例としての非水電解質電池を示す外観図、図1(B)は負極側のリード部材の封着状態を示す断面図である。また、図2(A)は本発明に係るリード部材の一構成例を示す上面図で、図1(B)中のリード部材の上面図である。また、図2(B)は図2(A)のリード部材の中間領域の垂直方向断面図、図2(C)は図2(A)のリード部材の中間領域の水平方向断面図である。図1及び図2において、1は非水電解質電池、2は封入体、3は正極側のリード部材、4は負極側のリード部材、5,6は絶縁フィルム(絶縁樹脂フィルム)、7はシール部、8は電極板リード、9は半田を示す。   First, the configuration example shown in FIGS. 1 and 2 will be described. FIG. 1A is an external view showing a nonaqueous electrolyte battery as an example of a nonaqueous electrolyte electricity storage device, and FIG. 1B is a cross-sectional view showing a sealed state of a lead member on the negative electrode side. FIG. 2A is a top view showing a configuration example of the lead member according to the present invention, and is a top view of the lead member in FIG. 2B is a vertical sectional view of the intermediate region of the lead member of FIG. 2A, and FIG. 2C is a horizontal sectional view of the intermediate region of the lead member of FIG. 2A. 1 and 2, 1 is a non-aqueous electrolyte battery, 2 is an enclosure, 3 is a lead member on the positive electrode side, 4 is a lead member on the negative electrode side, 5 and 6 are insulating films (insulating resin films), and 7 is a seal. , 8 is an electrode plate lead, and 9 is solder.

非水電解質蓄電デバイスとしては、非水電解質電池1に限らず、電気二重層コンデンサ(EDLC)やリチウムイオンキャパシタなどのキャパシタなども適用できる。非水電解質電池1としては、リチウムイオン電池などが挙げられる。   The non-aqueous electrolyte electricity storage device is not limited to the non-aqueous electrolyte battery 1 and may be a capacitor such as an electric double layer capacitor (EDLC) or a lithium ion capacitor. Examples of the nonaqueous electrolyte battery 1 include a lithium ion battery.

非水電解質電池1は、正極板と負極板をセパレータを介して積層した積層電極群と電解液を封入体2に収納し、図1(A)に示すように、正極板に接続したリード部材3、負極板に接続したリード部材4を、それぞれ絶縁フィルム5,6を介して封入体2のシール部7から密封封止した状態で取り出して構成される。   The nonaqueous electrolyte battery 1 is a lead member in which a laminated electrode group in which a positive electrode plate and a negative electrode plate are laminated via a separator and an electrolytic solution are housed in an enclosure 2 and connected to the positive electrode plate as shown in FIG. 3. The lead member 4 connected to the negative electrode plate is taken out in a state of being hermetically sealed from the seal portion 7 of the enclosure 2 via insulating films 5 and 6, respectively.

封入体2は、非水電解質電池1の外装ケースとなるもので、例えば、矩形状の2枚の多層フィルム周辺のシール部7を、熱溶着によりシールすることにより密封される。リード部材3,4はそれぞれ絶縁フィルム5,6が予め熱溶着により接合されて構成されており、この絶縁フィルム5,6と封入体2の多層フィルムとが熱融着されることでリード部材3,4と多層フィルムとが密封される。   The enclosure 2 serves as an outer case of the nonaqueous electrolyte battery 1 and is sealed, for example, by sealing the sealing portion 7 around the two multilayered films in a rectangular shape by heat welding. Each of the lead members 3 and 4 is formed by previously bonding insulating films 5 and 6 by heat welding. The insulating film 5 and 6 and the multilayer film of the encapsulant 2 are heat-sealed, thereby the lead member 3. , 4 and the multilayer film are sealed.

ここで、封入体2は金属箔を含む多層フィルムからなり、この多層フィルムは少なくとも金属箔の両面に樹脂フィルムを貼り合わせて形成される。例えば、封入体2は、図1(B)に示すように、最内層フィルム2a、金属箔層2b、及び最外層フィルム2cが積層されてなる。最内層フィルム2aは、電解液で溶解されずシール部7から電解液が漏出するのを防止するのに適したものとしてポリオレフィン樹脂(例:無水マレイン酸変性低密度ポリエチレン又はポリプロピレン)が用いられる。金属箔層2bは、アルミニウム、銅、ステンレス等の金属箔が用いられ、電解液に対する密封性を高めている。最外層フィルム2cは、薄い金属箔層2bを保護するためのもので、ポリエチレンテレフタレート(PET)等で形成されている。   Here, the enclosure 2 is formed of a multilayer film including a metal foil, and the multilayer film is formed by bonding resin films on at least both surfaces of the metal foil. For example, as shown in FIG. 1B, the enclosure 2 is formed by laminating an innermost layer film 2a, a metal foil layer 2b, and an outermost layer film 2c. For the innermost layer film 2a, a polyolefin resin (eg, maleic anhydride-modified low-density polyethylene or polypropylene) is used as a material suitable for preventing the electrolyte solution from being leaked from the seal portion 7 without being dissolved by the electrolyte solution. The metal foil layer 2b is made of a metal foil such as aluminum, copper, or stainless steel, and enhances the sealing performance against the electrolytic solution. The outermost layer film 2c is for protecting the thin metal foil layer 2b, and is formed of polyethylene terephthalate (PET) or the like.

次に、本発明に係るリード部材4について説明する。
リード部材4は、リード導体と絶縁フィルム6とを有する。このリード導体は、図2(A)〜(C)に示すように、平形導体4aにメッキ4bを施したものであり、本発明は、後述するようにメッキ4bを施す領域に主たる特徴を有する。
リード部材4のリード導体として用いる平形導体4aは、アルミニウム又はアルミニウム合金(例えばチタンアルミニウム合金)からなり、厚さが例えば0.05mm〜0.50mm程度の薄い導体箔を長方形状にカットした導体である。なお、平形導体4aとしてチタン又はチタン合金を適用することもできるが、コストが嵩む。
Next, the lead member 4 according to the present invention will be described.
The lead member 4 has a lead conductor and an insulating film 6. As shown in FIGS. 2A to 2C, this lead conductor is obtained by applying a plating 4b to a flat conductor 4a, and the present invention has a main feature in a region where the plating 4b is applied as will be described later. .
The flat conductor 4a used as the lead conductor of the lead member 4 is made of aluminum or an aluminum alloy (for example, titanium aluminum alloy), and is a conductor obtained by cutting a thin conductive foil having a thickness of, for example, about 0.05 mm to 0.50 mm into a rectangular shape. is there. In addition, although titanium or a titanium alloy can be applied as the flat conductor 4a, the cost increases.

絶縁フィルム6は、例えば図1(B)に示すように、負極板に接続するリード部材4のリード導体(メッキ4bが施された平形導体4a)の両面に、接着又は溶着する内側層6aと、封入体2と融着される外側層6bの2層で形成することができる。内側層6aは、加熱溶融によりリード導体に密着させて、導体界面における良好な密封封止を形成しておく。外側層6bは、内側層6aのよりは融点の高いものが用いられ、リード導体との密封封止時には溶融が生じないようにして形状を保持する。そして、封入体2とのシール時に、外側層6bと封入体2と融着させることで、封入体2内の金属箔層2bとリード導体が電気的に短絡しないようにすることができる。   For example, as shown in FIG. 1B, the insulating film 6 includes an inner layer 6a adhered or welded to both surfaces of a lead conductor (a flat conductor 4a plated 4b) of a lead member 4 connected to the negative electrode plate. The outer layer 6b to be fused with the enclosure 2 can be formed of two layers. The inner layer 6a is adhered to the lead conductor by heating and melting to form a good hermetic seal at the conductor interface. The outer layer 6b has a higher melting point than that of the inner layer 6a, and retains its shape so as not to melt when sealed with the lead conductor. Then, by sealing the outer layer 6b and the enclosure 2 at the time of sealing with the enclosure 2, the metal foil layer 2b and the lead conductor in the enclosure 2 can be prevented from being electrically short-circuited.

リード部材4は、図2(A)〜(C)に示すように、平形導体4aの中間領域に、導体幅の両側から張り出すように導体両面に絶縁フィルム6を貼り合わせてなる。ここで中間領域とは、平形導体4aの中央付近であればよく、封入体2での封止によりシール部7の外側と内側との双方に絶縁フィルム6及び平形導体4aがはみ出るような位置であればよい。そして、平形導体4aには、絶縁フィルム6が貼り合わされる前にメッキ4bが施されている。   As shown in FIGS. 2A to 2C, the lead member 4 is formed by bonding insulating films 6 on both sides of a conductor so as to protrude from both sides of the conductor width in an intermediate region of the flat conductor 4a. Here, the intermediate region may be in the vicinity of the center of the flat conductor 4a, and at a position where the insulating film 6 and the flat conductor 4a protrude from both the inside and outside of the seal portion 7 by sealing with the encapsulant 2. I just need it. The flat conductor 4a is plated 4b before the insulating film 6 is bonded.

絶縁フィルム6の幅は、リード導体の幅より広く、リード導体の両側に絶縁フィルム6が飛び出して、その部分では絶縁フィルム6同士が貼り合わされており、絶縁フィルム6の長さ(幅と垂直な方向の長さ)は、リード導体の長さより短い。よって、リード導体の長さ方向両端には絶縁フィルム6が貼られていないことになる。   The width of the insulating film 6 is wider than the width of the lead conductor, the insulating film 6 protrudes on both sides of the lead conductor, and the insulating films 6 are bonded to each other at that portion, and the length of the insulating film 6 (perpendicular to the width). The length in the direction is shorter than the length of the lead conductor. Therefore, the insulating film 6 is not affixed to both ends in the length direction of the lead conductor.

そして、このリード導体は、図2(B)に示すように、絶縁フィルム6の上方側に露出する導体部分I、絶縁フィルム6で被覆される部分II、絶縁フィルム6の下方側に露出する導体部分IIIの、3つの領域を有している。上方の導体部分Iは、外部装置との電気接続を行うための端子となる部分であり、下方の導体部分IIIは、非水電解質電池内の電極板リード8に接続され、且つ、電解液に浸される部分である。中間の被覆される部分IIは、リード導体が密封封止される部分である。   As shown in FIG. 2B, the lead conductor is composed of a conductor portion I exposed on the upper side of the insulating film 6, a portion II covered with the insulating film 6, and a conductor exposed on the lower side of the insulating film 6. It has three regions, part III. The upper conductor portion I is a portion that serves as a terminal for electrical connection with an external device, and the lower conductor portion III is connected to the electrode plate lead 8 in the nonaqueous electrolyte battery, and is connected to the electrolytic solution. The part to be immersed. The intermediate covered portion II is a portion where the lead conductor is hermetically sealed.

このように、平形導体4aには、絶縁フィルム6で分けられて両側から露出している導体部分I,IIIの全面に導電性のメッキ4bが施されている。さらに、本発明の主たる特徴として、平形導体4aには、絶縁フィルム6が貼り合わされる導体部分II(中間領域)の一部4cにメッキ4bが施されていない部分を有する。つまり、平形導体4aには中間領域の一部4cを除いてメッキ4bが施されている。一部4cは非メッキ領域となる。換言すれば、平形導体4aの絶縁フィルム6が貼られていない部分は、全面にメッキ4bが施されており、平形導体4aの片面(一方の主面)における絶縁フィルム6が貼られている部分に非メッキ領域4cがある。なお、図2では非メッキ領域4cを楕円形で図示したが、非メッキ領域4cの形状はどのような形状でもよい。   In this way, the flat conductor 4a is provided with the conductive plating 4b on the entire surface of the conductor portions I and III that are separated from each other by the insulating film 6 and exposed from both sides. Furthermore, as a main feature of the present invention, the flat conductor 4a has a portion in which the plating 4b is not applied to a portion 4c of the conductor portion II (intermediate region) to which the insulating film 6 is bonded. That is, the flat conductor 4a is plated 4b except for a part 4c of the intermediate region. The part 4c becomes a non-plating region. In other words, the portion of the flat conductor 4a where the insulating film 6 is not attached is plated on the entire surface, and the portion where the insulating film 6 is attached on one side (one main surface) of the flat conductor 4a. Has a non-plated region 4c. In FIG. 2, the non-plated region 4c is illustrated as an ellipse, but the shape of the non-plated region 4c may be any shape.

メッキ4bの層は、導体部分Iにおける電池間での電気接続や監視、試験のための電気接続を行うための半田接続が可能なように導電性の物質で形成される。これにより、低抵抗での電気接続を容易に行うことができる。   The layer of the plating 4b is formed of a conductive material so that electrical connection between the batteries in the conductor portion I, solder connection for electrical connection for monitoring and testing can be performed. Thereby, electrical connection with low resistance can be easily performed.

さらに、メッキ4bの層は、リード部材4を負極用として使用可能にするために、少なくとも平形導体4aであるアルミニウム又はアルミニウム合金よりイオン化傾向が小さい金属で形成される。そして、非メッキ領域4cは導体部分IIに含まれて絶縁フィルム6で覆われており、導体部分I,IIIで示した絶縁フィルム6が貼られていない部分は全面にメッキ4bが施されている。従って、リード部材4をコバルトやマンガンを用いたリチウムイオン電池の負極材に適用しても、リチウムがリード部材4に析出しないため電池性能の劣化が見られない。   Furthermore, the layer of the plating 4b is formed of a metal having a smaller ionization tendency than at least aluminum or an aluminum alloy as the flat conductor 4a so that the lead member 4 can be used for the negative electrode. And the non-plating area | region 4c is contained in the conductor part II, and is covered with the insulating film 6, and the part to which the insulating film 6 shown by the conductor parts I and III is not affixed is plated 4b on the whole surface . Therefore, even if the lead member 4 is applied to the negative electrode material of a lithium ion battery using cobalt or manganese, the lithium does not precipitate on the lead member 4 and thus the battery performance is not deteriorated.

上記のような金属としては、例えばニッケル、錫、亜鉛などが挙げられるが、イオン化傾向の観点から亜鉛に比べてニッケル又は錫を採用することが好ましい。このように、メッキ4bはニッケルメッキ又は錫メッキであることが好ましい。   Examples of the metal include nickel, tin, and zinc, but it is preferable to employ nickel or tin as compared to zinc from the viewpoint of ionization tendency. Thus, the plating 4b is preferably nickel plating or tin plating.

以上、リード部材4について説明したが、正極用のリード部材3も負極用のリード部材4と同様の構成をもつものとし、平形導体の中間領域に導体幅の両側から張り出すように導体両面から絶縁フィルム5を貼り合わせてなる。このように、リード部材4として説明するリード部材は正極用としても使用できる。これは、このリード部材がアルミニウム又はアルミニウム合金が主にリード導体となって高電位でも溶解しない部材となっているためである。なお、絶縁フィルム5は絶縁フィルム6と同様の構成をもつ。   The lead member 4 has been described above. The positive lead member 3 has the same configuration as the negative lead member 4 and is formed on both sides of the conductor so as to protrude from both sides of the conductor width to the intermediate region of the flat conductor. The insulating film 5 is bonded together. Thus, the lead member described as the lead member 4 can also be used for the positive electrode. This is because this lead member is a member in which aluminum or an aluminum alloy is mainly a lead conductor and does not melt even at a high potential. The insulating film 5 has the same configuration as the insulating film 6.

以上のように、本発明に係るリード部材は、アルミニウム又はアルミニウム合金に絶縁フィルムを両面から貼り合わせ、絶縁フィルムが貼り合わされた領域以外でアルミニウム又はアルミニウム合金に導電性メッキを施すことにより、正極用だけでなく負極用としても使用できる。さらに、従来の銅を用いた負極用リード部材に比べ、アルミニウムを用いて比重を8.9から2.7にすることで、リード部材の軽量化が図れ、材料のコストを下げることもできる。また、アルミニウム合金を用いた場合でも同様の効果が得られる。   As described above, the lead member according to the present invention is used for the positive electrode by laminating an insulating film to both sides of aluminum or an aluminum alloy, and applying conductive plating to the aluminum or aluminum alloy outside the region where the insulating film is laminated. It can be used not only for negative electrodes. Furthermore, the weight of the lead member can be reduced by reducing the specific gravity from 8.9 to 2.7 using aluminum as compared with the conventional negative electrode lead member using copper, and the cost of the material can be reduced. The same effect can be obtained even when an aluminum alloy is used.

次に、上述したようなリード部材を製造する製造方法について説明する。
本発明に係る製造方法は、アルミニウム又はアルミニウム合金からなる平形導体の中間領域に、導体幅の両側から張り出すように導体両面から絶縁フィルムを貼り合わせてなるリード部材を製造するものであり、次のメッキ工程及び貼り合わせ工程を有する。
上記メッキ工程は、少なくとも平形導体を含む導体に導電性のメッキを施す工程である。上記貼り合わせ工程は、上記平形導体に、導体幅の両側から張り出すように導体両面から絶縁フィルムを貼り合わせる工程である。
Next, a manufacturing method for manufacturing the lead member as described above will be described.
The manufacturing method according to the present invention is to manufacture a lead member in which an insulating film is bonded from both sides of a conductor in a middle region of a flat conductor made of aluminum or aluminum alloy so as to protrude from both sides of the conductor width. A plating step and a bonding step.
The plating step is a step of conducting conductive plating on a conductor including at least a flat conductor. The bonding step is a step of bonding an insulating film to the flat conductor from both sides of the conductor so as to protrude from both sides of the conductor width.

そして、上述したようなリード部材を製造する製造方法の主たる特徴として、上記メッキ工程は、上記平形導体を、上記中間領域の一部を除いた全面にメッキが施されるようにし、上記貼り合わせ工程は、上記平形導体に、メッキが施されていない部分を覆うように導体両面に絶縁フィルムを貼り合わせる。導体幅の両側から張り出した絶縁フィルムは、絶縁フィルム同士で貼り合わされる。
このような製造方法で製造したリード部材は、絶縁フィルムが貼り合わされた領域以外でアルミニウム又はアルミニウム合金に導電性メッキが施されているため、正極用だけでなく負極用としても使用できる。
As a main feature of the manufacturing method for manufacturing the lead member as described above, the plating step is performed so that the flat conductor is plated on the entire surface excluding a part of the intermediate region, and the bonding is performed. In the process, an insulating film is bonded to both sides of the flat conductor so as to cover a portion where the plating is not performed. The insulating films protruding from both sides of the conductor width are bonded together with the insulating films.
The lead member manufactured by such a manufacturing method can be used not only for the positive electrode but also for the negative electrode because conductive plating is applied to aluminum or an aluminum alloy outside the region where the insulating film is bonded.

具体的に、図3を参照しながら、図2のリード部材4を製造する製造方法の一例を説明する。
まず、帯状導体を所定の横幅寸法でカットしたり、導体を打ち抜いたりすることで、平形導体4aの個片を作製する。この帯状導体としては、例えばアルミニウム板のフープ材が挙げられる。フープ材は、帯状の板材(アルミニウム板)がロール状に巻き取られた材料である。
Specifically, an example of a manufacturing method for manufacturing the lead member 4 of FIG. 2 will be described with reference to FIG.
First, the strip-shaped conductor is cut with a predetermined width dimension, or the conductor is punched to produce individual pieces of the flat conductor 4a. Examples of the strip-shaped conductor include an aluminum plate hoop material. The hoop material is a material obtained by winding a strip-shaped plate material (aluminum plate) into a roll shape.

メッキ工程では、図3(A)に示すように、その個片に対し、平形導体4aの一方の主面上に電極Eを当てて、平形導体4a全体をメッキ液につけて電気メッキを施す。電極Eを接触させた部分(給電部分)にはメッキ4bがのらずに非メッキ領域4cとなり、アルミニウム又はアルミニウム合金が露出したままとなる。換言すれば、電極Eは、平形導体4aの縦幅方向の中間領域(中央寄りの部分)に含まれる領域であって、非メッキ領域4cとなる領域に当てる。   In the plating step, as shown in FIG. 3A, the electrode E is applied to one main surface of the flat conductor 4a, and the entire flat conductor 4a is immersed in a plating solution to perform electroplating. The portion where the electrode E is in contact (the power feeding portion) does not have the plating 4b but becomes the non-plating region 4c, and the aluminum or aluminum alloy remains exposed. In other words, the electrode E is a region included in an intermediate region (a portion closer to the center) in the vertical width direction of the flat conductor 4a, and is applied to a region that becomes the non-plating region 4c.

これにより、図3(B)に示すように、非メッキ領域4cを残して平形導体4aの主面及び側面にメッキ4bが施されたリード導体の個片が作製される。なお、ここで説明する製造方法の例に限らず、メッキ処理の下処理として平形導体4aの全面にジンケート処理(化成処理)を施してもよく、メッキ処理もニッケルや錫の前に銅メッキを施すなどしてもよいし、メッキ処理後には変色防止処理やクロメートフリー処理などの表面処理を施してもよい。   As a result, as shown in FIG. 3B, individual pieces of lead conductors in which the main surface and side surfaces of the flat conductor 4a are plated with the non-plated region 4c left are produced. In addition, it is not restricted to the example of the manufacturing method demonstrated here, A zincate process (chemical conversion process) may be given to the whole surface of the flat conductor 4a as a pretreatment of a plating process, and a copper plating is also plated before nickel and tin. It may be applied, or surface treatment such as discoloration prevention treatment or chromate-free treatment may be applied after the plating treatment.

その後、貼り合わせ工程を実行する。より具体的には、図3(C)に示すように、このような平形導体4aに、メッキ4bが施されていない部分である非メッキ領域4cを覆い且つ導体幅の両側から張り出すように、導体両面から絶縁フィルム6を貼り合わせる。これにより、リード部材4が完成する。ここで、非メッキ領域4cには絶縁フィルム6を貼るので、アルミニウムが電解液と接触することもなく、別途メッキを施す必要がない。   Then, a bonding process is performed. More specifically, as shown in FIG. 3C, such a flat conductor 4a covers the non-plated region 4c, which is a portion where the plating 4b is not applied, and projects from both sides of the conductor width. Then, the insulating film 6 is bonded from both sides of the conductor. Thereby, the lead member 4 is completed. Here, since the insulating film 6 is stuck to the non-plating area | region 4c, aluminum does not contact with electrolyte solution and it is not necessary to plate separately.

以上のように、この製造方法では、電極を当てる位置を後に絶縁フィルム6で覆う領域(平形導体4aの主面上の中間領域)に含めるようにしておくだけで、電極によりメッキが施されない部分にさらにメッキを施すなどの面倒な工程を経ることがない。また、非メッキ領域4cの領域分だけ、全面にメッキを施す場合に比べてメッキ量を少なくすることができる。このように、本発明に係る製造方法によれば、負極用として使用可能なリード部材を効率良く製造することができる。   As described above, in this manufacturing method, the portion where the electrode is not plated is simply provided by including the position where the electrode is applied later in the region covered by the insulating film 6 (the intermediate region on the main surface of the flat conductor 4a). There is no need to go through complicated processes such as plating. Further, the amount of plating can be reduced by an amount corresponding to the non-plating region 4c as compared with the case where the entire surface is plated. As described above, according to the manufacturing method of the present invention, a lead member that can be used for a negative electrode can be efficiently manufactured.

なお、リード部材4をはじめ本発明に係るリード部材は、例えば無電解メッキなど、電気メッキ以外のメッキ法を採用してメッキすることもできるが、図3で例示した製造方法は電極を当ててメッキを行うようなメッキ法に限って適用できる。   The lead member 4 and other lead members according to the present invention can be plated by using a plating method other than electroplating, such as electroless plating, but the manufacturing method illustrated in FIG. It can be applied only to plating methods that perform plating.

次に、本発明に係るリード部材の他の構成例について、図4を参照しながら説明する。図4(A)はリード部材の上面図、図4(B)はそのリード部材の中間領域の垂直方向断面図、図4(C)はそのリード部材の中間領域の水平方向断面図である。
図1及び図2の構成例は、非メッキ領域4cが平形導体4aの一方の主面(平坦面)上にあるのに対し、図4の構成例では、非メッキ領域4cが両方の主面上に(つまり両面に)ある。図4の構成例におけるリード部材4は、図3で説明した方法と同様の製造方法を採用し、非メッキ領域4cとなる領域全体に電極を付けてメッキすることで製造できる。
Next, another configuration example of the lead member according to the present invention will be described with reference to FIG. 4A is a top view of the lead member, FIG. 4B is a vertical sectional view of the intermediate region of the lead member, and FIG. 4C is a horizontal sectional view of the intermediate region of the lead member.
In the configuration example of FIGS. 1 and 2, the non-plated region 4c is on one main surface (flat surface) of the flat conductor 4a, whereas in the configuration example of FIG. 4, the non-plated region 4c is both main surfaces. On top (ie on both sides). The lead member 4 in the configuration example of FIG. 4 can be manufactured by employing a manufacturing method similar to the method described in FIG. 3 and plating the entire region to be the non-plating region 4c.

なお、図4(A),(C)に示すように、本構成例では矩形の非メッキ領域4cが両面に設けられており、側面には全てメッキ4bが施されているが、その変形例として、ここで図示した領域に連なる側面も非メッキ領域としてもよい。この場合には、図3で説明した方法と同様の製造方法とは異なる製造方法を採用することもできる。すなわち、平形導体の一端、他端を順次メッキ槽につけてメッキを施し、メッキが施されていない中間領域を覆うように絶縁フィルムを導体両面から貼り合わせる、といった製造方法を採用することもできる。この製造方法の場合、図2及び図3で説明した例に比べて、非メッキ領域を設ける工程がメッキ工程において必要不可欠なものではないため、1つのリード部材において2つの領域にメッキを施しておく手間がかかるものの、全面にメッキを施す場合に比べてメッキ量を少なくすることはできる。   As shown in FIGS. 4A and 4C, in this configuration example, rectangular non-plating regions 4c are provided on both surfaces, and all the side surfaces are plated 4b. As described above, the side surface connected to the region shown here may also be a non-plated region. In this case, a manufacturing method different from the manufacturing method similar to the method described in FIG. 3 may be employed. That is, it is also possible to employ a manufacturing method in which one end and the other end of a flat conductor are sequentially attached to a plating tank and plated, and an insulating film is bonded from both sides of the conductor so as to cover an intermediate area where plating is not performed. In the case of this manufacturing method, compared with the example described in FIGS. 2 and 3, the step of providing the non-plating region is not indispensable in the plating step. Although it takes time and effort, the amount of plating can be reduced as compared with the case where the entire surface is plated.

次に、本発明に係るリード部材の他の構成例について、図5を参照しながら説明する。図5(A)はリード部材の上面図、図5(B)はそのリード部材の中間領域の垂直方向断面図、図5(C)はそのリード部材の中間領域の水平方向断面図である。
図2の構成例や図4の構成例では、非メッキ領域4cが平形導体4aの一方又は両方の主面上にあるのに対し、図5の構成例におけるリード部材4は、図5(A)に示すように平形導体4aの中間領域において両端に突起部を設け、図5(C)に示すようにその突起部の側面(ほぼ線状である面)を非メッキ領域4cとしている。
Next, another configuration example of the lead member according to the present invention will be described with reference to FIG. 5A is a top view of the lead member, FIG. 5B is a vertical sectional view of the intermediate region of the lead member, and FIG. 5C is a horizontal sectional view of the intermediate region of the lead member.
In the configuration example of FIG. 2 and the configuration example of FIG. 4, the non-plated region 4c is on one or both main surfaces of the flat conductor 4a, whereas the lead member 4 in the configuration example of FIG. ), Protrusions are provided at both ends in the intermediate region of the flat conductor 4a, and the side surfaces (substantially linear surfaces) of the protrusions are non-plated regions 4c as shown in FIG. 5C.

上記突起部は、極わずかに突起しているだけでよく、また一端だけ(つまり非メッキ領域4cが1つだけ)形成されるようにしてもよい。無論、図4の構成例における変形例として説明したのと同様に、突起部を設けず、単に平形導体4aの中間領域の一方又は両方の側面を非メッキ領域4cとしてもよい。このように、非メッキ領域4cは平形導体4aの側面(ほぼ線状である面)上に設けてもよい。   The protruding portion may protrude slightly, or may be formed only at one end (that is, only one non-plated region 4c). Needless to say, as described as a modification of the configuration example of FIG. 4, one or both side surfaces of the intermediate region of the flat conductor 4 a may be simply used as the non-plated region 4 c without providing the protrusions. As described above, the non-plated region 4c may be provided on the side surface (surface substantially linear) of the flat conductor 4a.

図5の構成例におけるリード部材4も、図3で説明した方法と同様の製造方法を採用して、平形導体4aに対し非メッキ領域4cとなる領域(側面)に電極を付けてメッキすることで製造できるが、図6〜図8を参照して次に説明する製造方法を採用することが好ましい。   The lead member 4 in the configuration example of FIG. 5 is also plated by attaching an electrode to a region (side surface) that becomes the non-plating region 4c with respect to the flat conductor 4a by employing the same manufacturing method as the method described in FIG. However, it is preferable to employ the manufacturing method described below with reference to FIGS.

まず、図6を参照しながら、図5のリード部材を製造する製造方法の一例を説明する。
図6(A)に示すように、平形導体4aの基材となる帯状導体(長尺のアルミニウム条又はアルミニウム合金条)21がロール状に巻かれたフープ材20から、帯状導体21を引き出し、所定形状の打ち抜き部22を複数箇所打ち抜く。打ち抜き部22は、H字状であればよく、この例では最端だけコの字状とし、残りは連続的にH字が続くようになっている。なお、図6の例では、帯状導体21の長手方向がリード部材4の長さ方向となるような形状で打ち抜きを行っている。
First, an example of a manufacturing method for manufacturing the lead member of FIG. 5 will be described with reference to FIG.
As shown in FIG. 6 (A), the strip-shaped conductor 21 is pulled out from the hoop material 20 in which the strip-shaped conductor (long aluminum strip or aluminum alloy strip) 21 serving as the base material of the flat conductor 4a is wound in a roll shape, A plurality of punched portions 22 having a predetermined shape are punched. The punching portion 22 may be H-shaped. In this example, the punched portion 22 has a U-shape only at the extreme end, and the rest is continuously H-shaped. In the example of FIG. 6, punching is performed in such a shape that the longitudinal direction of the strip conductor 21 is the length direction of the lead member 4.

このような打ち抜き工程により、図6(B)に示すように、帯状導体21には複数の平形導体4aとそのランナー(取り付け足)の部分24が残り、複数の平形導体4aが取り付け足により連結された状態となる。ここで、H字とH字の間の部分がランナー状に四角い平形導体(平形導体4aとなる部分)を外枠に繋ぎ止める部分となり、四角い個片が複数個外枠に繋がった形状となる。   By such a punching process, as shown in FIG. 6B, a plurality of flat conductors 4a and runner (mounting foot) portions 24 remain on the strip-shaped conductor 21, and the plurality of flat conductors 4a are connected by the mounting feet. It will be in the state. Here, the portion between the H-shape and the H-shape is a portion that connects the square flat conductor (the portion that becomes the flat conductor 4a) to the outer frame in a runner shape, and a plurality of square pieces are connected to the outer frame. .

さらに、メッキ工程では、図6(B)に示すように、その状態で順次電解メッキ槽に送り込んで残った部分の両面に連続的にメッキする。メッキ処理後に上記取り付け足の部分24を刃物などでカット(切断)する。カットラインは図6(B)において一点鎖線で示している。また、メッキ23は、平形導体4aのカット面を除く全面に施してある。このような工程を、上記取り付け足の部分24でカットされた外枠部分を巻き取りながら行うことにより、図6(C)に示すように、カット面を除く全面にメッキ23(4b)が施された平形導体の個片が連続的に作製できる。このカット面は元の帯状導体21の材質(アルミニウム又はアルミニウム合金)が露出しており非メッキ領域4cとなる。   Further, in the plating step, as shown in FIG. 6B, the both surfaces of the remaining portion that is sequentially sent to the electrolytic plating tank in that state are continuously plated. After the plating process, the mounting foot portion 24 is cut (cut) with a blade or the like. The cut line is indicated by a one-dot chain line in FIG. The plating 23 is applied to the entire surface except the cut surface of the flat conductor 4a. By performing such a process while winding the outer frame portion cut by the mounting foot portion 24, as shown in FIG. 6C, plating 23 (4b) is applied to the entire surface excluding the cut surface. Individual flat conductor pieces can be produced continuously. The cut surface is exposed to the original material of the strip-shaped conductor 21 (aluminum or aluminum alloy) and becomes a non-plated region 4c.

その後、上述した貼り合わせ工程を実行する。より具体的には、図6(C)に示す平形導体4aに対して、図6(D)に示すように、メッキ4bが施されていない部分である非メッキ領域4c(つまりカット面)を覆い且つ導体幅の両側から張り出すように、導体両面から絶縁フィルム6を貼り合わせる。これにより、リード部材4が完成する。元の帯状導体21の材質(アルミニウム又はアルミニウム合金)が露出した部分に絶縁フィルム6を貼るため、アルミニウム又はアルミニウム合金が電解液と接触せず、カット面を別途メッキする必要もない。   Then, the bonding process mentioned above is performed. More specifically, as shown in FIG. 6D, a non-plated region 4c (that is, a cut surface) that is not plated 4b is formed on the flat conductor 4a shown in FIG. 6C. The insulating film 6 is bonded from both sides of the conductor so as to cover and project from both sides of the conductor width. Thereby, the lead member 4 is completed. Since the insulating film 6 is affixed to a portion where the original material (aluminum or aluminum alloy) of the strip-shaped conductor 21 is exposed, the aluminum or aluminum alloy does not come into contact with the electrolytic solution, and there is no need to separately plate the cut surface.

このような製造方法は、平形導体4aの打ち抜きと最終的な切り取りとの間にメッキ処理を入れるだけで(特にカット面に対する更なるメッキが必要なく)、負極用として使用可能なリード部材を製造でき、効率が良い製造方法と言える。打ち抜きによって得られた平角導体4aは導体原板をスリットして得られた平角導体に比べてバリが少ない。また、打ち抜き部22は金型によって打ち抜くことができ、これにより完成品の寸法の安定性を向上させることができる。また、この製造方法では、帯状導体21から平形導体の個片を切り出す部分(取り付け足部分24)が小さいので、帯状導体から平形導体を切り出す時に出る金属異物を少なくすることができる。   Such a manufacturing method manufactures a lead member that can be used as a negative electrode by simply putting a plating treatment between the punching and final cutting of the flat conductor 4a (in particular, there is no need for further plating on the cut surface). Can be said to be an efficient manufacturing method. The flat conductor 4a obtained by punching has fewer burrs than the flat conductor obtained by slitting the conductor original plate. Moreover, the punching part 22 can be punched with a metal mold | die, and this can improve the stability of the dimension of a finished product. Moreover, in this manufacturing method, since the part (attachment leg part 24) which cuts out the piece of a flat conductor from the strip | belt-shaped conductor 21 is small, the metal foreign material which comes out when cutting out a flat conductor from a strip | belt-shaped conductor can be decreased.

次に、図7を参照しながら、図5のリード部材4を製造する製造方法の他の例を説明する。図7の製造方法は、図6の製造方法と比べて、打ち抜く図柄を変えたものである。
図7(A)に示すように、平形導体4aの基材となる帯状導体31がロール状に巻かれたフープ材30から、帯状導体31を引き出し、所定形状の打ち抜き部32を複数箇所打ち抜く。打ち抜き部32は、図示したように上下それぞれにL字状の領域が連なるような形状になっている。なお、図7の例では、帯状導体31の長手方向がリード部材4の幅方向となるような形状で打ち抜きを行っている。
Next, another example of the manufacturing method for manufacturing the lead member 4 of FIG. 5 will be described with reference to FIG. The manufacturing method shown in FIG. 7 is different from the manufacturing method shown in FIG.
As shown in FIG. 7A, the strip-shaped conductor 31 is pulled out from a hoop material 30 in which the strip-shaped conductor 31 serving as the base material of the flat conductor 4a is wound in a roll shape, and a plurality of punched portions 32 having a predetermined shape are punched. As shown in the drawing, the punched portion 32 has a shape in which L-shaped regions are continuous in the vertical direction. In the example of FIG. 7, punching is performed in such a shape that the longitudinal direction of the strip-shaped conductor 31 is the width direction of the lead member 4.

このような打ち抜き工程により、帯状導体31には複数の平形導体4aとその取り付け足の部分が残ることになる。ここで、上のL字と下のL字の間の部分がランナー状に四角い平形導体(平形導体4aとなる部分)を外枠に繋ぎ止める部分となり、四角い個片が複数個外枠に繋がった形状となる。   By such a punching process, a plurality of flat conductors 4a and their attachment leg portions remain on the belt-like conductor 31. Here, the portion between the upper L-shape and the lower L-shape is a portion that connects the square flat conductor (the portion that becomes the flat conductor 4a) to the outer frame in a runner shape, and a plurality of square pieces are connected to the outer frame. Shape.

さらに、メッキ工程では、図7(B)に示すように、複数の平形導体4aが取り付け足により連結された状態で帯状導体31を順次電解メッキ槽に送り込んで、残った部分の両面に連続的にメッキする。メッキ処理後に上記取り付け足の部分を刃物などでカットする。カットラインは図7(B)において一点鎖線で示しており、平形導体4aの横幅寸法に相当する。また、メッキ33は、平形導体4aのカット面を除く全面(主面及び側面)に施してある。   Further, in the plating step, as shown in FIG. 7B, the strip-shaped conductors 31 are sequentially fed into the electrolytic plating tank in a state where a plurality of flat conductors 4a are connected by attachment feet, and are continuously applied to both surfaces of the remaining portion. Plate on. After the plating process, the mounting foot portion is cut with a blade or the like. The cut line is indicated by an alternate long and short dash line in FIG. 7B and corresponds to the horizontal width of the flat conductor 4a. The plating 33 is applied to the entire surface (main surface and side surfaces) excluding the cut surface of the flat conductor 4a.

帯状導体31の上記取り付け足の部分をカットすることで、図7(C)に示すように、カット面を除く全面にメッキ33(4b)が施された平形導体の個片が連続的に作製できる。このカット面は元の帯状導体31の材質(アルミニウム又はアルミニウム合金)が露出しており非メッキ領域4cとなる。
その後、図6(C),(D)を参照して説明した方法と同様に貼り合わせ工程を実行することにより、図7(D)で示すようなリード部材4が完成する。
By cutting the mounting leg portion of the strip-shaped conductor 31, as shown in FIG. 7 (C), individual pieces of the flat conductor with the plating 33 (4b) applied to the entire surface excluding the cut surface are continuously produced. it can. The cut surface is exposed to the original material of the strip-shaped conductor 31 (aluminum or aluminum alloy) and becomes a non-plated region 4c.
Thereafter, a bonding process is executed in the same manner as described with reference to FIGS. 6C and 6D, whereby the lead member 4 as shown in FIG. 7D is completed.

また、以上の例では、電池又は蓄電デバイスの外に出る部分(ここでは、導体部分I)の側面及び端面にメッキがある例を挙げたが、導体部分Iの側面及び/又は端面にはメッキがなくてもよい。   Moreover, in the above example, although the example which has the side surface and the end surface of the part (here conductor part I) which goes out of a battery or an electrical storage device was given, the side surface and / or end surface of the conductor part I were plated. There is no need.

このような構成例のリード部材及びその製造方法を、図8を参照しながら説明する。図8の製造方法は、図6の製造方法と比べて、打ち抜く図柄を変えたものである。
図8(A)に示すように、平形導体の基材となる帯状導体41がロール状に巻かれたフープ材40から、帯状導体41を引き出し、所定形状の打ち抜き部42を複数箇所打ち抜く。打ち抜き部42は、図示したようにコの字状(四角形の一辺を除いたような形状)になっている。なお、図8の例では、帯状導体41の長手方向がリード部材4の長さ方向となるような形状で打ち抜きを行っている。このような打ち抜き工程により、帯状導体41には複数の平形導体とその取り付け足の部分が残ることになる。
A lead member having such a configuration example and a manufacturing method thereof will be described with reference to FIG. The manufacturing method of FIG. 8 is different from the manufacturing method of FIG.
As shown in FIG. 8A, the strip-shaped conductor 41 is pulled out from a hoop material 40 in which a strip-shaped conductor 41 serving as a base of a flat conductor is wound in a roll shape, and a plurality of punched portions 42 having a predetermined shape are punched. The punching portion 42 has a U-shape (a shape excluding one side of a square) as illustrated. In the example of FIG. 8, punching is performed in such a shape that the longitudinal direction of the strip conductor 41 is the length direction of the lead member 4. By such a punching process, a plurality of flat conductors and their attachment leg portions remain on the belt-like conductor 41.

さらに、メッキ工程では、図8(B)に示すように、複数の平形導体が取り付け足により連結された状態で帯状導体41を順次電解メッキ槽に送り込んで、残った部分の両面に連続的にメッキする。メッキ処理後に上記取り付け足の部分を刃物などでカットする。カットラインは図8(B)において一点鎖線で示しており、平形導体の横幅寸法に相当する。また、メッキ43は、平形導体のカット面を除く全面(主面及び側面)に施してある。   Further, in the plating step, as shown in FIG. 8B, the strip conductors 41 are sequentially fed to the electrolytic plating tank in a state where a plurality of flat conductors are connected by the attachment feet, and continuously on both surfaces of the remaining portion. Plating. After the plating process, the mounting foot portion is cut with a blade or the like. The cut line is indicated by a one-dot chain line in FIG. 8B and corresponds to the width of the flat conductor. The plating 43 is applied to the entire surface (main surface and side surfaces) excluding the cut surface of the flat conductor.

帯状導体41の上記取り付け足の部分をカットすることで、図8(C)に示すように、カット面を除く全面にメッキ43(4b)が施された平形導体の個片が連続的に作製できる。このカット面は元の帯状導体41の材質(アルミニウム又はアルミニウム合金)が露出しており非メッキ領域4cとなる。   By cutting the mounting leg portion of the strip-shaped conductor 41, as shown in FIG. 8C, individual pieces of flat conductors with plating 43 (4b) applied to the entire surface excluding the cut surface are continuously produced. it can. This cut surface is exposed to the original material of the strip-shaped conductor 41 (aluminum or aluminum alloy) and becomes a non-plated region 4c.

その後、図6(C),(D)を参照して説明した方法と同様に貼り合わせ工程を実行する。より具体的には、図8(C)に示す平形導体に対して、図8(D)に示すように、メッキ4bが施されていない部分である非メッキ領域4c(つまりカット面)の一部を覆い且つ導体幅の両側から張り出すように、導体両面から絶縁フィルム6を貼り合わせる。これにより、図8(D)で示すようなリード部材4が完成する。   Thereafter, the bonding step is performed in the same manner as the method described with reference to FIGS. More specifically, with respect to the flat conductor shown in FIG. 8C, as shown in FIG. 8D, one portion of the non-plated region 4c (that is, the cut surface) which is a portion where the plating 4b is not applied. The insulating film 6 is bonded from both sides of the conductor so as to cover the portion and project from both sides of the conductor width. Thereby, the lead member 4 as shown in FIG. 8D is completed.

元の帯状導体41の材質(アルミニウム又はアルミニウム合金)が露出した部分に絶縁フィルム6を貼り、残りの露出した部分を図1における非水電解質電池1の外部側になるように配することで、アルミニウム又はアルミニウム合金が電解液と接触せず、カット面を別途メッキする必要もない。つまり、製造したリード部材4は、カット面がある方(非メッキ領域4cがある方)を図1における非水電解質電池1の外部に配置し(つまり導体部分Iとし)、反対側を内部に配置する(つまり導体部分IIIとする)ことで、負極用のリード部材として使用できる。   By pasting the insulating film 6 on the exposed part of the original strip conductor 41 (aluminum or aluminum alloy) and arranging the remaining exposed part to be on the outside of the nonaqueous electrolyte battery 1 in FIG. Aluminum or aluminum alloy does not come into contact with the electrolytic solution, and there is no need to separately plate the cut surface. That is, the manufactured lead member 4 has the cut surface (the one with the non-plated region 4c) arranged outside the non-aqueous electrolyte battery 1 in FIG. 1 (that is, the conductor portion I) and the opposite side inside. By arranging (that is, the conductor portion III), it can be used as a lead member for a negative electrode.

このように、本発明に係る製造方法におけるメッキ工程は、平形導体を、絶縁フィルムが貼られず露出する導体部分のうち非水電解質デバイス内に露出する導体部分の全面と、中間領域及び非水電解質デバイスの外部に配置される部分のうち一部を除いた全面とに、メッキが施されるようにすればよい。   As described above, the plating step in the manufacturing method according to the present invention includes the flat conductor, the entire conductor portion exposed in the non-aqueous electrolyte device among the conductor portions exposed without the insulating film, the intermediate region, and the non-water. What is necessary is just to make it apply | coat to the whole surface except a part among the parts arrange | positioned outside the electrolyte device.

なお、図6〜図8で説明した製造方法の例でも、図3で説明した方法のように平形導体の主面上に電極を当ててメッキを施すようにしてもよく、その場合、この電極部分とカット面とが非メッキ領域となる。   In the example of the manufacturing method described with reference to FIGS. 6 to 8, plating may be performed by applying an electrode to the main surface of the flat conductor as in the method described with reference to FIG. The portion and the cut surface become a non-plated region.

1…非水電解質電池、2…封入体、2a…最内層フィルム、2b…金属箔層、2c…最外層フィルム、3…リード部材(正極側)、4…リード部材(負極側)、4a,11…平形導体、4b,12,23,33…メッキ、4c…非メッキ領域、5,6…絶縁フィルム、6a…内側層、6b…外側層、7…シール部、8…電極板リード、9…半田、20,30…フープ材、21,31…帯状導体、22,32…打ち抜き部。 DESCRIPTION OF SYMBOLS 1 ... Nonaqueous electrolyte battery, 2 ... Inclusion body, 2a ... Innermost layer film, 2b ... Metal foil layer, 2c ... Outermost layer film, 3 ... Lead member (positive electrode side), 4 ... Lead member (negative electrode side), 4a, DESCRIPTION OF SYMBOLS 11 ... Flat conductor, 4b, 12, 23, 33 ... Plating, 4c ... Non-plating area | region, 5, 6 ... Insulating film, 6a ... Inner layer, 6b ... Outer layer, 7 ... Seal part, 8 ... Electrode plate lead, 9 ... solder, 20, 30 ... hoop material, 21, 31 ... strip conductors, 22, 32 ... punched portions.

Claims (7)

アルミニウム又はアルミニウム合金からなる平形導体の中間領域に、導体幅の両側から張り出すように導体両面に絶縁フィルムが貼り合わされてなる非水電解質蓄電デバイス用のリード部材であって、
前記平形導体には、前記絶縁フィルムが貼られず露出している導体部分のうち少なくとも前記非水電解質蓄電デバイス内に露出する導体部分の全面に導電性のメッキが施され、且つ前記絶縁フィルムが貼り合わされる導体部分の一部に前記メッキが施されていない部分を有することを特徴とする非水電解質蓄電デバイス用のリード部材。
A lead member for a non-aqueous electrolyte electricity storage device in which an insulating film is bonded to both sides of a conductor so as to protrude from both sides of the conductor width in an intermediate region of a flat conductor made of aluminum or an aluminum alloy,
The flat conductor is subjected to conductive plating on at least the entire surface of the conductor portion exposed in the non-aqueous electrolyte electricity storage device among the exposed conductor portions to which the insulating film is not attached, and the insulating film A lead member for a non-aqueous electrolyte electricity storage device, characterized in that a part of the conductor part to be bonded has a part not plated.
前記メッキが施されていない部分が前記平形導体の主面上にあることを特徴とする請求項1に記載の非水電解質蓄電デバイス用のリード部材。   The lead member for a nonaqueous electrolyte electricity storage device according to claim 1, wherein the portion not plated is on a main surface of the flat conductor. 前記メッキが施されていない部分が前記平形導体の側面上にあることを特徴とする請求項1又は2に記載の非水電解質蓄電デバイス用のリード部材。   The lead member for a nonaqueous electrolyte electricity storage device according to claim 1, wherein the portion not plated is on a side surface of the flat conductor. 前記メッキは、ニッケルメッキであることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質蓄電デバイス用のリード部材。   The lead member for a nonaqueous electrolyte electricity storage device according to any one of claims 1 to 3, wherein the plating is nickel plating. アルミニウム又はアルミニウム合金からなる平形導体の中間領域に、導体幅の両側から張り出すように導体両面に絶縁フィルムを貼り合わせてなる非水電解質蓄電デバイス用のリード部材を製造する製造方法であって、
少なくとも前記平形導体を含む導体に導電性のメッキを施すメッキ工程と、前記平形導体に、導体幅の両側から張り出すように導体両面に絶縁フィルムを貼り合わせる貼り合わせ工程と、を有し、
前記メッキ工程は、前記平形導体を、前記絶縁フィルムが貼られず露出する導体部分のうち少なくとも前記非水電解質蓄電デバイス内に露出する導体部分の全面と前記中間領域のうち一部を除いた全面とに、前記メッキが施されるようにし、
前記貼り合わせ工程は、前記平形導体に、前記メッキが施されていない部分を覆うように導体両面から絶縁フィルムを貼り合わせることを特徴とする非水電解質蓄電デバイス用のリード部材の製造方法。
A manufacturing method for manufacturing a lead member for a non-aqueous electrolyte electricity storage device in which an insulating film is bonded to both sides of a conductor so as to protrude from both sides of the conductor width in an intermediate region of a flat conductor made of aluminum or an aluminum alloy,
A plating step of conducting conductive plating on a conductor including at least the flat conductor, and a bonding step of attaching an insulating film to both sides of the conductor so as to protrude from both sides of the conductor width to the flat conductor,
In the plating step, the flat conductor is an entire surface excluding at least a part of the conductor part exposed in the non-aqueous electrolyte electricity storage device and a part of the intermediate region of the conductor part exposed without the insulating film being pasted. And so that the plating is applied,
The method of manufacturing a lead member for a nonaqueous electrolyte electricity storage device, wherein the bonding step includes bonding an insulating film from both sides of the flat conductor so as to cover a portion where the plating is not performed.
前記メッキは、前記平形導体の主面上に電極を当てて施すことを特徴とする請求項5に記載の非水電解質蓄電デバイス用のリード部材の製造方法。   6. The method of manufacturing a lead member for a nonaqueous electrolyte electricity storage device according to claim 5, wherein the plating is performed by applying an electrode to a main surface of the flat conductor. アルミニウム又はアルミニウム合金からなる帯状導体をその所定形状の部分を複数箇所打ち抜くことで複数の前記平形導体が取り付け足により連結された状態とし、前記メッキ工程でこの帯状導体をメッキし、
次いで前記取り付け足の部分をカットすることで、該カットされた面を除く全面に前記メッキが施された前記平形導体を生成し、
前記貼り合わせ工程は、前記カットされた面が前記絶縁フィルムで覆われるように、前記絶縁フィルムを貼り合わせることを特徴とする請求項5又は6に記載の非水電解質蓄電デバイス用のリード部材の製造方法。
A plurality of the flat conductors are connected by mounting feet by punching a plurality of portions of the predetermined shape of a strip conductor made of aluminum or aluminum alloy, and the strip conductor is plated in the plating step,
Next, by cutting the portion of the mounting foot, to produce the flat conductor that has been plated on the entire surface excluding the cut surface,
The said bonding process bonds the said insulating film so that the said cut surface may be covered with the said insulating film, The lead member for nonaqueous electrolyte electrical storage devices of Claim 5 or 6 characterized by the above-mentioned. Production method.
JP2012198208A 2012-09-10 2012-09-10 Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same Pending JP2014053230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198208A JP2014053230A (en) 2012-09-10 2012-09-10 Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198208A JP2014053230A (en) 2012-09-10 2012-09-10 Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014053230A true JP2014053230A (en) 2014-03-20

Family

ID=50611524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198208A Pending JP2014053230A (en) 2012-09-10 2012-09-10 Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014053230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154543A1 (en) * 2016-03-07 2017-09-14 株式会社オートネットワーク技術研究所 Terminal block
JP2017224494A (en) * 2016-06-15 2017-12-21 エリーパワー株式会社 Manufacturing method of tab lead and manufacturing method of battery with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154543A1 (en) * 2016-03-07 2017-09-14 株式会社オートネットワーク技術研究所 Terminal block
JPWO2017154543A1 (en) * 2016-03-07 2019-01-17 株式会社オートネットワーク技術研究所 Terminal block
US10673178B1 (en) 2016-03-07 2020-06-02 Autonetworks Technologies, Ltd. Terminal block
JP2017224494A (en) * 2016-06-15 2017-12-21 エリーパワー株式会社 Manufacturing method of tab lead and manufacturing method of battery with the same

Similar Documents

Publication Publication Date Title
JP6038802B2 (en) Battery pack and prismatic secondary battery for use in the battery pack
US20240088395A1 (en) Secondary battery and electrode plate
JP5457040B2 (en) Electrochemical device and manufacturing method thereof
JP6395208B2 (en) Electrochemical cell, electrochemical cell module, portable device, and method of manufacturing electrochemical cell module
KR102251329B1 (en) Rechargeable battery
JP2007335290A (en) Laminated battery, and its manufacturing method
JP5673749B2 (en) Tab leads and batteries
JP2011181300A (en) Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same
JP2015032441A (en) Tab lead and nonaqueous electrolyte battery
JP5229440B2 (en) Electrochemical devices
JP2015170575A (en) Substrate unit, electrochemical cell unit and manufacturing method for electrochemical cell unit
JP2014000594A (en) Method of manufacturing laminated aluminum material, method of manufacturing sealed battery including the same and sealed battery
JP5426639B2 (en) Laminated battery and manufacturing method thereof
KR20150106913A (en) Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2014053230A (en) Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same
JP2013161547A (en) Lead member and manufacturing method therefor
JP6511271B2 (en) Substrate unit and electrochemical cell unit
JP2010033888A (en) Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR200469693Y1 (en) Lead member
US9812698B2 (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
JP2015079654A (en) Tab lead and power storage device
JP2013149813A (en) Electrode structure for laminate type energy device, method of manufacturing the same, and electric double-layer capacitor
JP4691919B2 (en) Welding method for metal parts
JP2001345090A (en) Sealed-type battery
CN205828569U (en) Secondary cell