JP2014052614A - マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置 - Google Patents

マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置 Download PDF

Info

Publication number
JP2014052614A
JP2014052614A JP2012198949A JP2012198949A JP2014052614A JP 2014052614 A JP2014052614 A JP 2014052614A JP 2012198949 A JP2012198949 A JP 2012198949A JP 2012198949 A JP2012198949 A JP 2012198949A JP 2014052614 A JP2014052614 A JP 2014052614A
Authority
JP
Japan
Prior art keywords
wavelength
mask
light
exposure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012198949A
Other languages
English (en)
Inventor
Masanori Arai
正範 荒井
Kiyoshi Higuchi
潔 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012198949A priority Critical patent/JP2014052614A/ja
Publication of JP2014052614A publication Critical patent/JP2014052614A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】位相シフト膜を用いて転写するパターンが形成されている場合に、光源から出力された光を効率よく露光光として利用することができるマスク、マスクの製造方法、露光装置、露光方法及びデバイス製造方法を提供すること。
【解決手段】転写用のパターンに対応したパターンが形成された位相シフト膜82と、位相シフト膜82を支持するマスク基板80と、を有し、露光光が照射されることで、前記パターンを転写させるマスクMである。露光光は、複数の波長を含む。位相シフト膜は、当該位相シフト膜を通過した光が、位相シフト膜が形成されていない領域を通過した光に対して半波長分ずれる基準波長が、露光光の波長分布における最も長波長側のピークに対応する波長と、最も短波長側のピークに対応する波長との間の波長となる厚みである。
【選択図】図4

Description

本発明は、マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置に関する。
液晶表示デバイス及び半導体デバイス等の各種デバイスは、レチクルやフォトマスク等(以下、単にマスクという。)に設けられたパターンを感光基板に転写するフォトリソグラフィ工程を利用して製造されている。半導体デバイスの製造時に使用されるマスクとして、位相シフト膜でパターンを形成したハーフトーン型の位相シフトマスクがある。位相シフトマスクを用いて露光を行うことで、解像力を向上させることができる。この位相シフトマスクを液晶表示デバイスの作成に用いた技術として、例えば、特許文献1には、ハーフトーン型の位相シフトマスク(ハーフトーンマスク)を用いた露光方法が記載されている。特許文献1に記載の露光方法は、露光用光源から出力され、ハーフトーンマスクを通過したi線の光を等倍投影光学系を介してガラス基板に照射する方法である。
特開2006−330691号公報
特許文献1に記載の露光方法は、実質的に単一波長であるi線の光を露光光として位相シフトマスクを用いることにより、高い解像度でパターン像をガラス基板に転写させている。一方、液晶表示デバイスを製造する露光装置では、光源としてランプを用い、複数の輝線(例えば、i線、h線、g線のうち2つ以上を含む光)を露光光として用いるものがある。これにより露光装置では、高強度(大きな露光量)の露光光でパターン像を転写することができる。ここで、露光装置は、高強度な露光光を利用しつつ、高い解像度でパターン像を転写できることが求められている。
本発明の態様は、位相シフトマスクを用い、広い波長幅(すなわち実質的に単一波長ではない波長幅)を有する露光光により、高い解像度でパターン像を転写することができるマスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置を提供することを目的とする。
本発明の第1の態様に従えば、転写用のパターンに対応したパターンが形成された位相シフト膜と、前記位相シフト膜を支持するマスク基板と、を有し、露光光が照射されることで、前記パターンを転写させるマスクであって、前記露光光は、複数の波長を含み、前記位相シフト膜は、当該位相シフト膜を通過した光が、前記位相シフト膜が形成されていない領域を通過した光に対して半波長分ずれる基準波長が、前記露光光の波長分布における最も長波長側のピークに対応する波長と、最も短波長側のピークに対応する波長との間の波長となる厚みであるマスクが提供される。
本発明の第2の態様に従えば、上記に記載のマスクの製造方法であって、露光光の波長分布を検出すること、前記露光光の波長分布に基づいて、前記露光光の波長分布における最も長波長側のピークに対応する波長と、最も短波長側のピークに対応する波長との間の波長を基準波長として算出することと、前記基準波長が半波長分ずれる位相シフト膜の厚みを決定することと、決定した厚みを有し、前記パターンが形成された位相シフト膜を前記マスク基板上に形成することと、を含むマスクの製造方法が提供される。
本発明の第3の態様に従えば、投影光学系でマスクのパターンを基板へ投影露光する露光方法であって、上記に記載の前記マスクを前記投影光学系に対して設定するマスク設定ステップと、前記マスク設定ステップで設定された前記マスクのパターンの像を前記投影光学系で前記基板に結像し、前記基板へ露光する露光ステップと、を含むことを特徴とする露光方法が提供される。
本発明の第4の態様に従えば、転写用のパターンに対応した開口が形成された位相シフト膜を有するマスクで、基板にパターンを形成する露光方法であって、前記マスクの位相シフト膜の厚みを検出することと、前記位相シフト膜の厚みに基づいて、前記基板に照射する露光光の波長分布を調整することと、を含む露光方法が提供される。
本発明の第5の態様に従えば、上記に記載の露光方法を用いて基板を露光することと、露光された前記基板を現像して、転写された前記パターンに対応する露光パターン層を形成することと、前記露光パターン層を介して前記基板を加工することと、を含むデバイス製造方法が提供される。
本発明の第6の態様に従えば、上記に記載の前記マスクを保持するマスク保持機構と、前記マスク保持機構に保持された前記マスクの視野に露光光を照射する照明光学系と、前記マスク保持機構に保持された前記マスクのパターンを投影する投影光学系と、基板を保持する基板保持機構と、前記基板と、前記投影光学系が前記マスクのパターンを投影する投影領域との少なくとも一方を移動させる移動機構と、前記投影光学系と前記マスク保持機構と前記基板保持機構との動作を制御し、前記マスクの投影像を、前記基板上に転写する制御を行う制御部と、を備える露光装置が提供される。
本発明の第7の態様に従えば、転写用のパターンに対応した開口が形成された位相シフト膜と、前記位相シフト膜を支持するマスク基板と、を有するマスクを保持するマスク保持機構と、前記マスク保持機構に保持された前記マスクの視野に露光光を照射する照明光学系と、前記照明光学系に光を供給する照明システムと、前記マスク保持機構に保持された前記マスクのパターンを投影する投影光学系と、基板を保持する基板保持機構と、前記基板と、前記投影光学系が前記マスクのパターンを投影する投影領域との少なくとも一方を移動させる移動機構と、前記マスクの前記位相シフト膜の厚みを検出する厚み検出部と、前記投影光学系と前記マスク保持機構と前記基板保持機構との動作を制御し、前記マスクの投影像を、前記基板上に転写する制御を行う制御部と、を備え、前記照明システムは、前記露光光の波長分布を調整して前記露光光の波長分布を変化させる波長調整機構を有し、前記制御部は、前記厚み検出部の検出結果に基づいて、前記波長調整機構によって前記露光光の波長分布を調整する露光装置が提供される。
本発明の態様によれば、位相シフトマスクを用い、広い波長幅(すなわち実質的に単一波長ではない波長幅)を有する露光光により、高い解像度でパターン像を転写することができるマスク、マスクの製造方法、露光装置、露光方法及びデバイス製造方法を提供することができる。
図1は、実施形態に係る露光装置の斜視図である。 図2は、実施形態に係る露光装置を走査方向側から見た図である。 図3は、実施形態に係る露光装置の側面図である。 図4は、実施形態に係る露光装置に設置されるマスクの概略構成を示す断面図である。 図5は、実施形態に係る露光装置に設置される光源の波長分布を示すグラフである。 図6は、スペクトル強度比が異なる露光光ごとのデフォーカスとNILSとの関係を示すグラフである。 図7Aは、スペクトル強度比が異なる露光光ごとのデフォーカスとNILSとの関係を示すグラフである。 図7Bは、スペクトル強度比が異なる露光光ごとのデフォーカスとNILSとの関係を示すグラフである。 図7Cは、スペクトル強度比が異なる露光光ごとのデフォーカスとNILSとの関係を示すグラフである。 図7Dは、スペクトル強度比が異なる露光光ごとのデフォーカスとNILSとの関係を示すグラフである。 図8は、位相シフト膜の膜厚ごとのデフォーカスとNILSとの関係を示すグラフである。 図9は、位相シフト膜の膜厚ごとのデフォーカスとdose誤差との関係を示すグラフである。 図10は、位相シフト膜の膜厚ごとのデフォーカスとdose誤差との関係を示すグラフである。 図11は、位相シフト膜の膜厚と露光光の組合せごとのデフォーカスとNILSとの関係を示すグラフである。 図12は、位相シフト膜の膜厚と露光光の組合せごとのデフォーカスとdose誤差との関係を示すグラフである。 図13は、位相シフト膜の膜厚と露光光の組合せごとのデフォーカスとdose誤差との関係を示すグラフである。 図14は、位相シフト膜の膜厚と露光光の組合せごとのデフォーカスとNILSとの関係を示すグラフである。 図15は、他の例の照明システムの概略構成を示す模式図である。 図16は、波長強度調整機構の概略構成を示す模式図である。 図17は、波長強度調整機構の透過率可変フィルタの概略構成を示す模式図である。 図18は、他の例の照明システムの概略構成を示す模式図である。 図19は、波長帯域調整機構の概略構成を示す模式図である。 図20は、波長帯域調整機構の概略構成を示す模式図である。 図21は、本実施形態に係るマスクの製造方法の手順を示すフローチャートである。 図22は、本実施形態に係るマスクの製造方法の手順を示す模式図である。 図23は、本実施形態に係る露光方法の手順を示すフローチャートである。 図24は、本実施形態に係るデバイス製造方法の手順を示すフローチャートである。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下に記載の実施形態により本発明が限定されるものではない。
(実施形態)
本実施形態に係る露光装置は、照明光学系及び投影光学系に対して感光基板(以下、適宜、基板という)を移動(走査)させつつ、基板にマスクのパターン(マスクパターン)を露光する走査型の露光装置である。以下においては、適宜、図に示すように、X軸、Y軸及びZ軸を設定し、これらの3軸からなるXYZ直交座標系を参照しつつ説明する。X軸、Y軸、及びZ軸周りの回転(傾斜)方向は、それぞれ、θX方向、θY方向及びθZ方向と表現する。
<露光装置の概要>
図1は、実施形態に係る露光装置EXの斜視図である。図2は、実施形態に係る露光装置EXを走査方向側から見た図である。図3は、実施形態に係る露光装置EXの側面図である。本実施形態において、露光装置EXは、マスクMと基板(感光基板)Pとを同期移動してマスクMのパターンを介した露光光ELで基板Pを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)である。露光装置EXはこのようなものに限定されず、例えば、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)であってもよい。
露光装置EXは、マスクステージ1と、基板ステージ2と、マスクステージ駆動システム3と、基板ステージ駆動システム4と、照明システムISと、投影システムPSと、制御装置5とを備えている。また、露光装置EXは、ボディ13を備えている。ボディ13は、ベースプレート10と、第1コラム11と、第2コラム12とを有する。ベースプレート10は、例えばクリーンルーム内の支持面(例えば床面)FL上に防振台BLを介して配置される。第1コラム11は、ベースプレート10上に配置される。第2コラム12は、第1コラム11上に配置される。ボディ13は、投影システムPS、マスクステージ1及び基板ステージ2のそれぞれを支持する。投影システムPSは、定盤14を介して第1コラム11に支持される。マスクステージ1は、第2コラム12に対して移動可能に支持される。基板ステージ2は、ベースプレート10に対して移動可能に支持される。
マスクMは、基板Pに投影されるデバイスのパターンが形成された位相シフト膜を含む。マスクMについては、後述する。基板Pは、基材と、その基材の表面に形成された感光膜(塗布された感光剤)とを含む。基材は、大型のガラスプレートを含み、その外径、一辺の長さ又は対角長(対角線の長さ)は、例えば500mm以上である。本実施形態においては、一例として、基板Pの基材の一辺が約2000mmの矩形形状のガラスプレートを用いる。
露光装置EXは、照明光学系としての照明モジュールIL1〜IL7を複数個(本実施形態では7個)有する照明システムISと、投影光学系としての投影モジュールPL1〜PL7を複数個(本実施形態では7個)有する投影システムPSとを備える。なお、照明モジュール及び投影モジュールの数は7個に限定されず、例えば、照明システムISが照明モジュールを11個有し、投影システムPSが投影モジュールを11個有してもよい。
照明システムISは、超高圧水銀ランプを用いた光源17と、光源17から出射された光を反射する楕円鏡18と、楕円鏡18からの光の少なくとも一部を反射するダイクロイックミラー19と、ダイクロイックミラー19からの光の進行を遮断可能なシャッタ装置と、ダイクロイックミラー19からの光が入射するコリメートレンズ21A及び集光レンズ21Bを含むリレー光学系21と、所定波長領域の光のみを通過させる干渉フィルタ22と、リレー光学系21からの光を分岐して、複数の照明モジュールIL1〜IL7のそれぞれに供給するライトガイドユニット23と、を備えている。それぞれの照明モジュールIL1〜IL7は、いずれも同様の構造である。
照明システムISは、所定の照明領域IR1〜IR7に露光光ELを照射することができる。照明領域IR1〜IR7は、各照明モジュールIL1〜IL7から出射される露光光ELの照射領域に含まれている。照明システムISは、異なる7個の照明領域IR1〜IR7のそれぞれを露光光ELで照明する。照明システムISは、照明領域IR1〜IR7のそれぞれに配置されるマスクMの部分的な領域を、均一な照度分布の露光光ELで照明する。
本実施形態では、照明システムISから射出される露光光ELとして、例えば、超高圧水銀ランプを用いた光源17から出射される輝線(g線、h線、i線)を用いる。このように、本実施形態では、露光光ELの光源17として超高圧水銀ランプを用いるが、露光光の光源はこれに限定されるものではない。例えば、露光光ELの光源17としてキセノンランプ又はLED(Light Emitting Diode)等を用いることができる。また、光源17としては、波長が異なる複数種類のレーザ光源を組み合わせたユニットを用いることができる。本実施形態の露光光ELは、単一波長の光ではなく、所定の範囲の波長分布を有する光である。露光光ELは、ブロードな波長の光、波長分布のピークを複数備える光を用いることができる。つまり、露光装置EXは、光源17として、波長分布が所定の範囲となる光を出力する種々の光源を用いることができる。
投影システムPSは、露光光ELで照射されたマスクMのパターンの像を基板Pに投影するシステムである。投影システムPSが有する投影モジュールPL1〜PL7は、所定の投影領域PR1〜PR7に、それぞれ所定の倍率でパターンの像を投影する。それぞれの投影領域PR1〜PR7は、各投影モジュールPL1〜PL7から出射された露光光ELが照射される領域である。投影システムPSは、異なる7個の投影領域PR1〜PR7にそれぞれマスクMに形成されたパターン(マスクパターン)の像を投影する。投影システムPSは、基板Pのうち投影領域PR1〜PR7に配置された部分に、マスクパターンの像を所定の投影倍率で投影する。
各投影モジュールPL1〜PL7は、いずれも同様の構造なので、投影モジュールPL1を例として説明する。投影モジュールPL1は、図3に示すように、像面調整部33と、シフト調整部34と、2組の反射屈折型光学系31、32と、視野絞り35と、スケーリング調整部36とを備えている。照明領域IR1に照射され、マスクMを通過した露光光ELは、焦点位置調整機構としての像面調整部33に入射する。像面調整部33は、投影モジュールPL1の像面の位置(Z軸、θX及びθY方向に関する位置)を調整することができる。像面調整部33は、投影モジュールPL1のZ軸方向における像面の位置を調整することにより、投影モジュールPL1の焦点位置を調整することができる。像面調整部33は、マスクM及び基板Pに対して光学的にほぼ共役な位置に配置されている。像面調整部33は、第1光学部材33A及び第2光学部材33Bと、第2光学部材33Bに対して第1光学部材33Aを移動させることができる光学系駆動装置とを備えている。
第1光学部材33Aと第2光学部材33Bとは、気体軸受により、所定のギャップを介して対向する。第1光学部材33A及び第2光学部材33Bは、露光光ELを透過するガラス板であり、それぞれくさび形状を有する。図1に示す制御装置5は、光学系駆動装置を動作させて、第1光学部材33Aと第2光学部材33Bとの位置関係を調整することにより、投影モジュールPL1の像面の位置を調整することができる。像面調整部33を通過した露光光ELは、シフト調整部34に入射する。
シフト調整部34は、基板Pの表面におけるマスクMのパターンの像をX軸方向及びY軸方向にシフトさせることができる。シフト調整部34を透過した露光光ELは、1組目の反射屈折型光学系31に入射する。反射屈折型光学系31は、マスクMのパターンの中間像を形成する。反射屈折型光学系31から射出された露光光ELは、視野絞り35に入射する。視野絞り35は、反射屈折型光学系31により形成されるマスクパターンの中間像の位置に配置されている。視野絞り35は、投影領域PR1を規定する。本実施形態において、視野絞り35は、基板P上における投影領域PR1を台形状に規定する。視野絞り35を通過した露光光ELは、2組目の反射屈折型光学系32に入射する。
反射屈折型光学系32は、反射屈折型光学系31と同様の構造である。反射屈折型光学系32から射出された露光光ELは、スケーリング調整部36に入射する。スケーリング調整部36は、マスクパターンの像の倍率(スケーリング)を調整することができる。スケーリング調整部36を介した露光光ELは、基板Pに照射される。本実施形態において、投影モジュールPL1は、マスクパターンの像を、基板Pの表面に正立等倍で投影するが、これに限定されるものではない。例えば、投影モジュールPL1は、マスクパターンの像を拡大又は縮小したり、倒立で投影したりしてもよい。投影モジュールPL1〜PL7は、いずれも同等の構造である。
マスクステージ1は、マスクMを保持した状態で、照明領域IR1〜IR7に対して移動させる装置である。マスクステージ1は、マスクMを保持可能なマスク保持部15を有する。マスク保持部15は、マスクMを真空吸着可能なチャック機構を含み、マスクMを脱着できる。マスク保持部15は、マスクMの投影システムPS側の面(パターン形成面)とX軸及びY軸を含むXY平面とがほぼ平行となるように、マスクMを保持する。露光装置EXは、マスク保持部15を含むマスクMを保持する各種機構がマスク保持機構となる。
図2に示すマスクステージ駆動システム3は、マスクステージ1を移動させるシステムである。マスクステージ駆動システム3は、例えばリニアモータを含み、第2コラム12のガイド面12G上においてマスクステージ1を移動可能である。マスクステージ1は、マスクステージ駆動システム3の作動により、マスク保持部15でマスクMを保持した状態で、ガイド面12G上を、X軸、Y軸及びθZ方向の3つの方向に移動可能である。
基板ステージ2は、基板Pを保持するとともに、パターン転写装置としての照明システムIS及び投影システムPSから照射される露光光ELの投影領域PR1〜PR7に対して基板Pを走査方向(X軸方向)に移動させる。基板ステージ2は、基板Pを保持可能な基板保持部16を有する。基板保持部16は、基板Pを真空吸着可能なチャック機構を含み、基板Pが脱着できるようになっている。基板保持部16は、基板Pの表面(露光面)とXY平面とがほぼ平行となるように、基板Pを保持する。露光装置EXは、基板保持部16を含む基板Pを保持する各種機構が基板保持機構となる。
基板ステージ駆動システム4は、基板ステージ2を移動させるシステムである。基板ステージ駆動システム4は、例えばリニアモータを含み、ベースプレート10のガイド面10G上において基板ステージ2を移動可能である。基板ステージ2は、基板ステージ駆動システム4が動作することにより、基板保持部16で基板Pを保持した状態で、図2に示すガイド面10G上を、X軸、Y軸、Z軸、θX、θY及びθZ方向の6方向に移動可能である。
図1及び図2に示すように、干渉計システム6は、マスクステージ1の位置情報を計測するレーザ干渉計ユニット6Aと、基板ステージ2の位置情報を計測するレーザ干渉計ユニット6Bとを有する。レーザ干渉計ユニット6Aは、マスクステージ1に配置された計測ミラー1Rを用いて、マスクステージ1の位置情報を計測可能である。レーザ干渉計ユニット6Bは、基板ステージ2に配置された計測ミラー2Rを用いて、基板ステージ2の位置情報を計測可能である。本実施形態において、干渉計システム6は、レーザ干渉計ユニット6A、6Bを用いて、X軸、Y軸及びθZ方向に関するマスクステージ1及び基板ステージ2それぞれの位置を計測可能である。
図2、図3に示す、マスク側計測システムとしての第1検出システム7は、マスクMの投影システムPS側における面(パターン形成面)のZ軸方向における位置を検出する。第1検出システム7は、いわゆる斜入射方式の多点フォーカス・レベリング検出システムであり、図3に示すように、マスクステージ1に保持されたマスクMの投影システムPS側の面と対向配置される複数の検出器7A〜7Fを有する。検出器7A〜7Fのそれぞれは、検出領域MZ1〜MZ6に検出光を照射する投射部と、検出領域MZ1〜MZ6に配置されたマスクMの下面(投影システムPS側における表面)からの検出光を受光可能な受光部とを有する。第1検出システム7は、検出領域MZ1〜MZ6に配置されたマスクMの下面におけるZ軸方向の位置が変化した場合、そのマスクMの下面のZ軸方向における変位量に応じて、受光部に対する検出光の入射位置がX軸方向に変位する。検出器7A〜7Fのそれぞれは、これらの受光部に対する検出光の入射位置の変位量に対応する信号を制御装置5に出力する。制御装置5は、検出器7A〜7Fのそれぞれの受光部からの信号に基づいて、検出領域MZ1〜MZ6に配置されたマスクMの下面のZ軸方向における位置を求めることができる。
図2、図3に示す、基板側計測システムとしての第2検出システム8は、基板ステージ2、より具体的には基板ステージ2が有する基板保持部16の基板保持面16Pに保持された基板Pの表面(露光面)Ppの位置に関する情報を少なくとも計測する。本実施形態において、第2検出システム8は、基板保持部16の基板保持面16Pに保持された基板Pの裏面(反露光面)Prの位置に関する情報も検出する。基板Pの表面Pp又は裏面Prの位置に関する情報を基板位置情報という。基板位置情報は、基板Pの表面Pp又は裏面PrのZ軸方向における位置に関する情報を含む。Z軸方向は、基板保持面16Pと直交する方向であり、投影モジュールPL1〜PL7が基板Pに照射する露光光ELの光軸と平行な方向である。
第2検出システム8は、いわゆる斜入射方式の多点フォーカス・レベリング検出システムであり、図3に示すように、基板ステージ2に保持された基板Pの表面と対向配置される複数の検出器8A〜8Dを有する。第2検出システム8は、4個の検出器8A〜8Dを有するが、検出器8A〜8Dの数はこれに限定されるものではない。検出器8A〜8Dのそれぞれは、検出領域PZ1〜PZ4に検出光を照射する投射部と、検出領域PZ1〜PZ4に配置された基板Pの表面からの検出光を受光可能な受光部とを有する。第2検出システム8は、検出領域PZ1〜PZ4に配置された基板Pの表面におけるZ軸方向の位置が変化した場合、その基板Pの表面のZ軸方向における変位量に応じて、受光部に対する検出光の入射位置がX軸方向に変位する。検出器8A〜8Dのそれぞれは、これらの受光部に対する検出光の入射位置の変位量に対応する信号を制御装置5に出力する。制御装置5は、検出器8A〜8Dのそれぞれの受光部からの信号に基づいて、検出領域PZ1〜PZ4に配置された基板Pの表面Pp及び裏面PrのZ軸方向における位置を求めることができる。
アライメントシステム9は、基板Pに設けられた位置検出用のマークとしてのアライメントマークを検出し、その位置を計測する。アライメントマークの位置は、例えば、露光装置EXのXY座標系における位置である。アライメントマークは、露光によって基板Pに転写されて、基板Pの表面に設けられる。本実施形態において、アライメントシステム9は、投影システムPSに対してX軸方向(走査方向)の−X側に配置されている。
アライメントシステム9は、いわゆるオフアクシス方式のアライメントシステムである。図3に示すように、アライメントシステム9は、基板ステージ2に保持された基板Pの表面と対向配置される複数(本実施形態では6個)の検出器9A〜9Fを有する。検出器9A〜9Fのそれぞれは、検出領域SA1〜SA6に検出光を照射する投射部と、検出領域SA1〜SA6に配置されたアライメントマークの光学像を取得する顕微鏡及び受光部とを有する。検出器9A〜9F及び検出領域SA1〜SA6は、走査方向と直交する方向、すなわちY軸の方向に配列されている。
図1、図3に示すように、露光装置EXは、空間像計測装置(AIS:Aerial Image Sensor)40を有している。空間像計測装置40は、投影モジュールPL1〜PL7のディストーション等の収差を計測して、投影モジュールPL1〜PL7を最適な状態とするために用いられる。図3に示すように、空間像計測装置40は、基準部材43と、空間像計測用受光装置46とを有している。基準部材43は、基板ステージ2の投影システムPS側における表面に配置されている。より具体的には、基準部材43は、基板ステージ2の基板保持部16に対して−X側に配置されている。基準部材43が配置される位置はこれに限定されるものではない。
基準部材43の投影システムPS側における表面44は、基板保持部16に保持された基板Pの表面とほぼ同一の平面内に配置される。また、基準部材43の表面44には、投影モジュールPL1〜PL7からの露光光ELを透過する透光部45が設けられている。基準部材43の下方(基板ステージ2の内部側)には、透光部45を透過した光が入射するレンズ系47と、レンズ系47を通過した光を受光する受光素子としての光センサ48とを有する。光センサ48は、透光部45を透過し、レンズ系47を通過した光を受光する。本実施形態において、光センサ48は、例えば、撮像素子(CCD:Charge Coupled Device)を含む。光センサ48は、受光した露光光の光量に応じた信号を制御装置5に出力する。
制御装置5は、露光装置EXの動作を制御するとともに、本実施形態に係る露光方法を実行する。制御装置5は、例えば、コンピュータであり、処理部5Pと、記憶部5Mと、入出力部5IOとを有する。処理部5Pは、例えば、CPU(Central Processing Unit)である。記憶部5Mは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)若しくはハードディスク装置又はこれらを組み合わせたものである。入出力部5IOは、照明システムIS、投影システムPS、干渉計システム6、アライメントシステム9、マスクステージ駆動システム3、基板ステージ駆動システム4及び空間像計測装置等の機器類と接続するためのインターフェース、入力ポート及び出力ポート等を備えている。
処理部5Pは、入出力部5IOを介して露光装置EXの機器類の動作を制御したり、機器類の状態に関する情報又は機器類の出力等を取得したり、本実施形態に係る焦点位置補正方法及び露光方法を実行したりする。記憶部5Mは、露光装置EXの機器類の動作を制御するために必要な情報、本実施形態に係る焦点位置補正方法に必要な情報及び本実施形態に係る露光方法に必要な情報等を記憶している。
基板Pの露光時において、露光装置EXの動作の少なくとも一部は、予め定められている露光に関する制御情報(露光制御情報)に基づいて実行される。露光制御情報は、露光装置EXの動作を規定する制御命令群を含み、露光レシピとも呼ばれる。以下の説明において、露光に関する制御情報を適宜、露光レシピ、と称する。露光レシピは、制御装置5に予め記憶されている。少なくとも基板Pの露光時(マスクM及び基板Pに対する露光光ELの照射動作時)における露光装置EXの動作条件は、露光レシピによって予め決定されている。制御装置5は、露光レシピに基づいて、露光装置EXの動作を制御する。
露光レシピは、基板Pの露光時におけるマスクステージ1及び基板ステージ2の移動条件を含む。基板Pの露光時、制御装置5は、露光レシピに基づいて、マスクステージ1及び基板ステージ2を移動する。露光装置EXは、マルチレンズ型スキャン露光装置であり、基板Pの露光対象領域の露光時において、マスクM及び基板Pは、XY平面内の所定の走査方向に移動される。制御装置5は、露光レシピに基づいて、マスクMと基板Pとを走査方向に同期移動しながらマスクMの下面(投影モジュールPL1〜PL7側の面)のパターン領域(パターンが形成された領域)に露光光ELを照射して、そのパターン領域を介して基板Pの表面の露光対象領域に露光光ELを照射して、それら露光対象領域を露光する。
基板P上に設けられた複数の露光対象領域に対する露光処理は、露光対象領域を投影領域PR1〜PR7に対して基板Pの表面(XY平面)に沿って走査方向に移動させるとともに、マスクMのパターン領域を照明領域IR1〜IR7に対してマスクMの下面(XY平面)に沿って走査方向に移動させながら実行される。本実施形態においては、基板Pの走査方向(同期移動方向)をX軸方向とし、マスクMの走査方向(同期移動方向)もX軸方向とする。
例えば、基板Pの表面が複数の領域に分割されることにより形成される複数の露光対象領域のうち1個を露光する場合、制御装置5は、投影領域PR1〜PR7に対して基板Pの投影領域PR1をX軸方向に移動するとともに、その基板PのX軸方向への移動と同期して、照明領域IR1〜IR7に対してマスクMのパターン領域をX軸方向に移動しながら、照明領域IR1〜IR7に露光光ELを照射して、マスクMからの露光光ELを、投影モジュールPL1〜PL7を介して投影領域PR1〜PR7に照射する。このようにすることで、基板Pの露光対象領域は、投影領域PR1〜PR7に照射された露光光ELで露光され、マスクMのパターン領域に形成されたパターンの像が、基板Pの露光対象領域に投影される。
例えば、露光対象領域の露光が終了した後、次の露光対象領域を露光するために、制御装置5は、投影領域PR1〜PR7が次の露光対象領域の露光開始位置に配置されるように、基板ステージ2を制御して、投影領域PR1〜PR7に対して基板PをXY平面内の所定方向に移動する。また、制御装置5は、照明領域IR1〜IR7がパターン領域の露光開始位置に配置されるように、マスクステージ1を制御して、照明領域IR1〜IR7に対してマスクMを移動する。そして、投影領域PR1〜PR7が次の露光対象領域の露光開始位置に配置され、照明領域IR1〜IR7がパターン領域の露光開始位置に配置された後、制御装置5は、次の露光対象領域の露光を開始する。制御装置5は、マスクステージ1が保持するマスクMと基板ステージ2が保持する基板PとをX軸方向に同期移動しながら基板Pに露光光ELを照射する動作と、次の露光対象領域を露光するために、基板PをXY平面内の所定方向(例えばX軸方向)にステッピング移動する動作を繰り返しながら、基板P上に設けられた複数の露光対象領域を、マスクMに設けられたパターン及び投影モジュールPL1〜PL7を介して順次露光する。
なお、本実施形態の露光装置EXは、照明光学系及び投影光学系を固定的に配置し、マスクM及び基板Pを照明光学系及び投影光学系に対して移動させることで、マスクM及び基板Pと照明領域IR1〜IR7及び投影領域PR1〜PR7とを相対的に移動(走査)させたが、これに限定されない。例えば、マスクM及び基板Pを固定的に配置し、照明光学系及び投影光学系を移動させてマスクM及び基板Pと照明領域IR1〜IR7及び投影領域PR1〜PR7とを相対的に移動(走査)させる機構としてもよい。
(マスク)
次に、露光装置EXで露光に用いることができるマスクの一例について説明する。図4は、実施形態に係る露光装置に設置されるマスクの概略構成を示す断面図である。本実施形態の露光装置EXは、マスクMとして位相シフトマスクが設置されている。マスクMは、図4に示すように、マスク基板80と、位相シフト膜82とを有する。
マスク基板80は、露光光に対して透過率が高い石英等の材料で作製された平板である。位相シフト膜82は、例えば、MoSiONで形成された薄膜である。位相シフト膜82は、露光光に対する透過率が2%以上10%以下、好ましくは4%以上6%以下であり、マスク基板80に比べて低い透過率で露光光を透過させる。マスク基板80の一方の表面には、位相シフト膜82によって、基板に転写するパターンが形成されている。つまり。マスク基板80には、転写するパターンに対応して位相シフト膜82が配置されていない領域と位相シフト膜82が配置された領域とがある。具体的には、図4に示すように、マスク基板80は、位相シフト膜82が配置されている面に、位相シフト膜82が配置されていないマスク面81aと、位相シフト膜82が配置されているマスク面81bとを含む。
これにより、マスクMは、マスク面81aを通過した後、位相シフト膜82の膜厚と等しい距離の空気中通過した光84と、マスク面81bを通過した後、位相シフト膜82を通過した光86とを異なる位相とする。つまり、マスクMは、マスク面81aを通過した光84と、位相シフト膜82を通過した光86との、マスクMを通過した後の位相を、互いに異なる位相とする。
なお、本実施形態では、マスク面81aを通過後に位相シフト膜82の膜厚と等しい距離の空気中を通過した光84と、マスク面81bを通過後に位相シフト膜82を通過した光86との位相差が180°となる波長、すなわち位相シフト膜82による露光光の位相のシフト量(位相のずれ量)が180°となる波長を、当該マスクMの「基準波長」と呼ぶこととする。したがって、マスクMでは、マスク面81aを通過した基準波長の光84の位相と、位相シフト膜82を通過した基準波長の光86の位相とが互いに180°ずれる、つまり半波長分ずれる。
ここで、マスクMは、基準波長をλとし、位相シフト膜82の膜厚をtとし、位相シフト膜82の基準波長λに対する屈折率をnλとすると、次式の関係を満足する。
Figure 2014052614
上記式によると、所定の屈折率nλに対し、位相シフト膜82の厚みtを変化させると、基準波長λが変化し、基準波長λを変化させると、位相シフト膜82の厚みtが変化する。
以下、図5から図14を用いて、マスクMについてより詳細に説明する。図5は、実施形態に係る露光装置に設置される光源17から供給される光の波長分布を示すグラフである。本実施形態の露光装置EXは、光源17として例えば水銀ランプ(高圧水銀ランプ)を用いる。ここで、水銀ランプは、図5に示すように、出力する光の波長に幅があり、波長に依存した強度分布を有する光を出力する。具体的には、i線(波長365nm)、h線(波長405nm)、g線(波長436nm)に強度のピークが形成される波長分布(スペクトルの強度分布)を有する光を出力する。露光装置EXは、光源17から出力された光の経路に干渉フィルタ22を配置し、干渉フィルタ22を通過させることで露光光として所定範囲の波長の光とする。つまり、露光装置EXは、干渉フィルタ22で所定範囲から外れる波長の光を実質的に除去する。これにより、露光装置EXは、図5に示す出力分布の光のうち、所定の範囲の波長、例えば、i線、h線、g線を含む350nm以上450nm以下の波長範囲の光を露光光として用いることができる。なお、露光装置EXは、干渉フィルタ22等を用いて所定の波長範囲に設定された露光光の波長ごとの強度分布(スペクトルの強度比)を、調整可能とされているが、その機構については、後述する。
ここで、本実施形態のマスクMでは、位相シフト膜82の基準波長λが、露光光の波長分布における最も長波長側のピークに対応する波長と、最も短波長側のピークに対応する波長との間の波長とされている。ここで、露光光の波長分布におけるピークとは、波長に対する強度の変化が極大値となり、かつ、その強度が所定値以上の大きさを示すものである。本実施形態では、光源17から出力されるi線、h線、g線等の輝線に対応する波長が、波長分布のピークに対応する波長に相当する。すなわち、露光光がi線、h線、g線を含む場合、位相シフト膜82の基準波長λは、i線とg線との間の波長に設定される。なお、他にも、例えば、光源にLED(Light Emitting Diode)を含む場合、当該LEDから出力される光の中で強度が最も大きくなる波長がピークに対応する波長に含まれる。光源にLD(Laser Diode)を含む場合、当該LDから出力される光の中で強度が最も大きくなる波長がピークに対応する波長となる。
次に、図6は、スペクトル強度比が異なる露光光ごとのデフォーカスとNILS(Normalized Image Log-Slope)との関係を示すグラフである。ここで、図6は、露光光の波長分布、つまりスペクトル強度比を種々の割合とした場合について、デフォーカスとNILSとの関係を算出(シミュレーション)した結果を示している。ここで、マスクMのパターンは、ラインパターンに設定されている。また、シミュレーション結果に示すデフォーカス値は、波長λと開口数NAを用いて、λ/2(NA)で規格化している。マスクMのパターンとデフォーカスの定義は、以下の実施例でも同様の規定となる。図6は、基準波長λがi線(波長365nm)となる膜厚のマスクに露光光を入射させた場合のデフォーカスとNILSとの関係を算出した結果である。なお、図6では、露光光のスペクトル強度比としてi線とg線との強度比をパラメータとして考慮している。また、図6には、比較のためにバイナリマスク、つまり、位相シフト膜82に換えて、遮光膜(Cr等で形成され、露光光を実質的に100%遮光する膜)によってパターンを形成したマスクを用いた場合についても、デフォーカスとNILSとの関係を算出した結果を示している。
ここで、図6の位相シフトマスクを用いた場合とバイナリマスクを用いた場合の算出結果を比較する。つまり、図6の(i-only)と(i-binary)との比較、または(g-only)と(g-binary)との比較を行う。この比較によると、基準波長λがi線(波長365nm)となる膜厚の位相シフト膜82を備えるマスクMを用いた場合、各輝線(i線、g線)に関して、バイナリマスクを用いる場合よりも、NILS相対値を向上させることができることがわかる。
ここで、図6に示すグラフは、位相シフト膜82の基準波長λがi線(波長365nm)となる膜厚に設定したため、i線のみの光(i-only)を用いた場合に、デフォーカスが0のときを対称軸として、デフォーカスに対してNILSが対称的に変化する。このため、図6に示すマスクMの場合、i線のみの光(i-only)を用い、フォーカス位置をベストフォーカスの位置とすることで、高品質な像を基板に転写させることができる。また、g線のみの光(g-only)を用いた場合、ベストフォーカスの位置がプラスのデフォーカス側(図6中、右側)にずれる。
露光装置EXは、図5に示すように光源17として、ブロードな光を出力する。このため、i線のみの光(i-only)またはg線のみの光(g-only)を露光光とすると、光源17から出力される光のうちの大部分の光を露光に利用しないことになるため、光源から出力される光の強度に対する露光光として使用できる光の強度の割合が低くなる。
これに対して、露光光としてi線とg線の両方を含む光を用いた場合、その露光光に含まれるi線とg線の強度比に応じて、図6に示すように、ベストフォーカスの位置が変化する。図6は、i線とg線との強度比(割合)をi線:g線=1:1.5とした場合、i線:g線=1:1とした場合、i線:g線=1:0.5とした場合について算出した結果を示している。これによると、波長分布(スペクトルの強度分布)に複数のピークを含む露光光を用いる場合、その複数のピークの強度比に依存して、その露光光によるベストフォーカス位置が、基準波長に対応するベストフォーカス位置からずれてしまうことがわかる。
図7Aから図7Dは、それぞれスペクトル強度比が異なる露光光ごとのデフォーカスとNILSとの関係を示すグラフである。図7Aから図7Dは、それぞれマスクの基準波長λを異なる波長とした以外は、図6と同様の条件で各計算を行った結果を示している。図7Aは、マスクの基準波長λを385nmとした場合の結果である。図7Bは、マスクの基準波長λを400nmとした場合の結果である。図7Cは、マスクの基準波長λを415nmとした場合の結果である。図7Dは、マスクの基準波長λを436nmとした場合の結果である。なお、図7Dは、基準波長λが436nmとした場合であり、この基準波長は、露光光の一つのピークに対応するg線の波長と一致する。
ここで、本実施形態のマスクは、図6、図7Aから図7Dに示すように、位相シフト膜の基準波長を、露光光のピークとずらすことでより高い解像度でパターン像を転写させることができる。具体的には、光源としてi線とg線の両方を含む光を用いた場合、図7Aから図7Cに示す結果の方が、図6または図7Dに示す結果よりも、バイナリマスクを用いた場合のベストフォーカスに近い位置でNILSを高くすることができている。これにより、バイナリマスクの場合よりも高い解像度でパターン像を転写させることができる。また、露光装置EXは、実質的に単一波長ではない広い波長幅を有する露光光を用いることができるため、高い解像度でパターン像を転写させつつ、光源からの出力光を効率よく露光光として利用することができる。
ここで、マスクMは、実質的にi線のみを含む露光光(i-only)によりバイナリマスクを用いて露光を行う場合よりもNILSが高くなるように、位相シフト膜82の厚さ、換言すると位相シフト膜82の基準波長λが設定されていることが好ましい。あるいは、所定の膜厚および基準波長λに設定された位相シフト膜82を有するマスクMに対して、露光装置EXでは、実質的にi線のみを含む露光光(i-only)によりバイナリマスクを用いて露光を行う場合よりもNILSが高くなるように、露光光のスペクトル強度比を設定することが好ましい。これにより、光源からの出力光を効率よく露光光として利用するとともに、広い波長幅、すなわち実質的に単一波長ではない波長幅を有する露光光により、高い解像度でパターン像を転写することができる。
次に、図8は、位相シフト膜の膜厚ごとのデフォーカスとNILSとの関係を示すグラフである。図8は、露光光のi線とg線との強度比をi線:g線=1:1とし、基準波長λがそれぞれ365nm、385nm、400nm、415nm、436nmとなる膜厚の位相シフト膜のマスクで露光を行った場合のデフォーカスとNILSとの関係を算出した結果である。なお、図8は、同じ光源でマスクとしてバイナリマスクを用いた場合のベストフォーカスの位置をデフォーカス=0の位置とした。図8に示すように、基準波長を調整することで、デフォーカスとNILSとの関係を調整することができる。
(マスクの位相シフト膜の膜厚の設計方法)
次に、位相シフト膜82の膜厚の設計方法の一例を説明する。ここで、膜厚t、基準波長λのときの位相差Δφは、次式を満足する。ここで、位相差Δφは、位相シフト膜82による露光光の位相シフト量に相等し、マスクMのマスク面81aを通過後に膜厚tと等しい距離の空気中を通過した光84と、マスク面81bと通過後に位相シフト膜82を通過した光86との位相差である。
Figure 2014052614
上記式を全微分とすると、次式となる。ただし膜厚tは定数とした。
Figure 2014052614
ここで、上記式の右辺の(dnλ/λ)/(nλ−1)は、dλ/λに対して約2桁小さい値となる。したがって、所定の膜厚の位相シフト膜では、ある波長での位相シフト量が、その波長の基準波長λに対する変化分dλの比(dλ/λ)にほぼ比例した量だけ、180°からずれた値となることがわかる。
ここで、位相シフト膜82の基準波長は、露光装置EXの露光光の波長範囲に含まれることが好ましい。このように基準波長を設定することで、マスクMを用いた場合のパターン像のデフォーカスに対するNILSの分布最適化することができる。
一例として、位相シフト膜82の基準波長λを、露光光に含まれる波長の単純平均波長に設定することができる。単純平均波長は、次式で算出することができる。ここで、λshortは、露光光に含まれる波長のうち最も短い波長(最短波長)であり、λlongは、露光光に含まれる波長のうち最も長い波長(最長波長)である。
Figure 2014052614
また、露光光の波長分布(スペクトルの強度分布)に複数のピークがある場合、位相シフトマスク82の基準波長λは、露光光の強度が所定のしきい値以上となるピークに対応する波長の和を当該ピーク波長の数で除算した波長とすることもできる。
また、基準波長λは、露光光の波長分布に基づいて、波長ごとの強度に基づいて重み付けした重み付き平均として算出してもよい。具体的には、強度をwとし、露光光の波長分布のピークの波長など波長分布の代表となる(露光光の主な波長となる)複数の波長と強度との関係を抽出して算出する場合、次式で算出することができる。
Figure 2014052614
また、強度をw(λ)とし、露光光の波長範囲のうち最も短い波長λsから最も長い波長λlまでの範囲で積分する場合は、次式で算出することができる。
Figure 2014052614
なお、マスクの設計方法としては、露光光の波長分布に基づいて、基準波長を調整してデフォーカスとNILSとの関係の演算を行い、デフォーカスの正負のそれぞれの変化に対して、NILSが対称に変化し、または、露光光の波長分布に基づいて、基準波長を調整してデフォーカスとdose誤差との関係の演算を行い、プロセスウィンドウ(Process window)から見たDOF(Depth of Focus)が最大となる波長を基準波長とすることが好ましい。上記条件をみたすことで、より高い質の像を転写することができる。
基準波長は、露光光に含まれる最も短い波長と露光光の平均波長との間の波長とすることが好ましい。露光光に含まれる最も短い波長をλshortとし、露光光の平均波長をλ(上棒)とした場合、次式を満足する値を基準波長λとすることが好ましい。
Figure 2014052614
基準波長が上記範囲を満たすことで、上述した、デフォーカスの正負のそれぞれの変化に対して、NILSが対称に変化し、Process windowから見たDOF(Depth of Focus)が最大となる波長を満たしやすくすることができる。
また、露光装置EX及びマスクMは、対象とする露光光を、単一波長の光ではなく、所定の波長幅の波長分布を有する光であればよいが、複数のピークを備える強度分布の光とすることが好ましい。これにより、上述した調整、設定を好適に行うことができる。また、露光光は、2つのピークの波長が5nm以上離れていることが好ましい。5nm以上離れている2つのピーク波長とずれた波長を基準波長とした膜厚とすることで、両方のピークに対応した膜厚とすることができ、いずれかのピークに一致させた場合よりも質の高い像を転写させることができる。また、露光光は、2つのピークの波長が30nm以上離れていることが好ましい。30nm以上離れている2つのピーク波長とずれた波長を基準波長とした膜厚とすることで、両方のピークに対応した膜厚とすることができ、いずれかのピークに一致させた場合よりも質の高い像を転写させることができる。
また、露光光は、i線、h線、g線のうち少なくとも2つの波長を含むことが好ましい。露光光として、上記成分の光を用いることで、光源から出力された光を効率よく利用することができる。また、露光光は、波長幅が30nm以上であることが好ましい。これにより、基準波長を露光光の波長分布のピークとピークの間の波長つまり、露光光の波長分布における最も長波長側のピークに対応する波長と、最も短波長側のピークに対応する波長との間の波長とすることで、像質を向上させる効果をより好適に得ることができる。
また、露光装置EXは、水銀ランプとLDの組合せを光源としてもよい。つまり、露光装置EXは、露光光として、水銀ランプから出力された光とLDから出力された光を合わせた光を用いてもよい。このように、光源として水銀ランプとLDを組み合わせることで、露光光の波長分布の調整手段としてLDを用いることができる。これにより、LDの出力を調整することで、簡単に波長分布を調整することができる。また、水銀ランプとLDを組み合わせることで、LDで水銀ランプの輝線の波長に相当する光の強度を高くすることできる。これにより、水銀ランプを高出力の水銀ランプに切り換えなくても露光量を増加させることができる。この場合、LDとしては、YAG第3高波長(波長355nm)のLD、出力波長が405nmのLD等を用いることが好ましい。これらのLDを用いることで、水銀ランプから出力された光のi線、h線、g線と合わせて、露光光の波長分布を調整しやすくすることができる。
(露光光の出力分布の調整)
露光装置EXは、マスクの膜厚に基づいて、露光光の出力分布を調整することが好ましい。なお、露光光の出力分布を調整する機構については、後述する。図6及び図7Aから図7Dに示すように位相シフト膜の膜厚が変化すると、ベストフォーカスの位置や、ベストdoseの位置がずれる。また、デフォーカスとNILSとの関係がずれるため、像質も変化する。したがって、位相シフト膜の膜厚に誤差が生じると設計値とは異なる質のパターンが転写される。
図9及び図10は、それぞれ位相シフト膜の膜厚ごとのデフォーカスとdose誤差との関係を示すグラフである。図11は、位相シフト膜の膜厚と露光光の組合せごとのデフォーカスとNILSとの関係を示すグラフである。ここで、図9から図11は、当初設計した基準波長を400nmとした場合である。図9から図11は、当該基準波長に対して波長が一定量ずれた場合、具体的には、基準波長が385、415nmとなる場合についての計算を行った。なお、基準波長の15nmずれは、膜厚の差に換算すると例えば6nmとなる。
図9は、基準波長λを385、400、415nmとした場合について、それぞれラインスリットが設計線幅の場合、設計線幅に対して線幅誤差が10%である場合、設計線幅に対して線幅誤差が−10%である場合について、デフォーカスとdose誤差との関係を算出した結果を示している。図9は、露光光の出力分布をi線:g線=1:1とした。次に、図10は、図9の条件から、基準波長λが385、400、415nmのそれぞれの場合について、露光光の出力分布を調整して、デフォーカスとdose誤差との関係を算出した結果を示している。具体的には、基準波長λが385nmの場合、露光光の出力分布をi線:g線=1:0.8とした。基準波長λが415nmの場合、露光光の出力分布をi線:g線=1:1.3とした。また、図11は、図9および図10に示す結果のそれぞれの条件の線幅誤差なしの場合のデフォーカスとNILSとの関係を示している。
図12及び図13は、それぞれ位相シフト膜の膜厚と露光光の組合せごとのデフォーカスとdose誤差との関係を示すグラフである。図14は、位相シフト膜の膜厚と露光光の組合せごとのデフォーカスとNILSとの関係を示すグラフである。図12から図14は、図9から図11と基準波長が異なる場合の計算例である。ここで、図12から図14は、当初設計した基準波長を365nmとした場合である。図12から図14は、当該基準波長に対して、波長が一定量ずれた場合、具体的には、基準波長が350、380nmとなる場合についての計算を行った。図12から図14の構成は、図9から図11と同様である。
図9、図10、図12及び図13に示すように、膜厚誤差に基づいて、つまり基準波長λが385、400、415nmのそれぞれに応じて、露光光の出力分布(スペクトルの強度比)を調整することで、best doseの変化を抑制することができる。なお、best doseの変化を抑制するように露光光の出力分布(スペクトルの強度比)を調整すると図11及び図14に示すように、NILSの観点からのDOFが減少する。したがって、露光装置EXは、best doseとDOFとが両立でき、像質が維持できる範囲で露光光の出力分布(スペクトルの強度比)を調整することが好ましい。
ここで、基準波長λを400nmとした場合と、365nmとした場合を比較すると、365nmとした場合の方が出力分布を調整する前のdose誤差を少なくすることができる。したがって、マスクは、上述したように、最短の露光光に含まれる最も短い波長と、露光光の平均波長との間とすることで、膜厚誤差が生じた場合もdose誤差を少なくすることができる。
(照明システムの変形例)
以下、図15から図20を用いて照明光学系の変形例を説明する。図15は、他の例の照明光学系の一部の概略構成を示す模式図である。図16は、波長強度調整機構の概略構成を示す模式図である。図17は、波長強度調整機構の透過率可変フィルタの概略構成を示す模式図である。
図15に示す照明システムは、波長強度調整機構120を備え、ダイクロイックミラー19を備えない以外、上述した実施形態の照明システムISと同様の構成である。図15に示す照明システムは、光源17から出射された光を反射する楕円鏡18と、楕円鏡18からの光が入射するコリメートレンズ21A及び集光レンズ21Bを含むリレー光学系21と、所定波長領域の光のみを通過させる干渉フィルタ22と、リレー光学系21からの光の対象の波長の強度を調整する波長強度調整機構120と、波長強度調整機構120からの光を分岐して、複数の照明モジュールIL1〜IL7のそれぞれに供給するライトガイドユニット23と、を備えている。照明システムは、楕円鏡18からの光の進行を遮断可能なシャッタ装置をさらに設けてもよい。
波長強度調整機構120は、リレー光学系21からの光(露光光)の波長分布を調整し、ライトガイドユニット23に向けて出力する。波長強度調整機構120は、コリメートレンズ121と、ダイクロイックミラー122と、透過率可変フィルタ123a、123bと、ミラー124a、124bと、集光レンズ125a、125bと、ダイクロイックミラー126と、ミラー127と、リレー光学系128と、を有する。
コリメートレンズ121は、リレー光学系21からの光L1をコリメートする。ダイクロイックミラー122は、光L1のうち、一部の波長の光L2を透過し、一部の波長の光L3を反射させる。具体的には、ダイクロイックミラー122は、しきい値の波長よりも短波長の光を透過し、しきい値の波長よりも長波長の光を反射する。
透過率可変フィルタ123a、123bは、複数のNDフィルタや透過率傾斜フィルタで構成されている。具体的には、透過率可変フィルタ123a、123bは、図17に示すように、領域によって透過率が変わるフィルタである。透過率可変フィルタ123a、は、光L2の経路中に配置されている。透過率可変フィルタ123bは、光L3の経路中に配置されている。透過率可変フィルタ123a、123bは、位置を調整する調整機構を備えており、調整機構により位置を調整し、光L2、L3が通過する領域の透過率を変化させることで、透過率可変フィルタ123a、123bを通過した光L2a、L3aの強度を変化させる。
ミラー124aは、光L2aを反射させる。ミラー124bは、光L3aを反射させる。集光レンズ125aは、光L2aを集光する。集光レンズ125bは、光L3aを集光する。
ダイクロイックミラー126は、一部の波長の光L2aを透過し、一部の波長の光L3aを反射させる。具体的には、ダイクロイックミラー126は、しきい値の波長よりも短波長の光を透過し、しきい値の波長よりも長波長の光を反射する。ダイクロイックミラー126は、光L2aの経路と光L3aの経路とが重なる位置に配置されており、光L2aを透過し、光L3aを反射させることで、2つの光を合流させ、光L1aとする。ミラー127は、光L1aを反射させる。リレー光学系128は、コリメートレンズ128aと集光レンズ128bとを有する。リレー光学系128は、ミラー127で反射された光L1aをコリメートレンズ128aでコリメートした後、集光レンズ128bで集光する。集光された光L1aは、ライトガイドユニット23に入射される。
波長強度調整機構120は、光L1をダイクロイックミラーで波長毎に分離し、透過率可変フィルタ123a、123bでそれぞれの波長の光の強度を調整したのち、合流させることで、光L1の各波長の成分の出力を調整した光L1aとする。また、波長強度調整機構120は、透過率可変フィルタ123a、123bの位置を調整し、光L2、L3が通過する領域の透過率を変化させることで、光の成分毎の強度を変化させることができ、光L1aの出力分布を調整することができる。ここで、上記実施形態の波長強度調整機構120は、光L1を2つに分離したが、ダイクロイックミラー、透過率可変フィルタ等をさらに設け、3つ以上に分離し、それぞれ分離した波長毎に強度を調整することもできる。
露光装置EXは、波長強度調整機構120を設けることで、マスクMの膜厚に応じて、露光光の波長分布を調整することができる。これにより、露光装置は、膜厚が設計値と異なる厚み、つまり膜厚誤差がある場合や、異なる膜厚のマスクを用いて露光を行う場合であっても、そのマスクの位相シフト膜の膜厚に対応して、露光光の波長分布を調整することができる。これにより、ベストフォーカス位置や、ベストdoseのバラツキを抑制することができ、より高い精度で露光を行うことができる。
次に、図18は、他の例の照明光学系の一部の概略構成を示す模式図である。図18に示す照明システムは、波長強度調整機構120に代えて波長強度調整機構160を備え、さらにリレー光学系176を備えている以外は、上述した図15の照明システムと同様の構成である。図18に示す照明システムは、光源17から出射された光を反射する楕円鏡18と、楕円鏡18からの光が入射するコリメートレンズ21A及び集光レンズ21Bを含むリレー光学系21と、所定波長領域の光のみを通過させる干渉フィルタ22と、露光光の波長分布を調整する波長強度調整機構160と、第1レンズ176a及び第2レンズ176bを含み、光源17からの光と波長強度調整機構160から出力された光とが入射するリレー光学系176と、リレー光学系176からの光を分岐して、複数の照明モジュールIL1〜IL7のそれぞれに供給するライトガイドユニット23と、を備えている。照明システムは、楕円鏡18からの光の進行を遮断可能なシャッタ装置をさらに設けてもよい。
波長強度調整機構160は、LD172と、ミラー174と、を有する。LD172は、露光光の波長分布に含まれる範囲の波長の光、つまり、干渉フィルタ22を通過する範囲の波長の光を出力する光源である。LD172としては、YAG第3高波長(波長355nm)のLD、出力波長が405nmのLD等を用いることができる。
ミラー174は、干渉フィルタ22の集光レンズ21B側の面に配置されている。ミラー174は、楕円鏡18で反射された光が中抜けする部分に配置されている。つまり、ミラー174は、光源17と楕円鏡18との関係で光源17からの光が透過しないまたは通過する光の強度を低い、楕円鏡18で反射され、コリメートレンズ21Aでコリメートされた光が通過する領域の中心に配置されている。ミラー174は、LD172からの光を光源17からの光が進む方向に反射する。これにより、LD172からの光が通過する経路を、光源17からの光が通過する経路を重ねることができる。
第1レンズ176aは、光源17からの光をコリメートし、波長強度調整機構160から出力された光を集光する。第2レンズ176bは、光源17からの光を集光し、波長強度調整機構160から出力された光をコリメートする。図18に示す照明システムは、光源17から出射され干渉フィルタ22を通過した光とLD172出力されミラーで反射された光との両方が集光レンズ21B及びリレー光学系176を通過してライトガイドユニット23に入射する。
波長強度調整機構160を備える照明システムは、波長強度調整機構160からの光の光量を調整することで、具体的にはLD172で出射する光の光量を調整することで、露光光の波長分布を調整することができる。具体的には、波長強度調整機構160は、光源17からの光の出力の10%以上、好ましくは20%以上の光量の光をLD172から出力させ、必要に応じてLD172の電流量を制御し、LD172からの光の光量を調整することで、露光光の波長分布(スペクトルの強度比)を調整する。つまり、LD172は、単一波長の光を出力するため、光の光量を調整することで、所定の波長の強度を調整することができる。これにより、LD172からの光の光量を調整することで、露光光に含まれる所定の波長の強度を調整することができ、露光光の波長分布を調整することができる。
ここで、LD172として、YAG第3高波長(波長355nm)のLDを用いることで、水銀ランプから出力するi線とみなせる光の強度(光量)を調整することができる。LD172として、出力波長が405nmのLDを用いることで、水銀ランプから出力するh線とみなせる光の強度(光量)を調整することができる。なお、波長強度調整機構160は、複数のLD172を備え、各LD172の光量を調整してもよい。
本実施形態は、波長強度調整機構160の光源をLD172とすることで、LDの出力を制御するのみで、簡単に露光光の波長分布を簡単に調整できる。なお、波長強度を制御しやすくなるため、出力する光の波長分布が基本的に単一波長となるLDを用いることが好ましいが、これに限定されない。波長強度調整機構160の光源にLEDを用いてもよいし、他の光源を用いてもよい。この場合は、光源17からの光と合流する前に波長分布を調整することが好ましい。
露光装置EXは、マスクの膜厚を検出する厚み検出部としては、種々の機構を用いることができる。例えば、マスクの各位置を透過した光の波長分布や強度を検出して膜厚を検出する機構や、膜厚を直接計測する機構、作製された基板の計測結果から算出する機構等を用いることができる。また露光装置EXは、厚み検出部として入力部を用い、入力部に入力された操作から膜厚を検出してもよい。つまりオペレータによって入力された厚みを膜厚として検出してもよい。
また、上記実施形態では、波長強度調整機構を、露光光を波長毎に分離する機構と、分離した光の経路上に配置され、透過率を変化可能な透過率可変フィルタと、前記分離した光を合流させる機構と、を有する構成としたが、これに限定されない。波長強度調整機構としては、透過する光の強度比が異なる干渉フィルタを複数設け、露光光を透過させる干渉フィルタを切り換える機構としてもよい。つまり、膜厚に応じて使用する干渉フィルタを切り換える機構としてもよい。干渉フィルタを切り替えることで、当該干渉フィルタが配置されている領域を通過する光の波長分布を変化させることができる。
また、上記実施形態の露光装置EXは、波長強度調整機構によって、露光光の波長分布(各波長の強度の分布)を調整したがこれに限定されない。露光装置は、露光光の波長分布を調整する波長調整機構として、露光光の波長の帯域を調整する波長帯域調整機構を用いることもできる。
以下、図19及び図20を用いて、波長帯域調整機構について説明する。図19は、波長帯域調整機構の概略構成を示す模式図である。図20は、波長帯域調整機構の概略構成を示す模式図である。本実施形態の波長帯域調整機構130は、干渉フィルタ22に換えて、コリメートレンズ21Aと、コリメートレンズ21Bとの間に配置されている。波長帯域調整機構130は、広帯域干渉フィルタであり、LPF(長波長透過フィルタ)ターレット132aと、SPF(短波長透過フィルタ)ターレット132bと、を有する。
図20に示すように、LPF(長波長透過フィルタ)ターレット132aは、複数の長波長透過フィルタ134a、134b、134c、134dを有する。長波長透過フィルタ134a、134b、134c、134dは、それぞれ露光光が通過する範囲よりも大きい。長波長透過フィルタ134a、134b、134c、134dは、しきい値より長波長の光を透過させるフィルタ、つまり短波長カットフィルタである。長波長透過フィルタ134a、134b、134c、134dは、透過させる波長の下限値がそれぞれ異なる。LPF(長波長透過フィルタ)ターレット132aは、露光光の経路に配置する長波長透過フィルタ134a、134b、134c、134dを切り換えることで、透過させる光の下限の波長を変化させることができる。
図20に示すように、SPF(短波長透過フィルタ)ターレット132bは、複数の短波長透過フィルタ136a、136b、136c、136dを有する。短波長透過フィルタ136a、136b、136c、136dは、それぞれ露光光が通過する範囲よりも大きい。短波長透過フィルタ136a、136b、136c、136dは、しきい値より短波長の光を透過させるフィルタ、つまり長波長カットフィルタである。短波長透過フィルタ136a、136b、136c、136dは、透過させる波長の上限値がそれぞれ異なる。SPF(短波長透過フィルタ)ターレット132bは、露光光の経路に配置する短波長透過フィルタ136a、136b、136c、136dを切り換えることで、透過させる光の下限の波長を変化させることができる。
波長帯域調整機構130は、以上のような構成であり、LPF(長波長透過フィルタ)ターレット132aが露光光の経路に配置する長波長透過フィルタ134a、134b、134c、134dと、SPF(短波長透過フィルタ)ターレット132bが露光光の経路に配置する短波長透過フィルタ136a、136b、136c、136dとの組合せを切り換えることで、波長帯域調整機構130で透過させる露光光の波長範囲を切り換えることができる。露光装置EXは、波長帯域調整機構130で波長範囲を調整することでも、露光光の波長分布を調整することができる。したがって、マスクの位相シフト膜の膜厚に対応して、露光光の波長分布を調整することができ、ベストフォーカス位置や、ベストdoseのバラツキを抑制することができ、より高い精度で露光を行うことができる。
また、上記実施形態の露光装置は、波長調整機構を照明システムに配置し、ライトガイドユニット23に入射される前の露光光の波長分布を調整することで、露光光の波長分布を一括して調整することができ、装置構成を簡単にすることができる。なお、露光装置は、ライトガイドユニット23で露光光を複数に分岐した後に波長調整機構を配置してもよい。これにより、露光領域ごとに露光光の波長分布を調整できるので、各露光領域のマスクの膜厚誤差(膜厚のムラ)に対応して補正することができる。
また、露光装置EXは、マスクの位相シフト膜の膜厚に基づいて、投影光学系でフォーカス位置を調整することが好ましい。このようにマスクの位相シフト膜の膜厚に基づいて、フォーカス位置を調整することで、膜厚の変化に合わせて、フォーカス位置を調整することができる。これにより、膜厚が変化しても所望のフォーカス位置で露光を行うことができ、高精度な露光を行うことができる。
(マスクの製造方法)
図21は、本実施形態に係るマスクの製造方法の手順を示すフローチャートである。図22は、本実施形態に係るマスクの製造方法の手順を示す模式図である。マスクの製造方法では、露光光の出力条件を抽出する(ステップS102)。具体的には、出力条件として、露光光の波長分布を抽出する。次に、マスクの製造方法では、露光光の出力条件を抽出したら、出力条件に基づいて膜厚を決定する(ステップS104)。マスクの製造方法では、露光光の波長分布に基づいて、基準波長を算出し、基準波長に基づいて、位相シフト膜の膜厚を決定する。ここで、基準波長は、露光光のピークの波長とは異なる波長とする。また、基準波長は、上述した各種基準に基づいて設定する。マスクの製造方法では、膜厚を決定したら、製造時の膜厚誤差を算出し(ステップS106)、算出した膜厚誤差に基づいて、決定した膜厚を補正する(ステップS108)。マスクの製造方法では、製造時の誤差を加味して、膜厚を補正することで膜厚誤差が生じている場合でもその影響が少ない膜厚とすることができる。なお、ステップS106、108の処理は、実行しなくてもよい。マスクの製造方法では、ステップS108でマスクの膜厚を補正したら、決定した膜厚の位相シフト層のマスクを作成する(ステップS110)。
以下、図22を用いて、ステップS110の処理について説明する。マスクの製造方法では、マスク基板200の表面に位相シフト膜202を例えばスパッタで蒸着する(ステップS120)。マスクの製造方法では、マスク基板200の表面に位相シフト膜202を形成したら、位相シフト膜202の表面にレジスト204を塗布する(ステップS122)。マスクの製造方法では、レジスト膜を塗布したら、パターンに対応してレジスト204を露光し、現像することで、レジストパターン204aを形成する(ステップS124)。ここで、レジストパターン204aは、位相シフト膜202を残す領域を残し、位相シフト膜202を除去する領域を開口とする。マスクの製造方法では、レジストパターン204aを作製したら、エッチングを行い、その後、レジストパターン204aを除去することで、パターンに対応して位相シフト膜が形成されていない領域が設けられた位相シフト膜202aを形成する(ステップS126)。マスクの製造方法は、以上の手順でマスクを製造する。マスクの製造方法は、露光光の波長分布に基づいて、露光光のピークの波長とは異なる波長を基準波長として膜厚を決定し、当該膜厚の位相シフト膜のマスクを製造する。これにより、液晶表示デバイスの製造に好適に用いることができる、具体的には光源の光を効率よく利用することができ、かつ、像質も高くすることができるマスクを製造することができる。
(露光方法)
図23は、本実施形態に係る露光方法の手順を示すフローチャートである。まず、露光装置EXは、マスクの膜厚を検出する(ステップS150)。露光装置EXは、マスクの膜厚を検出したら、膜厚に対応する出力条件を抽出する(ステップS152)。具体的には、位相シフト膜の膜厚で像質を向上でき、かつ、光源の光を効率よく利用できる波長の波長分布を算出する。
露光装置EXは、出力条件を抽出したら、露光光の強度分布の補正ありかを判定する(ステップS154)。露光装置EXは、露光光の強度分布を補正あり(ステップS154でYes)と判定した場合、露光光の強度分布を調整する(ステップS156)。具体的には、波長強度調整機構で各波長の強度を調整する。露光装置EXは、露光光の強度分布を補正なし(ステップS154でNo)と判定した場合、または、露光光の強度分布を調整した場合、露光光の波長の補正ありかを判定する(ステップS158)。露光装置EXは、露光光の波長の補正あり(ステップS158でYes)と判定した場合、露光光の波長を調整する(ステップS160)。具体的には、波長帯域調整機構で露光光の波長帯域を調整する。露光装置EXは、露光光の波長を補正なし(ステップS158でNo)と判定した場合、または、露光光の波長を調整した場合、本処理を終了する。
露光装置EXは、ステップS150からステップS160の処理で調整を行ったら、露光動作を開始し、上述したように基板及びマスクと投影領域とを相対的に移動させ、マスクのパターンを基板に転写させる。
なお、露光装置EXは、出力条件として、露光光の波長分布に加え、露光時のフォーカス位置も調整するようにしてもよい。
(デバイス製造方法)
図24は、本実施形態に係るデバイス製造方法の手順を示すフローチャートである。本実施形態に係るデバイス製造方法は、半導体デバイス等のデバイスを製造する。本実施形態に係るデバイス製造方法では、まず、デバイスの機能・性能設計が行われる(ステップS201)。次に、設計に基づいたマスク(レチクル)が製作される(ステップS202)。次に、デバイスの基材である基板が製造される(ステップS203)。次に、本実施形態に係る露光方法を用いて、マスクパターンを露光光で基板を露光してマスクパターンを基板に転写する工程と、露光された基板(感光剤)を現像して、転写されたアライメントマークを含むパターンに対応する露光パターン層(現像された感光剤の層)を形成し、この露光パターン層を介して基板を加工する工程とを含む基板処理(露光処理)が実行される(ステップS204)。ステップS204の基板処理において行われる本実施形態に係る露光方法では、上述したように、本実施形態に係る焦点位置補正方法によって露光装置EXの各投影モジュールPL1〜PL7の焦点位置が制御される。加工された基板が、ダイシング工程、ボンディング工程、パッケージ工程等の加工プロセスを含むデバイス組立工程(ステップS205)及び検査(ステップS206)等を経ることにより、デバイスが製造され、出荷される。
以上、本発明者らによってなされた発明を適用した実施形態について説明したが、上記実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。
また、本発明は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書等に開示されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。
また、本発明は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書等に開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。
また、露光装置EXの種類としては、液晶表示素子製造用又はディスプレイ製造用の露光装置にも広く適用できる。
また、上述の各実施形態においては、レーザ干渉計を含む干渉計システムを用いて各ステージの位置情報を計測するものとしたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。
また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に記載されているように、露光すべきパターンの電子データに基づいて透過パターン、反射パターン又は発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしてもよい。
また、上述の実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度及び光学的精度を保つように組み立てることで製造される。これら各種精度を確保するために、この組立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組立工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組立工程の前に、各サブシステム個々の組立工程があることはいうまでもない。各種サブシステムの露光装置への組立工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
また、上述の実施形態及び変形例の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。さらに、本発明の要旨を逸脱しない範囲で構成要素の置換又は変更を行うことができる。また、法令で許容される限りにおいて、上述の実施形態及び変形例で引用した露光装置等に関するすべての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
また、上述の実施形態では、本発明を露光装置に適用するものとして説明したが、本発明は、露光装置に限定されず、例えば基板Pに設けられた複数の被処理領域を顕微鏡等で順次観察して検査する検査装置等にも適用することができる。このように、上記実施形態及びその変形例に基づいて当業者等によりなされる他の実施形態、実施例、実施形態の組合せ及び運用技術等は、すべて本発明の範疇に含まれる。
1 マスクステージ
2 基板ステージ
3 マスクステージ駆動システム
4 基板ステージ駆動システム
5 制御装置
6 干渉計システム
7 第1検出システム
8 第2検出システム
8A〜8D 検出器
9 アライメントシステム
10 ベースプレート
11、12 コラム
13 ボディ
16 基板保持部
16P 基板保持面
33 像面調整部
40 空間像計測装置
80 マスク基板
82 位相シフト膜
84、86 光
EX 露光装置
IL1〜IL7 照明モジュール
IR1〜IR7 照明領域
IS 照明システム
M マスク
P 基板
PL1〜PL7 投影モジュール
PR1〜PR7 投影領域
PS 投影システム
PZ1〜PZ4 検出領域

Claims (20)

  1. 転写用のパターンに対応したパターンが形成された位相シフト膜と、前記位相シフト膜を支持するマスク基板と、を有し、露光光が照射されることで、前記パターンを転写させるマスクであって、
    前記露光光は、複数の波長を含み、
    前記位相シフト膜は、当該位相シフト膜を通過した光が、前記位相シフト膜が形成されていない領域を通過した光に対して半波長分ずれる基準波長が、前記露光光の波長分布における最も長波長側のピークに対応する波長と、最も短波長側のピークに対応する波長との間の波長となる厚みであるマスク。
  2. 前記露光光は、i線、h線、g線のうち少なくとも2つの波長を含む請求項1に記載のマスク。
  3. 前記露光光は、波長幅が30nm以上である請求項1または2に記載のマスク。
  4. 前記露光光は、水銀ランプからの光とLDからの光とを合わせた光である請求項1から3のいずれか一項に記載のマスク。
  5. 前記基準波長は、前記露光光に含まれる最も短い波長と前記露光光の平均波長との間の波長である請求項1から4のいずれか一項に記載のマスク。
  6. 前記平均波長は、前記露光光の波長分布に基づいて、強度を重み係数とした重み付き平均で算出される請求項5に記載のマスク。
  7. 前記平均波長は、前記露光光の最長波長と最短波長の合計を2で割って算出した波長である請求項5に記載のマスク。
  8. 請求項1から7のいずれか一項に記載のマスクの製造方法であって、
    露光光の波長分布を検出すること、
    前記露光光の波長分布に基づいて、前記露光光の波長分布における最も長波長側のピークに対応する波長と、最も短波長側のピークに対応する波長との間の波長を基準波長として算出することと、
    前記基準波長が半波長分ずれる位相シフト膜の厚みを決定することと、
    決定した厚みを有し、前記パターンが形成された位相シフト膜を前記マスク基板上に形成することと、を含むマスクの製造方法。
  9. 投影光学系でマスクのパターンを基板へ投影露光する露光方法であって、
    請求項1から7のいずれか一項に記載の前記マスクを前記投影光学系に対して設定するマスク設定ステップと、
    前記マスク設定ステップで設定された前記マスクのパターンの像を前記投影光学系で前記基板に結像し、前記基板へ露光する露光ステップと、を含むことを特徴とする露光方法。
  10. 転写用のパターンに対応したパターンが形成された位相シフト膜を有するマスクで、基板にパターンを形成する露光方法であって、
    前記マスクの位相シフト膜の厚みを検出することと、
    前記位相シフト膜の厚みに基づいて、前記基板に照射する露光光の波長分布を調整することと、を含む露光方法。
  11. 前記露光光の波長毎の強度を調整することで前記基板に照射する露光光の波長分布を調整する請求項10に記載の露光方法。
  12. 前記露光光の波長の範囲を調整することで前記基板に照射する露光光の波長分布を調整する請求項10に記載の露光方法。
  13. 前記投影光学系は、複数の個別投影光学系で構成され、
    前記露光ステップは、複数の前記個別投影光学系に対して前記マスクおよび前記基板を相対移動させつつ、前記マスクのパターンを前記基板へ露光することを特徴とする請求項9から12のいずれか一項に記載の露光方法。
  14. 前記基板は、外径が500mmより大きいことを特徴とする請求項9から13のいずれか一項に記載の露光方法。
  15. 請求項9から14のいずれか一項に記載の露光方法を用いて基板を露光することと、
    露光された前記基板を現像して、転写された前記パターンに対応する露光パターン層を形成することと、
    前記露光パターン層を介して前記基板を加工することと、
    を含むデバイス製造方法。
  16. 請求項1から7のいずれか一項に記載の前記マスクを保持するマスク保持機構と、
    前記マスク保持機構に保持された前記マスクの視野に露光光を照射する照明光学系と、
    前記マスク保持機構に保持された前記マスクのパターンを投影する投影光学系と、
    基板を保持する基板保持機構と、
    前記基板と、前記投影光学系が前記マスクのパターンを投影する投影領域との少なくとも一方を移動させる移動機構と、
    前記投影光学系と前記マスク保持機構と前記基板保持機構との動作を制御し、前記マスクの投影像を、前記基板上に転写する制御を行う制御部と、
    を備える露光装置。
  17. 転写用のパターンに対応したパターンが形成された位相シフト膜と、前記位相シフト膜を支持するマスク基板と、を有するマスクを保持するマスク保持機構と、
    前記マスク保持機構に保持された前記マスクの視野に露光光を照射する照明光学系と、
    前記照明光学系に光を供給する照明システムと、
    前記マスク保持機構に保持された前記マスクのパターンを投影する投影光学系と、
    基板を保持する基板保持機構と、
    前記基板と、前記投影光学系が前記マスクのパターンを投影する投影領域との少なくとも一方を移動させる移動機構と、
    前記マスクの前記位相シフト膜の厚みを検出する厚み検出部と、
    前記投影光学系と前記マスク保持機構と前記基板保持機構との動作を制御し、前記マスクの投影像を、前記基板上に転写する制御を行う制御部と、を備え、
    前記照明システムは、前記露光光の波長分布を調整して前記露光光の波長分布を変化させる波長調整機構を有し、
    前記制御部は、前記厚み検出部の検出結果に基づいて、前記波長調整機構によって前記露光光の波長分布を調整する露光装置。
  18. 前記波長調整機構は、前記露光光の波長毎の強度を調整する波長強度調整機構を備える請求項17に記載の露光装置。
  19. 前記波長強度調整機構は、前記露光光を波長毎に分離する機構と、分離した光の経路上に配置され、透過率を変化可能な透過率調整フィルタと、前記分離した光を合流させる機構と、を有する請求項18に記載の露光装置。
  20. 前記波長調整機構は、前記露光光の波長の帯域を調整する波長帯域調整機構を備える請求項17から19のいずれか一項に記載の露光装置。
JP2012198949A 2012-09-10 2012-09-10 マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置 Pending JP2014052614A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198949A JP2014052614A (ja) 2012-09-10 2012-09-10 マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198949A JP2014052614A (ja) 2012-09-10 2012-09-10 マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置

Publications (1)

Publication Number Publication Date
JP2014052614A true JP2014052614A (ja) 2014-03-20

Family

ID=50611116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198949A Pending JP2014052614A (ja) 2012-09-10 2012-09-10 マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置

Country Status (1)

Country Link
JP (1) JP2014052614A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146448A1 (ja) * 2018-01-24 2019-08-01 株式会社ニコン 露光装置及び露光方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146448A1 (ja) * 2018-01-24 2019-08-01 株式会社ニコン 露光装置及び露光方法
CN111656284A (zh) * 2018-01-24 2020-09-11 株式会社尼康 曝光装置及曝光方法
CN111656284B (zh) * 2018-01-24 2024-04-12 株式会社尼康 曝光装置及曝光方法

Similar Documents

Publication Publication Date Title
JP5385652B2 (ja) 位置検出装置、露光装置、位置検出方法、露光方法及びデバイス製造方法
KR101642552B1 (ko) 계측 방법, 노광 방법 및 장치
JP5327043B2 (ja) 位置計測モジュール、位置計測装置、ステージ装置、露光装置及びデバイス製造方法
KR102106041B1 (ko) 토포그래피 측정 시스템
JP2008171960A (ja) 位置検出装置及び露光装置
US10845720B2 (en) Mark detection apparatus, mark detection method, measurement apparatus, exposure apparatus, exposure method and device manufacturing method
US20110058151A1 (en) Exposure apparatus and device manufacturing method
JP2009016762A (ja) 露光装置及びデバイス製造方法
KR102533302B1 (ko) 이동체의 제어 방법, 노광 방법, 디바이스 제조 방법, 이동체 장치, 및 노광 장치
JP2001257157A (ja) アライメント装置、アライメント方法、露光装置、及び露光方法
US10488764B2 (en) Lithography apparatus, lithography method, and method of manufacturing article
KR101760843B1 (ko) 마스크 정렬 마크, 포토마스크, 노광 장치, 노광 방법 및 디바이스의 제조 방법
US20050002035A1 (en) Exposure apparatus
KR20080066596A (ko) 측정방법, 노광방법, 노광장치 및 디바이스 제조방법
JP2006269669A (ja) 計測装置及び計測方法、露光装置並びにデバイス製造方法
JP2014052614A (ja) マスク、マスクの製造方法、露光方法、デバイス製造方法及び露光装置
WO2013168457A1 (ja) 面位置計測装置、面位置計測方法、露光装置、およびデバイス製造方法
KR20220020825A (ko) 리소그래피 패터닝 디바이스 멀티채널 위치 및 레벨 게이지
WO2013168456A1 (ja) 面位置計測装置、露光装置、およびデバイス製造方法
JP2004128149A (ja) 収差計測方法、露光方法及び露光装置
JP2004281904A (ja) 位置計測装置、露光装置、及びデバイス製造方法
JP6226525B2 (ja) 露光装置、露光方法、それらを用いたデバイスの製造方法
JP2009283795A (ja) アライメント検出系、露光装置およびデバイス製造方法
JP6061912B2 (ja) 計測方法、露光方法および装置
JP2003338448A (ja) 位置計測方法と位置計測装置、及び露光方法と露光装置並びにマーク計測方法