JP2014050114A - Manufacturing method of laminated core and, laminated core manufactured using the same - Google Patents

Manufacturing method of laminated core and, laminated core manufactured using the same Download PDF

Info

Publication number
JP2014050114A
JP2014050114A JP2012188440A JP2012188440A JP2014050114A JP 2014050114 A JP2014050114 A JP 2014050114A JP 2012188440 A JP2012188440 A JP 2012188440A JP 2012188440 A JP2012188440 A JP 2012188440A JP 2014050114 A JP2014050114 A JP 2014050114A
Authority
JP
Japan
Prior art keywords
piece
magnetic pole
core
laminated
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012188440A
Other languages
Japanese (ja)
Inventor
Kenji Ishimatsu
憲治 石松
Kiyohisa Maki
清久 牧
Yasuhiro Morinaga
康博 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2012188440A priority Critical patent/JP2014050114A/en
Publication of JP2014050114A publication Critical patent/JP2014050114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated core in which reduction of material yield is prevented, shape precision of the laminated core is improved and a width of a magnetic pole axial piece is changed.SOLUTION: A manufacturing method of a laminated core in which a plurality of arcuate segment core pieces are die-cut from a bar, the segment core pieces are laminated in an annular shape, and a width is gradually reduced in upper and lower portions of a magnetic pole axial part, includes: a slot die-cutting step of die-cutting and forming slots with different widths. The slot die-cutting step includes the steps of: forming a middle layer portion of the magnetic pole axial part; forming an upper layer portion and a lower layer portion of the magnetic pole axial part; and forming a top layer portion and a bottom layer portion of the magnetic pole axial part.

Description

本発明は、複数の円弧状のセグメント鉄心片を環状に積層した積層鉄心の製造方法およびこれを用いて製造した積層鉄心に関する。 The present invention relates to a method for manufacturing a laminated core in which a plurality of arc-shaped segment core pieces are laminated in an annular shape, and a laminated core produced using the same.

昨今、積層鉄心の磁極軸部への占積率向上を目的として、図4(A)、(B)に示すように、分割積層鉄心90の磁極軸部91をa‐a断面からみてその上部92および下部93の幅が漸減したものが開示されている。これによると、磁極軸部91への巻線が、磁極軸部91の上端部92および下端部93に隙間を生じさせることなく巻回できるようになっている。 Recently, for the purpose of improving the space factor of the laminated core in the magnetic pole shaft portion, as shown in FIGS. 4A and 4B, the magnetic pole shaft portion 91 of the divided laminated core 90 is viewed from the cross section aa. The width of 92 and the lower part 93 is gradually reduced. According to this, the winding around the magnetic pole shaft portion 91 can be wound without causing a gap between the upper end portion 92 and the lower end portion 93 of the magnetic pole shaft portion 91.

上述した分割積層鉄心90の製造は図5(特許文献1)に示すような順送り金型によって打抜き形成される。工程2で第1の金型96がヨーク片部94の一方の半径方向内側辺に沿って移動し、工程3で第2の金型97がヨーク片部94の他方の半径方向内側辺に沿って移動し、磁極軸片部95の幅が調整できるようになっている。この第1、第2の金型96、97を、プレス加工基準ラインに対して緩やかに後退または前進させることにより、磁極軸片部95の幅が変化した分割積層鉄心90を形成している。 The above-described divided laminated core 90 is manufactured by stamping with a progressive die as shown in FIG. 5 (Patent Document 1). In step 2, the first mold 96 moves along one radial inner side of the yoke piece 94, and in step 3, the second mold 97 moves along the other radial inner side of the yoke piece 94. The width of the magnetic pole piece piece 95 can be adjusted. The first and second molds 96 and 97 are slowly retracted or advanced with respect to the press working reference line, thereby forming the divided laminated core 90 in which the width of the magnetic pole piece 95 is changed.

また、磁極軸片部の幅が変化した積層鉄心は図6(特許文献2)に示すような順送り金型によっても打抜き形成される。工程3で第1の金型98が、工程5で第2の金型99が鉄心片100の中心軸を基準に左右に回転移動可能となっている。この第1、第2の金型98、99が鉄心片100の中心軸を基準に左右に回転移動することで、磁極軸片部101の幅が変化した積層鉄心を形成している。 Further, the laminated iron core whose width of the magnetic pole piece is changed can be formed by punching with a progressive die as shown in FIG. 6 (Patent Document 2). In step 3, the first mold 98 and the second mold 99 in step 5 can be rotated to the left and right with respect to the central axis of the core piece 100. The first and second molds 98 and 99 rotate to the left and right with respect to the central axis of the iron core piece 100 to form a laminated iron core in which the width of the magnetic pole piece piece 101 is changed.

特開2008−67588JP2008-67588 特開2008−061315JP2008-061315

特許文献1の分割積層鉄心の製造方法では、分割積層鉄心の磁極軸部91に巻線後、分割積層鉄心同士を環状に組付ける必要がある。ここで、分割積層鉄心は個別に形成されるため、板厚偏差等により各分割積層鉄心の精度に微妙な差が生じることで、分割積層鉄心の連結部同士が嵌合しにくくなり、組付けに時間がかかる問題があった。また、特許文献2の積層鉄心の製造方法では特許文献1に使用する金型に比べて、金型が大型化する。このため、金型を取り付けるプレス機械も大型化し、金型やプレス機械の設備費用が高額となっていた。また、分割積層鉄心に比べて積層鉄心の形状精度は高くなるものの、材料歩留りが低下する。このように、特許文献1と特許文献2の製造方法ではいずれも問題を抱えていた。 In the manufacturing method of the split laminated iron core of Patent Document 1, it is necessary to assemble the split laminated iron cores in an annular shape after winding around the magnetic pole shaft portion 91 of the split laminated core. Here, since the divided laminated cores are individually formed, a slight difference occurs in the accuracy of each divided laminated core due to deviations in sheet thickness, etc., making it difficult for the connecting portions of the divided laminated cores to be fitted together. There was a problem that took time. In addition, in the method for manufacturing a laminated iron core disclosed in Patent Document 2, the mold becomes larger than the mold used in Patent Document 1. For this reason, the press machine which attaches a metal mold | die also became large, and the installation expense of a metal mold | die and a press machine was expensive. Further, although the shape accuracy of the laminated iron core is higher than that of the divided laminated iron core, the material yield is lowered. As described above, both of the manufacturing methods of Patent Document 1 and Patent Document 2 have problems.

本発明は、材料歩留りを低下させることなく、かつ積層鉄心の形状精度が向上し、磁極軸片部の幅が変化した積層鉄心を提供することを目的とする。 An object of the present invention is to provide a laminated core in which the shape accuracy of the laminated core is improved without reducing the material yield, and the width of the pole piece is changed.

前記目的に沿う第1の発明に係る積層鉄心の製造方法は、条材から複数の円弧上セグメント鉄心片を打ち抜き、該セグメント鉄心片を環状に積層し、磁極軸部の上部および下部の幅が漸減した積層鉄心の製造方法において、幅の異なるスロットを打ち抜き形成するスロット抜き工程を有し、該スロット抜き工程は前記磁極軸部の中層部を形成する工程と、前記磁極軸部の上層部および下層部を形成する工程と、前記磁極軸部の最上層部および最下層部を形成する工程によって行われる。 The method for manufacturing a laminated core according to the first aspect of the invention is to punch a plurality of on-arc segment core pieces from a strip, to stack the segment core pieces in an annular shape, and to make the width of the upper part and the lower part of the magnetic pole shaft part larger. In the manufacturing method of the gradually reduced laminated iron core, it has a slotting step of punching and forming slots having different widths, and the slotting step includes a step of forming a middle layer portion of the magnetic pole shaft portion, an upper layer portion of the magnetic pole shaft portion, and It is performed by a step of forming a lower layer portion and a step of forming the uppermost layer portion and the lowermost layer portion of the magnetic pole shaft portion.

第1の発明に係る積層鉄心の製造方法において、前記スロット抜き工程で形成される前記セグメント鉄心片の打ち抜き領域内には、該セグメント鉄心片の磁極軸片部を形成する打ち抜き片部が、前記セグメント鉄心片の周方向に繰り返し打ち抜かれることで前記スロットが形成される。 In the laminated core manufacturing method according to the first aspect of the present invention, in the punched region of the segment core piece formed in the slot punching step, the punched piece portion forming the magnetic pole shaft piece portion of the segment core piece is The slot is formed by repeatedly punching in the circumferential direction of the segment core pieces.

第1の発明に係る積層鉄心の製造方法において、前記打ち抜き片部は、外側輪郭部と内側輪郭部とを有し、前記外側輪郭部は前記セグメント鉄心片の外周輪郭を形成し、該内側輪郭部は前記セグメント鉄心片の内周輪郭及び磁極軸片部の輪郭を形成している。 In the method for manufacturing a laminated core according to the first invention, the punched piece portion has an outer contour portion and an inner contour portion, and the outer contour portion forms an outer peripheral contour of the segment core piece, the inner contour. The part forms the inner peripheral contour of the segment core piece and the contour of the magnetic pole piece.

前記目的に沿う第2の発明に係る積層鉄心は、第1の発明に係る積層鉄心の製造方法で製造された積層鉄心であって、隣り合う前記セグメント鉄心片の間には、セグメント鉄心片を外周領域で結合する連結部が設けられている。 The laminated core according to the second aspect of the invention that meets the object is a laminated core manufactured by the method for manufacturing a laminated core according to the first aspect, wherein a segment core piece is interposed between the adjacent segment core pieces. A connecting portion is provided for coupling in the outer peripheral region.

材料歩留りを低下させることなく、かつ積層鉄心の形状精度が向上し、磁極軸片部の幅が変化した積層鉄心を製造することができる。 A laminated core in which the shape accuracy of the laminated core is improved and the width of the magnetic pole piece is changed can be manufactured without reducing the material yield.

金型やこれを取り付けるプレス機械の小型化が図れ、更に、プレス機械に高い推力を必要しないため、金型やプレス機械の設備費用を低減できる。 It is possible to reduce the size of the die and the press machine to which the die is attached, and furthermore, since high thrust is not required for the press machine, the equipment cost of the die and the press machine can be reduced.

セグメント鉄心片の内形輪郭を形成する工程と、外形輪郭を形成する工程とを同時に実施でき、製造工程数を少なくでき、生産性の向上が図ることができる。 The step of forming the inner contour of the segment core piece and the step of forming the outer contour can be performed simultaneously, the number of manufacturing steps can be reduced, and productivity can be improved.

(A)は本発明の一実施の形態に係る積層鉄心の製造方法で製造した積層鉄心の平面図、(B)は(A)をa−a方向からみた磁極軸部の断面図である。(A) is a top view of the laminated core manufactured with the manufacturing method of the laminated core which concerns on one embodiment of this invention, (B) is sectional drawing of the magnetic pole axial part which looked at (A) from the aa direction. 本発明の一実施の形態に係る積層鉄心の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the laminated core which concerns on one embodiment of this invention. 本発明の他の実施の形態に係る積層鉄心の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the laminated core which concerns on other embodiment of this invention. (A)は従来例に係る分割積層鉄心の平面図、(B)は(A)をa−a方向からみた磁極軸部の断面図である。(A) is a top view of the division | segmentation laminated | stacked iron core which concerns on a prior art example, (B) is sectional drawing of the magnetic pole axial part which looked at (A) from the aa direction. 従来例に係る分割積層鉄心の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the division | segmentation laminated | stacked iron core which concerns on a prior art example. 従来例に係る積層鉄心の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the laminated core which concerns on a prior art example.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の一実施の形態に係る積層鉄心の製造方法を用いて製造した積層鉄心について説明する。
積層鉄心10は、固定子積層鉄心(ステータ)であり、図1(A)に示すように、厚みが、例えば、0.15〜0.5mm程度の電磁鋼板(条材の一例)から、複数の円弧状のセグメント鉄心片11を打ち抜き、セグメント鉄心片11を環状に積層して構成されるものである。ここで、複数のセグメント鉄心片11の積層方法には、かしめ、溶接、及び接着のいずれか1を適用することも、また、いずれか2以上を併用することもできる。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the laminated core manufactured using the manufacturing method of the laminated core which concerns on one embodiment of this invention is demonstrated.
The laminated iron core 10 is a stator laminated iron core (stator). As shown in FIG. 1A, the laminated iron core 10 has a plurality of thicknesses, for example, from electromagnetic steel sheets (an example of strips) having a thickness of about 0.15 to 0.5 mm. The arc-shaped segment core pieces 11 are punched out and the segment core pieces 11 are laminated in a ring shape. Here, any one of caulking, welding, and adhesion can be applied to the method of laminating the plurality of segment core pieces 11, or any two or more can be used in combination.

この積層鉄心10は、円弧状のヨーク部12とその内側に形成されている複数の磁極軸部13とを有し、各磁極軸部13の間には複数のスロット14が設けられている。
また、隣り合うセグメント鉄心片11の間には、セグメント鉄心片11を外周領域で結合する連結部15が設けられており、螺旋状に巻き積層されるとともに、かしめ部16によって固着されている。
The laminated core 10 has an arcuate yoke portion 12 and a plurality of magnetic pole shaft portions 13 formed inside thereof, and a plurality of slots 14 are provided between the magnetic pole shaft portions 13.
Moreover, between the adjacent segment core pieces 11, the connection part 15 which couple | bonds the segment core pieces 11 in an outer peripheral area | region is provided, and while being helically wound and laminated | stacked, it is fixed by the caulking part 16. FIG.

ここで、図1(A)のa−a方向からみた磁極軸部13の断面を図1(B)に示すが、積層方向において、磁極軸片部17の上層部および下層部の幅が狭くなって、磁極軸部13の上下の角部18が傾斜して丸みを帯びている。このように磁極軸部13を形成すると、磁極軸部13に対して巻線を円滑に施すことができ、同一巻線数に対して、巻線長を節約し、磁極軸部13への巻線の占積率を向上できる。また、巻線の絶縁被膜の損傷を防止できる。 Here, FIG. 1B shows a cross section of the magnetic pole shaft portion 13 as viewed from the aa direction in FIG. 1A. The width of the upper layer portion and the lower layer portion of the magnetic pole shaft piece portion 17 is narrow in the stacking direction. Thus, the upper and lower corner portions 18 of the magnetic pole shaft portion 13 are inclined and rounded. When the magnetic pole shaft portion 13 is formed in this way, the winding can be smoothly applied to the magnetic pole shaft portion 13, the winding length can be saved for the same number of windings, and the winding to the magnetic pole shaft portion 13 can be saved. The space factor of the line can be improved. Moreover, damage to the insulating coating of the winding can be prevented.

続いて、本発明の一実施の形態に係る積層鉄心の製造方法について、図2を参照しながら説明する。
まず、パイロット孔20を形成する準備工程について説明する。
パイロット孔20は、電磁鋼板21を搬送しながら、電磁鋼板21の幅方向両側に、その送り方向に所定ピッチで形成する。なお、図2の準備工程における斜線部はパイロット孔20の形成位置を示している。
Then, the manufacturing method of the laminated iron core which concerns on one embodiment of this invention is demonstrated, referring FIG.
First, a preparation process for forming the pilot hole 20 will be described.
The pilot holes 20 are formed at a predetermined pitch in the feeding direction on both sides in the width direction of the electromagnetic steel sheet 21 while conveying the electromagnetic steel sheet 21. 2 indicate the positions where the pilot holes 20 are formed.

次に、スロット抜きを行うスロット抜き工程について説明する。
スロット抜き工程は、それぞれ抜き幅が異なる3工程からなる。磁極軸片部17の中層部の形成は、スロット抜き工程の中で最もスロット幅が狭い刃物で第1のスロット22を打ち抜く。
磁極軸片部17の上層部と下層部の形成は、スロット抜き工程の中で第1のスロット22よりスロット幅が広くなった刃物で第2のスロット23を打ち抜く。磁極軸片部17の最上層部と最下層部の形成は、スロット抜き工程の中で最もスロット幅が広くなった刃物で第3のスロット24を打ち抜く。
Next, the slot extraction process for performing slot extraction will be described.
The slot extraction process includes three processes with different extraction widths. In the formation of the middle layer portion of the magnetic pole piece 17, the first slot 22 is punched with a cutter having the narrowest slot width in the slotting step.
The upper layer portion and the lower layer portion of the magnetic pole piece 17 are formed by punching the second slot 23 with a blade whose slot width is wider than that of the first slot 22 in the slot extracting step. In the formation of the uppermost layer and the lowermost layer of the magnetic pole piece piece 17, the third slot 24 is punched with a blade having the widest slot width in the slotting process.

打ち抜きに際して、セグメント鉄心片11は巻き積層によって、積層鉄心10を形成するため、巻き積層下から1層目にスロット抜き工程の第3のスロット24を打ち抜く刃物のみを動かして磁極軸片部15の最下層部を形成し、巻き積層下から2層目にスロット抜き工程の第2のスロット23を打ち抜く刃物のみを動かして磁極軸片部15の下層部を形成し、そして、巻き積層下から3層目以降にスロット抜き工程の第1のスロット22を打ち抜く刃物のみを動かして磁極軸片部15の中層部を形成している。その後、巻き積層上から2層目にスロット抜き工程の第2のスロット23を打ち抜く刃物のみを動かして磁極軸片部15の上層部を形成し、巻き積層上から1層目にスロット抜き工程の第3のスロット24を打ち抜く刃物のみを動かして磁極軸片部15の最上層部を形成している。 At the time of punching, the segment core piece 11 forms the laminated core 10 by winding lamination. Therefore, only the blade for punching the third slot 24 in the slotting process is moved to the first layer from the bottom of the winding lamination to move the magnetic pole piece 15 The lowermost layer portion is formed, and the lower layer portion of the magnetic pole piece 15 is formed by moving only the blade for punching the second slot 23 in the slotting process to the second layer from the bottom of the winding stack. Only the blade that punches the first slot 22 in the slot punching process after the layer is moved to form the middle layer portion of the magnetic pole piece 15. Thereafter, only the blade for punching the second slot 23 in the slot removing process is moved to the second layer from the winding stack to form the upper layer portion of the magnetic pole piece 15, and the slot removing process is performed to the first layer from the winding stack. Only the blade that punches out the third slot 24 is moved to form the uppermost layer portion of the magnetic pole piece 15.

次に、連結部15を形成するために、隣接するセグメント鉄心片11の間を打抜く。そして、かしめ部形成工程、内形部抜き工程、及び外形部抜き工程を順次行い、巻き積層することによって磁極軸片部15の幅が増減した磁極軸部13を有する積層鉄心10が形成される。 Next, in order to form the connecting portion 15, the space between the adjacent segment core pieces 11 is punched out. Then, the laminated core 10 having the magnetic pole shaft portion 13 in which the width of the magnetic pole shaft piece portion 15 is increased or decreased is formed by sequentially performing the caulking portion forming step, the inner shape portion removing step, and the outer shape portion removing step, and winding and laminating. .

続いて、本発明の他の実施の形態に係る積層鉄心の製造方法について、図3を参照しながら説明する。
まず、パイロット孔25を形成する準備工程について説明する。パイロット孔25は、電磁鋼板26を搬送しながら、パイロット孔形成用金型27を用いて、電磁鋼板26の幅方向両側に、その送り方向に所定ピッチで形成する。なお、図3の準備工程における斜線部は、パイロット孔形成用金型27によるパイロット孔25の形成位置を示している。このパイロット孔形成用金型27は、電磁鋼板26の幅方向両側に配置される2つのパイロット孔25を1対として形成するものである。このように、パイロット孔形成用金型27は、電磁鋼板26の送り方向の幅が、1つのパイロット孔25を形成できる幅を有すればよいため、小型化が図れる。
Then, the manufacturing method of the laminated iron core which concerns on other embodiment of this invention is demonstrated, referring FIG.
First, a preparation process for forming the pilot hole 25 will be described. The pilot holes 25 are formed at a predetermined pitch in the feeding direction on both sides in the width direction of the electromagnetic steel sheet 26 using the pilot hole forming mold 27 while conveying the electromagnetic steel sheet 26. 3 indicates the formation position of the pilot hole 25 by the pilot hole forming mold 27. The pilot hole forming mold 27 is a pair of two pilot holes 25 arranged on both sides of the electromagnetic steel plate 26 in the width direction. In this way, the pilot hole forming mold 27 can be downsized because the width in the feeding direction of the electromagnetic steel sheet 26 only needs to be wide enough to form one pilot hole 25.

次に、周方向輪郭形成用金型28を用いて、スロット抜き、内形部抜き、および外形部抜きを行うスロット抜き・輪郭形成工程について説明する。
1つのセグメント鉄心片29が打ち抜かれる電磁鋼板26の打ち抜き領域30(電磁鋼板26の送り方向に隣り合うパイロット孔25で囲まれた領域)内には、セグメント鉄心片29を形成するために打ち抜かれる外側輪郭部31と内側輪郭部32を有する同一形状の第1の打抜き片部33が、セグメント鉄心片29の周方向に渡って複数(ここでは5つ)存在している。この外側輪郭部31は、細長状で、形成するセグメント鉄心片29のヨーク片部34の外周輪郭を形成するための一部分である。また、内側輪郭部32は、逆T字状で、形成するセグメント鉄心片29のヨーク片部34の内周輪郭および磁極軸片部35の輪郭を形成するための一部分である。
Next, a description will be given of a slotting / contour forming process in which slotting, inner shape portion punching, and outer shape portion punching are performed using the circumferential contour forming die 28.
In the punching region 30 of the electromagnetic steel plate 26 in which one segment core piece 29 is punched (the region surrounded by the pilot holes 25 adjacent in the feeding direction of the electromagnetic steel plate 26), punching is performed to form the segment core piece 29. A plurality of (here, five) first punched piece portions 33 having the same shape and having the outer contour portion 31 and the inner contour portion 32 exist in the circumferential direction of the segment core piece 29. The outer contour portion 31 is an elongated shape and is a part for forming the outer peripheral contour of the yoke piece portion 34 of the segment core piece 29 to be formed. Further, the inner contour portion 32 is an inverted T-shape and is a part for forming the inner peripheral contour of the yoke piece portion 34 and the contour of the magnetic pole shaft piece portion 35 of the segment core piece 29 to be formed.

このため、この第1の打ち抜き片部33に対応した形状の金型、即ち周方向輪郭形成用金型28を使用し、セグメント鉄心片29の周方向に、電磁鋼板26を繰り返し複数回(ここでは5回)打ち抜く。なお、図3のスロット抜き・輪郭形成工程における斜線部は、周方向輪郭形成用金型28により最初に打ち抜く第1の打ち抜き片部33の位置を示している。
この第1の打ち抜き片部33は、周方向輪郭形成用金型28により打ち抜く部分を意味するため、周方向輪郭形成用金型28での打ち抜き後は電磁鋼板26中に存在しないが、説明の便宜上、必要に応じて二点鎖線で図示している(以下、同様)。
For this reason, a metal mold having a shape corresponding to the first punched piece portion 33, that is, a circumferential contour forming mold 28 is used, and the electromagnetic steel sheet 26 is repeated a plurality of times (here, in the circumferential direction of the segment core piece 29). (5 times) 3 indicates the position of the first punched piece portion 33 that is first punched by the circumferential contour forming die 28.
The first punched piece portion 33 means a portion punched by the circumferential contour forming die 28, and therefore does not exist in the electromagnetic steel sheet 26 after being punched by the circumferential contour forming die 28. For convenience, it is indicated by a two-dot chain line as necessary (hereinafter the same).

打ち抜きに際しては、周方向輪郭形成用金型28をセグメント鉄心片29の周方向に移動させる必要がある。この方法としては、セグメント鉄心片29の曲率中心を中心として、周方向輪郭形成用金型28を所定角度ごとに回動させればよく、例えば、特開2007−89326号公報に記載された方法等を利用できる。
ここで、打ち抜きには、1回の打ち抜きで1つのスロット36が形成される周方向輪郭形成用金型28を用いたが、形成するセグメント鉄心片29の大きさ等により、1回の打ち抜きで複数(2つ又は3つ)のスロットを形成できる周方向輪郭形成用金型を用いてもよい。この場合、内側輪郭部の周方向の打ち抜き幅に応じて、外側輪郭部の周方向の打ち抜き幅も調整する。
なお、周方向輪郭形成用金型28による打ち抜きは、その打ち抜き位置の周方向端部が連続するように行えばよいが、打ち抜き位置の周方向端部を重複させながら行うことが好ましい。
When punching, it is necessary to move the circumferential contour forming mold 28 in the circumferential direction of the segment core pieces 29. As this method, the circumferential contour forming mold 28 may be rotated by a predetermined angle around the center of curvature of the segment core piece 29. For example, a method described in JP-A-2007-89326 is disclosed. Etc. can be used.
Here, for punching, a circumferential contour forming die 28 in which one slot 36 is formed by one punching is used, but depending on the size of the segment core piece 29 to be formed, etc., the punching is performed once. A circumferential contour forming mold that can form a plurality of (two or three) slots may be used. In this case, according to the circumferential punching width of the inner contour portion, the circumferential punching width of the outer contour portion is also adjusted.
The punching by the circumferential contour forming die 28 may be performed so that the circumferential end of the punching position is continuous, but it is preferable to perform the punching while overlapping the circumferential end of the punching position.

このように、上記方法を繰り返し(ここでは、5回)行うことで、形成するセグメント鉄心片29のヨーク片部34の外周輪郭と、ヨーク片部34の内周輪郭および磁極軸片部35の輪郭を、それぞれ形成できる。
なお、上記した周方向輪郭形成用金型28による打ち抜きは、端部から順次行っているが、これに限定されるものではなく、例えば、周方向中央部から行ってもよい(以下、同様)。
Thus, by repeating the above method (here, 5 times), the outer peripheral contour of the yoke piece portion 34 of the segment core piece 29 to be formed, the inner peripheral contour of the yoke piece portion 34 and the magnetic pole shaft piece portion 35 Each contour can be formed.
The punching by the circumferential contour forming mold 28 is sequentially performed from the end, but is not limited to this, and may be performed from the central portion in the circumferential direction (hereinafter the same). .

ここで、スロット抜き・輪郭形成工程は、それぞれ抜き幅の異なる3工程からなる。第1の打ち抜き片部33の内径輪郭部32の幅が電磁鋼板21の送り方向に進むにつれて広くなっている。磁極軸片部の中層部の形成は、スロット抜き・輪郭形成工程の中で最も内側輪郭部32の幅が狭くなった刃物で第1の打ち抜き片部33を打ち抜く。磁極軸片部の上層部と下層部の形成は、スロット抜き・輪郭形成工程の中で第1の打ち抜き片部33の内側輪郭部32の幅より内側輪郭部の幅が広くなった刃物で第2の打ち抜き片部37を打ち抜く。磁極軸片部の最上層部と最下層部の形成は、スロット抜き・輪郭形成工程の中で最も内側輪郭部の幅が広くなった刃物で第3の打ち抜き片部38を打ち抜く。このとき、各工程の外形輪郭部31の幅に関しては、同一となっている。 Here, the slot extraction / contour formation process includes three processes with different extraction widths. The width of the inner diameter contour portion 32 of the first punched piece portion 33 becomes wider as it advances in the feeding direction of the electromagnetic steel sheet 21. In the formation of the middle layer portion of the magnetic pole piece, the first punch piece 33 is punched with a blade whose inner contour portion 32 has the smallest width in the slot punching / contour forming step. The upper layer portion and the lower layer portion of the magnetic pole piece are formed with a cutter whose inner contour portion is wider than the inner contour portion 32 of the first punched piece portion 33 in the slotting / contour forming step. 2 punching piece 37 is punched out. In the formation of the uppermost layer and the lowermost layer of the magnetic pole piece, the third punched piece 38 is punched with a blade whose inner contour is widest in the slot punching / contour forming step. At this time, the width of the outer contour portion 31 in each step is the same.

打ち抜きに際して、セグメント鉄心片29は巻き積層によって積層鉄心を形成するため、巻き積層下から1層目に第3の打ち抜き片部38を打ち抜く周方向輪郭形成用金型41の刃物のみを動かして磁極軸片部の最下層部を形成し、巻き積層下から2層目に第2の打ち抜き片部37を打ち抜く周方向輪郭形成用金型40の刃物のみを動かして磁極軸片部の下層部を形成し、そして、巻き積層下から3層目以降に第1の打ち抜き片部33を打ち抜く周方向輪郭形成用金型28の刃物のみを動かして磁極軸片部の中層部を形成している。その後、巻き積層上から2層目に第2の打ち抜き片部37を打ち抜く周方向輪郭形成用金型40の刃物のみを動かして磁極軸片部の上層部を形成し、巻き積層上から1層目に第3の打ち抜き片部38を打ち抜く周方向輪郭形成用金型41の刃物のみを動かして磁極軸片部の最上層部を形成している。 At the time of punching, since the segment core pieces 29 form a laminated core by winding lamination, only the cutter of the circumferential direction contour forming die 41 for punching the third punching piece portion 38 in the first layer from the bottom of the winding lamination is moved to make the magnetic poles. The lowermost layer portion of the magnetic pole shaft piece portion is moved by moving only the cutter of the circumferential contour forming mold 40 that forms the lowermost layer portion of the shaft piece portion and punches the second punched piece portion 37 in the second layer from the bottom of the winding stack. The middle layer portion of the magnetic pole shaft piece portion is formed by moving only the blade of the circumferential contour forming mold 28 for punching the first punched piece portion 33 after the third layer from the bottom of the winding stack. Thereafter, the upper layer portion of the pole shaft piece portion is formed by moving only the blade of the circumferential contour forming die 40 for punching the second punched piece portion 37 in the second layer from the winding layer, and one layer from the winding layer. Only the blade of the circumferential contour forming die 41 that punches the third punch piece 38 is moved to form the uppermost layer portion of the magnetic pole piece.

続いて、かしめ部形成用金型42を用いてかしめ部形成を行うかしめ部形成工程について、図3を参照しながら説明する。
かしめ部形成用金型42は、電磁鋼板26の送り方向に隣り合うセグメント鉄心片29に近接配置される2つのかしめ部43を、一対として形成するものである。なお、図3のかしめ部形成工程における斜線部は、かしめ部形成用金型42によるかしめ部43の形成位置を示している。1つのセグメント鉄心片29に形成させるかしめ部43は、セグメント鉄心片29の周方向両側に1つずつ形成されるため、このかしめ部43間の距離よりも、隣り合うセグメント鉄心片29の一方側と他方側に配置されるかしめ部43間の距離の方が短い。このため、かしめ部形成用金型42の小型化が図れる。
かしめ部形成工程は、前記スロット抜き・輪郭形成工程とは別に設けることなく、スロット抜き・輪郭形成工程に入れてもよい。このとき、かしめ部の形成を周方向輪郭形成用金型で行ってもよく、また、周方向輪郭形成用金型とは別に、かしめ部の形成のための金型を設け、この金型を回動させて、1箇所ずつ形成してもよい。
Next, a caulking portion forming process for forming the caulking portion using the caulking portion forming mold 42 will be described with reference to FIG.
The caulking portion forming mold 42 is formed as a pair of two caulking portions 43 that are disposed in proximity to the segment core pieces 29 adjacent to each other in the feeding direction of the electromagnetic steel sheet 26. The hatched portion in the caulking portion forming step in FIG. 3 indicates the formation position of the caulking portion 43 by the caulking portion forming mold 42. Since one caulking portion 43 to be formed on one segment core piece 29 is formed on each side in the circumferential direction of the segment core piece 29, one side of the adjacent segment core pieces 29 is larger than the distance between the caulking portions 43. The distance between the caulking portions 43 disposed on the other side is shorter. For this reason, the size of the caulking portion forming mold 42 can be reduced.
The caulking portion forming step may be included in the slot punching / contour forming step without being provided separately from the slot punching / contour forming step. At this time, the caulking portion may be formed by a circumferential contour forming mold, and a mold for forming the caulking portion is provided separately from the circumferential contour forming die. It may be rotated and formed one by one.

そして、側部輪郭形成用金型44を用いて連結部45の形成を行う連結部形成工程について、図3を参照しながら説明する。
電磁鋼板26の送り方向に隣り合うセグメント鉄心片29の間には、セグメント鉄心片29を形成する輪郭部46が存在する。この輪郭部46は、隣り合うセグメント鉄心片29の外側輪郭の打ち抜き位置と連続して、各セグメント鉄心片29の外周端部輪郭を形成する外片部47と、隣り合うセグメント鉄心片29の内側輪郭部の打ち抜き位置と連続して、各セグメント鉄心片29の側部輪郭を形成する内片部48とを有している。なお、外片部47と内片部48の間には、連結部45が形成される。
And the connection part formation process which forms the connection part 45 using the side part outline formation metal mold | die 44 is demonstrated, referring FIG.
Between the segment core pieces 29 adjacent to each other in the feeding direction of the electromagnetic steel sheet 26, there is a contour portion 46 that forms the segment core pieces 29. The contour 46 is continuous with the punching position of the outer contour of the adjacent segment core pieces 29, and the outer piece 47 that forms the outer peripheral end contour of each segment core piece 29, and the inner side of the adjacent segment core pieces 29. It has the inner piece part 48 which forms the side part outline of each segment iron core piece 29 continuously with the punching position of a contour part. A connecting portion 45 is formed between the outer piece portion 47 and the inner piece portion 48.

このため、輪郭部46に対応した形状の金型、即ち側部輪郭形成用金型44を使用し、輪郭部46を打ち抜き、セグメント鉄心片29を形成する。なお、図3の連結部形成工程における斜線部は、側部輪郭形成用金型44により打ち抜く輪郭部46の位置を示している。
ここで、側部輪郭形成用金型44は、外片部47に対応した形状の刃物と、内片部48に対応した形状の刃物を有しており、刃物間に隙間を設けているので、連結部45が形成される。
For this reason, a die having a shape corresponding to the contour 46, that is, a side contour forming die 44 is used, and the contour 46 is punched to form the segment core pieces 29. 3 indicates the position of the contour 46 to be punched out by the side contour forming mold 44. In FIG.
Here, the side contour forming die 44 has a blade having a shape corresponding to the outer piece 47 and a blade having a shape corresponding to the inner piece 48, and a gap is provided between the blades. The connecting portion 45 is formed.

このようにして形成した連続する複数のセグメント鉄心片29を、連結部45で折り曲げながら螺旋状に巻回し積層して、積層鉄心を製造する。このとき、セグメント鉄心片29の内側を所定直径の円柱体に巻き付けて、螺旋状に巻くのが好ましい。
以上のことから、本発明の積層鉄心の製造方法を使用することで、材料歩留りを低下させることなく、かつ積層鉄心の形状精度が向上し、磁極軸片部の幅が変化した積層鉄心が形成される。
A plurality of continuous segment core pieces 29 formed as described above are spirally wound and laminated while being bent at the connecting portion 45 to produce a laminated core. At this time, it is preferable that the inside of the segment core piece 29 is wound around a cylindrical body having a predetermined diameter and wound in a spiral shape.
From the above, by using the method for manufacturing a laminated core according to the present invention, the laminated core is formed without reducing the material yield, improving the shape accuracy of the laminated core, and changing the width of the pole piece. Is done.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、最上層部および最下層部の磁極軸片部は1枚に限定されず、幅の異なる磁極軸片部を2枚以上積層してもよい。また、同様に、上層部およぶ下層部の磁極軸片部も1枚に限定されず、幅の異なる磁極軸片部を2枚以上積層してもよい。これにより、磁極軸部の角部がより丸みを帯びるので、磁極軸部に対して巻線を円滑に施すことができ、同一巻線に対して、巻線長を節約し、磁極軸部への巻線の占積率を向上できる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the magnetic pole shaft pieces of the uppermost layer and the lowermost layer are not limited to one, and two or more magnetic pole shaft pieces having different widths may be stacked. Similarly, the magnetic pole shaft pieces of the upper layer portion and the lower layer portion are not limited to one, and two or more magnetic pole shaft pieces having different widths may be stacked. As a result, the corner portion of the magnetic pole shaft portion is more rounded, so that the winding can be smoothly applied to the magnetic pole shaft portion, and the winding length can be saved for the same winding to the magnetic pole shaft portion. The space factor of the windings can be improved.

10:積層鉄心、11:セグメント鉄心片、12:ヨーク部、13:磁極軸部、14:スロット、15:連結部、16:かしめ部、17:磁極軸片部、18:角部、20:パイロット孔、21:電磁鋼板、22:第1のスロット、23:第2のスロット、24:第3のスロット、25:パイロット孔、26:電磁鋼板、27:パイロット孔形成用金型、28:周方向輪郭形成用金型、29:セグメント鉄心片、30:打ち抜き領域、31:外側輪郭部、32:内側輪郭部、33:第1の打ち抜き片部、34:ヨーク片部、35:磁極軸片部、36:スロット、37:第2の打ち抜き片部、38:第3の打ち抜き片部、40:周方向輪郭形成用金型、41:周方向輪郭形成用金型、42:かしめ部形成用金型、43:かしめ部、44:側部輪郭形成用金型、45:連結部、46:輪郭部、47:外片部、48:内片部、90:分割積層鉄心、91:磁極軸部、92:上部、93:下部、94:ヨーク片部、95:磁極軸片部、96:第1の金型、97:第2の金型、98:第1の金型、99:第2の金型、100:鉄心片、101:磁極軸片部 10: laminated iron core, 11: segment core piece, 12: yoke portion, 13: magnetic pole shaft portion, 14: slot, 15: connecting portion, 16: caulking portion, 17: magnetic pole shaft piece portion, 18: corner portion, 20: Pilot hole, 21: electromagnetic steel plate, 22: first slot, 23: second slot, 24: third slot, 25: pilot hole, 26: electromagnetic steel plate, 27: mold for forming pilot hole, 28: Die for circumferential contour formation, 29: segment core piece, 30: punched region, 31: outer contour, 32: inner contour, 33: first punched piece, 34: yoke piece, 35: pole axis One part, 36: slot, 37: second punched piece part, 38: third punched piece part, 40: mold for circumferential contour forming, 41: mold for circumferential contour forming, 42: caulking part forming Mold, 43: Caulking part, 44: Side contour Mold: 45: connecting part, 46: contour part, 47: outer piece part, 48: inner piece part, 90: divided laminated iron core, 91: magnetic pole shaft part, 92: upper part, 93: lower part, 94: yoke One piece, 95: magnetic pole piece, 96: first die, 97: second die, 98: first die, 99: second die, 100: iron core piece, 101: magnetic pole Shaft piece

Claims (4)

条材から複数の円弧上セグメント鉄心片を打ち抜き、該セグメント鉄心片を環状に積層し、磁極軸部の上部および下部の幅が漸減した積層鉄心の製造方法において、幅の異なるスロットを打ち抜き形成するスロット抜き工程を有し、該スロット抜き工程は前記磁極軸部の中層部を形成する工程と、前記磁極軸部の上層部および下層部を形成する工程と、前記磁極軸部の最上層部および最下層部を形成する工程によって行われることを特徴とする積層鉄心の製造方法。 In a manufacturing method of a laminated core in which a plurality of segment core pieces on a circular arc are punched from a strip, the segment core pieces are laminated in an annular shape, and the widths of the upper and lower portions of the magnetic pole shaft portion are gradually reduced, slots having different widths are punched A slotting step, the slotting step comprising: forming a middle layer portion of the magnetic pole shaft portion; forming an upper layer portion and a lower layer portion of the magnetic pole shaft portion; and an uppermost layer portion of the magnetic pole shaft portion; A method for producing a laminated iron core, which is performed by a step of forming a lowermost layer portion. 請求項1記載の積層鉄心の製造方法において、前記スロット抜き工程で形成される前記セグメント鉄心片の打ち抜き領域内には、該セグメント鉄心片の磁極軸片部を形成する打ち抜き片部が、前記セグメント鉄心片の周方向に繰り返し打ち抜かれることで前記スロットが形成されることを特徴とする積層鉄心の製造方法。 2. The method of manufacturing a laminated core according to claim 1, wherein a punched piece portion forming a magnetic pole shaft piece portion of the segment core piece is provided in the punched region of the segment core piece formed in the slotting step. A method of manufacturing a laminated core, wherein the slot is formed by repeatedly punching in a circumferential direction of the core piece. 請求項2記載の積層鉄心の製造方法において、前記打ち抜き片部は、外側輪郭部と内側輪郭部とを有し、前記外側輪郭部は前記セグメント鉄心片の外周輪郭を形成し、該内側輪郭部は前記セグメント鉄心片の内周輪郭及び磁極軸片部の輪郭を形成していることを特徴とする積層鉄心の製造方法。 3. The method of manufacturing a laminated core according to claim 2, wherein the punched piece portion has an outer contour portion and an inner contour portion, and the outer contour portion forms an outer peripheral contour of the segment core piece, and the inner contour portion. Is a method of manufacturing a laminated core, characterized in that the inner peripheral contour of the segment core piece and the contour of the magnetic pole piece are formed. 請求項1〜3記載の積層鉄心の製造方法で製造した積層鉄心であって、隣り合う前記セグメント鉄心片の間には、セグメント鉄心片を外周領域で結合する連結部が設けられていることを特徴とする積層鉄心。 It is a laminated core manufactured with the manufacturing method of the laminated core of Claims 1-3, Comprising: Between the said adjacent segment core pieces, the connection part which couple | bonds a segment core piece in an outer peripheral area | region is provided. Characteristic laminated iron core.
JP2012188440A 2012-08-29 2012-08-29 Manufacturing method of laminated core and, laminated core manufactured using the same Pending JP2014050114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012188440A JP2014050114A (en) 2012-08-29 2012-08-29 Manufacturing method of laminated core and, laminated core manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188440A JP2014050114A (en) 2012-08-29 2012-08-29 Manufacturing method of laminated core and, laminated core manufactured using the same

Publications (1)

Publication Number Publication Date
JP2014050114A true JP2014050114A (en) 2014-03-17

Family

ID=50609306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188440A Pending JP2014050114A (en) 2012-08-29 2012-08-29 Manufacturing method of laminated core and, laminated core manufactured using the same

Country Status (1)

Country Link
JP (1) JP2014050114A (en)

Similar Documents

Publication Publication Date Title
JP4932967B1 (en) Manufacturing method of spiral core for rotating electrical machine and manufacturing apparatus of spiral core for rotating electrical machine
JP5379522B2 (en) Manufacturing method of split core pieces
CN105846565A (en) Motor armature and manufacturing method thereof
JP6400833B2 (en) Laminated core manufacturing method and laminated core manufacturing apparatus
CN102132366A (en) Method for manufacturing laminated core and tool for manufacturing same
JP5583391B2 (en) Stator laminated core
JP5719979B1 (en) Laminated iron core manufacturing apparatus and laminated iron core manufacturing method
JP2016214000A (en) Method for manufacturing processing body for laminated core and method for manufacturing laminated core
JP2008206262A (en) Laminated core, and manufacturing method therefor
US9017506B2 (en) Method for manufacturing core of rotating electrical machine
US20160211732A1 (en) Method of manufacturing stator core
JP5291774B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP2017208986A (en) Method for manufacturing laminated iron core for rotary electric machine
US8082654B2 (en) Production method for large rotor/stator laminations
JP5202577B2 (en) Manufacturing method of stator laminated iron core
JP5150952B2 (en) Manufacturing method of laminated iron core
JP4630858B2 (en) Laminated iron core and method for manufacturing the same
JP4912088B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP5248972B2 (en) Method for manufacturing laminated iron core and mold apparatus
JP5438441B2 (en) Manufacturing method of laminated iron core and laminated iron core produced using the same
JP2014050114A (en) Manufacturing method of laminated core and, laminated core manufactured using the same
JP2012217279A (en) Stator core for rotary electric machine, the rotary electric machine, and manufacturing method of the stator core for the rotary electric machine
JP2010259249A (en) Rotary electric machine
JP4578460B2 (en) Manufacturing method of stator laminated iron core
JP3842146B2 (en) Manufacturing method of laminated iron core