JP2014049325A - Fuel battery cell with separator, manufacturing method thereof, and fuel battery stack - Google Patents

Fuel battery cell with separator, manufacturing method thereof, and fuel battery stack Download PDF

Info

Publication number
JP2014049325A
JP2014049325A JP2012192307A JP2012192307A JP2014049325A JP 2014049325 A JP2014049325 A JP 2014049325A JP 2012192307 A JP2012192307 A JP 2012192307A JP 2012192307 A JP2012192307 A JP 2012192307A JP 2014049325 A JP2014049325 A JP 2014049325A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
sealing
manufacturing
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012192307A
Other languages
Japanese (ja)
Other versions
JP5727432B2 (en
Inventor
Makoto Kuribayashi
誠 栗林
Etsuya Ikeda
悦也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012192307A priority Critical patent/JP5727432B2/en
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to DK13832876.0T priority patent/DK2892098T3/en
Priority to KR1020157005065A priority patent/KR101669376B1/en
Priority to CN201380045620.0A priority patent/CN104604005B/en
Priority to US14/423,610 priority patent/US10122023B2/en
Priority to CA2883115A priority patent/CA2883115C/en
Priority to PCT/JP2013/072743 priority patent/WO2014034608A1/en
Priority to EP13832876.0A priority patent/EP2892098B1/en
Publication of JP2014049325A publication Critical patent/JP2014049325A/en
Application granted granted Critical
Publication of JP5727432B2 publication Critical patent/JP5727432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel battery cell with a separator with further improved reliability for jointing a fuel battery cell and a separator, a manufacturing method thereof, and a fuel battery stack.SOLUTION: A fuel battery cell with a separator comprises: a fuel battery cell body on which an air electrode 55 is arranged on a single face side across a solid electrolyte layer 56, and a fuel electrode 57 is arranged on a face side opposite to the single face side; and a frame-like metallic separator 53 mounted to the fuel battery cell body via a jointing part 61 constituted of a solder material containing Ag, and having an opening 58. A sealing part 62 having a sealing material containing glass is provided nearer the opening than the solder material between the metallic separator and the fuel battery cell body.

Description

本発明は,セパレータ付燃料電池セル,その製造方法,および燃料電池スタックに関する。   The present invention relates to a fuel cell with a separator, a method for manufacturing the same, and a fuel cell stack.

電解質に固体酸化物を用いた固体酸化物形燃料電池(以下,「SOFC」又は単に「燃料電池」とも記す場合がある)が知られている。SOFCは,例えば,板状の固体電解質層の各面に燃料極と空気極とを備えた燃料電池セルを多数積層したスタック(燃料電池スタック)を有する。燃料極および空気極それぞれに,燃料ガス(例えば,水素)および酸化剤ガス(例えば,空気中の酸素)を供給し,固体電解質層を介して化学反応させることで,電力を発生させる。   A solid oxide fuel cell using a solid oxide as an electrolyte (hereinafter also referred to as “SOFC” or simply “fuel cell”) is known. The SOFC has, for example, a stack (fuel cell stack) in which a large number of fuel cells each having a fuel electrode and an air electrode are stacked on each surface of a plate-like solid electrolyte layer. Electric power is generated by supplying a fuel gas (for example, hydrogen) and an oxidant gas (for example, oxygen in the air) to the fuel electrode and the air electrode, respectively, and causing a chemical reaction through the solid electrolyte layer.

燃料電池セルは,一般に,燃料ガスと酸化剤ガスとが存在する区画を区分するセパレータに接続して,用いられる。   The fuel battery cell is generally used by being connected to a separator that divides a section in which fuel gas and oxidant gas are present.

ここで,燃料電池セルとセパレータを接合するための技術として以下の技術が開示されている。ガラス系シール材を用いて,セパレータと燃料電池セルをシールする技術が開示されている(特許文献1参照)。また,600〜800℃で動作するSOFCの構成部品間を,燃料ガス及び酸化剤ガスの気密性を保つための特定成分のロウ材でロウ付けすることで,燃料ガスの水素及び酸化剤ガスの酸素がロウ材中を拡散し,反応して,ボイドが発生することを防止する技術が開示されている(特許文献2参照)。   Here, the following technique is disclosed as a technique for joining a fuel cell and a separator. A technique for sealing a separator and a fuel battery cell using a glass-based sealing material is disclosed (see Patent Document 1). In addition, by brazing between SOFC components operating at 600 to 800 ° C. with a brazing material having a specific component for keeping the gas tightness of the fuel gas and the oxidant gas, the hydrogen of the fuel gas and the oxidant gas A technique for preventing oxygen from diffusing and reacting in the brazing material to generate voids is disclosed (see Patent Document 2).

特許03466960号公報Japanese Patent No. 0346960 特開2010−207863号公報JP 2010-207863 A

しかしながら,燃料電池セルとセパレータとをガラスやある特定成分のロウ材だけで接合したときの信頼性は,必ずしも十分とは限らない場合がある。例えば,特定成分のAgロウだけでの接合においては,構造上,Agロウ部が酸化剤ガスと燃料ガスの境界に配置されることになる。このため,長時間の使用により酸化剤ガス側から酸化剤ガスの構成原子(酸素)が,燃料ガス側から燃料ガスの構成原子(水素)が,それぞれAgロウ部内に入り込み,拡散して反応し,Agロウ材にボイド(細孔)が発生し,ガスがリークする可能性がある。また,ガラスだけによる接合では,接合強度が弱く,燃料電池の使用時の構成部品の変形によって,接合部分に応力が発生するので,ガラスが剥がれたり,割れたりする可能性がある。
本発明は,燃料電池セルとセパレータの接合の信頼性をさらに向上した,セパレータ付燃料電池セル,その製造方法,および燃料電池スタックを提供することを目的とする。
However, the reliability when the fuel cell and the separator are joined only with glass or a brazing material of a specific component may not always be sufficient. For example, in the joining with only Ag solder of a specific component, the Ag wax portion is disposed at the boundary between the oxidant gas and the fuel gas because of the structure. For this reason, the constituent atoms (oxygen) of the oxidant gas from the oxidant gas side and the constituent atoms (hydrogen) of the fuel gas from the fuel gas side enter the Ag low part and diffuse and react with each other over a long period of use. , There is a possibility that voids (pores) are generated in the Ag brazing material and gas leaks. In addition, in the case of joining only with glass, the joining strength is weak, and stress is generated in the joining portion due to deformation of the component parts when the fuel cell is used, so that the glass may be peeled off or cracked.
An object of the present invention is to provide a fuel cell with a separator, a method for manufacturing the same, and a fuel cell stack, in which the reliability of joining of the fuel cell and the separator is further improved.

1. 本発明に係るセパレータ付燃料電池セルは,固体電解質層を挟んで片面側に空気極が,該片面側とは反対の面側に燃料極が配置される燃料電池セル本体と,Agを含むロウ材で構成される接合部を介して,前記燃料電池セル本体に取り付けられ,開口部を有する枠状の金属製セパレータと,を具備する,セパレータ付燃料電池セルであって,前記ロウ材よりも開口部側の前記金属製セパレータと前記燃料電池セル本体との間に,ガラスを含む封止材を有する封止部を具備する,ことを特徴とする。 1. A fuel cell with a separator according to the present invention includes a fuel cell main body in which an air electrode is disposed on one side of a solid electrolyte layer and a fuel electrode is disposed on a surface opposite to the one side, and a brazing electrode containing Ag. A separator-equipped fuel cell comprising: a frame-shaped metal separator attached to the fuel cell body through a joint made of a material and having an opening; A sealing portion having a sealing material containing glass is provided between the metallic separator on the opening side and the fuel cell body.

金属製セパレータが燃料電池セル本体にAgを含むロウ材で構成される接合部により接合されていることから,外部から応力が印加された場合に,ガラスを含む封止材を有する封止部の変形が防止され,封止部が割れる可能性を低減できる。
また,封止部が接合部よりも開口部側に配置されることから,接合部が直接酸化剤ガスに接触することが無いので,接合部への酸化剤ガスの移動が阻止される。この結果,接合部中で酸化剤ガスの拡散が抑制され,水素と酸素の反応によってボイドが発生することを防止できる。
さらに,封止部は板状の金属製セパレータと燃料電池セルの間に配置されることから,封止材に働く熱応力が,せん断応力になる。このため,封止材が割れにくくなり,また封止部と金属セパレータ若しくは燃料電池セルとの界面での剥がれを抑制でき,封止部の信頼を向上できる。
Since the metal separator is joined to the fuel cell body by a joint composed of a brazing material containing Ag, when a stress is applied from the outside, the sealing portion having a sealing material containing glass Deformation is prevented and the possibility of cracking the sealing portion can be reduced.
In addition, since the sealing portion is disposed on the opening side of the joint portion, the joint portion does not directly contact the oxidant gas, so that the movement of the oxidant gas to the joint portion is prevented. As a result, the diffusion of the oxidant gas in the joint can be suppressed, and the generation of voids due to the reaction between hydrogen and oxygen can be prevented.
Further, since the sealing portion is disposed between the plate-shaped metal separator and the fuel cell, the thermal stress acting on the sealing material becomes a shear stress. For this reason, the sealing material is difficult to break, and peeling at the interface between the sealing portion and the metal separator or the fuel battery cell can be suppressed, and the reliability of the sealing portion can be improved.

(2)前記接合部が,第1接合部と該第1接合部よりも前記開口部側に位置する第2接合部とで構成され,前記第2接合部中の酸素拡散係数が,前記第1接合部中の酸素拡散係数より小さくても良い。 (2) The joint is composed of a first joint and a second joint located closer to the opening than the first joint, and an oxygen diffusion coefficient in the second joint is the first joint. It may be smaller than the oxygen diffusion coefficient in one junction.

封止部と第1接合部との間に,第1接合部より酸素拡散係数の小さな第2の接合部が配置される。この結果,第1接合部への酸素の拡散を制限し,第1接合部におけるボイドの発生を防止でき,接合部全体の信頼性を向上できる。   Between the sealing part and the first joint part, a second joint part having an oxygen diffusion coefficient smaller than that of the first joint part is disposed. As a result, it is possible to limit the diffusion of oxygen to the first joint, prevent the occurrence of voids in the first joint, and improve the reliability of the entire joint.

(3)前記金属製セパレータが,0.1質量%以上10質量%以下のAlを含むことが好ましい。
金属製セパレータにクロミア(酸化クロム)被膜を形成する金属材料(例えば,ステンレス鋼)を使った場合,封止材のガラスがクロミアと反応しやすいため,封止部の信頼性が低下する。金属製セパレータがAlを0.1質量%以上含むと,その表面にアルミナ被膜が形成され,封止部の信頼性及び金属セパレータの耐酸化耐久性が向上する。一方,金属製セパレータがAlを10質量%より多く含むと,金属製セパレータの構成材料が硬くなり,加工しにくくなる。
より好ましくは、前記金属製セパレータが,1.5質量%以上10質量%以下のAlを含む。さらにより好ましくは、前記金属製セパレータが,2.0質量%以上10質量%以下のAlを含むことが好ましい。
(3) It is preferable that the said metal separator contains 0.1 mass% or more and 10 mass% or less of Al.
When a metal material (for example, stainless steel) that forms a chromia (chromium oxide) coating on a metal separator is used, the sealing glass is liable to react with chromia, thus reducing the reliability of the sealing portion. When the metal separator contains 0.1% by mass or more of Al, an alumina coating is formed on the surface thereof, and the reliability of the sealing portion and the oxidation resistance of the metal separator are improved. On the other hand, if the metal separator contains more than 10% by mass of Al, the constituent material of the metal separator becomes hard and difficult to process.
More preferably, the metallic separator contains 1.5% by mass or more and 10% by mass or less of Al. Even more preferably, it is preferable that the metallic separator contains 2.0% by mass or more and 10% by mass or less of Al.

(4)前記金属製セパレータが,0.5mm以下の厚みを有することが好ましい。
金属製セパレータが,0.5mmより厚いと,複数の燃料電池セル本体を積層して,燃料電池スタックを形成するときに,燃料電池セル本体に印加される応力が緩和されず,燃料電池セル本体と金属製セパレータを接合する接合部や封止部が割れる(損傷する)畏れがある。金属製セパレータが0.5mm以下の厚みを有すると,接合部や封止部に印加される応力が緩和され,接合部や封止部が割れる可能性が低減される。
(4) The metal separator preferably has a thickness of 0.5 mm or less.
When the metal separator is thicker than 0.5 mm, when a fuel cell stack is formed by stacking a plurality of fuel cell bodies, the stress applied to the fuel cell body is not relieved, and the fuel cell body In other words, the joint and the sealing part for joining the metal separator may crack (damage). When the metal separator has a thickness of 0.5 mm or less, the stress applied to the joint portion and the sealing portion is relieved, and the possibility that the joint portion and the sealing portion are broken is reduced.

(5)前記接合部と前記封止部との間に,間隙を有しても良い。
接合部と封止部とが接触していなくても,封止部が割れる可能性の低減および接合部中での酸化剤ガスの拡散防止は可能である。また,間隙にガスが入っていても少量であり,接合部の信頼性等への影響は小さい。
(5) You may have a gap | interval between the said junction part and the said sealing part.
Even if the bonding portion and the sealing portion are not in contact with each other, it is possible to reduce the possibility of the sealing portion cracking and to prevent the diffusion of the oxidizing gas in the bonding portion. In addition, even if gas is contained in the gap, the amount is small, and the influence on the reliability of the joint is small.

(6)前記接合部を構成するロウ材の溶融温度は,前記封止材の溶融温度よりも高くても良い。
ロウ材の溶融温度が封止材の溶融温度よりも高くても,燃料電池セル本体と金属製セパレータ間の接合および封止が可能である。例えば,ロウ材による接合後に,封止材による封止を行えば良い。また,ロウ材の溶融温度と封止材の溶融温度の差が大きくなければ,接合と封止を同時に行うことが可能となる。
(6) The melting temperature of the brazing material constituting the joint portion may be higher than the melting temperature of the sealing material.
Even if the melting temperature of the brazing material is higher than the melting temperature of the sealing material, the fuel cell body and the metal separator can be joined and sealed. For example, sealing with a sealing material may be performed after joining with a brazing material. If the difference between the melting temperature of the brazing material and the melting temperature of the sealing material is not large, it is possible to perform bonding and sealing at the same time.

2. 本発明に係る燃料電池スタックは,上記のセパレータ付燃料電池セル,を具備する。
上記のセパレータ付燃料電池セルを用いることで,燃料電池スタック全体としての信頼性が向上する。
2. A fuel cell stack according to the present invention includes the fuel cell with a separator described above.
By using the fuel cell with a separator described above, the reliability of the entire fuel cell stack is improved.

3. 本発明に係るセパレータ付燃料電池セルの製造方法は,上記のセパレータ付燃料電池セルの製造方法であって,前記金属製セパレータと燃料電池セル本体との両方に前記ロウ材を配置するロウ材配置工程と,前記金属製セパレータと燃料電池セル本体の少なくともどちらか一方に前記ガラスを含む封止材を配置する封止材配置工程と,を具備する,ことを特徴とする。 3. A method for manufacturing a fuel cell with a separator according to the present invention is a method for manufacturing a fuel cell with a separator as described above, wherein the brazing material is disposed in both the metallic separator and the fuel cell body. And a sealing material arranging step of arranging a sealing material containing the glass on at least one of the metal separator and the fuel cell body.

金属製セパレータと燃料電池セル本体との両方に前記ロウ材を配置することで,金属製セパレータと燃料電池セル本体それぞれに予め配置された2つのロウ材が融け,融合することで,接触面積を確保し,接合強度を上げることができる。   By arranging the brazing material on both the metallic separator and the fuel cell body, the two brazing materials previously arranged on the metallic separator and the fuel cell body respectively melt and fuse, thereby reducing the contact area. It can be ensured and the bonding strength can be increased.

(1)前記金属製セパレータと燃料電池セル本体との両方に配置されたロウ材を溶融し,前記金属製セパレータと燃料電池セル本体とを接合する接合工程をさらに具備しても良い。
ロウ材を溶融し,金属製セパレータと燃料電池セル本体とを高強度で接合することができる。
(1) You may further comprise the joining process which fuse | melts the brazing material arrange | positioned in both the said metal separator and a fuel cell main body, and joins the said metal separator and a fuel cell main body.
By melting the brazing material, the metal separator and the fuel cell body can be joined with high strength.

(2)前記接合工程において,前記ロウ材が大気下でロウ付けされることが好ましい。空気極に使用する材料は真空や還元雰囲気で特性を変化させてしまうためである。 (2) In the joining step, the brazing material is preferably brazed in the atmosphere. This is because the material used for the air electrode changes its characteristics in a vacuum or a reducing atmosphere.

(3)前記金属製セパレータと燃料電池セル本体の少なくともどちらか一方に配置された前記ガラスを含む封止材を溶融し,前記封止部を形成する封止部形成工程,をさらに具備しても良い。
封止材を溶融し,金属製セパレータと燃料電池セル本体間を封止できる。
(3) further comprising a sealing part forming step of melting the sealing material including the glass disposed in at least one of the metal separator and the fuel cell main body to form the sealing part. Also good.
The sealing material can be melted to seal between the metal separator and the fuel cell body.

(4)前記接合工程と前記封止部形成工程とが,同じ温度と同じ雰囲気下で行われても良い。
接合と封止とを同時に実行でき,製造装置の簡略化や製造時間の効率が向上する。
(4) The joining step and the sealing portion forming step may be performed under the same temperature and the same atmosphere.
Bonding and sealing can be performed simultaneously, which simplifies the manufacturing equipment and improves manufacturing time efficiency.

(5)前記接合工程の後に,前記封止材配置工程および前記封止部形成工程が行われても良い。
接合と封止とを別々に実行することで,種々のロウ材と封止材の組合わせが可能となる。接合と封止とを同時に実行するためには,ロウ材の接合温度と封止材の溶融温度がある程度近接していることが好ましく,採用できるロウ材と封止材が限定される。
(5) The sealing material arranging step and the sealing portion forming step may be performed after the joining step.
By performing bonding and sealing separately, it is possible to combine various brazing materials and sealing materials. In order to perform bonding and sealing simultaneously, it is preferable that the bonding temperature of the brazing material and the melting temperature of the sealing material are close to each other to some extent, and the brazing material and the sealing material that can be used are limited.

本発明によれば,燃料電池セルとセパレータの接合の信頼性を向上した,セパレータ付燃料電池セル,その製造方法,および燃料電池スタックを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell with a separator which improved the reliability of joining of a fuel cell and a separator, its manufacturing method, and a fuel cell stack can be provided.

固体酸化物形燃料電池10を表す斜視図である。1 is a perspective view showing a solid oxide fuel cell 10. FIG. 固体酸化物形燃料電池10の模式断面図である。1 is a schematic cross-sectional view of a solid oxide fuel cell 10. FIG. 燃料電池セル40の断面図である。3 is a cross-sectional view of a fuel cell 40. FIG. 燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell main body 44 and the metal separator 53 (fuel cell with a separator). セパレータ付燃料電池セルの製造工程を表すフロー図である。It is a flowchart showing the manufacturing process of a fuel cell with a separator. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. セパレータ付燃料電池セルの製造工程を表すフロー図である。It is a flowchart showing the manufacturing process of a fuel cell with a separator. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 製造中のセパレータ付燃料電池セルの状態を表す断面図である。It is sectional drawing showing the state of the fuel cell with a separator in manufacture. 燃料電池セル40aの断面図である。It is sectional drawing of the fuel cell 40a. 燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell main body 44 and the metal separator 53 (fuel cell with a separator). 燃料電池セル40bの断面図である。It is sectional drawing of the fuel battery cell 40b. 燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル)を分解した状態を表す分解斜視図である。It is a disassembled perspective view showing the state which decomposed | disassembled the fuel cell main body 44 and the metal separator 53 (fuel cell with a separator).

以下,本発明に係る固体酸化物形燃料電池について図面を用いて説明する。   Hereinafter, a solid oxide fuel cell according to the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は,本発明の第1実施形態に係る固体酸化物形燃料電池(燃料電池スタック)10を表す斜視図である。固体酸化物形燃料電池10は,燃料ガス(例えば,水素)と酸化剤ガス(例えば,空気(詳しくは空気中の酸素))との供給を受けて発電する。
(First embodiment)
FIG. 1 is a perspective view showing a solid oxide fuel cell (fuel cell stack) 10 according to a first embodiment of the present invention. The solid oxide fuel cell 10 generates power by receiving supply of a fuel gas (for example, hydrogen) and an oxidant gas (for example, air (specifically, oxygen in the air)).

固体酸化物形燃料電池10は,エンドプレート11,12,燃料電池セル40(1)〜40(4)が積層され,ボルト21,22(22a,22b),23(23a,23b)およびナット35で固定される。   In the solid oxide fuel cell 10, end plates 11 and 12, fuel cells 40 (1) to 40 (4) are laminated, bolts 21, 22 (22a, 22b), 23 (23a, 23b) and nuts 35. It is fixed with.

図2は,固体酸化物形燃料電池10の模式断面図である。
固体酸化物形燃料電池10は,燃料電池セル40(1)〜40(4)を積層して構成される燃料電池スタックである。ここでは,判り易さのために,4つの燃料電池セル40(1)〜40(4)を積層しているが,一般には,20〜60個程度の燃料電池セル40を積層することが多い。
FIG. 2 is a schematic cross-sectional view of the solid oxide fuel cell 10.
The solid oxide fuel cell 10 is a fuel cell stack configured by stacking fuel cells 40 (1) to 40 (4). Here, for the sake of clarity, four fuel cells 40 (1) to 40 (4) are stacked, but in general, about 20 to 60 fuel cells 40 are often stacked. .

エンドプレート11,12,燃料電池セル40(1)〜40(4)は,ボルト21,22(22a,22b),23(23a,23b)に対応する貫通孔31,32(32a,32b),33(33a,33b)を有する。
エンドプレート11,12は,積層される燃料電池セル40(1)〜40(4)を押圧,保持する保持板であり,かつ燃料電池セル40(1)〜40(4)からの電流の出力端子でもある。
The end plates 11 and 12 and the fuel cells 40 (1) to 40 (4) have through holes 31 and 32 (32a and 32b) corresponding to the bolts 21 and 22 (22a and 22b) and 23 (23a and 23b), 33 (33a, 33b).
The end plates 11 and 12 are holding plates that press and hold the stacked fuel battery cells 40 (1) to 40 (4), and output current from the fuel battery cells 40 (1) to 40 (4). It is also a terminal.

図3は,燃料電池セル40の断面図である。図4は,燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル)を分解した状態を表す分解斜視図である。   FIG. 3 is a cross-sectional view of the fuel battery cell 40. FIG. 4 is an exploded perspective view showing a state in which the fuel cell body 44 and the metal separator 53 (fuel cell with separator) are disassembled.

図3に示すように,燃料電池セル40は,金属製セパレータ53と燃料電池セル本体44を有し,インターコネクタ41,45,集電体42,枠部43を備える。   As shown in FIG. 3, the fuel cell 40 includes a metal separator 53 and a fuel cell main body 44, and includes interconnectors 41 and 45, a current collector 42, and a frame portion 43.

燃料電池セル本体44は,固体電解質層56を空気極(カソード,空気極層ともいう)55,および,燃料極(アノード,燃料極層ともいう)57で挟んで構成される。固体電解質層56の酸化剤ガス流路47側,燃料ガス流路48側それぞれに,空気極55,燃料極57が配置される。
本実施形態では,固体電解質層56,空気極55,および燃料極57の全てが板状に構成されているが,それぞれが円筒状に形成されていてもよい。
The fuel cell main body 44 includes a solid electrolyte layer 56 sandwiched between an air electrode (also referred to as a cathode or an air electrode layer) 55 and a fuel electrode (also referred to as an anode or a fuel electrode layer) 57. An air electrode 55 and a fuel electrode 57 are arranged on the oxidant gas flow channel 47 side and the fuel gas flow channel 48 side of the solid electrolyte layer 56, respectively.
In the present embodiment, all of the solid electrolyte layer 56, the air electrode 55, and the fuel electrode 57 are formed in a plate shape, but each may be formed in a cylindrical shape.

空気極55としては,ペロブスカイト系酸化物(例えば,LSCF(ランタンストロンチウムコバルト鉄酸化物),LSM(ランタンストロンチウムマンガン酸化物),各種貴金属及び貴金属とセラミックとのサーメットが使用できる。   As the air electrode 55, perovskite oxides (for example, LSCF (lanthanum strontium cobalt iron oxide), LSM (lanthanum strontium manganese oxide), various noble metals, and cermets of noble metals and ceramics can be used.

固体電解質層56としては,YSZ(イットリア安定化ジルコニア),ScSZ(スカンジア安定化ジルコニア),SDC(サマリウムドープセリア),GDC(ガドリニウムドープセリア),ペロブスカイト系酸化物等の材料が使用できる。   For the solid electrolyte layer 56, materials such as YSZ (yttria stabilized zirconia), ScSZ (scandia stabilized zirconia), SDC (samarium doped ceria), GDC (gadolinium doped ceria), and perovskite oxide can be used.

燃料極57としては,金属が好ましく,Ni及びNiとセラミックとのサーメットやNi基合金が使用できる。   The fuel electrode 57 is preferably a metal, and Ni, Ni-ceramic cermets or Ni-based alloys can be used.

インターコネクタ41,45は,燃料電池セル本体44間の導通を確保し,かつ燃料電池セル本体44間でのガスの混合を防止し得る,導電性(例えば,ステンレス鋼等の金属)を有する板状の部材である。   The interconnectors 41 and 45 are plates having conductivity (for example, a metal such as stainless steel) that can secure conduction between the fuel cell main bodies 44 and prevent gas mixing between the fuel cell main bodies 44. Shaped member.

なお,燃料電池セル本体44間には,1個のインターコネクタ(41若しくは45)のみが配置される(直列に接続される二つの燃料電池セル本体44の間に一つのインターコネクタを共有しているため)。また,最上層および最下層の燃料電池セル本体44それぞれでは,インターコネクタ41,45に替えて,導電性を有するエンドプレート11,12が配置される。   In addition, only one interconnector (41 or 45) is disposed between the fuel cell main bodies 44 (one interconnector is shared between two fuel cell main bodies 44 connected in series). Because). Further, in each of the uppermost and lowermost fuel cell main bodies 44, conductive end plates 11 and 12 are disposed in place of the interconnectors 41 and 45, respectively.

集電体42は,燃料電池セル本体44の空気極55とインターコネクタ41との間の導通を確保するためのものであり,例えば,ニッケル合金等の金属材料からなる。また,集電体42が,弾性を有していてもよい。   The current collector 42 is for ensuring electrical connection between the air electrode 55 of the fuel cell main body 44 and the interconnector 41, and is made of a metal material such as a nickel alloy, for example. Further, the current collector 42 may have elasticity.

枠部43は,酸化剤ガス,燃料ガスが流れる開口46を有する。この開口46は,気密に保持され,かつ酸化剤ガスが流れる酸化剤ガス流路47,燃料ガスが流れる燃料ガス流路48に区分される。また,本実施形態の枠部43は,空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54で構成される。   The frame portion 43 has an opening 46 through which an oxidant gas and a fuel gas flow. The opening 46 is kept airtight and is divided into an oxidant gas passage 47 through which an oxidant gas flows and a fuel gas passage 48 through which fuel gas flows. Further, the frame portion 43 of this embodiment includes an air electrode frame 51, an insulating frame 52, a metal separator 53, and a fuel electrode frame 54.

空気極フレーム51は,空気極55側に配置される金属製の枠体で,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。   The air electrode frame 51 is a metal frame disposed on the air electrode 55 side, and has an opening 46 at the center. An oxidant gas flow path 47 is defined by the opening 46.

絶縁フレーム52は,インターコネクタ41,45間を電気的に絶縁する枠体で,例えば,Alなどのセラミックスやマイカ,バーミキュライトなどが使用でき,中央部には開口46を有する。該開口46によって,酸化剤ガス流路47を区画する。具体的には,絶縁フレーム52は,インターコネクタ41,45の間において,一方の面が空気極フレーム51に,他方の面が金属製セパレータ53に接触して配置されている。この結果,絶縁フレーム52により,インターコネクタ41,45間が電気的に絶縁されている。 The insulating frame 52 is a frame that electrically insulates between the interconnectors 41 and 45. For example, ceramics such as Al 2 O 3 , mica, vermiculite, and the like can be used, and an opening 46 is provided at the center. An oxidant gas flow path 47 is defined by the opening 46. Specifically, the insulating frame 52 is disposed between the interconnectors 41 and 45 such that one surface contacts the air electrode frame 51 and the other surface contacts the metal separator 53. As a result, the interconnectors 41 and 45 are electrically insulated by the insulating frame 52.

金属製セパレータ53は,開口部58を有する枠状の金属製の薄板(例えば,厚さ:0.1mm)であり,燃料電池セル本体44の固体電解質層56に取り付けられ,かつ酸化剤ガスと燃料ガスとの混合を防止する金属製の枠体である。金属製セパレータ53によって,枠部43の開口46内の空間が,酸化剤ガス流路47と燃料ガス流路48に区切られ,酸化剤ガスと燃料ガスとの混合が防止される。   The metal separator 53 is a frame-shaped metal thin plate (for example, thickness: 0.1 mm) having an opening 58, is attached to the solid electrolyte layer 56 of the fuel cell main body 44, and has an oxidant gas. It is a metal frame that prevents mixing with fuel gas. The metal separator 53 divides the space in the opening 46 of the frame portion 43 into an oxidant gas flow path 47 and a fuel gas flow path 48, thereby preventing mixing of the oxidant gas and the fuel gas.

金属製セパレータ53には,金属製セパレータ53の上面と下面の間を貫通する貫通孔によって開口部58が形成され,この開口部58内に,燃料電池セル本体44の空気極55が配置される。金属製セパレータ53が接合された燃料電池セル本体44を「セパレータ付燃料電池セル」という。なお,この詳細は後述する。   An opening 58 is formed in the metal separator 53 by a through-hole penetrating between the upper surface and the lower surface of the metal separator 53, and the air electrode 55 of the fuel cell main body 44 is disposed in the opening 58. . The fuel cell main body 44 to which the metallic separator 53 is joined is referred to as a “fuel cell with separator”. Details of this will be described later.

燃料極フレーム54は,絶縁フレーム52と同様に,燃料極57側に配置される絶縁フレームであり,中央部には開口46を有する。該開口46によって,燃料ガス流路48を区画する。   Like the insulating frame 52, the fuel electrode frame 54 is an insulating frame disposed on the fuel electrode 57 side, and has an opening 46 in the center. A fuel gas flow path 48 is defined by the opening 46.

空気極フレーム51,絶縁フレーム52,金属製セパレータ53,燃料極フレーム54は,ボルト21,22(22a,22b),23(23a,23b)が挿入されるか,もしくは酸化剤ガスか燃料ガスが流通する貫通孔31,32(32a,32b),33(33a,33b)をそれぞれの周辺部に有する。   Bolts 21, 22 (22a, 22b), 23 (23a, 23b) are inserted into the air electrode frame 51, the insulating frame 52, the metal separator 53, and the fuel electrode frame 54, or an oxidant gas or a fuel gas is inserted. The through holes 31, 32 (32a, 32b), 33 (33a, 33b) that circulate are provided in the respective peripheral portions.

(セパレータ付燃料電池セルの詳細)
本実施形態では,燃料電池セル本体44と金属製セパレータ53の間に接合部61,封止部62が配置され,セパレータ付燃料電池セル50を構成する。開口部58に沿って,金属製セパレータ53の下面と固体電解質層56の上面が接合部61で接合され,封止部62で封止される。
(Details of fuel cell with separator)
In the present embodiment, a joining portion 61 and a sealing portion 62 are disposed between the fuel cell main body 44 and the metal separator 53 to constitute the separator-equipped fuel cell 50. Along the opening 58, the lower surface of the metallic separator 53 and the upper surface of the solid electrolyte layer 56 are joined by the joining portion 61 and sealed by the sealing portion 62.

金属製セパレータ53は,主成分として,鉄(Fe)を含む金属材料から構成される。この金属材料が,0.1質量%以上10質量%以下(一例として,3質量%)のAlを含むことが好ましい。
上記金属製セパレータはその表面にアルミナの被膜が形成され,耐酸化耐久性が向上し,加工性に優れている。
The metal separator 53 is made of a metal material containing iron (Fe) as a main component. This metal material preferably contains 0.1 mass% or more and 10 mass% or less (for example, 3 mass%) of Al.
The metal separator has an alumina film formed on the surface thereof, improving oxidation resistance and excellent workability.

金属製セパレータ53は,例えば,0.1mmの厚みを有する。
上記金属製セパレータ53は,固体酸化物形燃料電池10(燃料電池スタック)を形成するときに,燃料電池セル本体44と金属製セパレータ53を接続する接合部61や封止部62に印加される応力が緩和され,接合部61や封止部62が損傷する(割れる)といった不具合の発生の可能性が低減される。
The metal separator 53 has a thickness of 0.1 mm, for example.
The metal separator 53 is applied to the joint 61 and the sealing portion 62 that connect the fuel cell body 44 and the metal separator 53 when the solid oxide fuel cell 10 (fuel cell stack) is formed. The stress is relaxed, and the possibility of occurrence of a problem such as damage (cracking) of the joint portion 61 or the sealing portion 62 is reduced.

接合部61は,Agを含むロウ材から構成され,開口部58に沿って,全周にわたって配置され,燃料電池セル本体44と金属製セパレータ53とを接合する。接合部61(Agロウ)は,例えば,2〜6mmの幅,10〜80μmの厚さを有する。   The joining portion 61 is made of a brazing material containing Ag, and is disposed over the entire circumference along the opening 58 to join the fuel cell body 44 and the metal separator 53. The joining portion 61 (Ag solder) has, for example, a width of 2 to 6 mm and a thickness of 10 to 80 μm.

接合部61の材質として,Agを主成分とする各種のロウ材を採用できる。例えば,ロウ材として,Agと酸化物の混合体,例えば,Ag−Al(AgとAl(アルミナ)の混合体)を利用できる。Agと酸化物の混合体としては,Ag−CuO,Ag−TiO,Ag−Cr,Ag−SiOも挙げることができる。また,ロウ材として,Agと他の金属の合金(例えば,Ag−Ge−Cr,Ag−Ti,Ag−Alのいずれか)も利用できる。 As the material of the joining portion 61, various brazing materials mainly composed of Ag can be employed. For example, as a brazing material, a mixture of Ag and an oxide, for example, Ag-Al 2 O 3 (a mixture of Ag and Al 2 O 3 (alumina)) can be used. Examples of the mixture of Ag and oxide include Ag—CuO, Ag—TiO 2 , Ag—Cr 2 O 3 , and Ag—SiO 2 . Further, an alloy of Ag and another metal (for example, any one of Ag—Ge—Cr, Ag—Ti, and Ag—Al) can be used as the brazing material.

Agを含むロウ材(Agロウ)は,大気雰囲気でもロウ付け温度で酸化し難い。このため,Agロウを用いて,燃料電池セル本体44と金属製セパレータ53とを大気雰囲気で接合でき,工程の効率上,好ましい。   The brazing material containing Ag (Ag brazing) is not easily oxidized at the brazing temperature even in an air atmosphere. For this reason, the fuel cell main body 44 and the metal separator 53 can be joined in an air atmosphere using Ag wax, which is preferable in terms of process efficiency.

封止部62は,開口部58に沿って,全周にわたって,接合部61よりも開口部58側(内周側)に配置され,金属製セパレータ53の開口部58内にある酸化剤ガスと開口部58外にある燃料ガスとの混合を防ぐために燃料電池セル本体44と金属製セパレータ53間を封止する。封止部62が接合部61よりも開口部58側に配置されることから,接合部61が酸化剤ガスに接触することが無くなり,酸化剤ガス流路47側から接合部61への酸素の移動が阻止される。この結果,水素と酸素の反応によって接合部61にボイドが発生して,ガスリークすることを防止できる。さらに,封止部62は金属製セパレータ53と燃料電池セル本体44の間に配置されることから,封止部62に働く熱応力が,引張応力ではなくせん断応力になる。このため,封止材が割れにくくなり,また封止部62と金属セパレータ53若しくは燃料電池セル本体44との界面での剥がれを抑制でき,封止部62の信頼を向上できる。
封止部62は,例えば,1〜4mmの幅,80〜200μmの厚さを有する。
The sealing portion 62 is disposed on the opening 58 side (inner peripheral side) of the joining portion 61 along the opening 58 over the entire circumference, and the oxidant gas in the opening 58 of the metallic separator 53 In order to prevent mixing with the fuel gas outside the opening 58, the space between the fuel cell main body 44 and the metal separator 53 is sealed. Since the sealing portion 62 is disposed on the opening 58 side of the joint portion 61, the joint portion 61 is not brought into contact with the oxidant gas, and oxygen from the oxidant gas flow path 47 side to the joint portion 61 is eliminated. Movement is prevented. As a result, it is possible to prevent a gas leak from occurring in the junction 61 due to the reaction between hydrogen and oxygen. Furthermore, since the sealing portion 62 is disposed between the metallic separator 53 and the fuel cell main body 44, the thermal stress acting on the sealing portion 62 is not tensile stress but shear stress. For this reason, the sealing material becomes difficult to break, and peeling at the interface between the sealing portion 62 and the metal separator 53 or the fuel cell main body 44 can be suppressed, and the reliability of the sealing portion 62 can be improved.
The sealing part 62 has a width of 1 to 4 mm and a thickness of 80 to 200 μm, for example.

封止部62には,ガラスを含む封止材,具体的には,ガラス,ガラスセラミックス(結晶化ガラス),ガラスとセラミックスの複合物を利用できる。一例として,SCHOTT社製ガラス:G018−311が使用できる。   For the sealing portion 62, a sealing material containing glass, specifically, glass, glass ceramics (crystallized glass), or a composite of glass and ceramics can be used. As an example, glass manufactured by SCHOTT: G018-311 can be used.

(セパレータ付燃料電池セルの製造)
以下,セパレータ付燃料電池セル(金属製セパレータ53が接合された燃料電池セル本体44)の製造方法につき説明する。ここでは,2通りの製造方法(製造方法A,B)を説明する。
(Manufacture of fuel cell with separator)
Hereinafter, a method for manufacturing a fuel cell with a separator (a fuel cell main body 44 to which a metallic separator 53 is joined) will be described. Here, two manufacturing methods (manufacturing methods A and B) will be described.

いずれの製造方法においても,まずは例えば,SUH21(18Cr−3Al(Al含有フェライト系ステンレス鋼の一種))からなる板材を打ち抜いて,開口部58を有する金属製セパレータ53を製造した。また,燃料極57のグリーンシートの一方の表面に,固体電解質層56のシートを貼り付けて,積層体を形成し,該積層体を一旦焼成した。その後,空気極55の材料を印刷し,焼成して燃料電池セル本体44を作成した。 In any of the manufacturing methods, first, for example, a metal plate 53 having an opening 58 was manufactured by punching a plate material made of SUH21 (18Cr-3Al (a kind of Al-containing ferritic stainless steel)). In addition, a sheet of the solid electrolyte layer 56 was attached to one surface of the green sheet of the fuel electrode 57 to form a laminate, and the laminate was fired once. Thereafter, the material of the air electrode 55 was printed and fired to prepare the fuel cell main body 44.

1.製造方法A
次に示すように,製造方法Aでは,接合(接合部61の形成)と封止部62の形成とを同時に行う。図5は,製造方法Aでのセパレータ付燃料電池セルの製造工程を表すフロー図である。また,図6A〜図6Eは,製造方法Aで製造中のセパレータ付燃料電池セルの状態を表す断面図である。
1. Manufacturing method A
As shown below, in the manufacturing method A, joining (formation of the joining part 61) and formation of the sealing part 62 are performed simultaneously. FIG. 5 is a flowchart showing the manufacturing process of the separator-equipped fuel cell in the manufacturing method A. 6A to 6E are cross-sectional views showing states of the separator-equipped fuel cell being manufactured by the manufacturing method A. FIG.

(1)ロウ材611,612の配置(ステップS11,図6A)
燃料電池セル本体44と金属製セパレータ53それぞれにロウ材611,612を配置する。例えば,ペースト状のAgを含むロウ材を所定形状に燃料電池セル本体44の固体電解質層56の上面と金属製セパレータ53の下面に印刷することで,燃料電池セル本体44と金属製セパレータ53それぞれにロウ材611,612を配置した。なお,ロウ材611,612の配置の手法としては,上記以外に,ディスペンサを用いて行ってもよい。
ロウ材611,612は,例えば,2〜6mmの幅,10〜80μmの厚さを有する。
(1) Arrangement of brazing materials 611 and 612 (step S11, FIG. 6A)
The brazing materials 611 and 612 are disposed on the fuel cell main body 44 and the metal separator 53, respectively. For example, a brazing material containing paste-like Ag is printed in a predetermined shape on the upper surface of the solid electrolyte layer 56 of the fuel cell body 44 and the lower surface of the metal separator 53, so that the fuel cell body 44 and the metal separator 53 respectively. The brazing materials 611 and 612 are disposed on the surface. As a method for arranging the brazing materials 611 and 612, in addition to the above, a dispenser may be used.
For example, the brazing materials 611 and 612 have a width of 2 to 6 mm and a thickness of 10 to 80 μm.

燃料電池セル本体44と金属製セパレータ53それぞれに予め配置された2つのロウ材611,612が融け,融合することで,接触面積を確保し,接合部61の接合強度を上げることができる。   The two brazing members 611 and 612 previously disposed in the fuel cell main body 44 and the metal separator 53 are melted and fused, so that a contact area can be ensured and the joining strength of the joining portion 61 can be increased.

燃料電池セル本体44と金属製セパレータ53の一方のみにロウ材を配置すると,ロウ材が溶融して,他方の表面を濡らし,その後,固化することで,燃料電池セル本体44と金属製セパレータ53の他方とロウ材が結合されることになる。このように,ロウ材が溶融されてから,燃料電池セル本体44や金属製セパレータ53に接触すると,接触面積が小さくなり易く,接合強度の確保が困難となる可能性がある。燃料電池セル本体44や金属製セパレータ53に対する,溶融したロウ材の濡れ性は,必ずしも良好とは限らないので,接合の前に,ロウ材を燃料電池セル本体44と金属製セパレータ53の双方に配置することで,接合部61の接合強度を向上させることができる。   When the brazing material is disposed on only one of the fuel cell body 44 and the metal separator 53, the brazing material melts, wets the other surface, and then solidifies, so that the fuel cell body 44 and the metal separator 53 are solidified. The other of the two and the brazing material are combined. Thus, when the brazing material is melted and then comes into contact with the fuel cell body 44 or the metal separator 53, the contact area tends to be small, and it may be difficult to ensure the bonding strength. Since the wettability of the molten brazing material to the fuel cell body 44 and the metal separator 53 is not always good, the brazing material is applied to both the fuel cell body 44 and the metal separator 53 before joining. By arrange | positioning, the joining strength of the junction part 61 can be improved.

(2)封止材621の配置(ステップS12,図6B,図6D,図6E)
燃料電池セル本体44と金属製セパレータ53の少なくともどちらか一方の開口部58側もしくは空気極55側に封止材621を配置した。例えば,ペースト状の封止材を所定形状に印刷することで,燃料電池セル本体44と金属製セパレータ53の少なくともどちらか一方に封止材621を配置した。なお,封止材の配置の手法としては,上記以外にディスペンサを用いて行ってもよい。
封止材621は,例えば,1〜4mmの幅,80〜200μmの厚さを有する。
(2) Arrangement of sealing material 621 (Step S12, FIG. 6B, FIG. 6D, FIG. 6E)
A sealing material 621 is disposed on the opening 58 side or the air electrode 55 side of at least one of the fuel cell main body 44 and the metal separator 53. For example, the sealing material 621 is disposed on at least one of the fuel cell main body 44 and the metal separator 53 by printing a paste-like sealing material in a predetermined shape. In addition, as a method for arranging the sealing material, a dispenser may be used in addition to the above.
The sealing material 621 has, for example, a width of 1 to 4 mm and a thickness of 80 to 200 μm.

図6B,図6D,図6Eはそれぞれ,燃料電池セル本体44のみ,金属製セパレータ53のみ,燃料電池セル本体44と金属製セパレータ53の双方に,封止材621,622を配置した形態を表す。封止材621,622は全ての形態において,接合部(ロウ材)61よりも開口部58側もしくは空気極55側に配置されている。   6B, FIG. 6D, and FIG. 6E each show a form in which sealing materials 621 and 622 are disposed only on the fuel cell main body 44, only the metal separator 53, and both the fuel cell main body 44 and the metal separator 53. . In all the forms, the sealing materials 621 and 622 are disposed on the opening 58 side or the air electrode 55 side of the joint portion (brazing material) 61.

既述のように,ロウ材は燃料電池セル本体44と金属製セパレータ53との両方に配置するのが好ましいが,封止材は燃料電池セル本体44と金属製セパレータ53との一方に配置すればよい。これは,ロウ材と封止材の溶融時の濡れ性の相違に起因する。ガラスを含む封止材の方が,ロウ材よりも,燃料電池セル本体44および金属製セパレータ53に対する溶融時の濡れ性が良好なので,これら双方に封止材を配置しても良い。   As described above, the brazing material is preferably disposed on both the fuel cell body 44 and the metal separator 53, but the sealing material is disposed on one of the fuel cell body 44 and the metal separator 53. That's fine. This is due to the difference in wettability when the brazing material and the sealing material are melted. Since the sealing material containing glass has better wettability with respect to the fuel cell main body 44 and the metal separator 53 than the brazing material, the sealing material may be disposed on both of them.

金属製セパレータ53は,高温大気中で酸化被膜(酸化物(アルミナ))を形成する材料から構成され,固体電解質層56も酸化物から構成される。このため,金属製セパレータ53および固体電解質層56は,ロウ材(金属)よりも,封止材(ガラス(酸化物))に対して,濡れ性が良好である。   The metallic separator 53 is made of a material that forms an oxide film (oxide (alumina)) in high-temperature air, and the solid electrolyte layer 56 is also made of an oxide. For this reason, the metal separator 53 and the solid electrolyte layer 56 have better wettability with respect to the sealing material (glass (oxide)) than the brazing material (metal).

なお,本実施形態では,(1)ロウ材の配置,(2)封止材の配置の順で行ったが,この逆,あるいは,ロウ材と封止材の配置を同時に実行しても良い。   In this embodiment, (1) the placement of the brazing material and (2) the placement of the sealing material are performed in this order, but the reverse or the placement of the brazing material and the sealing material may be performed simultaneously. .

(3)接合(接合部61の形成)・封止部62の形成(ステップS13,図6C)
ロウ材611,612を溶融し,燃料電池セル本体44と金属製セパレータ53とを接合した(接合部61の形成)と同時に,封止材621を溶融し,封止部62を形成した。ロウ材611,612および封止材621が配置された燃料電池セル本体44と金属製セパレータ53とを接触させ,大気雰囲気下で,例えば,850〜1100℃で加熱することで,ロウ材611,612および封止材621が溶融し,接合部および封止部の形成を同時に行った。
(3) Joining (formation of the joining part 61) and formation of the sealing part 62 (step S13, FIG. 6C)
The brazing materials 611 and 612 were melted, and the fuel cell body 44 and the metal separator 53 were joined (formation of the joining portion 61). At the same time, the sealing material 621 was melted to form the sealing portion 62. By bringing the fuel cell main body 44 in which the brazing materials 611 and 612 and the sealing material 621 are disposed into contact with the metal separator 53 and heating in the air atmosphere at, for example, 850 to 1100 ° C., the brazing material 611, 612 and the sealing material 621 were melted, and the joint portion and the sealing portion were simultaneously formed.

既述のように,燃料電池セル本体44と金属製セパレータ53のそれぞれに予め配置された2つのロウ材611,612が融け,融合することで,接触面積を確保し,接合強度を向上することができる。   As described above, the two brazing members 611 and 612 arranged in advance in the fuel cell main body 44 and the metal separator 53 are melted and fused to ensure a contact area and improve the bonding strength. Can do.

このとき,ロウ材611,612および封止材621が隣接して配置されていることから,接合(接合部61の形成)と封止部62の形成とが実質的に同じ温度と同じ雰囲気下で行われることになる。   At this time, since the brazing materials 611 and 612 and the sealing material 621 are disposed adjacent to each other, the bonding (formation of the joining portion 61) and the formation of the sealing portion 62 are performed under substantially the same temperature and the same atmosphere. Will be done.

接合時に,燃料電池セル本体44と金属製セパレータ53に,融けたロウ材が密着されるように,燃料電池セル本体44と金属製セパレータ53の上下から荷重が印加される。この結果,隣接する封止材621にも,上下から荷重を印加することができ,隙間なく封止することができる。   At the time of joining, a load is applied from above and below the fuel cell body 44 and the metal separator 53 so that the melted brazing material is in close contact with the fuel cell body 44 and the metal separator 53. As a result, a load can be applied to the adjacent sealing material 621 from above and below, and sealing can be performed without a gap.

ロウ材は,Agを含み,大気雰囲気でもロウ付け温度で酸化し難いので,大気雰囲気でのロウ付け(接合)が可能となり,接合部61と封止部62の形成時(ステップS13)における燃料電池セル本体44(特に,空気極55)の性能の低下,具体的には燃料電池セル本体44の空気極55(例えば,LSCF(ランタンストロンチウムコバルト鉄酸化物))の結晶構造が変化に起因した電極性能を防止できる。
さらには,燃料電池セル本体44の性能劣化を防止するために接合時の雰囲気をAr等の不活性ガスにする必要がないので,装置や工程の複雑化を招くことなく,装置や工程の効率化を図れる。
Since the brazing material contains Ag and is not easily oxidized at the brazing temperature even in the air atmosphere, brazing (bonding) in the air atmosphere is possible, and the fuel in forming the joint portion 61 and the sealing portion 62 (step S13). The performance of the battery cell main body 44 (particularly, the air electrode 55) is deteriorated. Specifically, the crystal structure of the air electrode 55 (for example, LSCF (lanthanum strontium cobalt iron oxide)) of the fuel battery cell main body 44 is caused by the change. Electrode performance can be prevented.
Furthermore, since it is not necessary to use an inert gas such as Ar as the atmosphere at the time of joining in order to prevent the performance deterioration of the fuel cell main body 44, the efficiency of the device or process can be reduced without complicating the device or process. Can be realized.

以上のように,製造方法Aでは,接合(接合部61の形成)と封止部62の形成とが同じ温度と同じ雰囲気下で実行したことで,製造装置の簡略化や製造時間が短縮され,セパレータ付燃料電池セルの効率的な製造が可能となる。   As described above, in the manufacturing method A, the bonding (formation of the joining part 61) and the formation of the sealing part 62 are performed under the same temperature and the same atmosphere, thereby simplifying the production apparatus and shortening the production time. Thus, it is possible to efficiently manufacture a fuel cell with a separator.

2.製造方法B
製造方法Bでは,接合(接合部61の形成)と封止部62の形成とを別々に行う。図7は,製造方法Bでのセパレータ付燃料電池セルの製造工程を表すフロー図である。また,図8A〜図8Dは,製造方法Bで製造中のセパレータ付燃料電池セルの状態を表す断面図である。
2. Manufacturing method B
In the manufacturing method B, joining (formation of the joining part 61) and formation of the sealing part 62 are performed separately. FIG. 7 is a flowchart showing the manufacturing process of the separator-equipped fuel cell in the manufacturing method B. 8A to 8D are cross-sectional views showing states of the separator-equipped fuel cell being manufactured by the manufacturing method B. FIG.

(1)ロウ材611,612の配置(ステップS21,図8A)
燃料電池セル本体44と金属製セパレータ53それぞれにロウ材611,612を配置した。この工程は,製造方法AのステップS11と同様なので,詳細な説明を省略する。
(1) Arrangement of brazing materials 611 and 612 (step S21, FIG. 8A)
The brazing materials 611 and 612 are disposed on the fuel cell main body 44 and the metal separator 53, respectively. Since this process is the same as step S11 of manufacturing method A, detailed description thereof is omitted.

(2)接合(接合部61の形成)(ステップS22,図8B)
ロウ材611,612を溶融し,燃料電池セル本体44と金属製セパレータ53とを接合する(接合部61の形成)。ロウ材611,612が配置された燃料電池セル本体44と金属製セパレータ53とを接触させ,例えば,850〜1100℃で加熱することで,ロウ材611,612が溶融し,接合を行った。
(2) Joining (formation of joined part 61) (step S22, FIG. 8B)
The brazing materials 611 and 612 are melted, and the fuel cell main body 44 and the metal separator 53 are joined (formation of the joining portion 61). The fuel cell main body 44 on which the brazing materials 611 and 612 are disposed and the metal separator 53 are brought into contact with each other and heated at 850 to 1100 ° C., for example, so that the brazing materials 611 and 612 are melted and joined.

既述のように,燃料電池セル本体44と金属製セパレータ53それぞれに予め配置された2つのロウ材611,612が融け,融合することで,接触面積を確保し,接合強度を上げることができる。   As described above, the two brazing members 611 and 612 previously disposed in the fuel cell main body 44 and the metal separator 53 are melted and fused, so that a contact area can be ensured and the bonding strength can be increased. .

(3)封止材621の配置(ステップS23,図8C)
燃料電池セル本体44と金属製セパレータ53の少なくともどちらか一方に封止材621を配置する。例えば,封止材を含むペーストを印刷することで,燃料電池セル本体44と金属製セパレータ53の少なくともどちらか一方に封止材621を配置できる。既述のように,封止材は濡れ性が一般に良好であることから,燃料電池セル本体44と金属製セパレータ53との一方に配置できる。
(3) Arrangement of sealing material 621 (step S23, FIG. 8C)
A sealing material 621 is disposed on at least one of the fuel cell main body 44 and the metal separator 53. For example, the sealing material 621 can be disposed on at least one of the fuel cell main body 44 and the metal separator 53 by printing a paste containing the sealing material. As described above, since the sealant generally has good wettability, it can be disposed on one of the fuel cell main body 44 and the metal separator 53.

(4)封止部62の形成(ステップS24,図8D)
封止材621を溶融し,封止部62を形成する。接合部61で接合され,かつ封止材621が配置された燃料電池セル本体44と金属製セパレータ53を例えば,850〜1100℃で加熱することで,封止材621が溶融し,封止が行われる。
(4) Formation of the sealing part 62 (step S24, FIG. 8D)
The sealing material 621 is melted to form the sealing portion 62. By heating the fuel cell body 44 and the metal separator 53 joined at the joining portion 61 and having the sealing material 621 disposed at 850 to 1100 ° C., for example, the sealing material 621 is melted and sealed. Done.

以上のように,製造方法Bでは,接合と封止とを別途に実行している。接合と封止とを別々に実行することで,種々のロウ材と封止材の組み合わせが可能となる。   As described above, in the manufacturing method B, bonding and sealing are performed separately. By performing bonding and sealing separately, various combinations of brazing material and sealing material are possible.

接合と封止とを同時に実行するためには,ロウ材の接合温度と封止材の溶融温度がある程度近接していることが好ましく,採用できるロウ材と封止材が限定される。一般的に,ロウ材の融点は,封止材(ガラス)の融点より高い。ロウ材の接合温度と封止材の溶融温度が異なる場合に,接合と封止とを同時に実行すると,封止材成分の変質や蒸散によるやせ細りなどによって,封止できなる恐れがある。   In order to perform bonding and sealing simultaneously, it is preferable that the bonding temperature of the brazing material and the melting temperature of the sealing material are close to each other to some extent, and the brazing material and the sealing material that can be used are limited. Generally, the melting point of the brazing material is higher than the melting point of the sealing material (glass). If the bonding temperature of the brazing material and the melting temperature of the sealing material are different, if the bonding and sealing are performed at the same time, sealing may occur due to deterioration of the sealing material component or thinning due to evaporation.

(固体酸化物形燃料電池(燃料電池スタック)10の製造方法)
例えば,SUH21からなる板材を所定の形状に打ち抜き,エンドプレート11,12,インターコネクタ41,45,空気極フレーム51,燃料極フレーム54を製造した。一方,マイカよりなる板材を加工して絶縁フレーム52を製造した。
(Method for producing solid oxide fuel cell (fuel cell stack) 10)
For example, a plate material made of SUH21 is punched into a predetermined shape, and end plates 11 and 12, interconnectors 41 and 45, an air electrode frame 51, and a fuel electrode frame 54 are manufactured. On the other hand, an insulating frame 52 was manufactured by processing a plate material made of mica.

上述した製造方法AまたはBのいずれかで作成したセパレータ付燃料電池セル50の燃料電池セル本体44の空気極55側には,金属製セパレータ53上に,絶縁フレーム52と空気極フレーム51とインターコネクタ41の順で,燃料極57側には,燃料極フレーム54とインターコネクタ45の順で,それぞれを配置し,燃料電池セル40を製造した。   On the air electrode 55 side of the fuel cell body 44 of the separator-equipped fuel cell 50 produced by either the manufacturing method A or B described above, an insulating frame 52, an air electrode frame 51, and an interface are disposed on a metal separator 53. The fuel cell 40 was manufactured by arranging the fuel electrode frame 54 and the interconnector 45 in this order on the fuel electrode 57 side in the order of the connector 41.

複数の燃料電池セル40を積層し,最上層と最下層にはエンドプレート11,12が配置し,ボルト21〜23とナット35によって,エンドプレート11,12で複数の燃料電池セル40を挟んで固定し,燃料電池スタック10を作成した。   A plurality of fuel cells 40 are stacked, end plates 11 and 12 are arranged on the uppermost layer and the lowermost layer, and the plurality of fuel cells 40 are sandwiched between the end plates 11 and 12 by bolts 21 to 23 and nuts 35. The fuel cell stack 10 was prepared by fixing.

(第1の実施形態の変形例)
第1の実施形態の変形例を説明する。図9は,第1の実施形態の変形例に係る燃料電池セル40aの断面図である。図10は,第1の実施形態の変形例に係る燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50)を分解した状態を表す分解斜視図である。
(Modification of the first embodiment)
A modification of the first embodiment will be described. FIG. 9 is a cross-sectional view of a fuel cell 40a according to a modification of the first embodiment. FIG. 10 is an exploded perspective view showing a state in which the fuel cell body 44 and the metal separator 53 (separator-equipped fuel cell 50) according to a modification of the first embodiment are disassembled.

燃料電池セル40aでは,接合部61と封止部62の間に間隙を有する。このように,接合部61と封止部62とが接触していなくても,封止部62が割れる可能性の低減および接合部61中での酸化剤ガスの拡散防止は可能である。   In the fuel cell 40a, there is a gap between the joint portion 61 and the sealing portion 62. Thus, even if the joining part 61 and the sealing part 62 are not in contact with each other, it is possible to reduce the possibility of the sealing part 62 being broken and to prevent the oxidant gas from diffusing in the joining part 61.

燃料電池セル40,40aでは,接合部61と封止部62が開口部58の全周に亘って,接触している,または間隙を有する。その中間の態様として,開口部58の周の一部で接合部61と封止部62とが接触し,開口部58の周の一部で接合部61と封止部62とが接触しないことも考えられる。   In the fuel cells 40 and 40a, the joint 61 and the sealing portion 62 are in contact with each other over the entire circumference of the opening 58 or have a gap. As an intermediate aspect thereof, the joining portion 61 and the sealing portion 62 are in contact with each other around the opening 58, and the joining portion 61 and the sealing portion 62 are not in contact with each other around the opening 58. Is also possible.

第1の実施形態の変形例に係るセパレータ付燃料電池セルは,第1の実施形態と同様,製造方法A,Bのいずれを用いても製造できる。
その場合は,ロウ材に対して封止材をある程度の隙間を空けて配置し,燃料電池セル本体44と金属製セパレータ53を接合する。
The separator-attached fuel battery cell according to the modification of the first embodiment can be manufactured using any one of the manufacturing methods A and B, as in the first embodiment.
In that case, the sealing material is arranged with a certain gap with respect to the brazing material, and the fuel cell main body 44 and the metallic separator 53 are joined.

(第2の実施形態)
第2の実施形態を説明する。図11は,第2の実施形態に係る燃料電池セル40bの断面図である。図12は,第2の実施形態に係る燃料電池セル本体44と金属製セパレータ53(セパレータ付燃料電池セル50)を分解した状態を表す分解斜視図である。
(Second Embodiment)
A second embodiment will be described. FIG. 11 is a cross-sectional view of a fuel battery cell 40b according to the second embodiment. FIG. 12 is an exploded perspective view showing a state in which the fuel cell body 44 and the metal separator 53 (the separator-equipped fuel cell 50) according to the second embodiment are disassembled.

燃料電池セル40bでは,接合部61が,開口部58から離れて配置された接合部61aと,接合部61aよりも開口部58側に配置された接合部61bと,に区分される。また,接合部61b中の酸素拡散係数が,接合部61a中の酸素拡散係数より小さい材質で構成されている。   In the fuel cell 40b, the joint 61 is divided into a joint 61a disposed away from the opening 58 and a joint 61b disposed closer to the opening 58 than the joint 61a. Further, the oxygen diffusion coefficient in the junction 61b is made of a material smaller than the oxygen diffusion coefficient in the junction 61a.

封止部62と接合部61aとの間に,接合部61aよりも酸素拡散係数が小さい接合部61bが配置される。即ち,封止部62を通過した酸化剤ガスが有ったとしても,接合部61bでの酸素拡散係数が小さいことで,酸化剤ガスが接合部61aに到達することを抑制できる。この結果,接合部61aでの酸素の拡散を抑制し,接合部61aの酸素等によるボイドの発生を防止でき,燃料電池セル40bと金属製セパレータ53の接合の信頼性を向上できる。   Between the sealing part 62 and the joining part 61a, a joining part 61b having an oxygen diffusion coefficient smaller than that of the joining part 61a is disposed. That is, even if there is an oxidant gas that has passed through the sealing portion 62, it is possible to suppress the oxidant gas from reaching the joint portion 61a because the oxygen diffusion coefficient at the joint portion 61b is small. As a result, it is possible to suppress the diffusion of oxygen in the joint portion 61a, prevent the occurrence of voids due to oxygen or the like in the joint portion 61a, and improve the reliability of joining the fuel cell 40b and the metal separator 53.

接合部61aの材質として,次の材料1),2)のような,例えば,Agを主成分とする各種のロウ材を採用できる。
1)Crを(例えば,1〜5重量%)含有するAgロウ材(Ag−Crロウ材)
2)Pdを(例えば,2〜30質量%,好ましくは3〜10質量%)含有するAgロウ材(Ag−Pdロウ材)
As the material of the joint portion 61a, for example, various brazing materials mainly composed of Ag such as the following materials 1) and 2) can be adopted.
1) Ag brazing material (Ag—Cr 2 O 3 brazing material) containing Cr 2 O 3 (for example, 1 to 5 wt%)
2) Ag brazing material (Ag-Pd brazing material) containing Pd (for example, 2 to 30% by mass, preferably 3 to 10% by mass)

接合部61bの材質は,接合部61aの材質(酸素拡散係数)に応じて適宜選択でき,例えば,Ni,Pt,Auが挙げられる。このうち,Ni,Ptは,酸素の拡散バリアーの特性が大きく(酸素拡散係数が大きい),好適である。特に,Ptは,大気中でAgロウ材を接合する条件で酸化が進まないので,酸素の拡散バリアーとして,一層好適である。   The material of the joining part 61b can be appropriately selected according to the material (oxygen diffusion coefficient) of the joining part 61a, and examples thereof include Ni, Pt, and Au. Of these, Ni and Pt are suitable because of their large oxygen diffusion barrier properties (large oxygen diffusion coefficient). In particular, Pt is more suitable as an oxygen diffusion barrier because oxidation does not proceed under the condition of joining an Ag brazing material in the atmosphere.

第2の実施形態の変形例に係るセパレータ付燃料電池セルは,製造方法A,Bに対応する手法を用いて製造できる。   The fuel cell with a separator according to the modification of the second embodiment can be manufactured using a method corresponding to the manufacturing methods A and B.

具体的には,製造方法AのステップS11において,接合部61a,61bそれぞれに対応する2種類のロウ材を燃料電池セル本体44と金属製セパレータ53の双方に配置させる。その後,封止材621を配置し(ステップS12に対応),加熱することで,2種類のロウ材および封止材が溶融し,接合および封止が行える(ステップS13に対応)。   Specifically, in step S <b> 11 of the manufacturing method A, two types of brazing materials corresponding to the joint portions 61 a and 61 b are disposed on both the fuel cell body 44 and the metal separator 53. Thereafter, the sealing material 621 is disposed (corresponding to step S12) and heated, so that the two kinds of brazing material and the sealing material are melted and can be joined and sealed (corresponding to step S13).

また,製造方法Bに対応する手法として,接合部61a,61b,封止部62を順次に形成しても良い。この場合,接合部61a,61b,封止部62それぞれの構成材料の融点が高い順に,これらの構成材料の配置および接合部61a,61b,封止部62の形成(加熱)を行うことが好ましい。   Further, as a method corresponding to the manufacturing method B, the joining portions 61a and 61b and the sealing portion 62 may be formed sequentially. In this case, it is preferable to arrange these constituent materials and form (heat) the joint portions 61a and 61b and the sealing portion 62 in descending order of the melting points of the constituent materials of the joint portions 61a and 61b and the sealing portion 62. .

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

10 固体酸化物形燃料電池(燃料電池スタック)
11,12 エンドプレート
21,22 ボルト
31,32 貫通孔
35 ナット
40,40,40a 燃料電池セル
41,45 インターコネクタ
42 集電体
43 枠部
44 燃料電池セル本体
46 開口
47 酸化剤ガス流路
48 燃料ガス流路
50 セパレータ付燃料電池セル
51 空気極フレーム
52 絶縁フレーム
53 金属製セパレータ
54 燃料極フレーム
55 空気極
56 固体電解質層
57 燃料極
58 開口部
61,61a,61b 接合部
611,612 ロウ材
62 封止部
621,622 封止材
10 Solid oxide fuel cell (fuel cell stack)
11, 12 End plate 21, 22 Bolt 31, 32 Through hole 35 Nut 40, 40, 40a Fuel cell 41, 45 Interconnector 42 Current collector 43 Frame 44 Fuel cell main body 46 Opening 47 Oxidant gas flow path 48 Fuel gas flow path 50 Fuel cell with separator 51 Air electrode frame 52 Insulating frame 53 Metal separator 54 Fuel electrode frame 55 Air electrode 56 Solid electrolyte layer 57 Fuel electrode 58 Openings 61, 61a, 61b Joints 611, 612 Brazing material 62 Sealing part 621,622 Sealing material

Claims (13)

固体電解質層を空気極および燃料極で挟んで構成される燃料電池セル本体と,
Agを含むロウ材で構成される接合部を介して,前記燃料電池セル本体に取り付けられ,開口部を有する枠状の金属製セパレータと,
を具備する,セパレータ付燃料電池セルであって,
前記ロウ材よりも開口部側の前記金属製セパレータと前記燃料電池セル本体との間に,ガラスを含む封止材を有する封止部を具備する,
ことを特徴とするセパレータ付燃料電池セル。
A fuel cell body configured by sandwiching a solid electrolyte layer between an air electrode and a fuel electrode;
A frame-shaped metal separator attached to the fuel cell body through a joint composed of a brazing material containing Ag and having an opening;
A fuel cell with a separator, comprising:
A sealing portion having a sealing material containing glass is provided between the metallic separator on the opening side of the brazing material and the fuel cell body.
A separator-equipped fuel cell.
前記接合部が,第1接合部と該第1接合部よりも前記開口部側に位置する第2接合部とで構成され,
前記第2接合部中の酸素拡散係数が,前記第1接合部中の酸素拡散係数より小さい,
ことを特徴とする請求項1に記載のセパレータ付燃料電池セル。
The joint is composed of a first joint and a second joint located on the opening side of the first joint,
The oxygen diffusion coefficient in the second junction is smaller than the oxygen diffusion coefficient in the first junction,
The separator-equipped fuel cell according to claim 1.
前記金属製セパレータが,0.1質量%以上10質量%以下のAlを含む,
ことを特徴とする請求項1または2に記載のセパレータ付燃料電池セル。
The metal separator contains 0.1 mass% or more and 10 mass% or less of Al,
The separator-equipped fuel cell according to claim 1 or 2.
前記金属製セパレータが,0.5mm以下の厚みを有する,
ことを特徴とする請求項1乃至3のいずれか1項に記載のセパレータ付燃料電池セル。
The metal separator has a thickness of 0.5 mm or less,
The separator-equipped fuel cell according to any one of claims 1 to 3.
前記接合部と前記封止部との間に,間隙を有する,
ことを特徴とする請求項1乃至4のいずれか1項に記載のセパレータ付燃料電池セル。
Having a gap between the joint and the sealing portion;
The fuel cell with a separator according to any one of claims 1 to 4, wherein the fuel cell has a separator.
前記接合部を構成するロウ材の溶融温度は,前記封止材の溶融温度よりも高い,
ことを特徴とする請求項1乃至5のいずれか1項に記載のセパレータ付燃料電池セル。
The melting temperature of the brazing material constituting the joint is higher than the melting temperature of the sealing material;
The separator-equipped fuel cell according to any one of claims 1 to 5.
請求項1乃至6のいずれか1項に記載のセパレータ付燃料電池セル,
を具備することを特徴とする燃料電池スタック。
A fuel cell with a separator according to any one of claims 1 to 6,
A fuel cell stack comprising:
請求項1乃至7のいずれか1項に記載のセパレータ付燃料電池セルの製造方法であって,
前記金属製セパレータと燃料電池セル本体との両方に前記ロウ材を配置するロウ材配置工程と,
前記金属製セパレータと燃料電池セル本体の少なくともどちらか一方に前記ガラスを含む封止材を配置する封止材配置工程と,
を具備する,
ことを特徴とするセパレータ付燃料電池セルの製造方法。
It is a manufacturing method of the fuel cell with a separator of any one of Claims 1 thru | or 7, Comprising:
A brazing material disposing step of disposing the brazing material on both the metal separator and the fuel cell body;
A sealing material disposing step of disposing a sealing material containing the glass on at least one of the metallic separator and the fuel cell body;
Comprising
The manufacturing method of the fuel cell with a separator characterized by the above-mentioned.
請求項8に記載のセパレータ付燃料電池セルの製造方法であって,
前記金属製セパレータと燃料電池セル本体との両方に配置されたロウ材を溶融し,前記金属製セパレータと燃料電池セル本体とを接合する接合工程
をさらに具備する
ことを特徴とするセパレータ付燃料電池セルの製造方法。
It is a manufacturing method of the fuel cell with a separator of Claim 8, Comprising:
A fuel cell with a separator, further comprising a joining step of melting the brazing material disposed in both of the metal separator and the fuel cell body and joining the metal separator and the fuel cell body. Cell manufacturing method.
請求項9に記載のセパレータ付燃料電池セルの製造方法であって,
前記接合工程において,前記ロウ材が大気下で溶融される,
ことを特徴とするセパレータ付燃料電池セルの製造方法。
It is a manufacturing method of the fuel cell with a separator according to claim 9,
In the joining step, the brazing material is melted in the atmosphere.
The manufacturing method of the fuel cell with a separator characterized by the above-mentioned.
請求項10に記載のセパレータ付燃料電池セルの製造方法であって,
前記金属製セパレータと燃料電池セル本体の少なくともどちらか一方に配置された前記ガラスを含む封止材を溶融し,前記封止部を形成する封止部形成工程,
をさらに具備する,
ことを特徴とするセパレータ付燃料電池セルの製造方法。
It is a manufacturing method of the fuel cell with a separator according to claim 10,
A sealing part forming step for melting the sealing material including the glass disposed in at least one of the metal separator and the fuel cell body, and forming the sealing part;
Further comprising
The manufacturing method of the fuel cell with a separator characterized by the above-mentioned.
請求項11に記載のセパレータ付燃料電池セルの製造方法であって,
前記接合工程と前記封止部形成工程とが,同時に行われる
ことを特徴とする,セパレータ付燃料電池セルの製造方法。
It is a manufacturing method of the fuel cell with a separator according to claim 11,
The method for manufacturing a fuel cell with a separator, wherein the joining step and the sealing portion forming step are performed simultaneously.
請求項11に記載のセパレータ付燃料電池セルの製造方法であって,
前記接合工程の後に,前記封止材配置工程および前記封止部形成工程が行われる
ことを特徴とする,セパレータ付燃料電池セルの製造方法。
It is a manufacturing method of the fuel cell with a separator according to claim 11,
The method for producing a fuel cell with a separator, wherein the sealing material arranging step and the sealing portion forming step are performed after the joining step.
JP2012192307A 2012-08-31 2012-08-31 Fuel cell with separator, method for manufacturing the same, and fuel cell stack Active JP5727432B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012192307A JP5727432B2 (en) 2012-08-31 2012-08-31 Fuel cell with separator, method for manufacturing the same, and fuel cell stack
KR1020157005065A KR101669376B1 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
CN201380045620.0A CN104604005B (en) 2012-08-31 2013-08-26 Cell of fuel cell with dividing plate and its manufacture method and fuel cell pack
US14/423,610 US10122023B2 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
DK13832876.0T DK2892098T3 (en) 2012-08-31 2013-08-26 FUEL CELL WITH SEPARATOR, METHOD OF PRODUCING SAME, AND FUEL CELL STACK
CA2883115A CA2883115C (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
PCT/JP2013/072743 WO2014034608A1 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack
EP13832876.0A EP2892098B1 (en) 2012-08-31 2013-08-26 Fuel cell with separator, method for manufacturing same, and fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012192307A JP5727432B2 (en) 2012-08-31 2012-08-31 Fuel cell with separator, method for manufacturing the same, and fuel cell stack

Publications (2)

Publication Number Publication Date
JP2014049325A true JP2014049325A (en) 2014-03-17
JP5727432B2 JP5727432B2 (en) 2015-06-03

Family

ID=50608791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012192307A Active JP5727432B2 (en) 2012-08-31 2012-08-31 Fuel cell with separator, method for manufacturing the same, and fuel cell stack

Country Status (1)

Country Link
JP (1) JP5727432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083439A (en) * 2020-11-24 2022-06-03 コリア アトミック エナジー リサーチ インスティチュート Metal coating method, metal member including coating layer formed thereby, and fuel cell separation plate
US11394039B2 (en) 2016-11-22 2022-07-19 Morimura Sofc Technology Co., Ltd. Electro-chemical reaction unit having glass seal member composed of vertically long crystal grains, and electro-chemical reaction cell stack, and electro-chemical reaction unit production method comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331692A (en) * 1999-05-20 2000-11-30 Tokyo Gas Co Ltd Plate type cell with retaining thin plate frame and fuel cell using same
JP2004319286A (en) * 2003-04-16 2004-11-11 Tokyo Gas Co Ltd Manufacturing method of solid oxide fuel cell
JP2009009802A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331692A (en) * 1999-05-20 2000-11-30 Tokyo Gas Co Ltd Plate type cell with retaining thin plate frame and fuel cell using same
JP2004319286A (en) * 2003-04-16 2004-11-11 Tokyo Gas Co Ltd Manufacturing method of solid oxide fuel cell
JP2009009802A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394039B2 (en) 2016-11-22 2022-07-19 Morimura Sofc Technology Co., Ltd. Electro-chemical reaction unit having glass seal member composed of vertically long crystal grains, and electro-chemical reaction cell stack, and electro-chemical reaction unit production method comprising same
JP2022083439A (en) * 2020-11-24 2022-06-03 コリア アトミック エナジー リサーチ インスティチュート Metal coating method, metal member including coating layer formed thereby, and fuel cell separation plate
JP7373540B2 (en) 2020-11-24 2023-11-02 コリア アトミック エナジー リサーチ インスティチュート Metal coating method, metal member including coating layer formed thereby, and fuel cell separator plate

Also Published As

Publication number Publication date
JP5727432B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
KR101903863B1 (en) Fuel cell and method for manufacturing same
KR101669376B1 (en) Fuel cell with separator, method for manufacturing same, and fuel cell stack
KR101870055B1 (en) Separator-fitted single fuel cell, and fuel cell stack
JP6336382B2 (en) Single cell with separator, fuel cell stack, and manufacturing method of single cell with separator
JP5727428B2 (en) Fuel cell with separator and fuel cell
JP6199697B2 (en) Fuel cell single cell with separator, fuel cell stack, and manufacturing method thereof
JP6169429B2 (en) Fuel cell with separator and fuel cell stack
JP2006236989A (en) Unit battery cell for fuel battery
JP2010021038A (en) Solid oxide fuel cell stack
JP2016062655A (en) Separator-fitted single fuel cell
JP6014278B2 (en) Single cell with metal plate, fuel cell stack, and manufacturing method of single cell with metal plate
JP5727431B2 (en) Fuel cell with separator and fuel cell
JP6511195B2 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and method for producing electrochemical reaction unit
JP2019200877A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP5727432B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
JP6339495B2 (en) Interconnector-fuel cell single cell composite and fuel cell stack
JP6118230B2 (en) Fuel cell stack
JP2019200878A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2015032557A (en) Solid oxide fuel cell stack and interconnector with separator
JP2018041569A (en) Electrochemical reaction unit, and electrochemical reaction cell stack
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP2019200876A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7317082B2 (en) Electrochemical reaction single cell with separator and electrochemical reaction cell stack
JP7104129B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP2018014246A (en) Electrochemical reaction unit and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150402

R150 Certificate of patent or registration of utility model

Ref document number: 5727432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250