JP2014045044A - Rare earth-iron bonded magnet, and method for manufacturing rotor and electromagnetic device using the same - Google Patents

Rare earth-iron bonded magnet, and method for manufacturing rotor and electromagnetic device using the same Download PDF

Info

Publication number
JP2014045044A
JP2014045044A JP2012185904A JP2012185904A JP2014045044A JP 2014045044 A JP2014045044 A JP 2014045044A JP 2012185904 A JP2012185904 A JP 2012185904A JP 2012185904 A JP2012185904 A JP 2012185904A JP 2014045044 A JP2014045044 A JP 2014045044A
Authority
JP
Japan
Prior art keywords
rare earth
earth iron
bonded magnet
magnet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012185904A
Other languages
Japanese (ja)
Other versions
JP6054681B2 (en
Inventor
Haruhiro Yukimura
治洋 幸村
Toshinori Suzuki
淳詔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2012185904A priority Critical patent/JP6054681B2/en
Publication of JP2014045044A publication Critical patent/JP2014045044A/en
Application granted granted Critical
Publication of JP6054681B2 publication Critical patent/JP6054681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide: a rare earth-iron bonded magnet simple and reduced in cost while having high magnetized properties, and adaptable even to a rare earth-iron bonded magnet having large heat capacity; and methods for manufacturing a rotor and an electromagnetic device using the rare earth-iron bonded magnet.SOLUTION: A heating set temperature of a device used in a magnetization process can be reduced by using a rare earth-iron bonded magnet before magnetized, the rare earth-iron bonded magnet including two or more kinds among Nd, Pr and Ce, as rare earth elements, and having a Curie temperature of 250°C or above and less than 290°C, so that a device used in magnetization process has a lower heating set temperature and magnetization condition has a relatively lower heating temperature, and the load of the device can be reduced. Accordingly, a rare earth-iron bonded magnet exhibiting high magnetized properties can be obtained even from a bonded magnet large in volume and high in heat capacity.

Description

本発明は、希土類鉄系ボンド磁石およびそれを用いたロータ,電磁デバイスの製造方法に関する。   The present invention relates to a rare earth iron-based bonded magnet, a rotor using the same, and a method for manufacturing an electromagnetic device.

近年の電子機器、電磁デバイス等の著しい小型化に対応して、それに使用するステッピングモータ等も小型化、小径化が進んでいる。それに伴い、ロータとして用いるリング状永久磁石も小径化が進むため、着磁ピッチ(着磁極間距離)が狭くなり、多極着磁は困難になる。   Corresponding to recent downsizing of electronic devices and electromagnetic devices, stepping motors and the like used for the downsizing and diameter reduction are progressing. Along with this, since the diameter of the ring-shaped permanent magnet used as the rotor is also reduced, the magnetization pitch (distance between the magnetic poles) is narrowed, and multipolar magnetization is difficult.

多極着磁方法として、パルス着磁が一般的に用いられている。パルス着磁では、リング状永久磁石を着磁する際、マグネットワイヤに大きなパルス電流を流すが、リング状永久磁石の小径化に伴い着磁ピッチが狭くなると、現状の着磁治具ではマグネットワイヤの径が細くならざるを得ず、磁石を十分に着磁可能なパルス電流が流せない問題が生じてきた。それを改善する技術として、被着磁物を被着磁物のキュリー温度未満の高温にして飽和着磁磁界を減少させて着磁する方法が知られている(例えば、特許文献1および特許文献2参照)。
また、永久磁石に着磁を施す方法に関し、被着磁物を、そのキュリー温度以上の温度からキュリー温度未満の温度まで降温させつつ、その間、着磁磁界を印加し続ける永久磁石の着磁方法が知られている(例えば、特許文献3参照)。
As a multipolar magnetization method, pulse magnetization is generally used. In pulse magnetization, when a ring-shaped permanent magnet is magnetized, a large pulse current is passed through the magnet wire. However, if the magnetization pitch is reduced as the diameter of the ring-shaped permanent magnet is reduced, the current magnetizing jig uses a magnet wire. Therefore, there has been a problem that a pulse current that can sufficiently magnetize the magnet cannot flow. As a technique for improving this, there is known a method of magnetizing an object to be magnetized by reducing the saturation magnetization magnetic field to a temperature lower than the Curie temperature of the object to be magnetized (for example, Patent Document 1 and Patent Document). 2).
The present invention also relates to a method for magnetizing a permanent magnet, and a method for magnetizing a permanent magnet that continuously applies a magnetizing magnetic field while lowering the object to be magnetized from a temperature equal to or higher than its Curie temperature to a temperature lower than the Curie temperature. Is known (see, for example, Patent Document 3).

特許2940048号公報Japanese Patent No. 2940048 特開平6−140248号公報JP-A-6-140248 特開2006−203173号公報JP 2006-203173 A

しかしながら、特許文献1および特許文献2の着磁方法では、電流密度に制約があるため十分な着磁特性が得られない。また、従来のパルス着磁と同様着磁コイルのマグネットワイヤへ瞬間的に大電流を流すため、絶縁破壊の可能性は避けられない。さらに、高温にさらされることで着磁治具の構成部品,特にモールド樹脂が劣化しやすくなり、着磁治具の寿命は極端に短くなる傾向がある。
特許文献3の着磁方法では、Nd−Fe−B系ボンド磁石において高着磁特性が得られるが、高温加熱を伴うため、熱容量の小さな小型のボンド磁石には適するが、大型のボンド磁石には適用しづらい。また、別の課題として、希土類価格高騰を受け、より安価に高特性を示す希土類系ボンド磁石の要望も強まっている。
However, the magnetization methods of Patent Document 1 and Patent Document 2 cannot obtain sufficient magnetization characteristics because of a limitation in current density. In addition, since a large current is instantaneously supplied to the magnet wire of the magnetizing coil as in the case of the conventional pulse magnetization, the possibility of dielectric breakdown is inevitable. Furthermore, the components of the magnetizing jig, particularly the mold resin, are likely to deteriorate due to exposure to high temperatures, and the life of the magnetizing jig tends to be extremely short.
In the magnetizing method of Patent Document 3, high magnetization characteristics can be obtained in an Nd—Fe—B based bonded magnet. However, since it involves high temperature heating, it is suitable for a small bonded magnet with a small heat capacity, but for a large bonded magnet. Is difficult to apply. In addition, as another issue, the demand for rare earth-based bonded magnets that exhibit high performance at a lower cost has increased due to the rising price of rare earths.

本発明はこのような事情を考慮してなされたもので、その目的は、高着磁特性でありながら、簡便でコストを低減した、熱容量の大きなボンド磁石にも対応可能な希土類鉄系ボンド磁石およびそれを用いたロータ,電磁デバイスの製造方法を提供することにある。   The present invention has been made in consideration of such circumstances, and the object thereof is a rare earth iron-based bond magnet that can be applied to a bond magnet having a large heat capacity while being simple and reduced in cost while having high magnetization characteristics. Another object of the present invention is to provide a rotor and an electromagnetic device manufacturing method using the same.

上述した目的を達成するべく本発明に係る希土類鉄系ボンド磁石は、キュリー温度以上の温度に加熱され、着磁用磁界を印加しつつキュリー温度未満の温度まで降温させて着磁される希土類鉄系磁石粉体を含む希土類鉄系ボンド磁石であって、前記希土類鉄系磁石粉体は、少なくとも2種以上の希土類元素を含み、前記希土類鉄系磁石粉体のキュリー温度が250℃以上290℃未満であることを特徴とする希土類鉄系ボンド磁石。   In order to achieve the above-described object, the rare earth iron-based bonded magnet according to the present invention is magnetized by heating to a temperature equal to or higher than the Curie temperature and lowering the temperature to a temperature lower than the Curie temperature while applying a magnetization magnetic field. A rare earth iron-based bonded magnet including a magnet-based magnet powder, wherein the rare earth iron-based magnet powder includes at least two or more rare earth elements, and the Curie temperature of the rare earth iron-based magnet powder is 250 ° C. or higher and 290 ° C. Rare earth iron-based bonded magnet characterized by being less than.

着磁前の希土類鉄系ボンド磁石が、2種以上の希土類元素を含み、キュリー温度が250℃以上290℃未満である希土類鉄系磁石粉体を含むボンド磁石とすることで、加熱で用いる装置の設定温度を下げることができ、着磁条件が低い加熱温度になることで装置負担が少なくなる。したがって、体積が大きく熱容量の大きなボンド磁石であっても、高着磁特性を示す希土類鉄系ボンド磁石が得られる。
また、少なくとも2種以上の希土類元素を含むことで、精錬コストが低減し、簡便でコストの低減した希土類鉄系ボンド磁石が得られる。
An apparatus to be used for heating by forming a bonded magnet containing rare earth iron-based magnet powder before magnetizing, including rare earth iron-based magnet powder containing two or more rare earth elements and having a Curie temperature of 250 ° C. or higher and lower than 290 ° C. Can be lowered, and the burden on the apparatus is reduced by lowering the heating temperature under the magnetizing conditions. Therefore, even a bonded magnet having a large volume and a large heat capacity can obtain a rare earth iron-based bonded magnet exhibiting high magnetization characteristics.
Further, by including at least two or more kinds of rare earth elements, the refining cost is reduced, and a simple and reduced rare earth iron-based bond magnet can be obtained.

また、本発明に係る希土類鉄系ボンド磁石は、前記希土類鉄系磁石粉体の固有保磁力が、716kA/m(9kOe)以上1590kA/m(20kOe)以下であることを特徴とする。
固有保磁力が716kA/m(9kOe)以上の希土類鉄系磁石粉体を含むことで、熱減磁特性が優れ、かつ初期減磁のごく小さい高着磁特性の希土類鉄系ボンド磁石が得られる。
The rare earth iron-based bonded magnet according to the present invention is characterized in that the rare earth iron-based magnet powder has an intrinsic coercive force of 716 kA / m (9 kOe) to 1590 kA / m (20 kOe).
By including a rare earth iron-based magnet powder having an intrinsic coercive force of 716 kA / m (9 kOe) or more, a rare earth iron-based bonded magnet having excellent thermal demagnetization characteristics and very low initial demagnetization characteristics can be obtained. .

また、本発明に係る希土類鉄系ボンド磁石は、前記希土類元素は、Nd、Pr、Ceのうち2種以上を含むこととし、Coは含まないことを特徴とする。
Nd、Pr、Ceのうち2種以上の希土類元素を含み、Coは含まないことで、磁石材料価格を低減できるとともにキュリー温度を下げることができる。着磁条件が比較的低い加熱温度になることで装置負担が少なくなり、熱容量の大きな磁石に対しての着磁を比較的容易に行うこともできるため、高着磁特性を示す希土類鉄系ボンド磁石が得られる。
The rare earth iron-based bonded magnet according to the present invention is characterized in that the rare earth element includes two or more of Nd, Pr, and Ce and does not include Co.
By including two or more rare earth elements of Nd, Pr, and Ce and not including Co, the magnet material price can be reduced and the Curie temperature can be lowered. Since the magnetizing condition is a relatively low heating temperature, the burden on the equipment is reduced, and magnets with a large heat capacity can be magnetized relatively easily. A magnet is obtained.

上述した作用を実現するべく本発明に係るロータの製造方法は、上記の希土類鉄系ボンド磁石を用いたロータの製造方法であって、希土類鉄系ボンド磁石の着磁を、ロータの製造工程の被加熱物を250℃〜290℃の温度に短時間晒す加熱を伴う工程で行うことを特徴とする。
希土類鉄系ボンド磁石の着磁を、ロータの製造工程の加熱を伴う工程で行うことで、希土類鉄系ボンド磁石の製造工程の中で独立に存在していた着磁工程を省くことができ、コストを低減したロータの製造方法が得られる。
A rotor manufacturing method according to the present invention for realizing the above-described operation is a rotor manufacturing method using the rare earth iron-based bonded magnet, and magnetizing the rare earth iron-based bonded magnet is performed in the rotor manufacturing process. It is characterized in that it is performed in a process involving heating in which the object to be heated is exposed to a temperature of 250 ° C. to 290 ° C. for a short time.
By performing the magnetizing of the rare earth iron-based bonded magnet in a process that involves heating of the rotor manufacturing process, the magnetizing process that existed independently in the manufacturing process of the rare earth iron-based bonded magnet can be omitted, A method for manufacturing a rotor with reduced costs can be obtained.

また、本発明に係るロータの製造方法は、前記加熱を伴う工程の最高温度より、前記希土類鉄系磁石粉体のキュリー温度が低いことを特徴とする。
加熱を伴う工程の最高温度より、希土類鉄系磁石粉体のキュリー温度が低いので、強力な磁力特性を持つ希土類鉄系ボンド磁石を備えたロータのシンプルで且つ低コストな製造方法が得られる。
The rotor manufacturing method according to the present invention is characterized in that a Curie temperature of the rare earth iron-based magnet powder is lower than a maximum temperature in the process involving heating.
Since the Curie temperature of the rare earth iron-based magnet powder is lower than the maximum temperature of the process involving heating, a simple and low-cost manufacturing method of a rotor provided with a rare earth iron-based bonded magnet having strong magnetic properties can be obtained.

また、本発明に係るロータの製造方法は、前記加熱を伴う工程は、インサートモールド工程であり、前記希土類鉄系ボンド磁石を成形金型の中に挿入し、前記成形金型に着磁用磁界印加手段を配置し、前記希土類鉄系ボンド磁石の加熱を加熱溶融した樹脂によって行うことを特徴とする。
インサートモールド工程は、樹脂の射出温度を設定する加熱を伴う工程であり、インサートモールド工程で用いる成形金型に着磁用磁界印加手段を組み込んでおけば、インサートモールド工程で、希土類鉄系ボンド磁石は加熱溶融した樹脂によって加熱されその後冷却されることで、着磁に必要な工程を含めることができ、コストがより低減できるロータの製造方法が得られる。
Further, in the method for manufacturing a rotor according to the present invention, the step involving heating is an insert molding step, the rare earth iron-based bonded magnet is inserted into a molding die, and a magnetic field for magnetization is applied to the molding die. An application means is arranged, and heating of the rare earth iron-based bond magnet is performed by a heat-melted resin.
The insert mold process is a process that involves heating to set the injection temperature of the resin. If a magnetic field applying means for magnetizing is incorporated in the molding die used in the insert mold process, the insert mold process is performed with a rare earth iron-based bond magnet. Is heated by a heated and melted resin and then cooled, so that a process necessary for magnetization can be included, and a method for manufacturing a rotor that can further reduce costs can be obtained.

上述した作用を実現するべく本発明に係る電磁デバイスの製造方法は、上記の希土類鉄系ボンド磁石を用いた電磁デバイスの製造方法であって、希土類鉄系ボンド磁石の着磁を、電磁デバイスの製造工程の被加熱物を250℃〜290℃の温度に短時間晒す加熱を伴う工程で行うことを特徴とする。
希土類鉄系ボンド磁石の着磁を、電磁デバイスの製造工程の加熱を伴う工程で行うことで、希土類鉄系ボンド磁石の製造工程中で独立に存在していた着磁工程を省くことができ、コストを低減した電磁デバイスの製造方法が得られる。
In order to realize the above-described operation, an electromagnetic device manufacturing method according to the present invention is an electromagnetic device manufacturing method using the rare earth iron-based bonded magnet. It is characterized in that it is carried out in a process involving heating in which the object to be heated in the production process is exposed to a temperature of 250 ° C. to 290 ° C. for a short time.
By performing the magnetizing of the rare earth iron-based bonded magnet in a process that involves heating of the electromagnetic device manufacturing process, the magnetizing process that existed independently during the manufacturing process of the rare earth iron-based bonded magnet can be omitted, A method for manufacturing an electromagnetic device with reduced costs is obtained.

また、本発明に係る電磁デバイスの製造方法は、前記加熱を伴う工程の最高温度より、前記希土類鉄系磁石粉体のキュリー温度が低いことを特徴とする。
前記加熱を伴う工程の最高温度より、前記希土類鉄系磁石粉体のキュリー温度が低いので、加熱温度を下げることができ、強力な磁力特性を持つ希土類鉄系ボンド磁石を備えた電磁デバイスのシンプルで且つ低コストな製造方法が得られる。
The electromagnetic device manufacturing method according to the present invention is characterized in that a Curie temperature of the rare earth iron-based magnet powder is lower than a maximum temperature in the process involving heating.
Since the Curie temperature of the rare earth iron-based magnet powder is lower than the maximum temperature of the process involving heating, the heating temperature can be lowered and the electromagnetic device having a rare earth iron-based bonded magnet with strong magnetic properties is simple. And a low-cost manufacturing method can be obtained.

また、本発明に係る電磁デバイスの製造方法は、前記加熱を伴う工程は、リフロー工程であり、前記希土類鉄系ボンド磁石の近傍に着磁用磁界印加手段を配置し、前記希土類鉄系ボンド磁石の加熱をリフロー炉で行うことを特徴とする。
リフロー工程は、リフロー炉で半田を溶融させる加熱を伴う工程であり、リフロー工程で、希土類鉄系ボンド磁石の着磁に必要な工程を行うことができ、コストを低減した電磁デバイスの製造方法が得られる。
Further, in the method for manufacturing an electromagnetic device according to the present invention, the step involving heating is a reflow step, a magnetic field applying means for magnetizing is disposed in the vicinity of the rare earth iron-based bonded magnet, and the rare earth iron-based bonded magnet Is heated in a reflow furnace.
The reflow process is a process that involves heating to melt the solder in a reflow furnace. In the reflow process, a process necessary for magnetizing the rare earth iron-based bond magnet can be performed, and a method for manufacturing an electromagnetic device with reduced cost is provided. can get.

本発明により、高着磁特性でありながら、簡便でコストの低減した、熱容量の大きなボンド磁石にも対応可能な希土類鉄系ボンド磁石およびこれを用いたロータの製造方法,電磁デバイスの製造方法を得ることができる。   According to the present invention, there is provided a rare earth iron-based bonded magnet that can be applied to a bonded magnet having a large heat capacity while having high magnetization characteristics, and which is simple and low in cost, and a rotor manufacturing method and an electromagnetic device manufacturing method using the same. Can be obtained.

(a)は、第1実施形態における着磁治具および希土類鉄系ボンド磁石の平面図、(b)は、(a)におけるA−A縦断面図。(A) is a top view of the magnetization jig | tool and rare earth iron-type bonded magnet in 1st Embodiment, (b) is an AA longitudinal cross-sectional view in (a). 希土類鉄系ボンド磁石に施されている多極着磁の状況を示す平面図。The top view which shows the condition of the multipolar magnetization currently given to the rare earth iron system bond magnet. 10極着磁の表面磁束密度の測定結果の一例を示す図。The figure which shows an example of the measurement result of the surface magnetic flux density of 10 pole magnetization. 実施例および比較例において、加熱温度に対する着磁特性および着磁特性のばらつきを示した図。The figure which showed the dispersion | variation in the magnetization characteristic with respect to heating temperature and a magnetization characteristic in an Example and a comparative example. 実施例および比較例の希土類鉄系磁石紛体を用いて、パルス着磁を行った場合の着磁電圧に対する着磁特性を示した図。The figure which showed the magnetization characteristic with respect to the magnetization voltage at the time of performing pulse magnetization using the rare earth iron system magnet powder of an Example and a comparative example. 実施例および比較例において、温調温度に対する着磁特性を示した図。The figure which showed the magnetization characteristic with respect to temperature control temperature in an Example and a comparative example. 第2実施形態における着磁部の構造および希土類鉄系ボンド磁石の平面図。The top view of the structure of the magnetization part in 2nd Embodiment, and a rare earth iron-type bond magnet. インサートモールド工程でのスリーブ厚に対する着磁特性を示した図。The figure which showed the magnetization characteristic with respect to the sleeve thickness in an insert mold process. 第3実施形態におけるリフロー工程を示す概略図。Schematic which shows the reflow process in 3rd Embodiment.

以下、本発明の希土類鉄系ボンド磁石およびその製造方法について、実施形態を例に挙げて詳しく述べる。
(第1実施形態)
図1に、本実施形態の希土類鉄系ボンド磁石の製造方法に用いる着磁治具10および被着磁物としての希土類鉄系ボンド磁石14を示した。(a)は平面図を表し、(b)は縦断面図を表している。本実施形態では、リング状の希土類鉄系ボンド磁石14を10極着磁し、多極着磁された希土類鉄系ボンド磁石140を得る。
Hereinafter, the rare earth iron-based bonded magnet and the manufacturing method thereof according to the present invention will be described in detail by taking an embodiment as an example.
(First embodiment)
FIG. 1 shows a magnetizing jig 10 used in the method of manufacturing a rare earth iron-based bonded magnet according to the present embodiment and a rare earth iron-based bonded magnet 14 as an object to be magnetized. (A) represents a plan view, and (b) represents a longitudinal sectional view. In this embodiment, the ring-shaped rare earth iron-based bond magnet 14 is magnetized by 10 poles to obtain a multi-pole magnetized rare earth iron-based bond magnet 140.

着磁治具10は、非磁性ブロック(例えば、ステンレス鋼製ブロック)12に、希土類鉄系ボンド磁石14を挿入、抜出可能な円形の被着磁物収容穴16が設けられると共に、被着磁物収容穴16の外側面から放射状に延びる10本の断面矩形の溝18が等角度の間隔で設けられている。溝18には、希土類鉄系ボンド磁石14よりもキュリー温度が高い断面四角形の棒状の着磁用磁界印加手段としての着磁用永久磁石20がそれぞれ埋設されている。
例えば、着磁用永久磁石20として、キュリー温度が約850℃のSmCo系焼結磁石を用いることができる。
The magnetizing jig 10 includes a non-magnetic block (for example, a stainless steel block) 12 provided with a circular magnetized material receiving hole 16 into which a rare earth iron-based bonded magnet 14 can be inserted and extracted, and is attached to the magnetizing jig 10. Ten grooves 18 having a rectangular section extending radially from the outer surface of the magnetic substance accommodation hole 16 are provided at equal angular intervals. In the grooves 18, magnetizing permanent magnets 20 are embedded as rod-shaped magnetizing magnetic field applying means having a square cross section having a Curie temperature higher than that of the rare earth iron-based bond magnet 14.
For example, an SmCo sintered magnet having a Curie temperature of about 850 ° C. can be used as the permanent magnet 20 for magnetization.

以下に、希土類鉄系ボンド磁石14から多極着磁された希土類鉄系ボンド磁石140を製造する方法について説明する。
希土類鉄系ボンド磁石140の製造方法は、希土類鉄系ボンド磁石14の近傍に着磁用永久磁石20を配置し、希土類鉄系ボンド磁石14を、そのキュリー温度以上の温度に上昇させる加熱工程と、キュリー温度以上の温度に達した希土類鉄系ボンド磁石14を、キュリー温度未満の温度まで降温させつつ、その間、着磁用永久磁石20により希土類鉄系ボンド磁石14に着磁磁界を印加し続ける着磁工程とを含む。
着磁前の希土類鉄系ボンド磁石14として、2種以上の希土類元素を含み、キュリー温度が250℃以上290℃未満の希土類鉄系磁石粉体より作製したボンド磁石を用いる。
Hereinafter, a method for manufacturing the rare earth iron-based bonded magnet 140 multipolarized from the rare earth iron-based bonded magnet 14 will be described.
The manufacturing method of the rare earth iron-based bonded magnet 140 includes a heating step in which the permanent magnet 20 for magnetization is disposed in the vicinity of the rare earth iron-based bonded magnet 14 and the rare earth iron-based bonded magnet 14 is raised to a temperature equal to or higher than its Curie temperature. While the rare earth iron-based bond magnet 14 having reached a temperature equal to or higher than the Curie temperature is lowered to a temperature lower than the Curie temperature, a magnetizing magnetic field is continuously applied to the rare earth iron-based bond magnet 14 by the magnetizing permanent magnet 20. Magnetizing step.
As the rare earth iron-based bonded magnet 14 before magnetization, a bonded magnet made of rare earth iron-based magnet powder containing two or more kinds of rare earth elements and having a Curie temperature of 250 ° C. or higher and lower than 290 ° C. is used.

希土類鉄系ボンド磁石14の成形は、例えば、圧縮成形で行うことができる。
2種以上の希土類元素を含むことで、精錬コストを低減でき、安価な希土類鉄系ボンド磁石14を提供できる。
The rare earth iron-based bonded magnet 14 can be molded by, for example, compression molding.
By including two or more kinds of rare earth elements, refining costs can be reduced, and an inexpensive rare earth iron-based bonded magnet 14 can be provided.

また、Nd、Pr、Ceのうち2種以上の希土類元素を含み、Coは含まないのが好ましい。なお、PrとCeはともにキュリー温度を低下させる作用を有している。
Coの添加は、希土類鉄系磁石ではキュリー温度を上げ、熱的に安定させるために必須であるが、Coを含まないことで、磁石材料価格を低減できるとともにキュリー温度を下げることができる。つまり、着磁条件が比較的低い加熱温度になることで装置負担が少なくなり高着磁特性の希土類鉄系ボンド磁石を安価に得ることができる。さらに、熱容量の大きな磁石に対しての着磁も比較的容易に行うことができる。その他、熱減磁特性も低下させられるため、着磁特性の調整がしやすくなる利点がある。
In addition, it is preferable that two or more rare earth elements are included among Nd, Pr, and Ce, and that Co is not included. Both Pr and Ce have the effect of lowering the Curie temperature.
The addition of Co is indispensable for raising the Curie temperature and stabilizing it thermally in rare earth iron-based magnets, but by not containing Co, the magnet material price can be reduced and the Curie temperature can be lowered. That is, when the magnetizing condition is a relatively low heating temperature, the burden on the apparatus is reduced, and a rare earth iron-based bonded magnet having high magnetization characteristics can be obtained at a low cost. Furthermore, it is possible to relatively easily magnetize a magnet having a large heat capacity. In addition, since the thermal demagnetization characteristic is also lowered, there is an advantage that the magnetization characteristic can be easily adjusted.

加熱工程では、希土類鉄系ボンド磁石14を、そのキュリー温度以上に加熱した状態で、被着磁物収容穴16に挿入する。
着磁工程では、着磁用永久磁石20により着磁磁界を印加する。そして、希土類鉄系ボンド磁石14を着磁治具10内に設置したまま希土類鉄系ボンド磁石14のキュリー温度未満の温度まで冷却し、その後、着磁治具10から取り出す。例えば、希土類鉄系ボンド磁石14のキュリー温度をTcとしたとき、(Tc+30℃)以上の温度まで加熱した後、着磁磁界中で(Tc−50℃)以下の温度まで冷却するのが特に好ましい。
なお、加熱には、例えば、抵抗加熱、高周波加熱、レーザ加熱、高温ガスフロー加熱、高温液中加熱など任意の手段を用いてよいが、特に、短時間で加熱可能な高周波加熱法などが好ましい。冷却は、自然放冷の他、水冷、空冷、ガス吹き付けなどの強制放冷、加熱温度調整など任意の方法で行ってよい。不活性雰囲気中での作業が必要な場合には、不活性ガスフローを行う。希土類鉄系ボンド磁石14および多極着磁された希土類鉄系ボンド磁石140は、移動機構(図示せず)によって、着磁治具10の被着磁物収容穴16に容易に且つ迅速に挿入でき、且つ被着磁物収容穴16から容易に且つ迅速に取り出せるようにするのがよい。
In the heating step, the rare earth iron-based bonded magnet 14 is inserted into the adherend magnet accommodating hole 16 while being heated to the Curie temperature or higher.
In the magnetizing step, a magnetizing magnetic field is applied by the magnetizing permanent magnet 20. Then, the rare earth iron-based bonded magnet 14 is cooled to a temperature lower than the Curie temperature of the rare earth iron-based bonded magnet 14 while being installed in the magnetizing jig 10, and then taken out from the magnetized jig 10. For example, when the Curie temperature of the rare earth iron-based bond magnet 14 is Tc, it is particularly preferable that the rare earth iron-based bonded magnet 14 is heated to a temperature of (Tc + 30 ° C.) or higher and then cooled to a temperature of (Tc−50 ° C.) or lower in a magnetizing magnetic field. .
For heating, for example, any means such as resistance heating, high-frequency heating, laser heating, high-temperature gas flow heating, and high-temperature liquid heating may be used, but a high-frequency heating method capable of heating in a short time is particularly preferable. . Cooling may be performed by any method such as natural cooling, forced cooling such as water cooling, air cooling, gas blowing, and heating temperature adjustment. When work in an inert atmosphere is required, an inert gas flow is performed. The rare earth iron bond magnet 14 and the multipolar magnetized rare earth iron bond magnet 140 are easily and quickly inserted into the magnetized object accommodation hole 16 of the magnetizing jig 10 by a moving mechanism (not shown). It is preferable that the magnetic material receiving hole 16 can be easily and quickly removed.

以上述べた工程によって、希土類鉄系ボンド磁石14であるリング状の永久磁石の外周面には、着磁磁極に対応した磁極が現れ、多極着磁された希土類鉄系ボンド磁石140が得られる。図2は、多極着磁された希土類鉄系ボンド磁石140であるリング状の永久磁石に施されている多極着磁の状況を示す平面図である。符号22は、着磁磁界の向きを表している。   Through the steps described above, a magnetic pole corresponding to the magnetized magnetic pole appears on the outer peripheral surface of the ring-shaped permanent magnet that is the rare earth iron-based bonded magnet 14, and the rare earth iron-based bonded magnet 140 magnetized with multiple poles is obtained. . FIG. 2 is a plan view showing the state of multipolar magnetization applied to a ring-shaped permanent magnet which is a rare earth iron-based bonded magnet 140 that has been multipolarly magnetized. Reference numeral 22 represents the direction of the magnetizing magnetic field.

着磁特性の評価は、テスラメータにより表面磁束密度を測定することにより、定量的に行うことができる。
図3は、多極着磁した希土類鉄系ボンド磁石140の外周面を、任意の点を基準として中心角[度]に対する表面磁束密度(オープン)Bo[mT]を測定した図である。
測定は、図3に示すように、多極着磁した希土類鉄系ボンド磁石140の外周面を、任意の点を基準として中心角[度]に対する表面磁束密度(オープン)Bo[mT]の変化を連続的に求めることで行う。以降の実施例は、全極のBoピーク値(絶対値)の平均値を着磁特性として示した。
The evaluation of the magnetization characteristics can be performed quantitatively by measuring the surface magnetic flux density with a teslameter.
FIG. 3 is a diagram in which the surface magnetic flux density (open) Bo [mT] with respect to the central angle [degree] is measured on the outer peripheral surface of the multipolar magnetized rare earth iron-based bond magnet 140 with reference to an arbitrary point.
As shown in FIG. 3, the measurement is performed by changing the surface magnetic flux density (open) Bo [mT] with respect to the central angle [degree] with respect to the outer peripheral surface of the multi-pole magnetized rare earth iron-based bond magnet 140 with respect to an arbitrary point. Is obtained continuously. In the following examples, the average value of the Bo peak values (absolute values) of all poles was shown as the magnetization characteristic.

以下に、実施例および比較例を挙げてより詳しく実施形態を説明する。
以下に示す実施例および比較例に用いた希土類鉄系ボンド磁石14は、外径φ2.6mm、内径φ1.0mm,厚さ3mmの圧縮成形ボンド磁石とし、寸法、重量を統一(即ち密度は同等)とした。そして、外周からの10極着磁(極ピッチ0.8mm)を行い、着磁特性を示している。希土類鉄系磁石粉体は急冷薄帯を粉砕し、バインダ樹脂としてエポキシ樹脂を希土類鉄系磁石粉体に対して2.5wt%混合して成形した。
着磁は、着磁治具10を用いて、加熱温度を変化させ、加熱時間を3secとし、温調温度50℃まで冷却して6sec後に取り出して多極着磁された希土類鉄系ボンド磁石140を得た。
Hereinafter, embodiments will be described in more detail with reference to examples and comparative examples.
The rare earth iron-based bonded magnet 14 used in the following examples and comparative examples is a compression-bonded bonded magnet having an outer diameter of φ2.6 mm, an inner diameter of φ1.0 mm, and a thickness of 3 mm. ). And 10 pole magnetization (pole pitch 0.8mm) from the outer periphery is performed, and the magnetization characteristic is shown. The rare earth iron-based magnet powder was formed by pulverizing a quenched ribbon and mixing 2.5 wt% of an epoxy resin as a binder resin with the rare earth iron-based magnet powder.
Magnetization is performed using a magnetizing jig 10, changing the heating temperature, setting the heating time to 3 sec, cooling to a temperature adjustment temperature of 50 ° C., and taking out after 6 sec and the rare earth iron-based bond magnet 140 magnetized by multipolar magnetization. Got.

表1に、実施例および比較例に用いた希土類鉄系磁石粉体の組成、キュリー温度、最大エネルギー積および固有保持力を示した。   Table 1 shows the composition, Curie temperature, maximum energy product, and intrinsic retention of the rare earth iron-based magnet powder used in the examples and comparative examples.

Figure 2014045044
Figure 2014045044

図4は、実施例および比較例において、加熱温度に対する着磁特性および着磁特性のばらつきを示した図である。縦軸の左側は着磁特性を、右側は着磁特性のばらつきを示している。着磁特性は、極ピーク値の平均値とし、得られた最高着磁特性に対する比率である着磁率で示した。着磁特性のばらつきは、極ピーク値のMAX値とMIN値の差を極ピーク値の平均値で除した数値であり、小さいほどばらつきの小さい安定した着磁条件であることを示す。
黒丸および黒三角は着磁率を示し、白抜き丸および白抜き三角は着磁特性のばらつきを示している。
FIG. 4 is a diagram showing the magnetization characteristics with respect to the heating temperature and the variation of the magnetization characteristics in Examples and Comparative Examples. The left side of the vertical axis shows the magnetization characteristics, and the right side shows the dispersion of the magnetization characteristics. The magnetization characteristic was expressed as an average value of the pole peak values and a magnetization rate which is a ratio to the obtained maximum magnetization characteristic. The variation in the magnetization characteristics is a numerical value obtained by dividing the difference between the MAX value and the MIN value of the polar peak value by the average value of the polar peak values, and the smaller the value, the more stable the magnetization condition.
Black circles and black triangles indicate magnetization rates, and white circles and white triangles indicate variations in magnetization characteristics.

図4において、実施例および比較例とも加熱温度がキュリー温度付近の温度を越えると安定して高着磁特性を示していることがわかる。一方、実施例の場合、270℃程度の比較的低い温度においても高着磁特性を得られる。つまり、希土類鉄系磁石粉体のキュリー温度を250℃以上290℃未満に限定することで、着磁装置の設定温度をさらに下げることができ、装置にかかる負担が少なくなり、熱容量の大きな希土類鉄系ボンド磁石14の着磁にも対応することができる。よって、製造コスト低減効果があるうえに比較的大きな希土類鉄系ボンド磁石14の着磁も可能となる。   In FIG. 4, it can be seen that in both the example and the comparative example, when the heating temperature exceeds a temperature near the Curie temperature, the high magnetization characteristics are stably exhibited. On the other hand, in the case of the example, high magnetization characteristics can be obtained even at a relatively low temperature of about 270 ° C. In other words, by limiting the Curie temperature of the rare earth iron-based magnet powder to 250 ° C. or more and less than 290 ° C., the set temperature of the magnetizing device can be further lowered, the burden on the device is reduced, and the rare earth iron having a large heat capacity It is also possible to deal with the magnetization of the system bond magnet 14. Therefore, it is possible to magnetize the relatively large rare earth iron-based bond magnet 14 in addition to the effect of reducing the manufacturing cost.

図5および図6に、パルス着磁および本実施形態において着磁特性を評価した結果を示した。
図5は、本実施形態で使用した実施例および比較例の希土類鉄系ボンド磁石14を用いて、パルス着磁を行った場合の着磁電圧に対する着磁特性を示した図である。
パルス着磁では、実際の生産条件に沿ってデータを採取した。着磁電圧の600Vは、生産条件のうちの最大条件(着磁電流密度:22kA/mm2)であり、一般的な生産条件は450V(着磁電流密度:16kA/mm2)である。
図6は、本実施形態における実施例および比較例において、温調温度に対する着磁特性を示した図である。
実施例については加熱温度を275℃とし、比較例については加熱温度を310℃とし、温調温度を広く設定してデータを採取した。
FIG. 5 and FIG. 6 show the results of evaluating the pulse magnetization and the magnetization characteristics in this embodiment.
FIG. 5 is a diagram showing the magnetization characteristics with respect to the magnetization voltage when pulse magnetization is performed using the rare earth iron-based bonded magnet 14 of the example and the comparative example used in the present embodiment.
In pulse magnetization, data was collected according to actual production conditions. The magnetization voltage of 600 V is the maximum condition (magnetization current density: 22 kA / mm 2) among the production conditions, and the general production condition is 450 V (magnetization current density: 16 kA / mm 2).
FIG. 6 is a diagram showing the magnetization characteristics with respect to the temperature control temperature in the examples and comparative examples in the present embodiment.
The heating temperature was set to 275 ° C. for the examples, the heating temperature was set to 310 ° C. for the comparative example, and the temperature control temperature was set widely to collect data.

図5において、パルス着磁では、元々の静磁気特性相応の着磁特性を示していることがわかる。つまり、実施例の着磁特性は、比較例に対して低くなっている。
一方、図6に示す本実施形態の場合、パルス着磁と比較して総じて高い着磁特性が得られている。しかも実施例は、比較例を上回る着磁特性を示し、キュリー温度が低いにもかかわらず温調温度200℃を超える温度範囲まで高い着磁特性が得られていることがわかる。
In FIG. 5, it can be seen that the pulse magnetization exhibits a magnetization characteristic corresponding to the original magnetostatic characteristic. That is, the magnetization characteristics of the example are lower than those of the comparative example.
On the other hand, in the case of the present embodiment shown in FIG. 6, generally high magnetization characteristics are obtained as compared with pulse magnetization. In addition, it is understood that the examples show magnetization characteristics that exceed the comparative examples, and that high magnetization characteristics are obtained up to a temperature range exceeding the temperature control temperature of 200 ° C., despite the low Curie temperature.

(第2実施形態)
本実施形態のロータの製造方法では、加熱を伴う工程であるインサートモールド工程で、着磁前の希土類鉄系ボンド磁石を被加熱物として、着磁用磁界印加手段を金型に配置して成形同時着磁を行う。このとき、例えば、モータ用のロータを製造するためにシャフトあるいはインサートパーツとしてのスペーサなどを希土類鉄系ボンド磁石の中心に配置することもできる。
インサートモールド工程が、第1実施形態のような温度プロファイルを伴う加熱を伴う工程であれば、加熱工程および着磁工程を行うことが可能である。また、インサートモールド工程における最高温度より、キュリー温度が低い希土類鉄系ボンド磁石を用いる。
(Second Embodiment)
In the rotor manufacturing method of the present embodiment, in the insert mold process, which is a process involving heating, the rare earth iron-based bonded magnet before magnetization is used as the object to be heated, and the magnetizing magnetic field applying means is disposed in the mold. Perform simultaneous magnetization. At this time, for example, a shaft or a spacer as an insert part can be arranged at the center of the rare earth iron-based bond magnet in order to manufacture a rotor for a motor.
If the insert molding process is a process involving heating with a temperature profile as in the first embodiment, the heating process and the magnetizing process can be performed. Further, a rare earth iron-based bonded magnet having a Curie temperature lower than the maximum temperature in the insert molding process is used.

図7に、第2実施形態における着磁部1および被着磁物としての希土類鉄系ボンド磁石5の平面図を示した。
図7において、着磁部1は、第1実施形態と同様のものを用いることができるが、本実施形態では、24極着磁であり、被着磁物収容穴2の外側面から放射状に延びる24本の断面矩形の溝3が等角度の間隔で設けられている。希土類鉄系ボンド磁石5よりもキュリー温度が高い断面四角形の棒状の着磁用磁界印加手段としての着磁用永久磁石4がそれぞれ埋設されている。希土類鉄系ボンド磁石5は、被着磁物収容穴2に挿入され、希土類鉄系ボンド磁石5の内周側に加熱溶融された樹脂7が射出される。このとき、シャフト8を希土類鉄系ボンド磁石5の中心に配置しておくことによりモータ用のロータ9が得られる。
着磁部1は、射出成形の金型に組み込んでおく。射出樹脂温度は、270℃〜290℃に設定される。
着磁部1は、200kA/m(2.5kOe)以上の磁界を付与できる着磁機構であれば良いため、大型化することも無く、簡素な構造での達成が可能である。
FIG. 7 shows a plan view of the magnetized portion 1 and the rare earth iron-based bonded magnet 5 as the magnetized object in the second embodiment.
In FIG. 7, the magnetized portion 1 can be the same as that of the first embodiment. In this embodiment, the magnetized portion 1 is 24 pole magnetized and radiates from the outer surface of the magnetized object receiving hole 2. Extending 24 cross-sectional rectangular grooves 3 are provided at equiangular intervals. Magnetizing permanent magnets 4 are embedded as rod-shaped magnetizing magnetic field applying means having a square cross section whose Curie temperature is higher than that of the rare earth iron-based bonded magnet 5. The rare earth iron-based bonded magnet 5 is inserted into the magnetized object accommodation hole 2, and the heat-melted resin 7 is injected to the inner peripheral side of the rare earth iron-based bonded magnet 5. At this time, the rotor 9 for a motor is obtained by arranging the shaft 8 at the center of the rare earth iron-based bonded magnet 5.
The magnetized portion 1 is incorporated in an injection mold. The injection resin temperature is set to 270 ° C to 290 ° C.
Since the magnetized portion 1 may be a magnetizing mechanism that can apply a magnetic field of 200 kA / m (2.5 kOe) or more, it is not increased in size and can be achieved with a simple structure.

なお、インサートモールド工程にて着磁部1と希土類鉄系ボンド磁石5の間にはギャップ6が存在すると思われるため(例えば射出成形はスリーブを設けた構造となるため)、磁界解析により十分な着磁特性が得られるか検証した。
実際のインサートモールド工程を伴うモデル(外径25mm,内径22mmに対する外周24極着磁)について計算した結果を図8に示す。
図8において、実際のスリーブ肉厚0.5mmにおいても、着磁特性の低下は2%程度に留まり、十分本発明は有効であることが検証できた。
図8の計算結果は、スリーブで無くとも磁界発生機構と被着磁物の間のエアギャップなど非磁性の介在物であれば同様の結果となる。
In addition, since it seems that there is a gap 6 between the magnetized portion 1 and the rare earth iron-based bonded magnet 5 in the insert molding process (for example, injection molding has a structure provided with a sleeve), the magnetic field analysis is sufficient. It was verified whether the magnetization characteristics were obtained.
FIG. 8 shows the result of calculation for a model with an actual insert molding process (outer peripheral 24 pole magnetization with respect to an outer diameter of 25 mm and an inner diameter of 22 mm).
In FIG. 8, even at an actual sleeve thickness of 0.5 mm, the decrease in the magnetization characteristics is only about 2%, and it was verified that the present invention is sufficiently effective.
The calculation result in FIG. 8 is the same as long as it is not a sleeve but a non-magnetic inclusion such as an air gap between the magnetic field generation mechanism and the adherend.

(第3実施形態)
本実施形態の電磁デバイスの製造方法では、加熱を伴う工程であるリフロー工程が、第1実施形態のような温度プロファイルを伴う加熱を伴う工程であれば、加熱工程および着磁工程を行うことが可能である。
図9に、電磁デバイス300の製造方法に用いられるリフロー工程を示した。
図9において、リフロー工程では、先ず、基板100に、クリームはんだ101が印刷され、例えば、部品として素子110、第1実施形態で用いた着磁前の希土類鉄系ボンド磁石を含む電磁素子120が配置される。
希土類鉄系ボンド磁石を含む電磁素子120の希土類鉄系ボンド磁石の周りには、例えば、第1実施形態と同様の着磁部130が配置される。
次に、素子110、希土類鉄系ボンド磁石を含む電磁素子120が配置された基板100を、ヒーター210を備えたリフロー炉200に送り通過させる。リフロー炉200内の温度は、クリームはんだ101が溶ける温度で、270℃〜290℃に設定される。
リフロー炉200から出てきたクリームはんだ101は、はんだ102として素子110、希土類鉄系ボンド磁石を含む電磁素子120を固定する。
また、希土類鉄系ボンド磁石120は、着磁された希土類鉄系ボンド磁石121となり、電磁デバイス300が得られる。
(Third embodiment)
In the electromagnetic device manufacturing method of the present embodiment, if the reflow process, which is a process involving heating, is a process involving heating with a temperature profile as in the first embodiment, the heating process and the magnetizing process may be performed. Is possible.
FIG. 9 shows a reflow process used in the method for manufacturing the electromagnetic device 300.
In FIG. 9, in the reflow process, first, cream solder 101 is printed on the substrate 100. For example, an element 110 as a component, and an electromagnetic element 120 including a rare-earth iron-based bonded magnet before magnetization used in the first embodiment. Be placed.
For example, a magnetized portion 130 similar to that of the first embodiment is arranged around the rare earth iron-based bonded magnet of the electromagnetic element 120 including the rare earth iron-based bonded magnet.
Next, the substrate 100 on which the element 110 and the electromagnetic element 120 including the rare earth iron-based bonded magnet are arranged is sent to and passed through the reflow furnace 200 provided with the heater 210. The temperature in the reflow furnace 200 is a temperature at which the cream solder 101 is melted, and is set to 270 ° C. to 290 ° C.
The cream solder 101 coming out of the reflow furnace 200 fixes the element 110 as the solder 102 and the electromagnetic element 120 including a rare earth iron-based bonded magnet.
Further, the rare earth iron bond magnet 120 becomes a magnetized rare earth iron bond magnet 121, and the electromagnetic device 300 is obtained.

尚、本発明は上述した実施形態に限定されるものではない。
また、上記の説明は被着磁物であるリング状永久磁石を外側から着磁する例であるが、本発明は、外側からの着磁と同様に、内側から、あるいは内外両側からの着磁にも適用できる。これらの着磁方法によって、被着磁物であるリング状の永久磁石の内周面あるいは内外周両面には、着磁磁極に対応した磁極が現れる。
また、本発明では、着磁用磁界印加手段を軸方向で1段のみ設置する構成の他、上下2段に配設する構成も可能である。
また、スキュー着磁に関しては、例えば着磁用の永久磁石を傾けて配列することによって実現可能である。
The present invention is not limited to the embodiment described above.
The above description is an example of magnetizing a ring-shaped permanent magnet, which is a magnetized object, from the outside. However, the present invention can be magnetized from the inside or from both the inside and outside, similarly to the magnetization from the outside. It can also be applied to. With these magnetizing methods, magnetic poles corresponding to the magnetized magnetic poles appear on the inner peripheral surface or both inner and outer peripheral surfaces of the ring-shaped permanent magnet that is the magnetized object.
In the present invention, in addition to the configuration in which the magnetic field applying means for magnetizing is installed in only one stage in the axial direction, a configuration in which the magnetizing magnetic field applying means is arranged in two stages on the upper and lower sides is possible.
Further, skew magnetization can be realized, for example, by tilting and arranging permanent magnets for magnetization.

さらに、例として挙げた希土類鉄系ボンド磁石の形状、大きさ、希土類鉄系磁石粉体の組成、希土類鉄系ボンド磁石のキュリー温度、着磁用永久磁石のキュリー温度等は、実施形態以外の選択も可能である。
また、その他、本発明はその要旨を逸脱しない範囲で種々変形して実施可能である。
Furthermore, the shape and size of the rare earth iron-based bonded magnets mentioned as examples, the composition of the rare earth iron-based magnet powder, the Curie temperature of the rare earth iron-based bonded magnet, the Curie temperature of the permanent magnet for magnetization, etc. Selection is also possible.
In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

1,130:着磁部、10:着磁治具、2,16:被着磁物収容穴、3,18:溝、4,20:着磁用永久磁石、5:希土類鉄系ボンド磁石、9:ロータ、12:非磁性ブロック、14:希土類鉄系ボンド磁石、22:着磁磁界の向き、121:着磁された希土類鉄系ボンド磁石、200:リフロー炉、300:電磁デバイス。   DESCRIPTION OF SYMBOLS 1,130: Magnetization part, 10: Magnetization jig | tool, 2,16: Magnetized object accommodation hole, 3,18: Groove, 4,20: Permanent magnet for magnetization, 5: Rare earth iron-based bond magnet, 9: rotor, 12: non-magnetic block, 14: rare earth iron-based bonded magnet, 22: direction of magnetizing magnetic field, 121: magnetized rare earth iron-based bonded magnet, 200: reflow furnace, 300: electromagnetic device.

Claims (9)

キュリー温度以上の温度に加熱され、着磁用磁界を印加しつつキュリー温度未満の温度まで降温させて着磁される希土類鉄系磁石粉体を含む希土類鉄系ボンド磁石であって、
前記希土類鉄系磁石粉体は、少なくとも2種以上の希土類元素を含み、前記希土類鉄系磁石粉体のキュリー温度が250℃以上290℃未満である
ことを特徴とする希土類鉄系ボンド磁石。
A rare earth iron-based bond magnet including a rare earth iron-based magnet powder that is heated to a temperature equal to or higher than the Curie temperature and magnetized by lowering the temperature to a temperature lower than the Curie temperature while applying a magnetic field for magnetization,
The rare earth iron-based magnet powder includes at least two or more kinds of rare earth elements, and the Curie temperature of the rare earth iron-based magnet powder is 250 ° C or higher and lower than 290 ° C.
前記希土類鉄系磁石粉体の固有保磁力が、716kA/m(9kOe)以上1590kA/m(20kOe)以下である
ことを特徴とする請求項1に記載の希土類鉄系ボンド磁石。
2. The rare earth iron-based bonded magnet according to claim 1, wherein the rare earth iron-based magnet powder has an intrinsic coercive force of 716 kA / m (9 kOe) to 1590 kA / m (20 kOe).
前記希土類元素は、Nd、Pr、Ceのうち2種以上を含むこととし、Coは含まない
ことを特徴とする請求項1または請求項2に記載の希土類鉄系ボンド磁石。
3. The rare earth iron-based bonded magnet according to claim 1, wherein the rare earth element includes two or more of Nd, Pr, and Ce and does not include Co. 4.
請求項1〜請求項3のいずれか一項に記載の希土類鉄系ボンド磁石を用いたロータの製造方法であって、
希土類鉄系ボンド磁石の着磁を、ロータの製造工程の被加熱物を250℃〜290℃の温度に短時間晒す加熱を伴う工程で行う
ことを特徴とするロータの製造方法。
A method for manufacturing a rotor using the rare earth iron-based bonded magnet according to any one of claims 1 to 3,
A method for manufacturing a rotor, comprising magnetizing a rare earth iron-based bonded magnet in a process involving heating in which a heated object in a rotor manufacturing process is exposed to a temperature of 250 ° C. to 290 ° C. for a short time.
前記加熱を伴う工程の最高温度より、前記希土類鉄系磁石粉体のキュリー温度が低い
ことを特徴とする請求項4に記載のロータの製造方法。
The method for manufacturing a rotor according to claim 4, wherein a Curie temperature of the rare earth iron-based magnet powder is lower than a maximum temperature in the process involving the heating.
前記加熱を伴う工程は、インサートモールド工程であり、
前記希土類鉄系ボンド磁石を成形金型の中に挿入し、
前記成形金型に着磁用磁界印加手段を配置し、
前記希土類鉄系ボンド磁石の加熱を加熱溶融した樹脂によって行う
ことを特徴とする請求項4または請求項5に記載のロータの製造方法。
The process involving heating is an insert molding process,
Insert the rare earth iron-based bond magnet into a molding die,
Arranging magnetic field applying means for magnetization in the molding die,
The method for manufacturing a rotor according to claim 4 or 5, wherein heating of the rare earth iron-based bonded magnet is performed with a heat-melted resin.
請求項1〜請求項3のいずれか一項に記載の希土類鉄系ボンド磁石を用いた電磁デバイスの製造方法であって、
希土類鉄系ボンド磁石の着磁を、電磁デバイスの製造工程の被加熱物を250℃〜290℃の温度に短時間晒す加熱を伴う工程で行う
ことを特徴とする電磁デバイスの製造方法。
A method for manufacturing an electromagnetic device using the rare earth iron-based bonded magnet according to any one of claims 1 to 3,
A method of manufacturing an electromagnetic device, comprising magnetizing a rare earth iron-based bonded magnet in a process involving heating of an object to be heated in a manufacturing process of the electromagnetic device at a temperature of 250 ° C. to 290 ° C. for a short time.
前記加熱を伴う工程の最高温度より、前記希土類鉄系磁石粉体のキュリー温度が低い
ことを特徴とする請求項7に記載の電磁デバイスの製造方法。
The method for manufacturing an electromagnetic device according to claim 7, wherein a Curie temperature of the rare earth iron-based magnet powder is lower than a maximum temperature in the process involving the heating.
前記加熱を伴う工程は、リフロー工程であり、
前記希土類鉄系ボンド磁石の近傍に着磁用磁界印加手段を配置し、
前記希土類鉄系ボンド磁石の加熱をリフロー炉で行う
ことを特徴とする請求項7または請求項8に記載の電磁デバイスの製造方法。
The process involving heating is a reflow process,
Arranging magnetic field application means for magnetization in the vicinity of the rare earth iron-based bond magnet,
The method for manufacturing an electromagnetic device according to claim 7 or 8, wherein the rare earth iron-based bonded magnet is heated in a reflow furnace.
JP2012185904A 2012-08-24 2012-08-24 Rare earth iron-based bonded magnet, and rotor and electromagnetic device manufacturing method using the same Active JP6054681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185904A JP6054681B2 (en) 2012-08-24 2012-08-24 Rare earth iron-based bonded magnet, and rotor and electromagnetic device manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185904A JP6054681B2 (en) 2012-08-24 2012-08-24 Rare earth iron-based bonded magnet, and rotor and electromagnetic device manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2014045044A true JP2014045044A (en) 2014-03-13
JP6054681B2 JP6054681B2 (en) 2016-12-27

Family

ID=50396123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185904A Active JP6054681B2 (en) 2012-08-24 2012-08-24 Rare earth iron-based bonded magnet, and rotor and electromagnetic device manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP6054681B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy
JPS60159152A (en) * 1984-01-30 1985-08-20 Hitachi Metals Ltd Permanent magnet alloy
JPH06140248A (en) * 1992-10-26 1994-05-20 Seiko Epson Corp Magnetizing method for permanent magnet rotor
JP2002289445A (en) * 2001-03-26 2002-10-04 Nec Tokin Corp Inductance component
JP2006203173A (en) * 2004-12-24 2006-08-03 Fdk Corp Polarizing method of permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy
JPS60159152A (en) * 1984-01-30 1985-08-20 Hitachi Metals Ltd Permanent magnet alloy
JPH06140248A (en) * 1992-10-26 1994-05-20 Seiko Epson Corp Magnetizing method for permanent magnet rotor
JP2002289445A (en) * 2001-03-26 2002-10-04 Nec Tokin Corp Inductance component
JP2006203173A (en) * 2004-12-24 2006-08-03 Fdk Corp Polarizing method of permanent magnet

Also Published As

Publication number Publication date
JP6054681B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP4697736B2 (en) Magnetization method of permanent magnet
US20130192723A1 (en) Method for manufacturing bonded magnet
JP6204434B2 (en) Anisotropic composite sintered magnet containing MnBi with improved magnetic properties and method for producing the same
US10695840B2 (en) Sintered magnet based on MnBi having improved heat stability and method of preparing the same
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
WO2006098410A1 (en) Permanent magnet magnetization device and permanent magnet magnetization method
Tomše et al. A spark-plasma-sintering approach to the manufacture of anisotropic Nd-Fe-B permanent magnets
JP6296745B2 (en) Magnetization method of rare earth magnet and rare earth magnet
JP6054681B2 (en) Rare earth iron-based bonded magnet, and rotor and electromagnetic device manufacturing method using the same
CN103121102B (en) Sintering tempering method of neodymium iron boron magnetic materials
JP6021096B2 (en) Method to increase demagnetization amount of bonded magnet
WO2015159882A1 (en) SmCo-BASED RARE EARTH SINTERED MAGNET
JP6267446B2 (en) Rare earth iron bond permanent magnet
JP2017188690A (en) Manufacturing method of bond magnet
JP6438713B2 (en) Rare earth iron-based magnet powder and bonded magnet using the same
JPH06140248A (en) Magnetizing method for permanent magnet rotor
JP6200730B2 (en) Rare earth iron bond magnet manufacturing method
Komura et al. Establishment of multipole magnetizing method and apparatus using a heating system for Nd-Fe-B isotropic bonded magnets
JPH09131025A (en) Method of magnetizing permanent magnet
JPH04143221A (en) Production of permanent magnet
KR101561275B1 (en) Method for manufacturing permanent megnet
JP2004134698A (en) Method and device for manufacturing magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JP2004247505A (en) R-Fe-B SYSTEM MAGNET AND METHOD FOR MANUFACTURING IT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161201

R150 Certificate of patent or registration of utility model

Ref document number: 6054681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350