JP2014044851A - 放射線発生装置及び放射線撮影システム - Google Patents

放射線発生装置及び放射線撮影システム Download PDF

Info

Publication number
JP2014044851A
JP2014044851A JP2012186171A JP2012186171A JP2014044851A JP 2014044851 A JP2014044851 A JP 2014044851A JP 2012186171 A JP2012186171 A JP 2012186171A JP 2012186171 A JP2012186171 A JP 2012186171A JP 2014044851 A JP2014044851 A JP 2014044851A
Authority
JP
Japan
Prior art keywords
radiation
visible light
light source
reflection mirror
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012186171A
Other languages
English (en)
Inventor
Koichi Takasaki
晃一 高崎
Yasuhiro Hamamoto
康弘 浜元
Kazuyuki Ueda
和幸 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012186171A priority Critical patent/JP2014044851A/ja
Publication of JP2014044851A publication Critical patent/JP2014044851A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】収納容器120の中に設けられた放射線発生管102の透過窓を形成するターゲット115から出射される放射線が収納容器120に設けられた放出窓121を介して放出される放射線発生ユニット101と、放射線照射野の大きさを調整可能な放射線制限羽根122を備えた可動絞りユニット200と、反射ミラー119で反射された光源125からの可視光による可視光照射野として模擬表示する投光照準機構とを備えた放射線発生装置500において、小型軽量化を図る。
【解決手段】反射ミラー119を、透過窓であるターゲット115と放出窓121の間に設け、しかも光源125を、収納容器120の内側であって、反射ミラー119に可視光を直射可能な位置に設け、可動絞りユニット200を小型化できるようにする。
【選択図】図1

Description

本発明は、放射線照射野を可視光照射野で模擬表示する機能を備えた放射線発生装置及びそれを用いた放射線撮影システムに関する。
放射線発生装置は、通常、放射線発生管を内蔵する放射線発生ユニットと、放射線発生ユニットの放出窓の前面に設けられた可動絞りユニットとを備えている。可動絞りユニットは、放射線発生装置の放出窓を介して放出される放射線の内、撮影に不要な部分を遮蔽し、被検者の被曝を低減させる放射線照射野の調整機能を有している。放射線照射野の調整は、制限羽根によって形成される放射線を通過させる開口部の大きさを調整することで行われる。また、この可動絞りユニットには、通常、可視光照射野により放射線照射野を模擬表示し、撮影前に放射線照射野の範囲を肉眼で確認できるようにする機能が付加されている。
従来、一般的な可動絞りユニットとしては、特許文献1に示されるようなものが知られている。特許文献1に示される可動絞りユニットは、放射線を透過して可視光を反射する反射板と、放射線照射野及びそれに対応して形成される可視光照射野を規定する制限羽根と、可視光の光源とを備えている。光源は、放射線の照射時に干渉しないよう、所要の放射線照射野に照射される放射線の照射経路からずれて配置されている。反射板は、このような配置の光源からの可視光を反射して、放射線照射野を模擬表示する可視光照射野を形成できるよう、放射線の放射方向に対して斜めに配置されている。また、光源と反射板は、制限羽根と共に、放射線遮蔽性を有する外囲器内に配置されている。外囲器は、反射板や制限羽根に当たって散乱する放射線を減弱できる材料で構成されている。
特開平7−148159号公開公報
しかしながら、上記従来の可動絞りユニットは、反射板が斜めに配置されているため、それを覆う外囲器が大きくなり、放射線発生装置やそれを用いた放射線撮影システムの小型化を妨げる原因となっている。また、外囲器を構成する放射線を減弱できる材料は質量の大きな材料であることから、重量がかさんでしまう問題がある。
一方、上記従来の可動絞りユニットは、放射線の供給源として放射線発生装置に設けられている放射線発生管が反射型の場合、斜めに配置された反射板によって、反射型放射線発生管におけるヒール効果を軽減することができる利点がある。しかし、ヒール効果を生じない透過型の放射線発生管を用いた場合には、かえって放射線の線質分布を助長してしまうという問題がある。
本発明は、上記従来の問題点に鑑みてなされたもので、放射線発生ユニットと可動絞りユニットとを備えた放射線発生装置及びこの放射線発生装置を用いた放射線撮影システムにおいて、小型軽量化を図れるようにすることを第一の目的とする。また、本発明は、放射線の供給源として透過型放射線発生管を用いた場合の放射線の線質分布の増大を防止できるようにすることを第二の目的とする。
上記課題を解決するために、本発明の第1は収納容器の中に設けられた放射線発生管の透過窓から出射される放射線が前記収納容器に設けられた放出窓を介して放出される放射線発生ユニットと、
該放射線発生ユニットの放出窓から放出される放射線を通過させる開口部を形成し、該開口部の大きさを調整することで放射線照射野の大きさを調整可能な放射線制限羽根を備えた可動絞りユニットと、
放射線を透過させるミラー基板の片面に可視光を反射して放射線を透過させる反射面を形成した反射ミラー及び可視光の光源を備え、前記放射線発生ユニットから放出された放射線による放射線照射野を、前記反射ミラーの反射面で反射されて前記開口部を通過する前記光源からの可視光による可視光照射野として模擬表示する投光照準機構と、
を備えた放射線発生装置において、
前記反射ミラーが、前記反射面を前記放出窓側に向けて、前記透過窓と前記放出窓の間に設けられており、しかも前記光源が、前記収納容器の内側であって、前記反射面に可視光を直射可能な位置に設けられていることを特徴とする放射線発生装置を提供するものである。
また、本発明の第2は、上記いずれかの放射線発生装置と、前記放射線発生装置から放出され、被検体を透過した放射線を検出する放射線検出装置と、前記放射線発生装置と前記放射線検出装置とを連携制御する制御装置とを有することを特徴とする放射線撮影システムを提供するものである。
本発明の放射線発生装置では、従来の放射線発生装置では可動絞りユニットの外囲器内に配置されていた反射ミラーと光源を、放射線発生ユニット内の放射線発生管に設けられる透過窓と放射線発生ユニットに設けられる放出窓との間に配置している。これにより、光源および斜めに配置していた反射ミラーを外囲器内から取り除くことができ、外囲器の大幅な小型化及び軽量化に伴って、装置全体の小型化および軽量化を図ることができる。また、本発明に係る放射線撮影システムにおいても、この小型化および軽量化した放射線発生装置を用いることでシステム全体の小型化及び軽量化を実現することが可能である。
特に、反射ミラーを中心線(放射線の焦点と、放射線制限羽根が最大の放射線照射野を規定する際の開口部の中心とを結ぶ直線)に対して直交方向に設けると、反射ミラーを中心線に対して斜めに配置した場合に生じる電子線の線質むらを防止できる。このため、ヒール効果を生じない透過型の放射線発生管を用いた放射線発生装置や放射線撮影システムにおける放射線の線質むらを抑制することができる。
本発明に係る放射線発生装置の第1位の実施形態を示す模式図である。 図1の部分拡大図であり、(a)は図1の破線で囲まれた部分の可視光照射時の状態を示す図、(b)は図1の破線で囲まれた部分の放射線照射時の状態を示す図、(c)は反射ミラーの正面図である。 本発明に係る放射線発生装置の第2の実施形態を示す図であり、(a)〜(c)は図2の(a)〜(c)と同様の部分及び状態の拡大図である。 本発明の放射線撮影システムの一実施形態を示す図である。
以下、図面を用いて本発明の実施形態を説明するが、本発明は下記実施形態に限定されない。なお、本明細書で特に図示又は記載されない部分に関しては、当該技術分野の周知又は公知技術を適用する。また、以下に参照する図面において、同じ符号は同様の構成要素を示す。
〔放射線発生装置の第1の実施形態〕
まず、図1及び図2を用いて本発明の放射線発生装置について説明する。図1は本発明に係る放射線発生装置の一例を示す模式図であり、図2は図1の部分拡大図である。
本発明の放射線発生装置500は、放射線発生ユニット101と、可動絞りユニット200とを有する。また、本発明の放射線発生装置500は、放射線発生ユニット101から放出された放射線照射野106を可視光照射野105として模擬表示できるように、反射ミラー119と、光源125とを有する投光照準機構を備える。
放射線発生ユニット101は、収納容器120と、放射線発生管102と、放射線駆動回路103とを有し、収納容器120内部に放射線発生管102と放射線駆動回路103が設置されている。また、収納容器120は放射線を遮蔽する金属容器であるため、収納容器120内部の放射線発生管102から出射される放射線を外部に透過させるための放出窓121が設けられている。さらに、放射線発生管102の冷却媒体として、収納容器120の内部の余剰空間には絶縁性液体109が充填されている。
放射線発生管102は、真空容器110内に、電子源であるカソード111と、グリッド電極112と、レンズ電極113とを有している。また、カソード111と相対向する位置にターゲット115が設けられている。本実施形態の放射線発生管102は透過型であり、ターゲット115が放射線を真空容器110外へ出射させる透過窓を構成している。
ターゲット115は、支持基板117aと、支持基板上に積層されたターゲット層117bを備えている。支持基板117aは、放射線の透過性がよい材料で構成されている。支持基板117aとしては、例えばダイヤモンド基板を用いることができる。また、ターゲット層117bは、電子の照射によって放射線を放出する材料で構成されている。ターゲット層117bは、原子番号が42以上の金属を含有する層として構成することができる。ターゲット115は、カソード111にターゲット層117bを向けて設置されている。ターゲット層117bに、カソード111からグリッド電極112により引き出して加速した電子をレンズ電極113で収束さ照射することで、放射線を発生させることができる。これにより発生した放射線は、支持基板117aを透過して真空容器110の外部へ出射されることになる。
真空容器110には、真空容器110の内方と外方の両者に突出して遮蔽部材118が取り付けられている。放射線遮蔽部材118は、不要な放射線を遮蔽するためのものであり、鉛やタングステン等の放射線の透過率が低い材料で構成することが好ましい。この遮蔽部材110は、真空容器110の内外方向に貫通する貫通孔を有している。ターゲット115は、この遮蔽部材118の貫通孔内に設けられており、貫通孔の途中を遮蔽している。遮蔽部材118の貫通孔は、この貫通孔の途中に設けられたターゲット115を境に、真空容器110の内方側が電子入射孔118a、真空容器110の外方側が放射線出射孔118bとなっている。電子入射孔118aは、ターゲット層117bへの電子の照射を許容するための孔で、カソード111に向けられている。放射線出射孔118bは、ターゲット層117bへの電子の照射により生じた電子の外部への出射を許容するための孔で、収納容器120の放出窓121へ向けられており、放出窓121へ向かって徐々に拡径したテーパー部118cを有している。
駆動回路103は、放射線発生ユニット101の収納容器120内部に配置される。駆動回路103では電圧が生成され、放射線発生管102の、カソード111、グリッド電極112、レンズ電極113、ターゲット層117bに印加される。カソード111にはタングステンフィラメントや、含浸型カソードのような熱陰極や、カーボンナノチューブ等の冷陰極が用いられる。真空容器110内で、グリッド電極112によって形成される電界によって、電子がアノードであるターゲット層117b方向に放出される。電子はレンズ電極113で収束され、支持基板117aに成膜等により固定されたターゲット層117bに衝突し、放射線が放射される。ターゲット層117bには、タングステン、タンタル、モリブデン等が用いられる。放射線は、不要な放射線は放射線遮蔽部材118により遮蔽されつつ放出窓121を通って、可動絞りユニット200を通過する。
絶縁性液体109は、放射線発生管102の冷却媒体として収納容器120内に充填されるものであり、絶縁性液体109には電気絶縁油を用いるのが好ましく、鉱油、シリコーン油等が好適に用いられる。その他に使用可能な絶縁性液体109としては、フッ素系電気絶縁液体が挙げられる。また、本発明の放射線発生装置500は、後述するように、光源125が収納容器120内部に配置されるため、光透過率の高い電気絶縁油を用いるのが好ましい。
本発明の放射線発生装置500は、放射線照射野106を可視光照射野105として模擬表示するための可視光を収納容器120の内部から照射する構成であるため、放出窓121は放射線透過率が高く、可視光透過率が高いものであることが望ましい。
可動絞りユニット200は、放射線発生ユニット101の放出窓121に接続され、この実施形態では放射線制限羽根122と可視光制限羽根124と外囲器123とを有する。
放射線制限羽根122は、図2で示すように、放射線が通過する開口部128を形成するもので、放射線制限羽根122で開口部128の大きさを調整することにより放射線照射野106の大きさが調整可能となっている。また、可視光制限羽根124は、光源125からの可視光が通過できる開口部128の領域を調整するもので、開口部128の可視光通過領域の大きさを調整することにより可視光照射野105の大きさを調整可能となっている。放射線制限羽根122は、放射線を遮蔽して放射線の照射領域を規定できるよう、鉛、タングステン、モリブデン等を含む放射線遮蔽性の材料で形成されているが、これに限定されるものではない。また、可視光制限羽根124は、放射線照射野106への放射線の照射を遮ることなく光源125からの可視光の照射範囲を規定できるよう、可視光を遮断し、放射線を透過させる材料で構成されている。
外囲器123は、放射線発生ユニット101に接続され、散乱する放射線を遮蔽しつつ放射線制限羽根122と可視光制限羽根124を内包するための外枠であり、従来から使用される外囲器と同様の材質のものが使用される。
反射ミラー119は、ミラー基板116と反射面127とからなる。反射ミラー110は、透過窓を兼ねるターゲット115と放出窓121の間の放射線出射孔118a内に、反射面127を放出窓121側に向けて設置されている。この実施形態では、反射ミラー119は、放射線の焦点と、放射線制限羽根122が最大の放射線照射野106を規定する際の開口部128の中心とを結ぶ直線である中心線に直交するように設けられている。放射線の焦点とは、放射線発生位置の中心で、ターゲット層117bの電子線照射位置の中心をいう。また、放射線制限羽根122が最大の放射線照射野106を規定する際の開口部128の中心とは、最大の放射線照射野106を規定する際の開口部128と同じ形状と大きさで厚さが均一な板材を想定した場合に、この板材の重心位置に対応する位置をいう。反射ミラー110を中心線に対して直交方向に設けると、反射ミラー110を中心線に対して斜めに配置した場合に生じる電子線の線質むらを防止できる。このため、ヒール効果を生じない本実施形態のような透過型の放射線発生管102を用いた放射線発生装置500における放射線の線質むらを抑制することができる。
図2(c)で開示している反射ミラー119は、放射線出射孔118aの内径に対応する径の円板状であり、放射線出射孔118aを塞いで設けられている。しかし、放射線出射孔118aの内壁との間に隙間が形成される形状とし、放射線出射孔118aを塞がずに設けることもできる。放射線遮蔽部材118の放射線出射孔118aを塞がない形とすることにより、収納容器120内に充填されている絶縁性液体109が放射線出射孔118aの奥に流入してターゲット115を冷却することができる。また、ミラー基板116は放射線の透過率が高い素材であればどのような素材を用いても良い。
ミラー基板116は放射線を透過させる材料で構成されている。図2に示す反射面127は、ミラー基板116の片面の中心部に、放射線を透過し可視光を反射する材料で形成されている。反射面127は、光源125からの可視光を拡散できる凸面又は凹面形状とすることが好ましい。反射面127で光源125からの可視光を必要な角度で拡散させることで、小さな反射面127で、放射線照射野106を模擬表示する可視光照射野105を形成することができる。この光の拡散は、鏡面の反射面127と、反射面127で反射された可視光を拡散させる拡散板の組み合わせで行うこともできる。また、図2に開示している反射ミラー119では反射面127をミラー基板116の中心部にのみ配置しているが、ミラー基板116の片面全体に反射面127を形成してもよい。
光源125は、可視光を発光するもので、この実施形態の光源125は、収納容器120の内側であって、反射ミラー119の反射面127に可視光を直射可能な位置に設けられている。具体的には、放射線出射孔118aのテーパー部118cの延長線より内側の位置となるよう、収納容器120の放出窓121の周縁内壁に設置されている。光源125としては、収納容器120内に設置することが可能で、可視光を発光するものであれば特に制限はないが、小型で設置スペースをとらないことから、発光ダイオード(LED)が好ましい。光源125は、放射線照射野106と同等の可視光照射野105を形成しやすくする上で指向性を有する可視光を発するものが好ましい。また、光源125を複数設けると、一部の光源125の故障を他の光源125でカバーすることができると共に、必要な光量を確保しやすくなるので好ましい。
図2によりさらに詳細に説明すると、放射線照射野106を示す可視光照射野105は、収納容器120に配置した光源125から照射される可視光で形成される。この可視光は、反射ミラー119で反射され、透明な放出窓121を透過し、放射線を透過する可視光制限羽根124で規制された領域(可視光照射野105)に照射される。反射ミラー119の反射面127は、光源125からの可視光を所要の角度に拡散させて反射し、擬似的に可視光照射源となる。可視光が可視光照射野105となる程度に拡散できれば、鏡の形状に限定はなく、また他の部材を使って光を拡散する構成としてもよい。ターゲット層117bから照射される放射線は、反射ミラー119及び透明な放出窓121を透過し、放射線制限羽根122で規制された領域(放射線照射野106)に照射される。可視光照射源として擬制される。反射ミラー119の反射面127と放射線の焦点の径及び位置の違いによる可視光照射野105と放射線照射野106のずれは、可視光制限羽根124の放射線制限羽根122からの突出量aを適切に調整することにより補正される。
この構成により、従来から利用されていた外囲器内部の反射ミラー、及び可視光源の占める領域を減らすことが可能となり、本実施形態の外囲器123は大幅に小型化される。外囲器123は、散乱放射線の漏洩を防ぐため、鉛やタングステン等の密度の高い物質で囲われており、外囲器123の小型化によって、可動絞りユニット全体を軽量化することができる。また、この構成により放射線照射領域において、放射線照射経路中に反射ミラーが斜めに配置されることが無いため、放射線発生ユニットに透過型放射線発生ユニットを用いた場合、全照射方位に対して略一様な線質の放射線を照射することができ、斑を軽減することが可能となる。さらに、反射ミラー119の反射面127で必要な可視光の拡散状態が得られるようにすることで、光源225の大きさや配置に関する制限は大幅に緩和される。また、光源125を複数配置することで、仮に可視光源の一部が壊れたとしても光照射野の形成に必要な光量の確保が可能となる。
以上の説明における放射線発生管102は透過型放射線発生管であるが、本発明は反射型放射線発生管を用いた放射線発生装置にも適用することができる。反射型放射線発生管においては、ターゲットは真空容器内に収納されており、このターゲットとは別に透過窓が設けられる。つまり、ターゲットが透過窓を兼ねるものではないが、透過窓と、収納容器の放出窓との間に反射ミラーを設け、この反射ミラーの反射面に可視光を直射できる位置に光源を設けることで、上記と同様の利益を得ることができる。
〔放射線発生装置の第2の実施形態〕
次に、図3を用いて第2の実施形態を説明する。
この実施形態では第1の実施の形態と主な構成は同じであるが、光源125の配置が異なっている。
第2の実施形態では、光源125は放射線遮蔽部材118の放射線出射孔118a内のテーパー部118cに配置されている。この構成とすることにより、光源125と反射ミラー119との距離が近いため、確実に反射ミラー119に可視光を照射することができる。また、放射線出射孔118aの内周面に複数の光源125を配置することも可能である。このような光源125の配置としても、第1の実施形態と同様の利益を得ることができる。
〔放射線撮影システムの一実施形態〕
図5は本発明の放射線撮影システムの構成図である。システム制御装置502は、第1の実施形態と第二放射線発生装置500と放射線検出装置501とを連携制御する。高圧回路505は、システム制御装置502による制御の下に、放射線発生管102に各種の制御信号を出力する。制御信号により、放射線発生装置500から放出される放射線の放出状態が制御される。放射線発生装置500から放出された放射線は、可動絞り200で部分的に遮蔽され、被検体504を透過して検出器506で検出される。検出器506は、検出した放射線を画像信号に変換して信号処理部507に出力する。信号処理部507は、システム制御装置502による制御の下に、画像信号に所定の信号処理を施し、処理された画像信号をシステム制御装置502に出力する。システム制御装置502は、処理された画像信号に基いて、表示装置503に画像を表示させるための表示信号を表示装置503に出力する。表示装置503は、表示信号に基く画像を、被検体504の撮影画像としてスクリーンに表示する。これにより、照射される放射線の斑を低減させることが可能となる。
放射線の代表例はX線であり、本発明の放射線発生装置と放射線撮影システムは、X線発生装置とX線撮影システムとして利用することができる。X線撮影システムは、工業製品の非破壊検査や人体や動物の病理診断に用いることができる。
(実施例1)
第1の実施形態のように構成された放射線発生装置を作成した。
図1および図2に示すように、外囲器123は大きさ60×60×40mmで製作し、内側面には散乱放射線の漏洩を防ぐためにタングステンシートを張りつけた。収納容器120の内側で、放出窓121の外周から2mm離れた周縁部の位置に、大きさ2mm角のLEDの光源125を等方的に4つ固定した。
ターゲット115のターゲット層117bは厚さ7μm、直径4mmのタングステンであり、支持基板117は厚さ1mm、直径6mmのダイヤモンド基板とした。
放射線を透過する放出窓121はポリカーボネート製で、直径は14mmである。
反射ミラー119のミラー基板116は厚さ2mm、径6mmのセラミックスで、中心に反射面127を形成した。反射面127は直径2mmの凸面鏡で、光源125からの可視光を広角度に反射するものとした。
放射線制限羽根122は鉛であり、放射線を透過する可視光制限羽根124は不透明なフェノール樹脂で形成した。
光源125から照射された可視光は、反射ミラー119で広角度に反射され、透明な放出窓121を通り、可視光制限羽根124で規制された領域に照射されて、模擬的に放射線照射領域106を示す。また、可視光制限羽根124の突出量aは、不図示のギアにより放射線制限羽根122の開口に合わせて自動で調整されるように構成した。例えば、開口量bの変化に対し突出量aの変化量を11:1で動くようにギア比を調整した。
上記放射線発生装置を用い、動作を確認したところ、放射線照射野106と略同一領域の可視光照射野105を形成できることを確認した。また、ヒール効果や従来の放射線発生装置に不可欠であった斜めに配置される反射ミラーの影響を受けないため、全照射方位に対して略一様な線質の放射線の照射が可能となり、この放射線発生装置を用いた放射線撮影ユニットでは良好な画像を得ることができた。
さらに、可動絞りユニット200の全重量を測定したところ、約400gであり、従来品に対して大幅に軽量化することができた。
(実施例2)
第2の実施形態のように構成された放射線発生装置を作成した。
図3に示すように、外囲器123は大きさ60×60×40mmで製作し、内側面には散乱放射線の漏洩を防ぐためにタングステンシートを張りつけた。タングステンからなる放射線遮蔽部材118の放射線出射孔118aは放出窓118c方向に向かって徐々に拡径したテーパー部118cとなっており、そのテーパー部118cに、大きさ2mm角のLEDの光源125を等方的に4つ固定した。
ターゲット115のターゲット層115は厚さ7μm、直径3mmのタングステンであり、支持基板117は厚さ0.5mm、直径4mmのダイヤモンド基板である。
放出窓121はポリカーボネート製で、直径は16mmである。
反射ミラー119のミラー基板116は厚さ1mm、径4mmのセラミックで、中心に反射面127を形成した。反射面127は直径2mmの凸面鏡で、光源125からの可視光を広角度に反射するものとした。
放射線制限羽根122は鉛であり、放射線を透過する可視光制限羽根124は不透明なフェノール樹脂で形成した。
光源125から照射された可視光は、反射ミラー119で広角度に反射され、透明な放出窓121を通り、可視光制限羽根124で規制された領域に照射されて、模擬的に放射線照射領域106を示す。また、可視光制限羽根124の突出量aは、不図示のギアにより放射線制限羽根122の開口に合わせて自動で調整されるように構成した。例えば、開口量bの変化に対し突出量aの変化量を11:1で動くようにギア比を調整した。
上記放射線発生装置を用い、動作を確認したところ、放射線照射野106と略同一領域の可視光照射野105を形成できることを確認した。また、ヒール効果や従来の放射線発生装置に不可欠であった斜めに配置される反射ミラーの影響を受けないため、全照射方位に対して略一様な線質の放射線の照射が可能となり、この放射線発生装置を用いた放射線撮影ユニットでは良好な画像を得ることができた。
さらに、可動絞りユニット200の全重量を測定したところ、約400gであり、従来品に対して大幅に軽量化することができた。
(比較例)
比較例として、従来の放射線発生装置の重量を測定した。従来用いられていた可視光源は直径約20mmの管球であり、中心線に対して反射ミラーが斜めに配置されている。また、可視光源は外囲器の内部に配置されている。このような構成の可動絞りユニットの外囲器の大きさは200×200×150mmとなり、重量は約2kgとなった。
101:放射線発生ユニット、102:放射線発生管、103:放射線駆動回路、105:可視光照射野、106:放射線照射野、109:絶縁性液体、110:真空容器、111:カソード、112:グリッド電極、113:レンズ電極、115:ターゲット層、116:ミラー基板、117a:支持基板、117b:ターゲット層、118:放射線遮蔽部材、118a:放射線出射孔、118b:電子入射孔、119:反射ミラー、120:収納容器、121:放出窓、122:放射線制限羽根、123:外囲器、124:可視光制限羽根、125:光源、127:反射面、200:可動絞りユニット、500:放射線発生装置、501:放射線検出装置、502:システム制御装置、503:表示装置、504:被検体、505:高圧回路、506:検出器、507:信号処理部

Claims (11)

  1. 収納容器の中に設けられた放射線発生管の透過窓から出射される放射線が前記収納容器に設けられた放出窓を介して放出される放射線発生ユニットと、
    該放射線発生ユニットの放出窓から放出される放射線を通過させる開口部を形成し、該開口部の大きさを調整することで放射線照射野の大きさを調整可能な放射線制限羽根を備えた可動絞りユニットと、
    放射線を透過させるミラー基板の片面に可視光を反射して放射線を透過させる反射面を形成した反射ミラー及び可視光の光源を備え、前記放射線発生ユニットから放出された放射線による放射線照射野を、前記反射ミラーの反射面で反射されて前記開口部を通過する前記光源からの可視光による可視光照射野として模擬表示する投光照準機構と、
    を備えた放射線発生装置において、
    前記反射ミラーが、前記反射面を前記放出窓の側に向けて、前記透過窓と前記放出窓の間に設けられており、しかも前記光源が、前記収納容器の内側であって、前記反射面に可視光を直射可能な位置に設けられていることを特徴とする放射線発生装置。
  2. 前記透過窓から出射される放射線が通過する放射線出射孔を有する放射線遮蔽部材が、前記放射線発生管から外方へ突出して設けられており、前記反射ミラーが前記放射線出射孔の内側に取り付けられていることを特徴とする請求項1に記載の放射線発生装置。
  3. 放射線発生管が透過型であって、前記反射ミラーが、放射線の焦点と、前記放射線制限羽根が最大の放射線照射野を規定する際の前記開口部の中心とを結ぶ直線である中心線に直交するように設けられていることを特徴とする請求項2に記載の放射線発生装置。
  4. 前記光源が、前記放出窓の周縁部に設けられていることを特徴とする請求項2又は3に記載の放射線発生装置。
  5. 前記放射線出射孔が、少なくとも反射ミラーの取り付け位置よりも放出窓の側において、放出窓の方向に向かって徐々に拡径したテーパー部を有しており、前記光源が前記テーパー部に設けられていることを特徴とする請求項2又は3に記載の放射線発生装置。
  6. 前記光源が、発光ダイオードであることを特徴とする請求項1乃至5のいずれか一項に記載の放射線発生装置。
  7. 前記光源が複数設けられていることを特徴とする請求項6に記載の放射線発生装置。
  8. 前記反射面が、前記ミラー基板の片面の一部にのみ形成されていることを特徴とする請求項1乃至7のいずれか一項に記載の放射線発生装置。
  9. 前記反射ミラーの反射面が、凸面又は凹面もしくは拡散板が組み合わされた鏡面であることを特徴とする請求項1乃至8のいずれか一項に記載の放射線発生装置。
  10. 前記可動絞りユニットが、前記光源からの可視光が通過できる前記開口部の領域を調整する、放射線を透過し可視光を遮蔽する可視光制限羽根を備えていることを特徴とする請求項1乃至9いずれか一項に記載の放射線発生装置。
  11. 請求項1乃至10のいずれか一項に記載の放射線発生装置と、前記放射線発生装置から放出され、被検体を透過した放射線を検出する放射線検出装置と、前記放射線発生装置と前記放射線検出装置とを連携制御する制御装置とを備えることを特徴とする放射線撮影システム。
JP2012186171A 2012-08-27 2012-08-27 放射線発生装置及び放射線撮影システム Pending JP2014044851A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012186171A JP2014044851A (ja) 2012-08-27 2012-08-27 放射線発生装置及び放射線撮影システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186171A JP2014044851A (ja) 2012-08-27 2012-08-27 放射線発生装置及び放射線撮影システム

Publications (1)

Publication Number Publication Date
JP2014044851A true JP2014044851A (ja) 2014-03-13

Family

ID=50395992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186171A Pending JP2014044851A (ja) 2012-08-27 2012-08-27 放射線発生装置及び放射線撮影システム

Country Status (1)

Country Link
JP (1) JP2014044851A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207460A (ja) * 2014-04-21 2015-11-19 キヤノン株式会社 ターゲットおよび前記ターゲットを備えるx線発生管、x線発生装置、x線撮影システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207460A (ja) * 2014-04-21 2015-11-19 キヤノン株式会社 ターゲットおよび前記ターゲットを備えるx線発生管、x線発生装置、x線撮影システム

Similar Documents

Publication Publication Date Title
US4404591A (en) Slit radiography
US4969176A (en) X-ray examination apparatus having a stray radiation grid with anti-vignetting effect
US9111655B2 (en) Radiation generating apparatus and radiation imaging system
JPS63501735A (ja) 改良されたx線減衰方法および装置
JP2015092953A (ja) 放射線撮影装置及び放射線撮影システム
US20160183907A1 (en) X-ray detection
JP2014008361A (ja) 放射線発生装置及び放射線撮影システム
JP6071411B2 (ja) 放射線発生装置及び放射線撮影システム
JP2015097693A (ja) マンモ断層撮影装置
US20140126697A1 (en) Radiation generating apparatus, radiation photographing system, and sighting projector unit included therein
JP6153346B2 (ja) 放射線発生装置及び放射線撮影システム
WO2009007902A3 (en) X-ray source for measuring radiation
JP2014044851A (ja) 放射線発生装置及び放射線撮影システム
JP2013255642A (ja) 放射線発生装置及び放射線撮影システム
JP4956819B2 (ja) 微小孔焦点x線装置
JP2015038468A (ja) 照射野制限装置、それを備えたx線発生ユニット及びx線撮影システム
US20230293126A1 (en) Backscattered x-photon imaging device
US2955205A (en) Device in which a light beam marks the x-ray beam
JP2014057699A (ja) 放射線発生装置及び放射線撮影システム
US20120134463A1 (en) Radiation tube and radiation imaging system
JP2013218933A (ja) 微小焦点x線発生装置及びx線撮影装置
US3688121A (en) Shielded optical system for viewing an illuminated device producing penetrating radiation
JP2014008360A (ja) 放射線発生装置及び放射線撮影システム
JPS5928939B2 (ja) X線発生器
KR100948649B1 (ko) 투과형 및 반사형 겸용 엑스-레이 발생장치 및 그것을구비한 엑스레이 검사시스템