JP2014043203A - Heat storage device, air conditioning device and heat storage method - Google Patents

Heat storage device, air conditioning device and heat storage method Download PDF

Info

Publication number
JP2014043203A
JP2014043203A JP2012187601A JP2012187601A JP2014043203A JP 2014043203 A JP2014043203 A JP 2014043203A JP 2012187601 A JP2012187601 A JP 2012187601A JP 2012187601 A JP2012187601 A JP 2012187601A JP 2014043203 A JP2014043203 A JP 2014043203A
Authority
JP
Japan
Prior art keywords
heat storage
medium
heat
temperature
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012187601A
Other languages
Japanese (ja)
Other versions
JP5771168B2 (en
Inventor
Ena Ishii
恵奈 石井
Mitsunobu Yoshida
充伸 吉田
Takashi Matsuoka
敬 松岡
Ryosuke Yagi
亮介 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012187601A priority Critical patent/JP5771168B2/en
Priority to CN201310359153.0A priority patent/CN103673706B/en
Priority to US13/970,783 priority patent/US20140060794A1/en
Publication of JP2014043203A publication Critical patent/JP2014043203A/en
Application granted granted Critical
Publication of JP5771168B2 publication Critical patent/JP5771168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage device capable of easily determining whether or not a latent heat storage material can be supercooled, an air conditioning device and a heat storage method.SOLUTION: A heat storage device includes: a closed first circuit for circulating a medium in one direction; a heat exchanger installed in part of the first circuit and exchanging heat emitted by a heating element with the medium; a heat storage tank that is installed downstream of the first circuit and includes a latent heat storage material exchanging heat with the medium obtaining the heat emitted by the heating element; a first measurement part for measuring a temperature of the medium passing between the heat exchanger and the heat storage tank; a cooling part for cooling the medium when the temperature of the medium measured by the first measurement part is higher than a predetermined target temperature to make the temperature of the medium passing between the heat exchanger and the heat storage tank approximately equal to the target temperature; a measurement part for measuring an elapsed time since the latent heat storage material has exchanged heat with the medium and started a phase change from a solid phase to a liquid phase; and a determination part for determining whether or not the latent heat storage material can be supercooled, on the basis of the elapsed time.

Description

本発明の実施形態は、潜熱蓄熱材を用いた蓄熱装置、空調装置及び蓄熱方法に関する。   Embodiments described herein relate generally to a heat storage device, an air conditioner, and a heat storage method using a latent heat storage material.

内燃機関やトランスミッション(発熱体)の暖機のために、媒体を介して発熱体からの廃熱を潜熱蓄熱材に蓄熱する技術が知られている。潜熱蓄熱材は熱を加えられると、固相から液相に相変化することで蓄熱する。液相の潜熱蓄熱材は、その温度が低下した場合であっても液相のままの状態を保つ過冷却状態となる。過冷却状態となった潜熱蓄熱材は、機械的な刺激もしくは電圧などを加えることにより発核して液相から固相に相変化する。この際に、固相から液相への相変化の過程で蓄えた熱を放出する。潜熱蓄熱材は、固相から液相に相変化した際に一部でも固相の部分が残っていると、潜熱蓄熱材の温度が低下した場合に全体が固相に戻ってしまい、過冷却状態になることができない。そのため、暖機のために潜熱蓄熱材を用いる場合には、潜熱蓄熱材は過冷却状態となっている必要がある。したがって、蓄熱の段階で、潜熱蓄熱材全体が固相から液相への相変化が終了したかどうか、すなわち、潜熱蓄熱材の温度が低下した場合に潜熱蓄熱材が過冷却可能かどうかを判定しておく必要がある。   In order to warm up an internal combustion engine and a transmission (a heating element), a technique for storing waste heat from the heating element in a latent heat storage material via a medium is known. When heat is applied to the latent heat storage material, the latent heat storage material stores heat by changing from a solid phase to a liquid phase. Even when the temperature of the liquid phase latent heat storage material is lowered, the liquid phase latent heat storage material is in a supercooled state in which the liquid phase is maintained. The latent heat storage material in a supercooled state is nucleated by applying a mechanical stimulus or voltage, and changes from a liquid phase to a solid phase. At this time, the heat stored in the process of phase change from the solid phase to the liquid phase is released. If a part of the solid phase remains when the phase of the latent heat storage material changes from the solid phase to the liquid phase, if the temperature of the latent heat storage material decreases, the whole will return to the solid phase, and supercooling Cannot be in a state. Therefore, when using a latent heat storage material for warm-up, the latent heat storage material needs to be in a supercooled state. Therefore, at the stage of heat storage, it is determined whether the phase change of the entire latent heat storage material from the solid phase to the liquid phase has been completed, that is, whether the latent heat storage material can be overcooled when the temperature of the latent heat storage material decreases. It is necessary to keep it.

これに対して、媒体の温度に基づいて潜熱蓄熱材が過冷却可能かどうかを判定する技術が知られている。しかしながら、発熱体の稼働状況によっては、媒体の温度は逐次変化するため、このような媒体の温度に基づく場合には、潜熱蓄熱材が過冷却可能かどうかを容易に判定することが難しい。   On the other hand, a technique for determining whether the latent heat storage material can be supercooled based on the temperature of the medium is known. However, since the temperature of the medium changes sequentially depending on the operating state of the heating element, it is difficult to easily determine whether the latent heat storage material can be supercooled based on the temperature of such a medium.

特開2009−236433号公報JP 2009-236433 A

潜熱蓄熱材が過冷却可能かどうかを容易に判定することが可能な蓄熱装置、空調装置及び蓄熱方法を提供する。   Provided are a heat storage device, an air conditioner, and a heat storage method capable of easily determining whether or not a latent heat storage material can be supercooled.

実施形態の蓄熱装置は、発熱体が放出する熱を媒体を介して蓄熱する蓄熱装置において、前記媒体を一方向に循環するための閉じた第1回路と、前記第1回路の一部に設けられ、前記発熱体が放出する熱を前記媒体との間で熱交換する熱交換器と、前記第1回路の前記熱交換器よりも前記媒体が循環する方向の下流に設けられ、前記発熱体が放出する熱を得た前記媒体との間で熱交換する潜熱蓄熱材を含む蓄熱槽と、前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を測定する第1測定部と、前記第1測定部が測定した前記媒体の温度が所定の目標温度より高い場合に前記媒体を冷却して、前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を前記目標温度にほぼ等しくする冷却部と、前記潜熱蓄熱材が前記媒体との間で熱交換して固相から液相へ相変化を開始してからの経過時間を計測する計測部と、前記経過時間に基づいて、前記潜熱蓄熱材が過冷却可能かどうかを判定する判定部とを備える。   The heat storage device according to the embodiment is a heat storage device that stores heat released from a heating element via a medium, and is provided in a closed first circuit for circulating the medium in one direction and a part of the first circuit. A heat exchanger for exchanging heat released from the heating element with the medium, and provided downstream of the heat exchanger of the first circuit in the direction in which the medium circulates. A heat storage tank including a latent heat storage material that exchanges heat with the medium that has obtained heat released from the medium, and a first measurement unit that measures the temperature of the medium that passes between the heat exchanger and the heat storage tank And when the temperature of the medium measured by the first measuring unit is higher than a predetermined target temperature, the medium is cooled, and the temperature of the medium passing between the heat exchanger and the heat storage tank is determined. A cooling unit that is substantially equal to a target temperature, and the latent heat storage material is between the medium and A measuring unit that measures an elapsed time after starting the phase change from the solid phase to the liquid phase, and a determination unit that determines whether the latent heat storage material can be supercooled based on the elapsed time. Prepare.

実施形態の空調装置は、上記の蓄熱装置を備える空調装置であって、前記潜熱蓄熱材を発核させる発核装置と、第2分岐点において前記第1回路と接続し、前記蓄熱槽をバイパスする第2バイパス回路と、前記第2分岐点において前記媒体の流路を前記第1回路または前記第2バイパス回路のいずれかに切り替え可能な第2制御弁と、前記判定部が、前記潜熱蓄熱材が過冷却可能と判定した場合に、前記第2制御弁の切り替えを制御して、前記媒体の流路を前記第2バイパス回路に切り替える第2制御部とを備える。   The air conditioner of an embodiment is an air conditioner provided with the above-mentioned heat storage device, is connected to the first circuit at a second branch point with a nucleation device that nucleates the latent heat storage material, and bypasses the heat storage tank A second control valve capable of switching the flow path of the medium to either the first circuit or the second bypass circuit at the second branch point, and the determination unit including the latent heat storage A second control unit that controls switching of the second control valve and switches the flow path of the medium to the second bypass circuit when it is determined that the material can be supercooled.

実施形態の蓄熱方法は、媒体と、前記媒体を一方向に循環するための閉じた第1回路と、前記第1回路の一部に設けられ、発熱体が放出する熱を前記媒体との間で熱交換する熱交換器と、前記第1回路の前記熱交換器よりも前記媒体が循環する方向の下流に設けられ、前記発熱体が放出する熱を得た媒体との間で熱交換する潜熱蓄熱材を含む蓄熱槽とを備える蓄熱装置または空調装置における蓄熱方法であって、前記媒体を循環する第1ステップと、前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を測定する第2ステップと、前記第2ステップで測定した前記媒体の温度が所定の目標温度より高い場合に前記媒体を冷却して、前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を前記目標温度にほぼ等しくする第3ステップと、前記潜熱蓄熱材が前記媒体との間で熱交換して固相から液相へ相変化を開始してからの経過時間を計測する第4ステップと、判定部が、前記経過時間に基づいて、前記潜熱蓄熱材が過冷却可能かどうかを判定する第5ステップとを有する。   The heat storage method according to the embodiment includes a medium, a closed first circuit for circulating the medium in one direction, and heat provided by a part of the first circuit between the medium and the heat released from the heating element. Heat exchange is performed between a heat exchanger that exchanges heat with the medium and a medium that is provided downstream of the heat exchanger of the first circuit in the direction in which the medium circulates and that obtains heat released by the heating element. A heat storage method in a heat storage device or an air conditioner comprising a heat storage tank containing a latent heat storage material, the first step of circulating the medium, and the temperature of the medium passing between the heat exchanger and the heat storage tank A second step of measuring the medium, and cooling the medium when the temperature of the medium measured in the second step is higher than a predetermined target temperature, and passing between the heat exchanger and the heat storage tank A third step in which the temperature of the medium is approximately equal to the target temperature. And a fourth step of measuring an elapsed time after the latent heat storage material exchanges heat with the medium and starts a phase change from a solid phase to a liquid phase, and a determination unit includes the elapsed time And a fifth step of determining whether or not the latent heat storage material can be supercooled.

第一の実施形態に係る蓄熱装置を示すブロック図。The block diagram which shows the thermal storage apparatus which concerns on 1st embodiment. 第一の実施形態に係る制御装置を示すブロック図。The block diagram which shows the control apparatus which concerns on 1st embodiment. 第一の実施形態に係る蓄熱装置の動作を示すフローチャート。The flowchart which shows operation | movement of the thermal storage apparatus which concerns on 1st embodiment. 第一変形例に係る制御装置を示すブロック図。The block diagram which shows the control apparatus which concerns on a 1st modification. 第一変形例に係るシミュレーション結果の一例。An example of the simulation result which concerns on a 1st modification. 第二変形例に係る蓄熱装置を示すブロック図。The block diagram which shows the thermal storage apparatus which concerns on a 2nd modification. 第二変形例に係る制御装置を示すブロック図。The block diagram which shows the control apparatus which concerns on a 2nd modification. 第二の実施形態に係る蓄熱装置を示すブロック図。The block diagram which shows the thermal storage apparatus which concerns on 2nd embodiment. 第二の実施形態に係るシミュレーション結果の一例。An example of the simulation result which concerns on 2nd embodiment. 第三の実施形態に係る空調装置を示すブロック図。The block diagram which shows the air conditioner which concerns on 3rd embodiment. 第三の実施形態に係る制御装置を示すブロック図。The block diagram which shows the control apparatus which concerns on 3rd embodiment.

以下、発明を実施するための実施形態について説明する。   Hereinafter, embodiments for carrying out the invention will be described.

(第一の実施形態)
図1は、第一の実施形態に係る蓄熱装置を示すブロック図である。本実施形態では、蓄熱装置は、例えば蓄電池、モータやインバータ、またそれらを制御する電子制御ユニット(Electronic Control Unit ;ECU)等を有する電気自動車(Electric Vehicle ;EV)(以下、車両と呼ぶ)における車内の空調装置に用いることができる。たとえば、空調装置を有する電気自動車のモータやインバータの付近に、蓄熱装置を設ける。モータやインバータ等から放出される熱(廃熱)を蓄熱装置に予め蓄熱しておくことで、空調装置の暖機運転が必要な際には、この蓄熱装置が蓄熱した熱を利用することができる。
(First embodiment)
FIG. 1 is a block diagram showing a heat storage device according to the first embodiment. In the present embodiment, the heat storage device is, for example, in an electric vehicle (EV) (hereinafter referred to as a vehicle) having a storage battery, a motor, an inverter, and an electronic control unit (ECU) that controls them. It can be used for an in-vehicle air conditioner. For example, a heat storage device is provided in the vicinity of a motor or an inverter of an electric vehicle having an air conditioner. By preliminarily storing heat (waste heat) released from motors, inverters, etc. in the heat storage device, when the air conditioner needs to be warmed up, the heat stored in the heat storage device can be used. it can.

図1の蓄熱装置1000は、第1回路101を備える。この第1回路101には熱交換のための媒体が循環している。媒体は、熱交換により得た熱を輸送することができる液体または気体であり、本実施形態では例えば水を用いる。また、稼動(発熱)および非稼動(非発熱)が可能な発熱体10が放出する熱を媒体との間で熱交換し、媒体に熱を与える熱交換器15、発熱体10と熱交換した後の媒体との間で熱交換し、媒体から熱を受け取る潜熱蓄熱材25を含む蓄熱槽20を備える。ここで、発熱体10は、蓄電池、モータやインバータ等の車両内で熱を発生する機器である。また、媒体の温度がほぼ目標温度となるように調整する冷却部30、蓄熱槽20を通過する前の媒体の温度を測定する第1測定部130を備える。   The heat storage device 1000 in FIG. 1 includes a first circuit 101. In the first circuit 101, a medium for heat exchange circulates. The medium is a liquid or gas capable of transporting heat obtained by heat exchange. In the present embodiment, for example, water is used. Further, the heat released from the heating element 10 that can operate (heat generation) and non-operation (non-heating) is heat exchanged with the medium, and heat exchange is performed with the heat exchanger 15 and the heating element 10 that give heat to the medium. A heat storage tank 20 including a latent heat storage material 25 that exchanges heat with a later medium and receives heat from the medium is provided. Here, the heating element 10 is a device that generates heat in the vehicle, such as a storage battery, a motor, or an inverter. In addition, a cooling unit 30 that adjusts the temperature of the medium to be substantially the target temperature, and a first measuring unit 130 that measures the temperature of the medium before passing through the heat storage tank 20 are provided.

第1回路101は、熱交換器15、蓄熱槽20、冷却部30を環状に接続するパイプであって、このパイプ中を媒体が循環する。すなわち、図1では熱交換器15と蓄熱槽20との間、蓄熱槽20と冷却部30との間、冷却部30と熱交換器15との間を接続する。なお、第1回路101は媒体と発熱体10間、及び媒体と潜熱蓄熱材25間での熱交換を可能とするために、熱交換をする部分において熱伝導性に優れる金属材料(例えば銅)であることが好ましい。また、それ以外の部分については、パイプ表面からの放熱を抑制するために、耐熱性に優れ、かつ断熱性に優れる樹脂部材等を用いることができる。   The first circuit 101 is a pipe that annularly connects the heat exchanger 15, the heat storage tank 20, and the cooling unit 30, and the medium circulates in the pipe. That is, in FIG. 1, the heat exchanger 15 and the heat storage tank 20, the heat storage tank 20 and the cooling unit 30, and the cooling unit 30 and the heat exchanger 15 are connected. Note that the first circuit 101 is a metal material (for example, copper) having excellent thermal conductivity in a portion where heat exchange is performed in order to enable heat exchange between the medium and the heating element 10 and between the medium and the latent heat storage material 25. It is preferable that Moreover, about the other part, in order to suppress the thermal radiation from the pipe surface, the resin member etc. which are excellent in heat resistance and excellent in heat insulation can be used.

媒体は、熱交換器15、蓄熱槽20、冷却部30を順次通過することで、発熱体10、蓄熱槽20との熱交換を繰り返しながら第1回路101を循環する。すなわち、冷却部30を通過した媒体は、第1回路101を循環することで熱交換器15を通過する。媒体は、図示しないポンプ等により駆動される。   The medium circulates through the first circuit 101 while repeating heat exchange with the heating element 10 and the heat storage tank 20 by sequentially passing through the heat exchanger 15, the heat storage tank 20, and the cooling unit 30. That is, the medium that has passed through the cooling unit 30 passes through the heat exchanger 15 by circulating through the first circuit 101. The medium is driven by a pump or the like (not shown).

潜熱蓄熱材25は、熱交換により固相及び液相の間で相変化することが可能であり、液相において過冷却状態を取り得る材料である。また、過冷却状態のときに衝撃や電圧印加等の入力を与えることで、発核し固相に相変化する材料である。本実施形態では例えば酢酸ナトリウム水和物を用いる。   The latent heat storage material 25 is a material that can change between a solid phase and a liquid phase by heat exchange and can take a supercooled state in the liquid phase. In addition, it is a material that nucleates and changes phase to a solid phase when given an input such as impact or voltage application in a supercooled state. In this embodiment, for example, sodium acetate hydrate is used.

発熱体10は、熱交換器15の近傍に、例えば熱交換器15に接して設けられる。発熱体10は、車両の運転の際に稼働することで外部に放出する熱を、熱交換器15を介して第1回路101を循環する媒体に対して与える。   The heating element 10 is provided in the vicinity of the heat exchanger 15, for example, in contact with the heat exchanger 15. The heating element 10 gives heat released outside by operating when the vehicle is driven to the medium circulating through the first circuit 101 via the heat exchanger 15.

蓄熱槽20は、第1回路101の熱交換器15の下流に設けられ、潜熱蓄熱材25を収容する容器である。ここで、下流とは、第1回路101内の媒体が流れる方向を基準に定義される。蓄熱槽20は、容器の内部を貫通する管(図示せず)を第1回路101に接続する。蓄熱槽20は、発熱体10と熱交換した後の媒体が管内を通過する際に、潜熱蓄熱材25が熱交換により媒体の熱を受け取る。なお、ここでは、容器の内部を貫通する管を第1回路101の一部とする。すなわち、第1回路101は蓄熱槽20の内部を通過する。   The heat storage tank 20 is a container that is provided downstream of the heat exchanger 15 of the first circuit 101 and accommodates the latent heat storage material 25. Here, the downstream is defined with reference to the direction in which the medium in the first circuit 101 flows. The heat storage tank 20 connects a pipe (not shown) penetrating the inside of the container to the first circuit 101. In the heat storage tank 20, when the medium after heat exchange with the heating element 10 passes through the pipe, the latent heat storage material 25 receives the heat of the medium through heat exchange. Here, a pipe that penetrates the inside of the container is a part of the first circuit 101. That is, the first circuit 101 passes through the heat storage tank 20.

冷却部30は、ラジエータ31と、このラジエータ31に対向するファン32を備える。ラジエータ31は、第1回路101と接続する。ラジエータ31は、ラジエータ31の内部を通過する媒体から熱を受け取り、この熱を外部へ放出することで媒体を冷却する。ファン32は、回転することで、ラジエータ31に向けて空気流を発生させ、ラジエータ31を冷却する。後述の第1制御部41がファン32の回転数を制御することで、ファン32が発生させて、ラジエータ31に当たる空気流の風量を調整する。したがって、ラジエータ31に当たる空気流の風量を調整することで、ラジエータ31の表面温度を冷却し、ラジエータ31の内部を通過する媒体の温度を冷却する。   The cooling unit 30 includes a radiator 31 and a fan 32 that faces the radiator 31. The radiator 31 is connected to the first circuit 101. The radiator 31 receives heat from the medium passing through the radiator 31, and cools the medium by releasing the heat to the outside. The fan 32 rotates to generate an air flow toward the radiator 31 and cool the radiator 31. A first control unit 41 (described later) controls the rotational speed of the fan 32, so that the fan 32 generates and adjusts the air volume of the air flow that strikes the radiator 31. Therefore, the surface temperature of the radiator 31 is cooled by adjusting the air volume of the air flow hitting the radiator 31, and the temperature of the medium passing through the radiator 31 is cooled.

また、冷却部30は、第1バイパス回路102と、第1制御弁103を備える。第1バイパス回路102は、分岐点Aにおいて第1制御弁103を介して第1回路101と接続し、分岐点Bにおいて第1回路101と接続することで、ラジエータ31をバイパスする。第1制御弁103は、第1回路101を通過し第1制御弁103に達した媒体の流路を第1回路101と第1バイパス回路102のいずれかに切り替える。ここでは、媒体の流路を第1回路101に切り替える(または維持する)状態を「第1制御弁:OFF」、媒体の流路を第1バイパス回路102に切り替える(または維持する)状態を「第1制御弁:ON」と定義する。   The cooling unit 30 includes a first bypass circuit 102 and a first control valve 103. The first bypass circuit 102 is connected to the first circuit 101 via the first control valve 103 at the branch point A and is connected to the first circuit 101 at the branch point B, thereby bypassing the radiator 31. The first control valve 103 switches the flow path of the medium that has passed through the first circuit 101 and reached the first control valve 103 to one of the first circuit 101 and the first bypass circuit 102. Here, the state of switching (or maintaining) the flow path of the medium to the first circuit 101 is “first control valve: OFF”, and the state of switching (or maintaining) the flow path of the medium to the first bypass circuit 102 is “ The first control valve is defined as “ON”.

第1測定部130は、熱交換器15と蓄熱槽20の間に設けられる温度センサである。第1測定部130は、熱交換器15と蓄熱槽20の間を通過する媒体の温度(以下、第1温度)を測定する。すなわち、発熱体10との熱交換により熱を受け取った後であり、潜熱蓄熱材25との熱交換により潜熱蓄熱材25に対して熱を与える前の媒体の第1温度を測定する。   The first measuring unit 130 is a temperature sensor provided between the heat exchanger 15 and the heat storage tank 20. The 1st measurement part 130 measures the temperature (henceforth 1st temperature) of the medium which passes between between the heat exchanger 15 and the thermal storage tank 20. FIG. That is, the first temperature of the medium after receiving heat by heat exchange with the heating element 10 and before giving heat to the latent heat storage material 25 by heat exchange with the latent heat storage material 25 is measured.

また、図1の蓄熱装置1000は、制御装置200、記憶装置300を備える。なお、制御装置200としては、CPUやMPU等の演算処理装置を用いる。また、記憶装置300としては、メモリやHDD等の記録媒体を用いる。   1 includes a control device 200 and a storage device 300. As the control device 200, an arithmetic processing device such as a CPU or MPU is used. Further, as the storage device 300, a recording medium such as a memory or an HDD is used.

図2は、図1の制御装置200を示すブロック図である。   FIG. 2 is a block diagram showing the control device 200 of FIG.

図2の制御装置200は、発熱体10の稼動を制御する指令部40、第1温度が目標温度より高い場合に媒体を冷却するように冷却部30を制御する第1制御部41、潜熱蓄熱材25が固相から液相へ相変化を開始してからの経過時間を計測する計測部42、計測部42が計測する経過時間に基づいて潜熱蓄熱材25が液相への相変化を終了したかどうかを判定する判定部43を論理モジュールとして有する。   2 includes a command unit 40 that controls the operation of the heating element 10, a first control unit 41 that controls the cooling unit 30 to cool the medium when the first temperature is higher than the target temperature, and latent heat storage. The measurement part 42 which measures the elapsed time after the material 25 started the phase change from a solid phase to a liquid phase, and the latent heat storage material 25 complete | finishes the phase change to a liquid phase based on the elapsed time which the measurement part 42 measures It has the determination part 43 which determines whether it carried out as a logic module.

指令部40は、車両を運転するドライバーからの指示に基づいて発熱体10の稼働を制御する。すなわち、発熱体10の稼働のON、OFFを制御する。蓄熱装置1000は、指令部40が、発熱体10の稼働をONに制御してからOFFに制御するまでの間に発熱体10が発する熱を蓄熱する。   The command unit 40 controls the operation of the heating element 10 based on an instruction from a driver who drives the vehicle. That is, ON / OFF of the operation of the heating element 10 is controlled. The heat storage device 1000 stores the heat generated by the heating element 10 from when the command unit 40 controls the operation of the heating element 10 to ON until it is controlled to OFF.

第1制御部41は、第1測定部130が測定した媒体の第1温度と目標温度を比較して、ファン32の回転数を制御して、間接的にはラジエータ31に当たる空気流の風量を制御する。また、第1制御部41は、第1制御弁103のON、OFFの切り替えを制御する。ここで、目標温度は予め定めることで記憶装置300に格納することができる。なお、目標温度としては、潜熱蓄熱材25の融点以上であり、かつ車両を構成する機器(例えばインバータの半導体素子)の耐熱温度以下の範囲で定めることができる一定の値である。   The first control unit 41 compares the first temperature of the medium measured by the first measurement unit 130 with the target temperature, controls the rotational speed of the fan 32, and indirectly determines the air volume of the airflow hitting the radiator 31. Control. Further, the first control unit 41 controls switching of the first control valve 103 between ON and OFF. Here, the target temperature can be stored in the storage device 300 by predetermined. The target temperature is a constant value that can be determined in a range that is equal to or higher than the melting point of the latent heat storage material 25 and that is equal to or lower than the heat resistant temperature of a device (for example, a semiconductor element of an inverter) that constitutes the vehicle.

例えば、第1制御部41は、媒体の第1温度が目標温度より低い場合には、第1制御弁103をONに切り替える。このとき、媒体は第1バイパス回路102を通過することで、ラジエータ31をバイパスする。第1回路101を通過する媒体は、冷却されることなく発熱体10から熱を得ることで温度が上昇していく。一方、媒体の第1温度が目標温度を基準として所定の範囲内に納まった場合には、媒体の第1温度と目標値の差に応じて、ファン32の回転数をP制御、PI制御、PID制御等のアルゴリズムを用いて制御する。媒体の第1温度と目標値の差と、ファン32の回転数とを対応付けたテーブルを予め記憶装置300に格納しておくことで、第1制御部41はこのテーブルを参照してファン32の回転数を制御することもできる。   For example, the first control unit 41 switches the first control valve 103 to ON when the first temperature of the medium is lower than the target temperature. At this time, the medium bypasses the radiator 31 by passing through the first bypass circuit 102. The medium passing through the first circuit 101 rises in temperature by obtaining heat from the heating element 10 without being cooled. On the other hand, when the first temperature of the medium falls within a predetermined range with reference to the target temperature, the rotational speed of the fan 32 is controlled by P control, PI control, according to the difference between the first temperature of the medium and the target value. Control using an algorithm such as PID control. By storing a table in which the difference between the first temperature of the medium and the target value and the rotation speed of the fan 32 are associated with each other in advance in the storage device 300, the first control unit 41 refers to this table and the fan 32. The number of rotations can also be controlled.

計測部42は、指令部40が発熱体10の稼働をOFFに制御するまで、第1温度の媒体と熱交換をして潜熱蓄熱材25が固相から液相へ相変化を開始してからの経過時間を計測する。このとき、例えば実験やシミュレーション等により、蓄熱槽20が含む潜熱蓄熱材25と同種類、かつ同体積の潜熱蓄熱材25が固相から液相へ相変化を開始するまでに必要な熱量(以下、第1熱量)を調べておき、記憶装置300に格納する。そして、第1測定部130が測定する媒体の第1温度の時間履歴に基づいて潜熱蓄熱材25に対して与えた熱量(以下、第2熱量)を推定し、推定された第2熱量が、記憶装置300が格納する第1熱量に達した時点を、固相から液相へ相変化の開始時点とする。計測部42は、この開始時点からの経過時間を計測する。   The measuring unit 42 exchanges heat with the medium at the first temperature until the command unit 40 controls the operation of the heating element 10 to OFF, and the latent heat storage material 25 starts a phase change from the solid phase to the liquid phase. Measure the elapsed time. At this time, for example, by experiment or simulation, the amount of heat required for the latent heat storage material 25 of the same type and volume as the latent heat storage material 25 included in the heat storage tank 20 to start a phase change from the solid phase to the liquid phase (hereinafter referred to as the heat storage material 25 , First heat quantity) is checked and stored in the storage device 300. And based on the time history of the first temperature of the medium measured by the first measuring unit 130, the amount of heat given to the latent heat storage material 25 (hereinafter, the second amount of heat) is estimated, and the estimated second amount of heat is The time when the first heat quantity stored in the storage device 300 is reached is set as the start time of the phase change from the solid phase to the liquid phase. The measurement part 42 measures the elapsed time from this start time.

判定部43は、計測部42が計測した経過時間と、固相から液相への相変化の間、潜熱蓄熱材25が常時目標温度の媒体と熱交換をする場合に、固相から液相へ相変化を開始してから終了するまでの時間(第1時間)とを比較する。判定部43は、経過時間が第1時間以上の場合には、潜熱蓄熱材25は液相への相変化を終了したもの判定する。すなわち、過冷却可能と判定する。一方、経過時間が第1時間より短い場合には、潜熱蓄熱材25は液相への相変化を終了していないものと判定する。すなわち、過冷却不可能と判定する。なお、判定部43は、例えば指令部40が発熱体10の稼働をOFFに制御したタイミングで判定する。判定部43は、判定結果を記憶装置300に格納する。   When the latent heat storage material 25 constantly exchanges heat with the medium at the target temperature during the elapsed time measured by the measurement unit 42 and the phase change from the solid phase to the liquid phase, the determination unit 43 changes the liquid phase from the solid phase to the liquid phase. The time (first time) from the start to the end of the phase change is compared. When the elapsed time is equal to or longer than the first time, the determination unit 43 determines that the latent heat storage material 25 has finished the phase change to the liquid phase. That is, it is determined that supercooling is possible. On the other hand, when the elapsed time is shorter than the first time, it is determined that the latent heat storage material 25 has not finished the phase change to the liquid phase. That is, it is determined that supercooling is impossible. The determination unit 43 determines, for example, at the timing when the command unit 40 controls the operation of the heating element 10 to be OFF. The determination unit 43 stores the determination result in the storage device 300.

なお、上記の第1時間としては、例えば実験やシミュレーション等により、蓄熱槽20が含む潜熱蓄熱材25と同種類、かつ同体積の潜熱蓄熱材25が固相から液相への相変化の間、常時目標温度の媒体と熱交換をする場合に、固相から液相へ相変化を開始してから終了するまでの第1時間を調べておき、事前に記憶装置300に格納することができる。すなわち、この第1時間を基準として、潜熱蓄熱材25が第1温度の媒体と第1時間以上にわたり熱交換した場合には、潜熱蓄熱材25は液相へ完全に相変化するのに必要となる充分な熱量を蓄熱したものと推定できる。   In addition, as said 1st time, for example by experiment, simulation, etc., the latent heat storage material 25 of the same kind and the same volume as the latent heat storage material 25 which the thermal storage tank 20 contains is during the phase change from a solid phase to a liquid phase. In the case of heat exchange with the medium at the constant target temperature, the first time from the start of the phase change from the solid phase to the liquid phase until the end can be checked and stored in the storage device 300 in advance. . That is, when the latent heat storage material 25 exchanges heat with the medium having the first temperature for the first time or more on the basis of the first time, the latent heat storage material 25 is necessary for complete phase change to the liquid phase. It can be estimated that a sufficient amount of heat is stored.

表示装置400は、指令部40がドライバーからの指示に基づいて発熱体10の稼働をONに制御した際に、記憶装置300が記憶する判定結果を参照して、この判定結果を表示する。すなわち、これにより、判定結果、すなわち潜熱蓄熱材25の蓄熱状態をドライバーが認識することができる。   When the command unit 40 controls the operation of the heating element 10 to be ON based on an instruction from the driver, the display device 400 refers to the determination result stored in the storage device 300 and displays the determination result. That is, the driver can recognize the determination result, that is, the heat storage state of the latent heat storage material 25.

図3は、蓄熱装置1000の動作を示すフローチャートである。なお、ここでは潜熱蓄熱材25が固相である状態からの動作を示す。   FIG. 3 is a flowchart showing the operation of the heat storage device 1000. Here, the operation from the state in which the latent heat storage material 25 is in a solid phase is shown.

ステップ1001では、指示部40が、ドライバーの指示に従って発熱体10の稼働をONに制御する。   In step 1001, the instruction unit 40 controls the operation of the heating element 10 to be ON in accordance with an instruction from the driver.

ステップ1002では、第1測定部130が媒体の第1温度を測定する。   In step 1002, the first measurement unit 130 measures the first temperature of the medium.

ステップ1003では、第1制御部41が冷却部30を制御して、第1温度が目標温度よりも高い場合には、媒体の温度を冷却する。また、第1温度が目標温度よりも低い場合には、冷却せずに発熱体10の熱により媒体の温度を上昇させる。これにより、媒体の温度がほぼ目標温度となるように調整する。なお、このとき媒体の温度は、目標温度に厳密に一致しなくとも、例えば事前に許容できる範囲を定めておくことで、この範囲内に納まるように調整すればよい。許容できる範囲としては、例えば目標温度±2℃の範囲とすることが好ましい。または、絶対温度を基準として、目標温度に対する割合で表すと±1%の範囲であることが好ましい。   In step 1003, the first control unit 41 controls the cooling unit 30 to cool the temperature of the medium when the first temperature is higher than the target temperature. When the first temperature is lower than the target temperature, the temperature of the medium is raised by the heat of the heating element 10 without cooling. Thereby, the temperature of the medium is adjusted so as to be substantially the target temperature. At this time, even if the temperature of the medium does not exactly coincide with the target temperature, it may be adjusted so as to fall within this range by, for example, determining an allowable range in advance. As an allowable range, for example, a range of target temperature ± 2 ° C. is preferable. Or it is preferable that it is a range of ± 1% in terms of the ratio to the target temperature with respect to the absolute temperature.

このステップ1002及びステップ1003の動作は、例えば後述のステップ1006において指令部40が発熱体10の稼働をOFFに制御するまで続ける。   The operations of Step 1002 and Step 1003 are continued until, for example, the command unit 40 controls the operation of the heating element 10 to OFF in Step 1006 described later.

ステップ1004において潜熱蓄熱材25が相変化を開始した場合に、ステップ1005では、計測部42がこの時点からの経過時間の測定を開始する。   When the latent heat storage material 25 starts phase change in Step 1004, in Step 1005, the measurement unit 42 starts measuring the elapsed time from this point.

ステップ1006では、ドライバーが車両の運転を終了した際に、指示部40が、ドライバーからの指示(例えばイグニッションキーをオフにする動作)に従って発熱体10の稼働をOFFに制御する。   In step 1006, when the driver finishes driving the vehicle, the instruction unit 40 controls the operation of the heating element 10 to OFF in accordance with an instruction from the driver (for example, an operation for turning off the ignition key).

ステップ1007では、計測部42が経過時間の測定を終了する。測定を終了するタイミングとしては、ステップ1006と同時のタイミングであってもよいし、発熱体10の余熱を加味する場合にはステップ1006の後のタイミングであってもよい。   In step 1007, the measurement unit 42 ends the elapsed time measurement. The timing to end the measurement may be the same timing as step 1006, or may be the timing after step 1006 when the remaining heat of the heating element 10 is taken into account.

ステップ1008では、固相から液相への相変化の間、潜熱蓄熱材25が常時目標温度の媒体と熱交換をする場合に、固相から液相へ相変化を開始してから終了するまでの第1時間(閾値)を記憶装置300から得て、この閾値と経過時間とを比較する。   In step 1008, when the latent heat storage material 25 constantly exchanges heat with the medium having the target temperature during the phase change from the solid phase to the liquid phase, the phase change from the solid phase to the liquid phase is started until the end. Is obtained from the storage device 300, and this threshold value is compared with the elapsed time.

ステップ1009では、判定部43が、経過時間が閾値以上の場合に、潜熱蓄熱材25は過冷却可能と判定し、例えば判定と同時にこの判定結果を記憶装置300に記録する。   In Step 1009, when the elapsed time is equal to or greater than the threshold value, the determination unit 43 determines that the latent heat storage material 25 can be supercooled, and records the determination result in the storage device 300 simultaneously with the determination, for example.

ステップ1010では、判定部43が、経過時間が閾値より小さい場合に、潜熱蓄熱材25は過冷却不可能と判定し、例えば判定と同時にこの判定結果を記憶装置300に記録する。   In Step 1010, when the elapsed time is smaller than the threshold value, the determination unit 43 determines that the latent heat storage material 25 is not supercooled, and records the determination result in the storage device 300 simultaneously with the determination, for example.

ステップ1011では、ドライバーが車両の運転を開始した際に、指示部40が、ドライバーからの指示(例えばイグニッションキーをオンにする動作)に従って発熱体10の稼働をONに制御する。   In Step 1011, when the driver starts driving the vehicle, the instruction unit 40 controls the operation of the heating element 10 to ON in accordance with an instruction from the driver (for example, an operation to turn on the ignition key).

ステップ1012では、表示装置400が記憶装置300に格納されている判定結果を表示する。   In step 1012, the display device 400 displays the determination result stored in the storage device 300.

本実施形態の蓄熱装置1000によれば、潜熱蓄熱材との間で熱交換する媒体の温度が一定であることによって、媒体の温度と潜熱蓄熱材の融点との温度差、並びに媒体と潜熱蓄熱材の間の熱伝達率が一定となるため、媒体の温度を判定の際のパラメータから除外することができ、経過時間という単純な指標のみに基づいて潜熱蓄熱材25が過冷却可能かどうかを簡単に判定することが可能となる。   According to the heat storage device 1000 of the present embodiment, the temperature of the medium that exchanges heat with the latent heat storage material is constant, so that the temperature difference between the temperature of the medium and the melting point of the latent heat storage material, and the medium and latent heat storage Since the heat transfer coefficient between the materials is constant, the temperature of the medium can be excluded from the parameters for the determination, and whether or not the latent heat storage material 25 can be supercooled based only on a simple index of elapsed time. It is possible to easily determine.

また、蓄熱槽20を通過する前の媒体の温度を一定の温度とすることで、潜熱蓄熱材25は相変化の間一定の熱移動量(蓄熱能力)で蓄熱することができるために、事前に同一条件下での実験やシミュレーション等を行うことで、第1温度(閾値)を簡単に設定することができる。   In addition, since the temperature of the medium before passing through the heat storage tank 20 is set to a constant temperature, the latent heat storage material 25 can store heat with a constant amount of heat transfer (heat storage capacity) during the phase change. The first temperature (threshold value) can be easily set by performing experiments, simulations, and the like under the same conditions.

なお、発熱体10がモータであって、例えばモータの内部を貫通するウォータジャケットを有する場合には、このウォータジャケットを第1回路101に接続することができる。このとき、発熱体10は、媒体がウォータジャケット内を通過する際に、外部に放出する熱を熱交換により媒体に対して与える。この場合には、ウォータジャケットを熱交換器15とする。   When the heating element 10 is a motor and has, for example, a water jacket that penetrates the inside of the motor, the water jacket can be connected to the first circuit 101. At this time, when the medium passes through the water jacket, the heating element 10 applies heat released to the outside to the medium by heat exchange. In this case, the water jacket is used as the heat exchanger 15.

(第一変形例)
図4は、第一変形例に係る制御装置200を示すブロック図である。本変形例では、制御装置200が、推定部44を論理モジュールとして有する点で図2の制御装置200とは異なる。
(First modification)
FIG. 4 is a block diagram showing a control device 200 according to the first modification. In the present modification, the control device 200 differs from the control device 200 of FIG. 2 in that the estimation unit 44 has a logic module.

推定部44は、計測部42が計測した経過時間に基づいて、潜熱蓄熱材25が目標温度の媒体と熱交換して固相から液相へ相変化を開始してから蓄えた蓄熱量の推定値を推定する。推定部44は、例えば、第1測定部130が測定した第1温度と潜熱蓄熱材の融点との差を積算することで蓄熱量を推定する。   Based on the elapsed time measured by the measuring unit 42, the estimating unit 44 estimates the amount of heat stored after the latent heat storage material 25 exchanges heat with the medium at the target temperature and starts a phase change from the solid phase to the liquid phase. Estimate the value. For example, the estimation unit 44 estimates the heat storage amount by integrating the difference between the first temperature measured by the first measurement unit 130 and the melting point of the latent heat storage material.

判定部43は、推定部44が推定した蓄熱量の推定値と、固相から液相への相変化の間、潜熱蓄熱材25が常時目標温度の媒体と熱交換をする場合に、固相から液相へ相変化を開始してから終了するまでに蓄えることが可能な蓄熱量の最大値とを比較する。判定部43は、蓄熱量の推定値が蓄熱量の最大値以上の場合には、潜熱蓄熱材25は液相への相変化を終了したもの判定する。すなわち、過冷却可能と判定する。一方、蓄熱量の推定値が蓄熱量の最大値より小さい場合には、潜熱蓄熱材25は液相への相変化を終了していないものと判定する。すなわち、過冷却不可能と判定する。判定部43は、判定結果を記憶装置300に格納する。   When the latent heat storage material 25 constantly exchanges heat with the medium at the target temperature between the estimated value of the heat storage amount estimated by the estimation unit 44 and the phase change from the solid phase to the liquid phase, the determination unit 43 The maximum heat storage amount that can be stored from the start to the end of the phase change from the liquid phase to the liquid phase is compared. When the estimated value of the heat storage amount is equal to or greater than the maximum value of the heat storage amount, the determination unit 43 determines that the latent heat storage material 25 has finished the phase change to the liquid phase. That is, it is determined that supercooling is possible. On the other hand, when the estimated value of the heat storage amount is smaller than the maximum value of the heat storage amount, it is determined that the latent heat storage material 25 has not finished the phase change to the liquid phase. That is, it is determined that supercooling is impossible. The determination unit 43 stores the determination result in the storage device 300.

なお、上記の蓄熱量の最大値としては、例えば実験やシミュレーション等により、蓄熱槽20が含む潜熱蓄熱材25と同種類、かつ同体積の潜熱蓄熱材25が固相から液相への相変化の間、常時目標温度の媒体と熱交換をする場合に、固相から液相へ相変化を開始してから終了するまで蓄えることが可能な蓄熱量の最大値を調べておき、記憶装置300に格納することができる。   The maximum value of the heat storage amount is, for example, a phase change from the solid phase to the liquid phase of the latent heat storage material 25 of the same type and volume as the latent heat storage material 25 included in the heat storage tank 20 by experiment or simulation. During the heat exchange with the medium of the target temperature at all times, the maximum value of the heat storage amount that can be stored from the start to the end of the phase change from the solid phase to the liquid phase is checked, and the storage device 300 Can be stored.

図5は、蓄熱装置1000の作用を説明するためのシミュレーション結果の一例である。図5(a)に示すように、時刻T1から時刻T2の媒体の第1温度が一定の場合を考える。また、図5(b)に示すように、潜熱蓄熱材25は、時刻T1に固相から液相へ相変化を開始し、時刻T2に相変化を終了するものとする。   FIG. 5 is an example of a simulation result for explaining the operation of the heat storage device 1000. Consider the case where the first temperature of the medium from time T1 to time T2 is constant as shown in FIG. Further, as shown in FIG. 5B, the latent heat storage material 25 starts phase change from the solid phase to the liquid phase at time T1, and ends the phase change at time T2.

このとき、図5(c)は、時刻T1から時刻T2までに、媒体から潜熱蓄熱材25に移動する熱移動量の時間履歴を示している。   At this time, FIG. 5C shows a time history of the amount of heat transfer from the medium to the latent heat storage material 25 from time T1 to time T2.

本変形例によれば、蓄熱槽20を通過する前の媒体の温度を一定とすることで、潜熱蓄熱材25は相変化の間一定の熱移動量で蓄熱することができるために、事前に同一条件下での実験やシミュレーション等を行うことで、蓄熱量の最大値を簡単に設定することができる。また、経過時間という単純な指標に加え、冷却部30が調整した後の媒体の温度、すなわち一定の媒体の温度に基づいて潜熱蓄熱材25が過冷却可能かどうかを簡単に判定することが可能となる。   According to the present modification, by setting the temperature of the medium before passing through the heat storage tank 20 to be constant, the latent heat storage material 25 can store heat with a constant amount of heat transfer during phase change. By performing experiments and simulations under the same conditions, the maximum value of the heat storage amount can be easily set. Further, in addition to a simple indicator of elapsed time, it is possible to easily determine whether the latent heat storage material 25 can be overcooled based on the temperature of the medium after the cooling unit 30 has adjusted, that is, the temperature of a certain medium. It becomes.

(第二変形例)
図6は、第二変形例に係る蓄熱装置1000を示すブロック図である。また、図7は、第二の変形例に係る制御装置200を示すブロック図である。本変形例では、蓄熱装置1000が加熱部150を備える点で図1の蓄熱装置1000とは異なる。また、制御装置200が推定部44を備える点で図2の制御装置200とは異なる。
(Second modification)
FIG. 6 is a block diagram showing a heat storage device 1000 according to the second modification. FIG. 7 is a block diagram showing a control device 200 according to the second modification. In this modification, the heat storage device 1000 is different from the heat storage device 1000 of FIG. 2 is different from the control device 200 of FIG. 2 in that the control device 200 includes an estimation unit 44.

推定部44は、計測部42が計測した経過時間に基づいて、潜熱蓄熱材25が目標温度の媒体と熱交換して固相から液相へ相変化を開始してから蓄えた蓄熱量の推定値を推定する。また、判定部43が、潜熱蓄熱材25が過冷却不可能と判定した場合には、推定部44は、潜熱蓄熱材25が固相から液相への相変化の間、常時目標温度の媒体と熱交換をする場合に、固相から液相へ相変化を開始してから終了するまで蓄えることが可能な蓄熱量の最大値と、判定部43が判定した時点での蓄熱量の推定値との差分を算出する。   Based on the elapsed time measured by the measuring unit 42, the estimating unit 44 estimates the amount of heat stored after the latent heat storage material 25 exchanges heat with the medium at the target temperature and starts a phase change from the solid phase to the liquid phase. Estimate the value. In addition, when the determination unit 43 determines that the latent heat storage material 25 is not supercooled, the estimation unit 44 is a medium having a target temperature constantly during the phase change of the latent heat storage material 25 from the solid phase to the liquid phase. When the heat exchange is performed, the maximum value of the heat storage amount that can be stored from the start of the phase change from the solid phase to the liquid phase until the end, and the estimated value of the heat storage amount at the time when the determination unit 43 determines The difference is calculated.

加熱部150は、蓄熱槽20の近傍に設けられるヒータである。加熱部150は、推定部44が算出する差分に相当する熱量を潜熱蓄熱材25に対して与える。   The heating unit 150 is a heater provided in the vicinity of the heat storage tank 20. The heating unit 150 provides the latent heat storage material 25 with an amount of heat corresponding to the difference calculated by the estimation unit 44.

判定部43は、加熱部150が差分に相当する熱量を潜熱蓄熱材25に対して与えた時点で、潜熱蓄熱材25が過冷却可能と判定する。判定部43は、判定結果を記憶装置300に格納する。   The determination unit 43 determines that the latent heat storage material 25 can be supercooled when the heating unit 150 provides the latent heat storage material 25 with an amount of heat corresponding to the difference. The determination unit 43 stores the determination result in the storage device 300.

本変形例によれば、発熱体10の稼働が停止した時点で、潜熱蓄熱材25が過冷却可能な状態にない場合であっても、充分な熱量を与えることで完全に液相に相変化させることができる。すなわち、過冷却可能な状態にすることができる。   According to this modification, even when the operation of the heating element 10 is stopped, even if the latent heat storage material 25 is not in a state where it can be supercooled, a sufficient amount of heat is applied to completely change the phase to the liquid phase. Can be made. That is, it can be in a state capable of supercooling.

なお、ここでは加熱部150を蓄熱材20の近傍に設ける例を説明したが、例えば第1回路101の一部に設けることで、媒体を加熱して間接的に潜熱蓄熱材25に対して熱量を与える構成としてもよい。   Here, the example in which the heating unit 150 is provided in the vicinity of the heat storage material 20 has been described. However, for example, by providing the heating unit 150 in a part of the first circuit 101, the medium is heated to indirectly heat the latent heat storage material 25. It is good also as a structure which gives.

(第二の実施形態)
図8は、第二の実施形態に係る蓄熱装置1500を示すブロック図である。本実施形態では蓄熱装置1500が第2測定部140を備える点で図1の蓄熱装置1000とは異なる。
(Second embodiment)
FIG. 8 is a block diagram showing a heat storage device 1500 according to the second embodiment. In this embodiment, the heat storage device 1500 is different from the heat storage device 1000 of FIG. 1 in that the second measurement unit 140 is provided.

第2測定部140は、蓄熱槽20と冷却部30の間に設けられる温度センサである。第2測定部140は、第1回路101を通過する媒体の中で、蓄熱槽20を通過した後であり、冷却部30を通過する前の媒体の温度(以下、第2温度)を測定する。すなわち、熱交換により潜熱蓄熱材25に対して熱を与えた後であり、冷却部30により温度を冷却される前の媒体の第2温度を測定する。   The second measurement unit 140 is a temperature sensor provided between the heat storage tank 20 and the cooling unit 30. The second measuring unit 140 measures the temperature of the medium after passing through the heat storage tank 20 and before passing through the cooling unit 30 (hereinafter referred to as second temperature) among the media passing through the first circuit 101. . That is, the second temperature of the medium after the heat is applied to the latent heat storage material 25 by heat exchange and before the temperature is cooled by the cooling unit 30 is measured.

計測部42は、第2測定部140が測定した第2温度が一定となった時点からの経過時間を測定する。すなわち、蓄熱槽20を通過した後の媒体の第2温度は、近似的に潜熱蓄熱材25の温度と見なすことができる。したがって、第2温度が一定となる時点を潜熱蓄熱材25が固相から液相へ相変化を開始する時点と見なすことができる。   The measurement unit 42 measures the elapsed time from the time when the second temperature measured by the second measurement unit 140 becomes constant. That is, the second temperature of the medium after passing through the heat storage tank 20 can be approximately regarded as the temperature of the latent heat storage material 25. Therefore, the time when the second temperature becomes constant can be regarded as the time when the latent heat storage material 25 starts phase change from the solid phase to the liquid phase.

なお、ここでの一定とは、第2温度の変化率(K/s)の絶対値が事前に定める閾値以下に納まることをいう。すなわち、計測部42は、第2温度の変化率(K/s)の絶対値が事前に定める閾値に初めて達した時点からの経過時間を測定することができる。   Here, “constant” means that the absolute value of the change rate (K / s) of the second temperature falls below a predetermined threshold value. That is, the measurement unit 42 can measure the elapsed time from the time when the absolute value of the second temperature change rate (K / s) reaches the threshold value determined in advance for the first time.

図9は、蓄熱装置1500の作用を説明するためのシミュレーション結果の一例である。図9(a)に示すように、時刻T1から時刻T2の媒体の第1温度が一定の場合を考える。また、図9(b)に示すように、潜熱蓄熱材25は、時刻T1に固相から液相へ相変化を開始し、時刻T2に相変化を終了するものとする。   FIG. 9 is an example of a simulation result for explaining the operation of the heat storage device 1500. As shown in FIG. 9A, consider a case where the first temperature of the medium from time T1 to time T2 is constant. As shown in FIG. 9B, the latent heat storage material 25 starts phase change from the solid phase to the liquid phase at time T1, and ends the phase change at time T2.

このとき、図9(c)は、第2温度の変化率の絶対値を示す。これにより、潜熱蓄熱材25が相変化を開始する時刻T1から相変化を終了する時刻T2までの間、第2温度の変化率の絶対値が閾値(例えば0.001)以下に納まっていることがわかる。   At this time, FIG. 9C shows the absolute value of the rate of change of the second temperature. Accordingly, it is understood that the absolute value of the change rate of the second temperature is within a threshold value (for example, 0.001) from the time T1 when the latent heat storage material 25 starts the phase change to the time T2 when the phase change ends. .

本実施形態の蓄熱装置1500によれば、潜熱蓄熱材25の温度を直接測定することなく、潜熱蓄熱材25の温度に近い媒体の第2温度を測定することで、この第2温度に基づいて潜熱蓄熱材25が固相から液相へ相変化を開始するタイミングを高精度に把握することができる。これにより、より正確な経過時間に基づいて潜熱蓄熱材25が過冷却可能かどうかを高精度に判定することが可能となる。   According to the heat storage device 1500 of the present embodiment, by measuring the second temperature of the medium close to the temperature of the latent heat storage material 25 without directly measuring the temperature of the latent heat storage material 25, based on the second temperature. The timing at which the latent heat storage material 25 starts a phase change from the solid phase to the liquid phase can be grasped with high accuracy. This makes it possible to determine with high accuracy whether the latent heat storage material 25 can be supercooled based on a more accurate elapsed time.

(第三の実施形態)
図10は、第三の実施形態に係る空調装置2000を示すブロック図である。また、図11は、図10の制御装置200を示すブロック図である。図10の空調装置2000は、図1の蓄熱装置1000を備えている。図1の蓄熱装置1000及び図2の制御装置200と同一の構成については同一の符号を付すことで、その詳細な説明は省略する。
(Third embodiment)
FIG. 10 is a block diagram showing an air conditioner 2000 according to the third embodiment. FIG. 11 is a block diagram showing the control device 200 of FIG. The air conditioner 2000 of FIG. 10 includes the heat storage device 1000 of FIG. The same components as those of the heat storage device 1000 of FIG. 1 and the control device 200 of FIG.

図10の空調装置2000は、発核装置160、第2バイパス回路112、第2制御弁113を備える。また、空調部170、蓄熱槽20と、空調部170とを環状に接続し、媒体が通過するための第2回路111を備える。図11の制御装置200は、第2制御部45を論理モジュールとして有する。   10 includes a nucleation device 160, a second bypass circuit 112, and a second control valve 113. Moreover, the air-conditioning part 170, the thermal storage tank 20, and the air-conditioning part 170 are connected cyclically | annularly, and the 2nd circuit 111 for a medium to pass through is provided. The control device 200 in FIG. 11 includes the second control unit 45 as a logic module.

発核装置160は、潜熱蓄熱材25に対して衝撃や電圧印加等のトリガーを与えることで、潜熱蓄熱材25を発核させるための装置である。発核装置160の動作は、記憶装置300が過冷却可能と記憶している場合において、車両を運転するドライバーからの指示に基づいて指令部40が制御する。   The nucleation device 160 is a device for nucleating the latent heat storage material 25 by giving a trigger such as impact or voltage application to the latent heat storage material 25. The operation of the nucleation device 160 is controlled by the command unit 40 based on an instruction from a driver driving the vehicle when the storage device 300 stores that it can be supercooled.

第2バイパス回路112は、分岐点Cにおいて第2制御弁113を介して第1回路101と接続し、分岐点Dにおいて第1回路101と接続することで、蓄熱槽20をバイパスする。   The second bypass circuit 112 is connected to the first circuit 101 via the second control valve 113 at the branch point C, and is connected to the first circuit 101 at the branch point D, thereby bypassing the heat storage tank 20.

第2制御弁113は、第1回路101を通過し第2制御弁113に達した媒体の流路を第1回路101と第2バイパス回路112のいずれかに切り替える。ここでは、媒体の流路を第1回路101に切り替える(または維持する)状態を「第2制御弁:OFF」、媒体の流路を第2バイパス回路112に切り替える(または維持する)状態を「第2制御弁:ON」と定義する。   The second control valve 113 switches the flow path of the medium that has passed through the first circuit 101 and reached the second control valve 113 to either the first circuit 101 or the second bypass circuit 112. Here, the state of switching (or maintaining) the medium flow path to the first circuit 101 is “second control valve: OFF”, and the state of switching (or maintaining) the medium flow path to the second bypass circuit 112 is “ It is defined as “second control valve: ON”.

空調部170は、車内の空気温度または湿度を調整する。ここでは、空調部170としては、コンプレッサ、凝縮器、蒸発器等を備える一般的なヒートポンプ方式を用いることとし、この詳細な説明は省略する。   The air conditioning unit 170 adjusts the air temperature or humidity in the vehicle. Here, as the air conditioning unit 170, a general heat pump system including a compressor, a condenser, an evaporator, and the like is used, and detailed description thereof is omitted.

第2制御部45は、指令部40が発核装置160を制御したタイミングで、第2制御弁113の切り替えをONに制御する。これにより、発核することで熱を放出する潜熱蓄熱材25の熱は第1回路101の媒体には伝わることがないので、第2回路111の媒体に対して効率的に熱を伝えることができる。   The second control unit 45 controls the switching of the second control valve 113 to be ON at the timing when the command unit 40 controls the nucleation device 160. As a result, the heat of the latent heat storage material 25 that releases heat by nucleating does not transfer to the medium of the first circuit 101, so that heat can be efficiently transferred to the medium of the second circuit 111. it can.

なお、空調部170としては、第2回路111が内部を貫通するシートやハンドル等であってもよい。この場合には、第2回路を通過する高温の媒体が直接シートやハンドル等を暖めることができる。   The air conditioning unit 170 may be a seat, a handle, or the like through which the second circuit 111 passes. In this case, the high-temperature medium passing through the second circuit can directly warm the seat, the handle, and the like.

以上説明した少なくとも1つの実施形態に係る蓄熱装置、空調装置、蓄熱方法によれば、潜熱蓄熱材が過冷却可能かどうかを高精度に判定することが可能となる。   According to the heat storage device, the air conditioner, and the heat storage method according to at least one embodiment described above, it is possible to determine with high accuracy whether or not the latent heat storage material can be supercooled.

これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、様々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同時に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   These embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention and are also included in the invention described in the claims and the equivalents thereof.

10・・・発熱体
20・・・蓄熱槽
30・・・冷却部
31・・・ラジエータ
32・・・ファン
40・・・指令部
41・・・第1制御部
42・・・計測部
43・・・判定部
44・・・推定部
45・・・第2制御部
101・・・第1回路
102・・・第1バイパス回路
103・・・第1制御弁
111・・・第2回路
112・・・第2バイパス回路
113・・・第2制御弁
130・・・第1測定部
140・・・第2測定部
150・・・加熱部
160・・・発核装置
170・・・空調部
200・・・制御装置
300・・・記憶装置
400・・・表示装置
1000、1500・・・蓄熱装置
2000・・・空調装置
DESCRIPTION OF SYMBOLS 10 ... Heat generating body 20 ... Thermal storage tank 30 ... Cooling part 31 ... Radiator 32 ... Fan 40 ... Command part 41 ... 1st control part 42 ... Measurement part 43- ··· Determination unit 44 ··· Estimation unit 45 ··· Second control unit 101 ··· First circuit 102 ··· First bypass circuit 103 · · · First control valve 111 · · · Second circuit 112 · · · .... Second bypass circuit 113 ... second control valve 130 ... first measurement unit 140 ... second measurement unit 150 ... heating unit 160 ... nucleation device 170 ... air conditioning unit 200 ... Control device 300 ... Storage device 400 ... Display device 1000, 1500 ... Heat storage device 2000 ... Air conditioner

Claims (10)

発熱体が放出する熱を媒体を介して蓄熱する蓄熱装置において、
前記媒体を一方向に循環するための閉じた第1回路と、
前記第1回路の一部に設けられ、前記発熱体が放出する熱を前記媒体との間で熱交換する熱交換器と、
前記第1回路の前記熱交換器よりも前記媒体が循環する方向の下流に設けられ、前記発熱体が放出する熱を得た前記媒体との間で熱交換する潜熱蓄熱材を含む蓄熱槽と、
前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を測定する第1測定部と、
前記第1測定部が測定した前記媒体の温度が所定の目標温度より高い場合に前記媒体を冷却して、前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を前記目標温度にほぼ等しくする冷却部と、
前記潜熱蓄熱材が前記媒体との間で熱交換して固相から液相へ相変化を開始してからの経過時間を計測する計測部と、
前記経過時間に基づいて、前記潜熱蓄熱材が過冷却可能かどうかを判定する判定部と、
を備える蓄熱装置。
In a heat storage device that stores heat released from a heating element through a medium,
A closed first circuit for circulating the medium in one direction;
A heat exchanger provided in a part of the first circuit for exchanging heat with the medium from the heat generated by the heating element;
A heat storage tank including a latent heat storage material that is provided downstream of the heat exchanger of the first circuit in a direction in which the medium circulates and exchanges heat with the medium that has obtained heat released from the heating element; ,
A first measuring unit for measuring a temperature of the medium passing between the heat exchanger and the heat storage tank;
When the temperature of the medium measured by the first measurement unit is higher than a predetermined target temperature, the medium is cooled, and the temperature of the medium passing between the heat exchanger and the heat storage tank is set to the target temperature. A cooling section approximately equal to
A measuring unit that measures an elapsed time after the latent heat storage material starts a phase change from a solid phase to a liquid phase by exchanging heat with the medium;
Based on the elapsed time, a determination unit that determines whether the latent heat storage material can be supercooled, and
A heat storage device comprising:
前記目標温度の媒体との間で熱交換した場合に前記潜熱蓄熱材が前記相変化を開始してから終了するまでの第1時間を記憶する記憶部を備え、
前記判定部は、前記第1時間と前記経過時間を比較して、前記潜熱蓄熱材が過冷却可能かどうかを判定する請求項1に記載の蓄熱装置。
A storage unit that stores a first time from when the latent heat storage material starts the phase change to when it ends when heat exchange is performed with the target temperature medium;
The heat storage device according to claim 1, wherein the determination unit determines whether or not the latent heat storage material can be supercooled by comparing the first time and the elapsed time.
前記目標温度の媒体との間で熱交換した場合に前記潜熱蓄熱材が前記相変化を開始してから終了するまでに蓄えることができる第1蓄熱量を記憶する記憶部と、
前記第1測定部が測定した前記媒体の温度及び前記経過時間を用いて、前記潜熱蓄熱材が前記相変化を開始してから蓄えた蓄熱量の推定値を推定する推定部とを備え、
前記判定部は、前記第1蓄熱量と前記蓄熱量の推定値を比較して、前記潜熱蓄熱材が過冷却可能かどうかを判定する請求項1に記載の蓄熱装置。
A storage unit that stores a first heat storage amount that can be stored from the start of the phase change to the end of the latent heat storage material when heat exchange is performed with the target temperature medium;
Using the temperature of the medium measured by the first measurement unit and the elapsed time, and an estimation unit that estimates an estimated value of the heat storage amount stored after the latent heat storage material starts the phase change,
The heat storage device according to claim 1, wherein the determination unit compares the first heat storage amount and an estimated value of the heat storage amount to determine whether the latent heat storage material can be supercooled.
前記蓄熱槽を通過した後の前記媒体の第2温度を測定する第2測定部を備え、
前記計測部は、前記第2温度が一定となった時点からの経過時間を計測する請求項1乃至3いずれか1項に記載の蓄熱装置。
A second measuring unit for measuring a second temperature of the medium after passing through the heat storage tank;
The heat storage device according to any one of claims 1 to 3, wherein the measurement unit measures an elapsed time from a time when the second temperature becomes constant.
前記潜熱蓄熱材に対して熱を与える加熱部をさらに備え、
前記加熱部は、前記判定部が、前記潜熱蓄熱材が過冷却不可能と判定した場合に、前記潜熱蓄熱材または前記媒体を加熱する請求項1乃至4いずれか1項に記載の蓄熱装置。
A heating unit for applying heat to the latent heat storage material;
The heat storage device according to any one of claims 1 to 4, wherein the heating unit heats the latent heat storage material or the medium when the determination unit determines that the latent heat storage material cannot be supercooled.
前記冷却部は、前記第1回路に接続するラジエータと、前記ラジエータに対向するファンとを含み、
前記ファンの回転数を制御する第1制御部を備える請求項1乃至5いずれか1項に記載の蓄熱装置。
The cooling unit includes a radiator connected to the first circuit, and a fan facing the radiator,
The heat storage device according to any one of claims 1 to 5, further comprising a first control unit that controls a rotation speed of the fan.
前記冷却部は、第1分岐点において前記第1回路と接続し、前記ラジエータをバイパスする第1バイパス回路と、前記第1分岐点において前記媒体の流路を前記第1回路または前記第1バイパス回路のいずれかに切り替え可能な第1制御弁とを含み、
前記第1制御弁の切り替えを制御する第1制御部を備える請求項1乃至6いずれか1項に記載の蓄熱装置。
The cooling unit is connected to the first circuit at a first branch point and bypasses the radiator, and the flow path of the medium at the first branch point is the first circuit or the first bypass. A first control valve switchable to any of the circuits,
The heat storage device according to any one of claims 1 to 6, further comprising a first control unit that controls switching of the first control valve.
前記発熱体は、モータ、インバータ、バッテリの少なくともいずれか1つである請求項1乃至7いずれか1項に記載の蓄熱装置。   The heat storage device according to claim 1, wherein the heating element is at least one of a motor, an inverter, and a battery. 請求項1乃至8いずれか1項に記載の蓄熱装置を備える空調装置であって、
前記潜熱蓄熱材を発核させる発核装置と、
第2分岐点において前記第1回路と接続し、前記蓄熱槽をバイパスする第2バイパス回路と、
前記第2分岐点において前記媒体の流路を前記第1回路または前記第2バイパス回路のいずれかに切り替え可能な第2制御弁と、
前記判定部が、前記潜熱蓄熱材が過冷却可能と判定した場合に、前記第2制御弁の切り替えを制御して、前記媒体の流路を前記第2バイパス回路に切り替える第2制御部と、
を備える空調装置。
An air conditioner comprising the heat storage device according to any one of claims 1 to 8,
A nucleation device for nucleating the latent heat storage material;
A second bypass circuit connected to the first circuit at a second branch point and bypassing the heat storage tank;
A second control valve capable of switching the flow path of the medium to either the first circuit or the second bypass circuit at the second branch point;
A second control unit that controls switching of the second control valve and switches the flow path of the medium to the second bypass circuit when the determination unit determines that the latent heat storage material can be supercooled;
An air conditioner.
媒体と、
前記媒体を一方向に循環するための閉じた第1回路と、
前記第1回路の一部に設けられ、発熱体が放出する熱を前記媒体との間で熱交換する熱交換器と、
前記第1回路の前記熱交換器よりも前記媒体が循環する方向の下流に設けられ、前記発熱体が放出する熱を得た媒体との間で熱交換する潜熱蓄熱材を含む蓄熱槽と、
を備える蓄熱装置または空調装置における蓄熱方法であって、
前記媒体を循環する第1ステップと、
前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を測定する第2ステップと、
前記第2ステップで測定した前記媒体の温度が所定の目標温度より高い場合に前記媒体を冷却して、前記熱交換器と前記蓄熱槽との間を通過する前記媒体の温度を前記目標温度にほぼ等しくする第3ステップと、
前記潜熱蓄熱材が前記媒体との間で熱交換して固相から液相へ相変化を開始してからの経過時間を計測する第4ステップと、
判定部が、前記経過時間に基づいて、前記潜熱蓄熱材が過冷却可能かどうかを判定する第5ステップと、
を有する蓄熱方法。
Medium,
A closed first circuit for circulating the medium in one direction;
A heat exchanger provided in a part of the first circuit for exchanging heat released from the heating element with the medium;
A heat storage tank including a latent heat storage material that is provided downstream of the heat exchanger of the first circuit in the direction in which the medium circulates and exchanges heat with the medium that has obtained heat released by the heating element;
A heat storage method in a heat storage device or an air conditioner comprising:
A first step of circulating the medium;
A second step of measuring the temperature of the medium passing between the heat exchanger and the heat storage tank;
When the temperature of the medium measured in the second step is higher than a predetermined target temperature, the medium is cooled, and the temperature of the medium passing between the heat exchanger and the heat storage tank is set to the target temperature. A third step that is approximately equal;
A fourth step of measuring an elapsed time after the latent heat storage material exchanges heat with the medium and starts a phase change from a solid phase to a liquid phase;
A determination unit that determines whether the latent heat storage material can be supercooled based on the elapsed time; and
A heat storage method.
JP2012187601A 2012-08-28 2012-08-28 Heat storage device, air conditioner and heat storage method Expired - Fee Related JP5771168B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012187601A JP5771168B2 (en) 2012-08-28 2012-08-28 Heat storage device, air conditioner and heat storage method
CN201310359153.0A CN103673706B (en) 2012-08-28 2013-08-16 Regenerative apparatus, aircondition and heat accumulation method
US13/970,783 US20140060794A1 (en) 2012-08-28 2013-08-20 Heat storage apparatus, air conditioning apparatus, and heat storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187601A JP5771168B2 (en) 2012-08-28 2012-08-28 Heat storage device, air conditioner and heat storage method

Publications (2)

Publication Number Publication Date
JP2014043203A true JP2014043203A (en) 2014-03-13
JP5771168B2 JP5771168B2 (en) 2015-08-26

Family

ID=50185810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187601A Expired - Fee Related JP5771168B2 (en) 2012-08-28 2012-08-28 Heat storage device, air conditioner and heat storage method

Country Status (3)

Country Link
US (1) US20140060794A1 (en)
JP (1) JP5771168B2 (en)
CN (1) CN103673706B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178082A (en) * 2013-03-15 2014-09-25 Toshiba Corp Cooling device and cooling method
WO2016038947A1 (en) * 2014-09-11 2016-03-17 株式会社東芝 Radio transmission system
CN105980778A (en) * 2014-03-18 2016-09-28 松下知识产权经营株式会社 Heat storage device and hot water generation device provided with same
JP2019168137A (en) * 2018-03-22 2019-10-03 株式会社東芝 Heat storage material temperature detection device and heat storage device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114902A1 (en) * 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
WO2013097849A1 (en) * 2011-12-30 2013-07-04 Danfoss Solar Inverters A/S Cooling method for devices generating waste heat
JP5740443B2 (en) * 2013-09-11 2015-06-24 株式会社東芝 Transmission system
WO2016036781A1 (en) * 2014-09-05 2016-03-10 Borgwarner Inc. Heat exchanger and storage device for cold vehicle startup with regenerative capability
KR101597309B1 (en) * 2015-10-05 2016-02-24 주식회사 티이애플리케이션 Heat storage system and heat storage method
JP6723266B2 (en) * 2015-12-25 2020-07-15 シャープ株式会社 Heat storage material, refrigerator and cold storage container using the same
JP6687588B2 (en) * 2017-12-19 2020-04-22 ファナック株式会社 Motor drive device and motor drive system
CN108224845B (en) * 2017-12-21 2021-01-08 青岛海尔空调电子有限公司 Heat storage air conditioning system and control method
CN108621832A (en) * 2018-04-18 2018-10-09 合肥工业大学 A kind of electric vehicle integrated heat management system based on phase-change material
DE102018121390A1 (en) * 2018-09-03 2020-03-05 Hanon Systems Thermal management arrangement for vehicles and method for operating a thermal management arrangement
JP7245131B2 (en) * 2019-07-16 2023-03-23 株式会社日本クライメイトシステムズ Vehicle heat storage system
US11326840B2 (en) 2020-04-13 2022-05-10 Rocky Research Cooling system with thermal storage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285959A (en) * 2003-03-24 2004-10-14 Toyota Motor Corp Engine cooling device
US20050167079A1 (en) * 2004-02-04 2005-08-04 Zhang Tony T. Method and apparatus for automobile warming-up
JP2006207449A (en) * 2005-01-27 2006-08-10 Toyota Motor Corp Control device for vehicle
JP2009228430A (en) * 2008-03-19 2009-10-08 Honda Motor Co Ltd Warming-up system for vehicle
JP2009236433A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Thermal storage device
JP2010023527A (en) * 2008-07-15 2010-02-04 Denso Corp Vehicular heat storage control device and vehicular cold storage control device
JP2010223512A (en) * 2009-03-24 2010-10-07 Toyota Motor Corp State determination device of latent heat accumulator
JP2010229826A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Warming-up system for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532911B2 (en) * 2000-07-26 2003-03-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having heat accumulator, control of heat supply system and control method of internal combustion engine
JP2008240734A (en) * 2001-06-05 2008-10-09 Toyota Motor Corp Internal combustion engine with heat accumulator
JP3953377B2 (en) * 2002-07-16 2007-08-08 トヨタ自動車株式会社 Air conditioner
JP2007211657A (en) * 2006-02-08 2007-08-23 Nissan Motor Co Ltd Method and device for cooling heat emission part and cooling device of hybrid car
US9719433B2 (en) * 2009-01-30 2017-08-01 Komatsu Ltd. Engine output control device
FR2946419B1 (en) * 2009-06-05 2014-02-14 Valeo Systemes Thermiques THERMAL EXCHANGE DEVICE AND THERMAL MANAGEMENT SYSTEM

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285959A (en) * 2003-03-24 2004-10-14 Toyota Motor Corp Engine cooling device
US20050167079A1 (en) * 2004-02-04 2005-08-04 Zhang Tony T. Method and apparatus for automobile warming-up
JP2006207449A (en) * 2005-01-27 2006-08-10 Toyota Motor Corp Control device for vehicle
JP2009228430A (en) * 2008-03-19 2009-10-08 Honda Motor Co Ltd Warming-up system for vehicle
JP2009236433A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Thermal storage device
JP2010023527A (en) * 2008-07-15 2010-02-04 Denso Corp Vehicular heat storage control device and vehicular cold storage control device
JP2010223512A (en) * 2009-03-24 2010-10-07 Toyota Motor Corp State determination device of latent heat accumulator
JP2010229826A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Warming-up system for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178082A (en) * 2013-03-15 2014-09-25 Toshiba Corp Cooling device and cooling method
CN105980778A (en) * 2014-03-18 2016-09-28 松下知识产权经营株式会社 Heat storage device and hot water generation device provided with same
CN105980778B (en) * 2014-03-18 2018-12-28 松下知识产权经营株式会社 Regenerative apparatus and hot water generating device with the regenerative apparatus
WO2016038947A1 (en) * 2014-09-11 2016-03-17 株式会社東芝 Radio transmission system
JP2019168137A (en) * 2018-03-22 2019-10-03 株式会社東芝 Heat storage material temperature detection device and heat storage device

Also Published As

Publication number Publication date
US20140060794A1 (en) 2014-03-06
CN103673706A (en) 2014-03-26
JP5771168B2 (en) 2015-08-26
CN103673706B (en) 2015-09-23

Similar Documents

Publication Publication Date Title
JP5771168B2 (en) Heat storage device, air conditioner and heat storage method
CN107017449B (en) System and method for thermal storage device control
US9228472B2 (en) System for thermal management of a vehicle and method for vehicle cold start
JP5187459B2 (en) Vehicle heat storage device
KR101866523B1 (en) Testing device and the method thereof that the water's temperature change having gradient to time can be carried out
US10704823B2 (en) Vehicle heat management device
JP4998537B2 (en) Vehicle cooling device
JP2014178082A (en) Cooling device and cooling method
CN108302844B (en) Heat pump device with deicing function
JP5839021B2 (en) Cooling device for internal combustion engine
JP2020002932A (en) Thermal management system for vehicle
US9097446B2 (en) Air-conditioning apparatus for vehicle
JP2014156849A (en) Control device of internal combustion engine
JP2008185021A (en) Cooling system for vehicle
JP2013205955A (en) Temperature control system and temperature control method
JP2011148439A (en) Controller for vehicle
JP5665674B2 (en) Engine cooling system and control device
US11933529B2 (en) Method for controlling a thermal management device of a motor vehicle
CN113752777A (en) Vehicle thermal management at refrigerant circuit condenser
JP6471658B2 (en) Diagnostic equipment
JP5420948B2 (en) Vehicle warm-up system
JP6547694B2 (en) Thermoelectric generator
JP2023132568A (en) Machine learning device, cooling temperature estimation device, cooling circuit control device, low temperature circuit, on-vehicle temperature control device and computer program
JP2015209792A (en) Engine cooling control device and engine cooling control method
JP2020142713A (en) Cooling control device for fuel cell vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150626

LAPS Cancellation because of no payment of annual fees