JP2019168137A - Heat storage material temperature detection device and heat storage device - Google Patents

Heat storage material temperature detection device and heat storage device Download PDF

Info

Publication number
JP2019168137A
JP2019168137A JP2018054813A JP2018054813A JP2019168137A JP 2019168137 A JP2019168137 A JP 2019168137A JP 2018054813 A JP2018054813 A JP 2018054813A JP 2018054813 A JP2018054813 A JP 2018054813A JP 2019168137 A JP2019168137 A JP 2019168137A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
latent heat
temperature
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018054813A
Other languages
Japanese (ja)
Other versions
JP7059062B2 (en
Inventor
勝之 櫻井
Katsuyuki Sakurai
勝之 櫻井
佐野 健二
Kenji Sano
健二 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2018054813A priority Critical patent/JP7059062B2/en
Publication of JP2019168137A publication Critical patent/JP2019168137A/en
Application granted granted Critical
Publication of JP7059062B2 publication Critical patent/JP7059062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

To provide a heat storage material temperature detection device that can detect melting of a latent heat storage material.SOLUTION: A heat storage material temperature detection device according to an embodiment is a heat storage material temperature detection device for detecting a melting state of a latent heat storage material housed in a container, and comprises a temperature sensor and determination means. The temperature sensor is arranged in a lower part of the container housing the latent heat storage material, and measures a temperature of the latent heat storage material. The determination means determines the melting state of the latent heat storage material on the basis of the temperature of the latent heat storage material measured by the temperature sensor.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、蓄熱材温度検出装置及び蓄熱装置に関する。   Embodiments described herein relate generally to a heat storage material temperature detection device and a heat storage device.

相変化が可能な潜熱蓄熱材の過冷却を利用する蓄熱装置が知られている。この蓄熱装置は、この潜熱蓄熱材に過冷却状態で、輻射熱をあて、その熱を貯蔵し、放熱要求がされた時に、過冷却状態を解除して潜熱蓄熱材を液体から固体に相変化させ、それに伴って放出される潜熱を利用する。   2. Description of the Related Art A heat storage device that uses supercooling of a latent heat storage material capable of phase change is known. This heat storage device applies radiant heat to the latent heat storage material in a supercooled state, stores the heat, and when a heat release is requested, releases the supercooled state and changes the phase of the latent heat storage material from liquid to solid. The latent heat released along with it is used.

過冷却されて液相状態にある潜熱蓄熱材の過冷却状態を解除して、潜熱蓄熱材を液体から固体に相変化させることは、「発核」と称されている。潜熱蓄熱材が液相状態にあるときに発核動作を行うと、過冷却されて液相状態にある潜熱蓄熱材に結晶核が形成され、それを起点に結晶化を開始する。   It is called “nucleation” to release the supercooled state of the latent heat storage material in the liquid phase after being supercooled and to change the phase of the latent heat storage material from liquid to solid. When the nucleation operation is performed while the latent heat storage material is in the liquid phase, crystal nuclei are formed in the latent heat storage material that is supercooled and in the liquid phase, and crystallization starts from that point.

近年、エネルギーの効率的利用の観点から、蓄熱装置に対する需要があり、信頼性の高い蓄熱装置が要望されている。蓄熱装置の用途としては、日中の太陽熱を夜間に暖房として利用する用途、及び暖房補助の用途、及び非定常な熱利用用途等が挙げられる。   In recent years, there has been a demand for a heat storage device from the viewpoint of efficient use of energy, and a highly reliable heat storage device has been demanded. Applications of the heat storage device include applications in which solar heat during the day is used as heating at night, heating assistance, and unsteady heat utilization.

蓄熱装置で利用される過冷却潜熱蓄熱材は、潜熱蓄熱材が融解しないと過冷却液体にならず、残留結晶核から、結晶化発熱し、取り出したいときに熱が取り出せない課題がある。   The subcooling latent heat storage material used in the heat storage device does not become a supercooled liquid unless the latent heat storage material is melted, and there is a problem that heat cannot be extracted when crystallization heat is generated from the residual crystal nuclei and extraction is desired.

これらの課題を解決するためには、潜熱蓄熱材を融解し、かつ融解状態であることを安定して確認する手段が必要である。そのため、潜熱蓄熱材の融解を、レーザ散乱、分光学的検知により検出するのが一般的に行われている。しかし、これらの方法は装置容積の増大、実装面積の増大、コスト高など、様々な問題がある。   In order to solve these problems, a means for melting the latent heat storage material and confirming that it is in a molten state is necessary. Therefore, the melting of the latent heat storage material is generally detected by laser scattering and spectroscopic detection. However, these methods have various problems such as an increase in apparatus volume, an increase in mounting area, and a high cost.

特開2007−285549号公報JP 2007-285549 A 特開2007−333294号公報JP 2007-333294 A

本発明が解決しようとする課題は、潜熱蓄熱材の融解を安定して検出できる蓄熱材温度検出装置及び蓄熱装置を提供することである。   The problem to be solved by the present invention is to provide a heat storage material temperature detection device and a heat storage device that can stably detect melting of the latent heat storage material.

実施形態の蓄熱材温度検出装置は、容器に収納された潜熱蓄熱材の融解状態を検出する蓄熱材温度検出装置であって、温度センサーと判定手段とを備える。温度センサーは潜熱蓄熱材を収容する容器の低部に配置され前記潜熱蓄熱材の温度を測定する。判定手段は前記潜熱蓄熱材の温度センサーで測定した温度に基づいて前記潜熱蓄熱材の融解状態を判定する。   The heat storage material temperature detection device of the embodiment is a heat storage material temperature detection device that detects the melting state of the latent heat storage material housed in the container, and includes a temperature sensor and a determination unit. A temperature sensor is arrange | positioned at the low part of the container which accommodates a latent heat storage material, and measures the temperature of the said latent heat storage material. The determination means determines the melting state of the latent heat storage material based on the temperature measured by the temperature sensor of the latent heat storage material.

第1の実施形態に係る蓄熱材温度検出装置を備える蓄熱装置の概略図。Schematic of a thermal storage apparatus provided with the thermal storage material temperature detection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る蓄熱材温度検出装置を備える蓄熱装置を傾斜させた概略図。The schematic which inclined the heat storage apparatus provided with the heat storage material temperature detection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る蓄熱材温度検出装置の温度センサーを容器の低部に1つ配置した図。The figure which has arrange | positioned one temperature sensor of the thermal storage material temperature detection apparatus which concerns on 1st Embodiment in the low part of the container. 第1の実施形態に係る蓄熱材温度検出装置の温度センサーを容器の低部に複数配置した図。The figure which has arrange | positioned multiple temperature sensors of the thermal storage material temperature detection apparatus which concerns on 1st Embodiment in the low part of the container. 第1の実施形態に係る蓄熱材温度検出装置が温度センサーを内蔵し、容器の低部に配置した図。The heat storage material temperature detection apparatus which concerns on 1st Embodiment incorporates the temperature sensor, and is the figure arrange | positioned in the low part of the container. 第1の実施形態に係る蓄熱材温度検出装置の備える判定手段の潜熱蓄熱材の融解を判定するステップ図。The step figure which determines melting of the latent heat storage material of the determination means with which the thermal storage material temperature detection apparatus which concerns on 1st Embodiment is provided. 第1の実施形態に係る蓄熱材温度検出装置の備える判定手段の潜熱蓄熱材の融解点を判定するフローチャート。The flowchart which determines the melting point of the latent heat storage material of the determination means with which the thermal storage material temperature detection apparatus which concerns on 1st Embodiment is provided. 第1の実施形態に係る蓄熱材温度検出装置の備える判定手段の潜熱蓄熱材の融解点を示す図。The figure which shows the melting point of the latent heat storage material of the determination means with which the thermal storage material temperature detection apparatus which concerns on 1st Embodiment is provided. 第2の実施形態に係る蓄熱材温度検出装置を容器に配置した概略図。Schematic which has arrange | positioned the thermal storage material temperature detection apparatus which concerns on 2nd Embodiment in the container. 第2の実施形態において高部、中部、低部を示す概念図。The conceptual diagram which shows the high part, the middle part, and the low part in 2nd Embodiment. 第2の実施形態に係る蓄熱材温度検出装置において潜熱蓄熱材の高部、中部、低部における融解点を示す図。The figure which shows the melting point in the high part of the latent heat storage material, the middle part, and the low part in the thermal storage material temperature detection apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る蓄熱材温度検出装置の温度センサーを容器の高部、中部、低部に複数配置した図。The figure which has arrange | positioned two or more temperature sensors of the thermal storage material temperature detection apparatus which concerns on 2nd Embodiment in the high part of the container, the middle part, and the low part. 第2の実施形態に係る蓄熱材温度検出装置の温度センサーを容器の高部、低部に1つずつ、又は中部、低部に1つずつ配置した図。The figure which has arrange | positioned the temperature sensor of the thermal storage material temperature detection apparatus which concerns on 2nd Embodiment to the high part and the low part of a container one each, or to the middle part and the low part. 第2の実施形態に係る蓄熱材温度検出装置の備える判定手段の潜熱蓄熱材の融解点を判定するフローチャート。The flowchart which determines the melting point of the latent heat storage material of the determination means with which the thermal storage material temperature detection apparatus which concerns on 2nd Embodiment is provided. 実施例1における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in Example 1. FIG. 実施例2における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in Example 2. FIG. 実施例3における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in Example 3. FIG. 実施例4における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in Example 4. FIG. 実施例5における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in Example 5. FIG. 比較例1における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in the comparative example 1. FIG. 比較例2における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in the comparative example 2. FIG. 比較例3における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフ。The graph which showed the point which determined the latent heat storage material temperature change and melting point in the comparative example 3. FIG.

以下、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。   Hereinafter, embodiments will be described with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted.

(第1の実施形態)
図1は第1の実施形態に係る蓄熱材温度検出装置10を備える蓄熱装置20の概略図である。蓄熱装置20は、蓄熱材温度検出装置10と、蓄熱部21と、制御部22と、を備える。蓄熱部21は潜熱蓄熱材(図示せず)を収容する容器211と集熱板212と断熱材213が一体で構成され、内部に発核手段214を備えている。本実施形態に係る蓄熱材温度検出装置10は、潜熱蓄熱材を収容する容器211の低部に配置され潜熱蓄熱材の温度を測定する温度センサー11と、温度センサー11で測定した温度に基づいて潜熱蓄熱材の融解状態を判定する判定手段12とを備える。容器211には集熱板212と断熱材213が備られる蓄熱面と、それ以外の面であって断熱材213が備えられる面が存在する。温度センサー11は容器211の外側であり、かつ容器211の低部で、蓄熱面以外の面と断熱材213の間に配置される。潜熱蓄熱材の温度は、容器211を通して温度センサー11に伝わる。
(First embodiment)
FIG. 1 is a schematic diagram of a heat storage device 20 including a heat storage material temperature detection device 10 according to the first embodiment. The heat storage device 20 includes a heat storage material temperature detection device 10, a heat storage unit 21, and a control unit 22. The heat storage unit 21 is configured integrally with a container 211 for storing a latent heat storage material (not shown), a heat collecting plate 212, and a heat insulating material 213, and includes a nucleation means 214 therein. The heat storage material temperature detection apparatus 10 according to the present embodiment is based on the temperature sensor 11 that is disposed in the lower part of the container 211 that stores the latent heat storage material and measures the temperature of the latent heat storage material, and the temperature measured by the temperature sensor 11. Determination means 12 for determining the melting state of the latent heat storage material. The container 211 has a heat storage surface on which the heat collecting plate 212 and the heat insulating material 213 are provided, and another surface on which the heat insulating material 213 is provided. The temperature sensor 11 is disposed outside the container 211 and at a lower portion of the container 211 and between a surface other than the heat storage surface and the heat insulating material 213. The temperature of the latent heat storage material is transmitted to the temperature sensor 11 through the container 211.

制御部22は電源ユニットと、制御回路を備えている(図示せず)。制御部22は、例えばユニットをなしていて、例えば蓄熱部21の外部(外面)に設けられている。なお、制御部22は、蓄熱部21から分離して設けられてもよい。また、後述する応用例で示すような太陽光発電機や空気調和器などを制御するシステムに接続ないし組み込まれてもよい。電源ユニットは発核手段214と接続されている。なお、制御部22と発核手段214については図が煩雑になるため、図1以外は示していない。   The control unit 22 includes a power supply unit and a control circuit (not shown). The control unit 22 forms a unit, for example, and is provided, for example, on the outside (outer surface) of the heat storage unit 21. The control unit 22 may be provided separately from the heat storage unit 21. Further, it may be connected to or incorporated in a system for controlling a solar power generator, an air conditioner or the like as shown in an application example described later. The power supply unit is connected to the nucleation means 214. The control unit 22 and the nucleation means 214 are not shown except for FIG.

蓄熱材温度検出装置10は屋内外問わず設置することができる。   The heat storage material temperature detection device 10 can be installed both indoors and outdoors.

なお、本実施形態において、低部とは、蓄熱装置が配置された状態において、容器211の重力方向で低い部分(低部)を示すものである。そのため、容器211の配置を変更した場合には、その配置の変更に伴い重力方向が変化することで低部が変更される場合がある。   In addition, in this embodiment, a low part shows a low part (low part) in the gravity direction of the container 211 in the state by which the thermal storage apparatus is arrange | positioned. Therefore, when the arrangement of the container 211 is changed, the lower part may be changed by changing the direction of gravity in accordance with the change in the arrangement.

ここで、容器211の低部について詳しく説明する。容器211は熱源の位置により、さまざまに配置することができる。また、容器211は用途に合わせ、さまざまな形状をとることもできる。ここでは、容器211が略直方体である場合を例にして低部について説明する。   Here, the lower part of the container 211 will be described in detail. The container 211 can be variously arranged depending on the position of the heat source. Moreover, the container 211 can also take various shapes according to a use. Here, the case where the container 211 is a substantially rectangular parallelepiped will be described as an example.

この容器211を、集熱板212を熱源に向けながら地面に設置したとき、地面に近い面を底面、底面と対向する面を上面とし、それ以外の面を側面とする。   When this container 211 is placed on the ground with the heat collecting plate 212 facing the heat source, the surface close to the ground is the bottom surface, the surface facing the bottom surface is the top surface, and the other surfaces are the side surfaces.

図1は第1の実施形態に係る蓄熱材温度検出装置10を備える蓄熱装置20の概略図であるとともに、蓄熱部21の底面が地面と平行になるよう、つまり平置きにした状態の図でもある。このように、図1では、容器211の上面と熱源が対向するように配置される。そのため、容器211を平置き、つまり地面に対して平行においたときの低部とは底面部のことである。そのため、本実施形態において温度センサー11は底面に配置される。   FIG. 1 is a schematic diagram of a heat storage device 20 including the heat storage material temperature detection device 10 according to the first embodiment, and is also a diagram in a state where the bottom surface of the heat storage unit 21 is parallel to the ground, that is, in a flat state. is there. Thus, in FIG. 1, it arrange | positions so that the upper surface of the container 211 and a heat source may oppose. Therefore, the lower part when the container 211 is placed flat, that is, parallel to the ground is the bottom part. For this reason, in the present embodiment, the temperature sensor 11 is disposed on the bottom surface.

次に図2は第1の実施形態に係る蓄熱材温度検出装置10を備える蓄熱装置20を傾斜させた概略図である。傾斜とは、蓄熱部21と地面の成す角(傾斜角)が0度より大きく90度以下のことである。傾斜角が90度になるように傾斜させるとは、例えば窓に貼りつけるように配置した場合のことである。図2のように容器211を傾斜させて配置したときの低部とは、図2における点線で囲われた部分のように、底面において地面に近い部分を指す。そして、この部分に温度センサー11を配置する。   Next, FIG. 2 is the schematic which inclined the heat storage apparatus 20 provided with the heat storage material temperature detection apparatus 10 which concerns on 1st Embodiment. Inclination means that the angle (inclination angle) formed by the heat storage unit 21 and the ground is greater than 0 degrees and equal to or less than 90 degrees. Inclining so that the inclination angle is 90 degrees refers to, for example, a case where it is arranged so as to be attached to a window. The low portion when the container 211 is disposed at an inclination as shown in FIG. 2 indicates a portion close to the ground on the bottom surface, such as a portion surrounded by a dotted line in FIG. And the temperature sensor 11 is arrange | positioned in this part.

また、容器211が円形や球形、楕円形などの場合の低部とは、熱源に対して近接する側の反対側であり、かつその反対側において地面に近い方を指す。   In addition, the lower portion in the case where the container 211 is circular, spherical, elliptical, or the like refers to the side opposite to the side close to the heat source and the side closer to the ground on the opposite side.

容器211の低部とは面を指すこともあるし、部分を指すこともあるが、先述した底面や底面において地面に近い部分を示している。図3、図4、図5、図9、図10C、図12、図13については、容器211を底面から見たときの図となり、図の下側が低部である。また、図3以降では、図が煩雑になるため、集熱板212や断熱材213は示していない。なお、低部の定義は、容器の厚み、面積、体積に関係はない。   Although the low part of the container 211 may refer to a surface or a part, it indicates a part close to the ground on the bottom surface or the bottom surface described above. 3, 4, 5, 9, 10 </ b> C, 12, and 13 are views when the container 211 is viewed from the bottom surface, and the lower side of the figure is a low portion. In FIG. 3 and subsequent figures, the heat collecting plate 212 and the heat insulating material 213 are not shown because the drawing becomes complicated. Note that the definition of the low part is not related to the thickness, area, and volume of the container.

容器211を介して、潜熱蓄熱材の温度が温度センサー11に検出され、検出された温度は、潜熱蓄熱材の融解を判定する判定手段12へ伝達される。温度センサー11と判定手段12は有線と無線の少なくとも一方にて接続、通信されている。   The temperature of the latent heat storage material is detected by the temperature sensor 11 via the container 211, and the detected temperature is transmitted to the determination unit 12 that determines melting of the latent heat storage material. The temperature sensor 11 and the determination means 12 are connected and communicated by at least one of wired and wireless.

潜熱蓄熱材は、対流、重力の観点から、容器211の高部は温度集熱すると高くなりやすく、かつ融解しやすい。対して、容器211の低部の潜熱蓄熱材温度は低く保たれたままであり、重力により結晶化物が半融解結晶化物として低部にたまることで、より融解がしにくくなる。そのため、容器211の低部は潜熱蓄熱材が最も融解温度に達しにくい範囲となる。   From the viewpoint of convection and gravity, the latent heat storage material tends to become high and melt easily when the temperature of the high portion of the container 211 is collected. On the other hand, the latent heat storage material temperature in the lower part of the container 211 is kept low, and the crystallized product accumulates in the lower part as a semi-molten crystallized product due to gravity, so that it becomes more difficult to melt. Therefore, the lower part of the container 211 is in a range where the latent heat storage material hardly reaches the melting temperature.

さらに潜熱蓄熱材は、融点付近での温度変化がほぼない潜熱挙動(結晶化物が融解している)から、温度が急に上昇する顕熱挙動(結晶化物から融解)に大きく変化するときがある。そのときを融解点とすると、この融解点をとらえることで、容器211を介して、潜熱蓄熱材の融解と判定することができる。潜熱蓄熱材において、この温度挙動が最も遅く生じるのは容器211の低部であるため、容器211の低部に温度センサー11を設置し、その融解したときを判定する判定手段12を備えることで、容器211の内部全体の潜熱蓄熱材の融解を判定することができる。   Furthermore, the latent heat storage material may change greatly from latent heat behavior (crystallized product is melted) with almost no temperature change near the melting point to sensible heat behavior (crystallized product to melt) where the temperature suddenly rises. . If that time is taken as the melting point, it is possible to determine that the latent heat storage material has been melted through the container 211 by capturing this melting point. In the latent heat storage material, since the temperature behavior occurs most slowly in the lower part of the container 211, the temperature sensor 11 is installed in the lower part of the container 211, and the determination unit 12 is provided for determining when the temperature is melted. The melting of the latent heat storage material in the entire interior of the container 211 can be determined.

そのため、容器211の低部に配置された温度センサー11が潜熱蓄熱材の温度を断続的に測定し、その温度情報に基づいて、判定手段12が潜熱蓄熱材の融解を潜熱蓄熱材の時間に対する温度変化(つまり、その傾き)を算出することにより、融解点を高い精度で判定することができる。融解点の判定について詳しくは後述する。   Therefore, the temperature sensor 11 disposed in the lower portion of the container 211 intermittently measures the temperature of the latent heat storage material, and based on the temperature information, the determination means 12 melts the latent heat storage material with respect to the time of the latent heat storage material. By calculating the temperature change (that is, the slope), the melting point can be determined with high accuracy. The determination of the melting point will be described later in detail.

図3は第1の実施形態に係る蓄熱材温度検出装置10の温度センサー11を容器211の低部に1つ配置した図である。図4は第1の実施形態に係る蓄熱材温度検出装置10の温度センサー11を容器211の低部に複数配置した図である。この図3、図4のように、容器211の低部に温度センサー11を配置する場合、温度センサー11は1つでもいいし、複数配置してもよい。複数配置することで、低部の温度変化をより正確に検出することができるため、より好ましい。   FIG. 3 is a diagram in which one temperature sensor 11 of the heat storage material temperature detection device 10 according to the first embodiment is arranged in the lower part of the container 211. FIG. 4 is a diagram in which a plurality of temperature sensors 11 of the heat storage material temperature detection device 10 according to the first embodiment are arranged in the lower part of the container 211. As shown in FIGS. 3 and 4, when the temperature sensor 11 is arranged in the lower part of the container 211, one or more temperature sensors 11 may be arranged. By arranging a plurality, it is more preferable because a temperature change in the lower part can be detected more accurately.

ここで、蓄熱材温度検出装置10について詳しく説明する。蓄熱材温度検出装置10は、先述した通り温度センサー11と潜熱蓄熱材の融解を判定する判定手段12を備える。そのため、蓄熱材温度検出装置10は独立した装置であってもよいし、使用者のパソコンやスマートフォン、携帯端末などの使用者の機器に温度センサー11と判定手段12を備えさせたものを潜熱蓄熱材温度検出装置10としてもよい。   Here, the heat storage material temperature detection device 10 will be described in detail. The heat storage material temperature detection device 10 includes the temperature sensor 11 and the determination unit 12 that determines melting of the latent heat storage material as described above. Therefore, the heat storage material temperature detection device 10 may be an independent device, or a latent heat storage device that includes a temperature sensor 11 and a determination unit 12 in a user device such as a user's personal computer, a smartphone, or a mobile terminal. The material temperature detection device 10 may be used.

蓄熱材温度検出装置10が独立で存在している場合、蓄熱材温度検出装置10は電源を備えることもできる。この電源は、使用者が直接動作させてもいいし、リモコンなどで遠隔操作することもできる。また、集熱開始と連動させて動作を開始させるようにしてもよい。   When the heat storage material temperature detection apparatus 10 exists independently, the heat storage material temperature detection apparatus 10 can also be provided with a power supply. This power supply can be operated directly by the user, or remotely operated by a remote controller or the like. The operation may be started in conjunction with the start of heat collection.

蓄熱材温度検出装置10と温度センサー11は図3や図4Aで示すように1対1で備えられてもよいし、図4Bで示すように1つの蓄熱材温度検出装置10に対して複数の温度センサー11を備えることもできる。蓄熱材温度検出装置10と温度センサー11が1対1の場合は、温度センサー11を複数容器211に付けた場合、故障時のリスク低減を図ることができる。また、1つの蓄熱材温度検出装置10に対して複数の温度センサー11を付ける場合は、複数の温度センサー11の情報を1つの蓄熱材温度検出装置10で管理することもできる。   The heat storage material temperature detection device 10 and the temperature sensor 11 may be provided on a one-to-one basis as shown in FIGS. 3 and 4A, or a plurality of heat storage material temperature detection devices 10 may be provided for one heat storage material temperature detection device 10 as shown in FIG. 4B. A temperature sensor 11 can also be provided. When the heat storage material temperature detection device 10 and the temperature sensor 11 are on a one-to-one basis, when the temperature sensor 11 is attached to the plurality of containers 211, it is possible to reduce the risk of failure. Moreover, when attaching the several temperature sensor 11 with respect to the one heat storage material temperature detection apparatus 10, the information of the several temperature sensor 11 can also be managed by the one heat storage material temperature detection apparatus 10. FIG.

蓄熱材温度検出装置10に備えられる判定手段12については後述する。   The determination means 12 provided in the heat storage material temperature detection device 10 will be described later.

ここで、蓄熱材温度検出装置10の各部材について詳しく説明する。   Here, each member of the heat storage material temperature detection device 10 will be described in detail.

(温度センサー)
温度センサー11には熱電対などを用いることができるが、形状、長さ、厚さ等は、各容器形状等にあわせるため、特に限りはない。例えば、熱電対やスマートフォン、携帯電話に内蔵されている温度センサーや、電池パックに内蔵されている温度センサーなどと同等の温度センサーを用いることができる。
(Temperature sensor)
A thermocouple or the like can be used for the temperature sensor 11, but the shape, length, thickness, and the like are not particularly limited to match each container shape. For example, a temperature sensor equivalent to a temperature sensor built in a thermocouple, a smartphone, or a mobile phone, or a temperature sensor built in a battery pack can be used.

また、図5は第1の実施形態に係る蓄熱材温度検出装置10が温度センサー11を内蔵し、容器211の低部に配置した図である。このように、蓄熱材温度検出装置10は温度センサー11を内蔵してもよい。この場合においても、蓄熱材温度検出装置10は温度センサー11を複数備えることができる。   FIG. 5 is a diagram in which the heat storage material temperature detection device 10 according to the first embodiment includes the temperature sensor 11 and is disposed in the lower part of the container 211. Thus, the heat storage material temperature detection device 10 may incorporate the temperature sensor 11. Also in this case, the heat storage material temperature detection device 10 can include a plurality of temperature sensors 11.

次に判定手段12について説明する。   Next, the determination unit 12 will be described.

(判定手段)
判定手段12はプログラム化され機器に内蔵される。この判定手段12が内蔵される機器は、はじめから判定手段12を内蔵させてもよいし、インターネットなどを通してダウンロードさせてもよい。また、コンピューターやスマートフォン、携帯端末などの使用者の機器に判定手段12を備えさせてもよい。この場合も、プログラム化された判定手段12はインターネットなどを通してダウンロードして用いることもできる。判定手段12と温度センサー11は無線や有線で接続されている。
(Judgment means)
The determination means 12 is programmed and incorporated in the device. The device incorporating the determination unit 12 may incorporate the determination unit 12 from the beginning, or may be downloaded via the Internet or the like. Moreover, you may provide the determination means 12 in user's apparatuses, such as a computer, a smart phone, and a portable terminal. Also in this case, the programmed determination means 12 can be downloaded through the Internet or the like. The determination means 12 and the temperature sensor 11 are connected wirelessly or by wire.

図6は第1の実施形態に係る蓄熱材温度検出装置10の備える判定手段12の潜熱蓄熱材の融解を判定するステップ図である。このように判定手段12は、容器211の低部に配置された温度センサー11から得た温度情報に基づいて図6で示すようなステップにより潜熱蓄熱材の融解を判定することができる。   FIG. 6 is a step diagram for determining the melting of the latent heat storage material of the determination means 12 included in the heat storage material temperature detection device 10 according to the first embodiment. Thus, the determination means 12 can determine the melting of the latent heat storage material by the steps shown in FIG. 6 based on the temperature information obtained from the temperature sensor 11 disposed in the lower part of the container 211.

温度センサー11が一定時間ごとに測定した潜熱蓄熱材の温度情報を入手し(ステップ1)、次にステップ1で得た温度を用いて温度変化の傾きを算出し(ステップ2)、次にステップ2で得た温度変化による傾きが2回目に変化した点でもって、潜熱蓄熱材の融解を判定する(ステップ3)。   Obtain temperature information of the latent heat storage material measured by the temperature sensor 11 at regular intervals (step 1), then calculate the slope of the temperature change using the temperature obtained in step 1 (step 2), then step The melting of the latent heat storage material is determined based on the point at which the slope due to the temperature change obtained in 2 has changed for the second time (step 3).

図7は第1の実施形態に係る蓄熱材温度検出装置10の備える判定手段12の潜熱蓄熱材の融解点30を判定するフローチャートであり、図8は第1の実施形態に係る蓄熱材温度検出装置10の備える判定手段12の潜熱蓄熱材の融解点を示す図である。図7、図8を用いてステップを詳しく説明すると、潜熱蓄熱材は熱にさらされると潜熱蓄熱材自身が一定の温度に温まるまで温度が上昇する(第1の傾き)。次に潜熱蓄熱材は一定の温度に達すると、温度変化をほとんどしない潜熱挙動をとるため、潜熱蓄熱材の温度変化の傾きは第1の傾きよりも緩やかな傾きとなる(第2の傾き)。最後に潜熱蓄熱材が潜熱挙動から顕熱挙動に変化すると、潜熱蓄熱材の温度上昇が進むため、第2の傾きより大きい傾きとなる(第3の傾き)。ステップ3での潜熱蓄熱材の融解を示す点(融解点30)は図8に示している。   FIG. 7 is a flowchart for determining the melting point 30 of the latent heat storage material of the determination means 12 included in the heat storage material temperature detection device 10 according to the first embodiment, and FIG. 8 is the heat storage material temperature detection according to the first embodiment. It is a figure which shows the melting point of the latent heat storage material of the determination means 12 with which the apparatus 10 is provided. The steps will be described in detail with reference to FIGS. 7 and 8. When the latent heat storage material is exposed to heat, the temperature rises until the latent heat storage material itself is heated to a certain temperature (first slope). Next, when the latent heat storage material reaches a certain temperature, it takes a latent heat behavior with almost no temperature change, so the gradient of the temperature change of the latent heat storage material becomes a gentler gradient than the first gradient (second gradient). . Finally, when the latent heat storage material changes from the latent heat behavior to the sensible heat behavior, the temperature of the latent heat storage material increases, so that the inclination becomes larger than the second inclination (third inclination). The point indicating the melting of the latent heat storage material in Step 3 (melting point 30) is shown in FIG.

つまり、ステップ3での温度変化による傾きの変化とは、第1の傾きから第2の傾きへ変化する1回目の変化(第1の変化)と、第2の傾きから第3の傾きへ変化する2回目の変化(第2の変化)のことである。この第2の変化を判定手段12が判定することで、潜熱蓄熱材の融解を判定する。潜熱蓄熱材の温度の経時的変化の測定とは、連続的に測定、あるいは一定時間経過毎に測定することである。この一定時間経過毎に測定する場合の測定の間隔は、潜熱蓄熱材や熱源などにより、例えば1分毎に測定するなど適宜設定される。なお、第1と第3の傾きの大きさの大小は問わない。   That is, the change in the slope due to the temperature change in Step 3 is the first change (first change) that changes from the first slope to the second slope, and the change from the second slope to the third slope. This is the second change (second change). The determination means 12 determines this second change, thereby determining the melting of the latent heat storage material. The measurement of the change in the temperature of the latent heat storage material with time is continuous measurement or measurement at every elapse of a fixed time. The measurement interval in the case of measuring every certain time elapses is appropriately set, for example, by measuring every minute by using a latent heat storage material or a heat source. The magnitudes of the first and third inclinations do not matter.

また、判定手段12を発核手段214と接続させることで、融解判定後は自動的に発核、状態維持などのプログラムを判定手段12に備えることもできる。   Further, by connecting the determination means 12 to the nucleation means 214, the determination means 12 can be automatically provided with a program such as nucleation and state maintenance after the melting determination.

蓄熱材温度検出装置10は、さらにパソコン、スマートフォン、携帯端末などの機器と無線や有線で直接接続されてもよい。そのように接続することで、蓄熱材温度検出装置10の得たデータ(例えば、潜熱蓄熱材の温度変化や、融解点)は、接続先の使用者のコンピューター、スマートフォン、携帯端末などで保存、分析、フィードバック、学習機能を付与し、さらに融解の判定制度をあげるなど、活用することもできる。   The heat storage material temperature detection device 10 may be directly connected to a device such as a personal computer, a smartphone, or a mobile terminal by radio or wire. By connecting in such a manner, the data obtained by the heat storage material temperature detection device 10 (for example, the temperature change of the latent heat storage material and the melting point) is stored in the computer, smartphone, portable terminal, etc. of the user at the connection destination, It can also be used by adding analysis, feedback, and learning functions, and raising the melting judgment system.

(蓄熱部)
蓄熱部21は潜熱蓄熱材を入れる容器211と集熱板212と断熱材213を備えている。容器211は直方形(横長、縦長)、立方形(サイコロ型、薄型、厚型)、円形、楕円形、球形、ハート型など、様々な形状をとることが具体的には、ポリ容器、チャック袋、ラミネートパック、金属容器、湯たんぽがあげられる。
(Heat storage part)
The heat storage unit 21 includes a container 211 for storing a latent heat storage material, a heat collecting plate 212, and a heat insulating material 213. The container 211 may take various shapes such as rectangular (horizontal, vertical), cubic (dice, thin, thick), circle, ellipse, sphere, heart, and so on. Examples include bags, laminate packs, metal containers, and hot water bottles.

潜熱蓄熱材の重量が多いと、発熱量は大きくなるが、融解熱量が大きくなるため、融解時間は長くなる傾向にある。一般に、熱源を容器211の一面に置くか、多面的に配置するかによるが、容器211の壁部の厚さが薄く、面積が小さいほうが潜熱蓄熱材は融解しやすくなる。   When the weight of the latent heat storage material is large, the heat generation amount increases, but the heat of fusion increases, so the melting time tends to be longer. In general, depending on whether the heat source is placed on one surface of the container 211 or arranged in a multifaceted manner, the latent heat storage material is more easily melted when the wall portion of the container 211 is thinner and the area is smaller.

一方、容器211の壁部の厚みが厚いと融解しにくい。これは、潜熱蓄熱材自体の熱伝導率が低いため、容器211の壁部の厚みが厚くなるほど容器211を熱が伝導する効率が落ち、潜熱蓄熱材は融解しにくくなる。また、面積が大きくなればなるほど、容器211の中心に熱が伝わりにくいため、潜熱蓄熱材は融解しにくくなる。   On the other hand, if the wall portion of the container 211 is thick, it is difficult to melt. This is because the heat conductivity of the latent heat storage material itself is low, so that the efficiency of heat conduction through the container 211 decreases as the wall portion of the container 211 increases in thickness, and the latent heat storage material becomes difficult to melt. In addition, the larger the area, the more difficult the heat is transferred to the center of the container 211, so the latent heat storage material is less likely to melt.

容器211は潜熱蓄熱材と発核手段214とを内部に含む。容器211は樹脂性容器、金属容器、金属・樹脂複合容器、さらにこれら材料のフィルム(例えばアルミラミネート材)で構成された袋を用いることができる。容器211は潜熱蓄熱材の凝固・融解に伴う体積変化に追従可能な部材を用いることが好ましい。   The container 211 contains a latent heat storage material and a nucleation means 214 inside. As the container 211, a resin container, a metal container, a metal / resin composite container, and a bag made of a film of these materials (for example, an aluminum laminate material) can be used. It is preferable to use a member that can follow the volume change accompanying the solidification / melting of the latent heat storage material for the container 211.

発核手段214は、潜熱蓄熱材とその一部が接触し、過冷却状態にある潜熱蓄熱材を固化(結晶化)させる機能を果たす。発核手段214を備えることで、例えば日没後に任意にスイッチを入れて発核を促し、この装置からの放射熱で暖を取ることができる。具体的な発核方法は、2本の電極を挿入し、電極間に電圧を印加する方法、超音波を印加する方法、濡れ性(接触角)変化による方法、凹凸を有する板バネとアクチュエータで構成され、アクチュエータで板バネを動かす方法、熱電素子に電圧を印加して極所急冷する方法、結晶核を結晶核収納容器211より投入して核生成させる方法などを用いることができる。   The nucleation means 214 functions to solidify (crystallize) the latent heat storage material in a supercooled state, with the latent heat storage material in contact with a part thereof. By providing the nucleation means 214, for example, the switch can be arbitrarily switched on after sunset to promote nucleation, and the radiant heat from this device can warm up. Specific nucleation methods include inserting two electrodes and applying a voltage between the electrodes, applying ultrasonic waves, changing the wettability (contact angle), a plate spring and an actuator with irregularities. A method of moving the leaf spring with an actuator, a method of applying a voltage to the thermoelectric element to quench the electrode extremely, a method of introducing crystal nuclei from the crystal nucleus storage container 211, and generating nuclei can be used.

効率よく集熱するため、集熱板212が配置される面を最も熱吸収がよくなるように蓄熱部21を配置することが好ましい。蓄熱部21は支持脚を備えるなどして、適宜配置を変更できるようにしてもよい。例えば、太陽光を熱源として用いる場合は、太陽光集熱効率の点から、蓄熱部21は、太陽高度に対しては、立て置き(直角置き)、傾斜置き(太陽高度の最大時に対して直角)が好ましい。つまり、傾斜角は0度より大きく90度以下にすることが好ましい。集熱板212には、例えばアルミ、銅などの金属を用いることができる。   In order to collect heat efficiently, it is preferable to arrange the heat storage unit 21 so that the surface on which the heat collecting plate 212 is arranged has the best heat absorption. The heat storage unit 21 may be provided with support legs so that the arrangement can be changed as appropriate. For example, when sunlight is used as a heat source, from the viewpoint of solar heat collection efficiency, the heat storage unit 21 is standing (at a right angle) or inclined (at a right angle with respect to the maximum solar altitude) with respect to the solar altitude. Is preferred. That is, it is preferable that the inclination angle is greater than 0 degree and 90 degrees or less. For the heat collecting plate 212, for example, a metal such as aluminum or copper can be used.

断熱材213には、熱伝導率が低く、耐熱性が高いものを用いることができる。例えばグラスウール、ビーズ法ポリスチレン・押し出し法ポリスチレンフォーム(発泡スチロール)があげられる。   As the heat insulating material 213, a material having low heat conductivity and high heat resistance can be used. For example, glass wool, bead method polystyrene / extruded polystyrene foam (styrene foam) can be used.

集熱に用いる熱源は、輻射熱を発するものなら限定されない。例えば、先述した太陽光やセラミックヒータなどが挙げられる。太陽光を用いると、熱を生むために必要なコストがかからないため、好ましい。   The heat source used for collecting heat is not limited as long as it generates radiant heat. For example, the sunlight mentioned above, a ceramic heater, etc. are mentioned. Use of sunlight is preferable because it does not cost necessary to generate heat.

潜熱蓄熱材は、常温(20℃)以上100℃以下の範囲で融点を持ち、かつ過冷却を有する潜熱蓄熱材を用いることが好ましい。過冷却を有する潜熱蓄熱材とは、融点以下の温度でも固化せずに液体で準安定に存在する物質で、例えば酢酸ナトリウム三水和物等の酢酸ソーダや、硫酸ナトリウム水和物等の硫酸ソーダを用いることができる。蓄熱温度が高い場合には、潜熱蓄熱材として、酢酸ナトリウム三水和物を用いることが望ましい。酢酸ナトリウム三水和物の一般的な物性は、融点が58℃、潜熱が264kJ/kgである。   As the latent heat storage material, it is preferable to use a latent heat storage material having a melting point in the range of room temperature (20 ° C.) to 100 ° C. and having supercooling. A latent heat storage material having supercooling is a substance that does not solidify even at a temperature below the melting point and exists in a liquid and metastable state. For example, sodium acetate such as sodium acetate trihydrate or sulfuric acid such as sodium sulfate hydrate. Soda can be used. When the heat storage temperature is high, it is desirable to use sodium acetate trihydrate as the latent heat storage material. The general physical properties of sodium acetate trihydrate are a melting point of 58 ° C. and a latent heat of 264 kJ / kg.

図3で示すように、蓄熱材温度検出装置10には、潜熱蓄熱材の温度状況や、潜熱蓄熱材の融解を使用者に知らせるような表示を行うことができる表示部23を設けることもできる。   As shown in FIG. 3, the heat storage material temperature detection device 10 can also be provided with a display unit 23 that can display the temperature status of the latent heat storage material and the user to notify the melting of the latent heat storage material. .

(表示部)
表示部23は、蓄熱材温度検出装置10と電気的に接続されている。そのため、蓄熱材温度検出装置10と無線や有線で接続、通信させ独立させることもできるし、蓄熱材温度検出装置10に直接備えさせてもよい。表示部23にはディスプレイ、LEDランプ等などを用いることができるが、表示手法は特に限定されない。温度表示(色、数値表示)ができれば、より好ましい。表示部23が独立して存在するとは、先述したディスプレイやLEDランプを用いてもよいし、潜熱蓄熱材の温度変化などのシグナルを蓄熱材温度検出装置10が送信し、他の装置、例えば使用者のパソコン、スマートフォンや携帯端末に受信させることで、表示部23としてもよい。表示部23を設けることで、連続又は、不連続での温度計測過冷却状態の維持の確認。つまり、潜熱蓄熱材を発核させることができるかどうかの確認ができる。さらに発核が可能である表示、信号を出すことができればより好ましい。
(Display section)
The display unit 23 is electrically connected to the heat storage material temperature detection device 10. For this reason, the heat storage material temperature detection device 10 can be connected and communicated wirelessly or by wire to be independent, or may be directly provided in the heat storage material temperature detection device 10. A display, an LED lamp, or the like can be used for the display unit 23, but the display method is not particularly limited. It is more preferable if temperature display (color and numerical value display) can be performed. That the display unit 23 exists independently may use the above-described display or LED lamp, or the heat storage material temperature detection device 10 transmits a signal such as a temperature change of the latent heat storage material, and other devices, for example, use It is good also as a display part 23 by making a person's personal computer, a smart phone, and a portable terminal receive. By providing the display unit 23, it is confirmed whether the temperature measurement supercooled state is maintained continuously or discontinuously. That is, it can be confirmed whether or not the latent heat storage material can be nucleated. Furthermore, it is more preferable if a display and a signal capable of nucleation can be output.

ここで、本実施形態に係る潜熱材温度検出装置の動作について説明する。   Here, the operation of the latent heat material temperature detection device according to the present embodiment will be described.

1.潜熱蓄熱材入り容器211の低部に温度センサー11を配置する。このとき、集熱板212が熱源に対して効率よく熱吸収できるように配置する。 1. The temperature sensor 11 is disposed in the lower part of the container 211 containing the latent heat storage material. At this time, it arrange | positions so that the heat collecting plate 212 can absorb heat efficiently with respect to a heat source.

2.蓄熱材温度検出処理装置に電源を入れる。 2. Turn on the heat storage material temperature detection processing device.

3.容器211内の潜熱蓄熱材は、使用に先立ち、予め融点以上の温度に加熱される(熱(温度)入力)。これによって、潜熱蓄熱材は溶解して液相状態となる。また、潜熱蓄熱材は、過冷却可能な潜熱蓄熱材であるため、潜熱蓄熱材が熱入力の完了後に融点以下になっても、凝固せずに液相状態を維持する(過冷却状態になる)。この状態で、潜熱蓄熱材は、潜熱を蓄え続ける。 3. Prior to use, the latent heat storage material in the container 211 is heated in advance to a temperature equal to or higher than the melting point (heat (temperature) input). As a result, the latent heat storage material is dissolved to be in a liquid phase. Moreover, since the latent heat storage material is a latent heat storage material that can be supercooled, even if the latent heat storage material becomes below the melting point after completion of heat input, the liquid phase state is maintained without solidifying (becomes a supercooled state). ). In this state, the latent heat storage material continues to store latent heat.

4.温度センサー11は、集熱時、つまり輻射熱を潜熱蓄熱材容器211に当てたときから作動させ、容器211の低部の温度経時変化(対時間)をレコードする。 4). The temperature sensor 11 is activated at the time of heat collection, that is, when radiant heat is applied to the latent heat storage material container 211, and records temperature change with time (vs. time) of the lower part of the container 211.

5.この温度経時変化を判定手段12が受け取り、潜熱蓄熱材の融点付近での潜熱挙動(結晶化物が融解している:温度変化がほとんどなし)から、顕熱挙動(結晶化物から融解:温度が急に上昇する)に変化するとき(第2の変化)をとらえることで潜熱蓄熱材の融解を判定する。 5. The determination means 12 receives this temperature change with time, and from the latent heat behavior near the melting point of the latent heat storage material (the crystallized product is melted: almost no temperature change), the sensible heat behavior (melted from the crystallized product: the temperature suddenly increases). Is detected), the melting of the latent heat storage material is determined.

6.判定手段12が融解を判定すると、表示部23が使用者に対して潜熱蓄熱材の融解を知らせる。さらに、融解を維持し続けるプログラムを判定手段12に備えさせ、融解を維持させてもよい。 6). When the determination unit 12 determines melting, the display unit 23 notifies the user of melting of the latent heat storage material. Furthermore, the determination means 12 may be provided with a program that continues to maintain melting to maintain melting.

なお、2.の蓄熱材温度検出処理装置に電源を入れる、は、使用者の機器に温度センサー11と判定手段12とを備えさせた場合など、電源を入れる必要がない場合などは適宜省略される。   In addition, 2. Turning on the heat storage material temperature detection processing apparatus is appropriately omitted when it is not necessary to turn on the power, such as when the user's device is provided with the temperature sensor 11 and the determination means 12.

本実施形態にかかる潜熱材温度検出装置は、潜熱蓄熱材入り容器211の低部に温度センサー11を配置することで、潜熱蓄熱材の経時温度変化を測定することができる。さらに、その温度センサー11が測定した潜熱蓄熱材の温度に基づいて潜熱蓄熱材の融解を判定する判定手段12を備えることにより、容器211の外部から容器211の内部の潜熱蓄熱材の潜熱蓄熱材の融解を判定することができる。このため、潜熱蓄熱材が不完全融解であるが故に存在する残留結晶核から、結晶化発熱を防ぐことができるので、必要時に熱を潜熱蓄熱材から取り出すことができる。   The latent heat material temperature detection device according to the present embodiment can measure the temperature change of the latent heat storage material with time by arranging the temperature sensor 11 in the lower part of the container 211 containing the latent heat storage material. Furthermore, by including a determination unit 12 that determines melting of the latent heat storage material based on the temperature of the latent heat storage material measured by the temperature sensor 11, the latent heat storage material of the latent heat storage material inside the container 211 from the outside of the container 211. Can be determined. For this reason, crystallization heat can be prevented from the residual crystal nuclei that exist because the latent heat storage material is incompletely melted, so that heat can be extracted from the latent heat storage material when necessary.

(第2の実施形態)
第1の実施形態と共通する説明は省略する。
(Second Embodiment)
A description common to the first embodiment is omitted.

図9は第2の実施形態に係る蓄熱材温度検出装置10を容器211に配置した概略図である。第2の実施形態に係る蓄熱材温度検出装置10は、温度センサー11を容器211の外側の高部、中部、低部に配置することができる。低部は第1の実施形態で説明した通りである。図10は第2の実施形態において高部、中部、低部を示す概念図である。ここでは、図10A、図10B、図10Cを用いて高部、中部について説明する。   FIG. 9 is a schematic view in which the heat storage material temperature detection device 10 according to the second embodiment is arranged in a container 211. In the heat storage material temperature detection device 10 according to the second embodiment, the temperature sensor 11 can be arranged in the high portion, the middle portion, and the low portion outside the container 211. The low part is as described in the first embodiment. FIG. 10 is a conceptual diagram showing a high part, a middle part, and a low part in the second embodiment. Here, the high portion and the middle portion will be described with reference to FIGS. 10A, 10B, and 10C.

図10Aのように、容器211を平置きにした際の高部とは、上面や、側面における上面側のこと、つまり地面から遠い部分のことである。この場合の中部とは、高部と低部の間のことである。   As shown in FIG. 10A, the high portion when the container 211 is laid flat is the upper surface or the upper surface side of the side surface, that is, the portion far from the ground. The middle part in this case is between the high part and the low part.

次に図10Bで示すように容器211を傾斜させて配置したときの高部とは、底面において地面に遠い方である。つまり、高部とは底面において低部の逆側である。この場合も中部とは高部と低部の間である。このように傾斜させた場合において、図10Cのように容器211を底面から見た場合も高部、中部は同様である。   Next, as shown in FIG. 10B, the high portion when the container 211 is disposed at an inclination is the one far from the ground at the bottom. That is, the high portion is the opposite side of the low portion on the bottom surface. Also in this case, the middle part is between the high part and the low part. When tilted in this way, the same applies to the high portion and the middle portion when the container 211 is viewed from the bottom as shown in FIG. 10C.

また、容器211が円形や球形、楕円形などの場合の高部とは、熱源に対して近接する側の反対側であり、かつその反対側において地面に遠い方を指す。また、容器211の形がどのようなものでも、中部とは高部と低部の間のことである。   In addition, when the container 211 is circular, spherical, elliptical, or the like, the high portion is the side opposite to the side close to the heat source and the side farther from the ground on the opposite side. In addition, whatever the shape of the container 211, the middle part is between the high part and the low part.

潜熱蓄熱材の融解の判定をするためには、潜熱蓄熱材入り容器211の低部に加え、高部、中部、温度センサー11を配置することにより、融解状態を段階的に確認することができる。潜熱蓄熱材は前述した通り、対流や重力により、容器211低部に行くにつれ、温度が下がっていく。そのため、図9のように温度センサー11を容器211の高部、中部、低部に配置した場合の潜熱蓄熱材の温度変化を示すと、温度センサー11が検出する、ある時間での容器211の各部の温度は、高部>中部>低部となる。そのため、図11で第2の実施形態に係る蓄熱材温度検出装置10において潜熱蓄熱材の高部、中部、低部における融解点30を示したように、温度変化の挙動も、結晶化物から融解、つまり潜熱から顕熱挙動の変化も高部、中部、低部という順で生じる。   In order to determine the melting of the latent heat storage material, the melting state can be confirmed in stages by arranging the high part, the middle part, and the temperature sensor 11 in addition to the low part of the container 211 containing the latent heat storage material. . As described above, the temperature of the latent heat storage material decreases as it goes to the lower portion of the container 211 due to convection or gravity. Therefore, as shown in FIG. 9, when the temperature change of the latent heat storage material when the temperature sensor 11 is arranged in the high part, the middle part, and the low part of the container 211 is shown, the temperature sensor 11 detects the temperature of the container 211 at a certain time. The temperature of each part becomes high part> middle part> low part. Therefore, as shown in FIG. 11, in the heat storage material temperature detection device 10 according to the second embodiment, the melting point 30 in the high, middle, and low parts of the latent heat storage material is shown. That is, the change in sensible heat behavior from latent heat also occurs in the order of the high part, the middle part, and the low part.

このように配置することで、潜熱蓄熱材の融解の判定の精度、融解状態の段階的確認の精度を向上させることができる。   By arranging in this way, it is possible to improve the accuracy of determination of melting of the latent heat storage material and the accuracy of stepwise confirmation of the melting state.

図12は第2の実施形態に係る蓄熱材温度検出装置10の温度センサー11を容器の高部、中部、低部に複数配置した図である。このように温度センサー11は複数配置してもよいし、図9のように高部、中部、低部それぞれに1つずつ配置しても良い。図12のように複数の温度センサー11を配置したほうが精度を上げることができ、また温度センサー11の故障リスクを低減できるため、好ましい。図12では図が煩雑になるため、判定手段12と温度センサー11を繋ぐ線は部分的に省略している。   FIG. 12 is a diagram in which a plurality of temperature sensors 11 of the heat storage material temperature detection device 10 according to the second embodiment are arranged in the high, middle, and low parts of the container. In this way, a plurality of temperature sensors 11 may be arranged, or one temperature sensor 11 may be arranged in each of the high part, the middle part, and the low part as shown in FIG. It is preferable to arrange a plurality of temperature sensors 11 as shown in FIG. 12 because the accuracy can be improved and the risk of failure of the temperature sensors 11 can be reduced. In FIG. 12, since the figure becomes complicated, a line connecting the determination unit 12 and the temperature sensor 11 is partially omitted.

また、図13は第2の実施形態に係る蓄熱材温度検出装置10の温度センサー11を容器の高部、低部に1つずつ、又は中部、低部に1つずつ配置した図である。図13Aや図13Bのように温度センサー11を高部と低部のみや、中部と低部のみに配置してもよい。これらの場合も潜熱蓄熱材の温度変化の挙動は先述した通りのため、潜熱材温度検出装置や容器211の設置場所に合わせて、低部に加え、どこに配置するかは適宜変更することができる。   Moreover, FIG. 13 is the figure which has arrange | positioned the temperature sensor 11 of the thermal storage material temperature detection apparatus 10 which concerns on 2nd Embodiment one each at the high part of a container, the low part, or one part in the middle part and the low part. As shown in FIG. 13A and FIG. 13B, the temperature sensor 11 may be arranged only in the high part and the low part, or only in the middle part and the low part. In these cases as well, the behavior of the temperature change of the latent heat storage material is as described above, so that the location of the latent heat material temperature detection device and the container 211 can be changed as appropriate in addition to the low part according to the installation location of the container 211. .

判定手段12は第1の実施形態で説明したのと同様に、高部、中部、低部の潜熱蓄熱材の融解を判定する。図14に第2の実施形態に係る蓄熱材温度検出装置10の備える判定手段12の潜熱蓄熱材の融解点30を判定するフローチャートを示す。   The determination means 12 determines the melting of the high, middle, and low latent heat storage materials in the same manner as described in the first embodiment. The flowchart which determines the melting point 30 of the latent heat storage material of the determination means 12 with which the thermal storage material temperature detection apparatus 10 which concerns on 2nd Embodiment is provided in FIG. 14 is shown.

ここで、本実施形態に係る蓄熱材温度検出装置10の動作について説明する。   Here, operation | movement of the thermal storage material temperature detection apparatus 10 which concerns on this embodiment is demonstrated.

1〜3までの動作は第1の実施形態と同様であるため、4から説明する。   The operations from 1 to 3 are the same as those in the first embodiment, and will be described from 4.

4.蓄熱材温度検出装置10は、集熱時つまり輻射熱を容器211に当てたときから作動させ、容器211の高部、中部、低部の温度経時変化(対時間)をレコードする。 4). The heat storage material temperature detection device 10 is activated from the time of heat collection, that is, when radiant heat is applied to the container 211, and records the temperature change with time (vs. time) of the high, middle, and low parts of the container 211.

5.高部、中部、低部の温度経時変化を判定手段12が受け取り、それぞれの部分で潜熱蓄熱材の融点付近での潜熱挙動から、顕熱挙動に変化するとき(第2の変化)をとらえることでその部分での潜熱蓄熱材の融解を判定する。 5. The determination means 12 receives the temperature aging of the high part, the middle part, and the low part, and captures the time (second change) at which each part changes from the latent heat behavior near the melting point of the latent heat storage material to the sensible heat behavior. The melting of the latent heat storage material at that portion is determined.

6.判定手段12が低部の融解を判定すると、表示部23が使用者に対して潜熱蓄熱材の融解を知らせる。さらに、融解を維持し続けるプログラムを判定手段12に備えさせ、融解を維持させてもよい。 6). If the determination means 12 determines melting of the low part, the display unit 23 notifies the user of melting of the latent heat storage material. Furthermore, the determination means 12 may be provided with a program that continues to maintain melting to maintain melting.

ここでは高部、中部、低部すべてに温度検出器が配置されている場合を示したが、他の高部と低部のみ、中部と低部のみなどの場合も同様に動作する。   Here, the case where the temperature detectors are arranged in all of the high part, the middle part, and the low part is shown, but the same operation is performed in the case of only other high part and low part, only the middle part and low part, and the like.

本実施形態にかかる蓄熱材温度検出装置10は、温度センサー11を容器211の低部に加え、高部と中部の少なくとも一方に温度センサー11を配置することで、潜熱蓄熱材の経時温度変化を測定することができる。さらに、その温度変化から潜熱蓄熱材の融解を判定することができる判定手段12を備えることにより、容器211の外部から容器211内部の潜熱蓄熱材の融解を判定することができる。このため、不完全融解であるが故に存在する残留結晶核から、結晶化発熱を防ぐことができるので、必要時に熱を潜熱蓄熱材から取り出すことができ、さらに融解の判定の精度、融解状態の段階的確認の精度を向上させることができる。   The heat storage material temperature detection device 10 according to the present embodiment adds the temperature sensor 11 to the lower part of the container 211 and arranges the temperature sensor 11 in at least one of the high part and the middle part, thereby changing the temperature change of the latent heat storage material over time. Can be measured. Furthermore, by providing the determination means 12 that can determine the melting of the latent heat storage material from the temperature change, the melting of the latent heat storage material inside the container 211 can be determined from the outside of the container 211. For this reason, crystallization heat generation can be prevented from the residual crystal nuclei that exist because of incomplete melting, so that heat can be taken out from the latent heat storage material when necessary. The accuracy of the stepwise confirmation can be improved.

(応用例)
応用例では、第1又は第2の実施形態に係る蓄熱材温度検出装置10を備える装置について説明する。
(Application examples)
In the application example, an apparatus including the heat storage material temperature detection device 10 according to the first or second embodiment will be described.

<太陽電池セル>
日中の太陽電池セル温度を低下させるため、太陽電池セルの裏面側に熱的に接触するように配置された蓄熱材の容器を備える蓄熱装置を有する太陽電池セルが提案されている。この蓄熱装置を備える太陽電池セルでは、日中に蓄熱材が完全に融解して融点以上の温度になってしまうことがある。そのため、容器の低部に第1又は第2の実施形態に係る蓄熱材温度検出装置10が備える温度センサー11を備えることで、蓄熱材の融解の判定を行うことができ、長期蓄熱、過冷却液体保持時間の維持が十分可能となる。これより、日中の太陽電池セル温度を低下させることができるので、太陽電池セルの温度が高温に保持され、発電量が低下することを防ぐことができる。
<Solar cell>
In order to reduce the solar cell temperature during the day, a solar cell having a heat storage device including a container of a heat storage material arranged so as to be in thermal contact with the back surface side of the solar cell has been proposed. In a solar battery cell equipped with this heat storage device, the heat storage material may be completely melted during the day to reach a temperature higher than the melting point. Therefore, it is possible to determine the melting of the heat storage material by providing the temperature sensor 11 provided in the heat storage material temperature detection device 10 according to the first or second embodiment in the lower part of the container, and long-term heat storage, supercooling The liquid retention time can be sufficiently maintained. Thereby, since the solar cell temperature during the day can be lowered, the temperature of the solar cell can be kept at a high temperature and the power generation amount can be prevented from being lowered.

<空気調和器>
蓄熱装置を備える空気調和器は熱交換対象物と組み合わせて使用される。この蓄熱装置は熱交換対象物が発生した熱を吸収して蓄え、そして熱交換対象物の温度が下がった時に熱交換対象物へと熱を放出するため、安定して熱の吸放出ができなかった。そこで、蓄熱装置を備えた空気調和機において、蓄熱装置の備える蓄熱材の容器の低部に、第1又は第2の実施形態に係る蓄熱材温度検出装置10を備えることで、必要時に熱を潜熱蓄熱材から取り出すことができる。そのため、常に安定して、熱交換対象物が発生した熱を吸収して蓄え、そして熱交換対象物の温度が下がった時に熱交換対象物へと熱を放出することができるため、空気調和器の効率を向上させることができる。
<Air conditioner>
An air conditioner including a heat storage device is used in combination with a heat exchange object. This heat storage device absorbs and stores the heat generated by the heat exchange object, and releases heat to the heat exchange object when the temperature of the heat exchange object decreases, so that heat can be absorbed and released stably. There wasn't. Then, in the air conditioner provided with the heat storage device, the heat storage material temperature detection device 10 according to the first or second embodiment is provided in the lower part of the container of the heat storage material provided in the heat storage device, so that heat is generated when necessary. It can be taken out from the latent heat storage material. Therefore, the air conditioner can always stably absorb and store the heat generated by the heat exchange object, and can release the heat to the heat exchange object when the temperature of the heat exchange object decreases. Efficiency can be improved.

<画像形成装置>
従来の画像形成装置は、定着動作で印刷対象物を素早く加熱する必要はあるが、そのために加熱ローラに温度ムラが生じることがある。また、印刷対象物の温度を均熱化させるために印刷対象物の熱を、蓄熱材を充填したローラで吸収させているが、定着部出口の紙から熱を吸収する構造のため、出口を出た紙が両面印刷で再び定着部に入らない限り定着部を冷却することができない。このような構造をした画像形成装置が第1又は第2の実施形態に係る蓄熱材温度検出装置10を備えることで、必要時に熱を潜熱材から取り出すことができるため、温度ムラを防ぎ、また、適時冷却することができるため、省電力化した画像形成装置とすることができる。
<Image forming apparatus>
In the conventional image forming apparatus, it is necessary to quickly heat an object to be printed in the fixing operation. However, temperature unevenness may occur in the heating roller. Also, in order to equalize the temperature of the printing object, the heat of the printing object is absorbed by a roller filled with a heat storage material. The fixing unit cannot be cooled unless the output paper enters the fixing unit again by double-sided printing. Since the image forming apparatus having such a structure includes the heat storage material temperature detection device 10 according to the first or second embodiment, heat can be taken out from the latent heat material when necessary, thereby preventing temperature unevenness, and Since the cooling can be performed in a timely manner, an image forming apparatus with reduced power consumption can be obtained.

<テレビ放送用の送信システムの冷却システム>
従来のテレビ放送用の送信システムの冷却システムは、循環する冷却水を用いて冷却するが、環境要因により冷却水の水温の低下が生じ、テレビ放送用の送信システムに影響を与える可能性があった。この水温低下を防ぐための温度調節弁を設けるなどの処置がとられているが、この処置により機器の大型化や、コストが増大していた。このため、冷却水の水温低下を防ぐため、蓄熱装置を備えることが提案され、さらに蓄熱装置の備える潜熱蓄熱材から必要時に熱を取り出せることが求められる。そのため、蓄熱装置を備えるテレビ放送用の送信システムに対して、第1又は第2の実施形態に係る蓄熱材温度検出装置10を備えることで、潜熱蓄熱材から必要時に熱を潜熱材から取り出すことができる。そのため、省スペースかつ安価で、送信機起動時の水温低下を防ぐことができる送信システムとすることができる。
<Cooling system for transmission system for TV broadcasting>
Conventional cooling systems for television broadcasting transmission systems use circulating cooling water to cool, but the cooling water temperature may decrease due to environmental factors, which may affect the television broadcasting transmission system. It was. Although measures such as providing a temperature control valve for preventing the water temperature from lowering have been taken, the measures have increased the size and cost of the equipment. For this reason, in order to prevent the water temperature fall of cooling water, it is proposed to provide a heat storage device, and it is required that heat can be taken out from the latent heat storage material provided in the heat storage device when necessary. Therefore, with respect to the transmission system for television broadcasting provided with the heat storage device, the heat storage material temperature detection device 10 according to the first or second embodiment is provided to extract heat from the latent heat storage material when necessary. Can do. Therefore, it is possible to provide a transmission system that is space-saving and inexpensive and that can prevent a decrease in water temperature when the transmitter is activated.

<電池モジュール>
潜熱蓄熱材を収容した容器を備える蓄熱装置を有する二次電池は冬季や寒冷地において二次電池を保温することができる。しかし、冬季や寒冷地への対策として潜熱蓄熱材を周囲環境から断熱するような手段を講ずると、夏季などの高温環境において電池温度が過度に上がる可能性が高められる。そのため、潜熱蓄熱材を収容した容器を備える蓄熱装置を有する二次電池に第1又は第2の実施形態に係る蓄熱材温度検出装置10を備えることで、必要時に熱を潜熱材から取り出すことができ、低温環境での始動性を向上可能であるとともに、高温環境での電池温度の上がり過ぎによる信頼性低下を抑制可能な電池モジュールとすることができる。
<Battery module>
A secondary battery having a heat storage device including a container containing a latent heat storage material can keep the secondary battery warm in winter and cold regions. However, if measures are taken to insulate the latent heat storage material from the surrounding environment as a countermeasure for winter and cold regions, the possibility that the battery temperature will rise excessively in a high temperature environment such as summer is increased. Therefore, by providing the secondary battery having the heat storage device including the container containing the latent heat storage material with the heat storage material temperature detection device 10 according to the first or second embodiment, heat can be extracted from the latent heat material when necessary. In addition, it is possible to provide a battery module that can improve startability in a low temperature environment and can suppress a decrease in reliability due to excessive rise in battery temperature in a high temperature environment.

以上説明した装置について、従来の潜熱蓄熱材を備えさせただけでは不十分だった点が、第1又は第2の実施形態に係る蓄熱材温度検出装置10を備えることにより、より効率よく動作させることがわかる。   About the apparatus demonstrated above, the point which was inadequate only by having provided the conventional latent-heat storage material is operated more efficiently by providing the thermal storage material temperature detection apparatus 10 which concerns on 1st or 2nd embodiment. I understand that.

以下、実施例に基づき本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to a following example.

(実施例)
(実施例1)
蓄熱装置を傾斜角90度立て置きに配置した。蓄熱部の容器低部に温度センサーを1つ配置し、蓄熱材温度検出処理装置の電源を入れた。容器内の潜熱蓄熱材は、予め融点以上の温度に加熱した。温度センサーは集熱時から作動させ、容器の低部の温度経時変化(対時間)をレコードした。この潜熱蓄熱材の温度経時変化を判定手段が受け取り、潜熱蓄熱材の融解を判定した。判定手段が融解を判定すると、表示部が使用者に対して潜熱蓄熱材の融解を知らせた。
(Example)
Example 1
The heat storage device was placed upright at an inclination angle of 90 degrees. One temperature sensor was placed in the lower part of the container of the heat storage unit, and the heat storage material temperature detection processing device was turned on. The latent heat storage material in the container was previously heated to a temperature equal to or higher than the melting point. The temperature sensor was activated from the time of heat collection, and the temperature aging (vs. time) of the lower part of the container was recorded. The determination means received the temperature change with time of the latent heat storage material, and the melting of the latent heat storage material was determined. When the determination means determines melting, the display unit notifies the user of melting of the latent heat storage material.

潜熱蓄熱材の温度は1秒ごとに測定した。潜熱蓄熱材の融解の判定は、潜熱蓄熱材が潜熱挙動から顕熱挙動へと変化する、第2の変化を判定手段が判定することにより行った。図15は実施例1における蓄熱材温度変化及び融解点を判定した点を示したグラフである。また、実施例1〜5、比較例1〜3の測定条件と結果を表1にまとめた。   The temperature of the latent heat storage material was measured every second. Determination of melting of the latent heat storage material was performed by the determination means determining the second change in which the latent heat storage material changes from the latent heat behavior to the sensible heat behavior. FIG. 15 is a graph showing points at which the heat storage material temperature change and melting point in Example 1 were determined. The measurement conditions and results of Examples 1 to 5 and Comparative Examples 1 to 3 are summarized in Table 1.

潜熱蓄熱材が自然結晶化していないかの判定は次のように行った。   Judgment whether the latent heat storage material was not naturally crystallized was performed as follows.

<自然結晶化判定>
判定手段が融解を判定してから、室温(15、20、25℃)放置(1日)で過冷却状態(液相状態)が維持されている、つまり自然結晶化していないかどうかを確認した(n=2: 同条件で融解判定した2個の蓄熱材入り容器)。
<Natural crystallization judgment>
After the judgment means judged melting, it was confirmed whether the supercooled state (liquid phase state) was maintained at room temperature (15, 20, 25 ° C.) (1 day), that is, it was not spontaneously crystallized. (N = 2: Two heat storage material-containing containers subjected to melting determination under the same conditions).

放置して潜熱蓄熱材入りの容器の液体が自然発核結晶化していない、臨界径以上のサイズの残留結晶核が全くない場合、融解と判定できる。過冷却状態(液相状態)を維持している場合を○、維持していない場合を×とした。   If the liquid in the container containing the latent heat storage material is not spontaneously nucleated and crystallized, and there are no residual crystal nuclei having a size larger than the critical diameter, it can be determined as melting. The case where the supercooled state (liquid phase state) was maintained was evaluated as ◯, and the case where it was not maintained was evaluated as ×.

後述する実施例2〜6、比較例1〜3も同様に自然結晶化していないかを判定した。   Similarly, Examples 2 to 6 and Comparative Examples 1 to 3 to be described later were judged as to whether they were naturally crystallized.

(実施例2)
蓄熱装置を太陽高度の最高時(方位角約180度)に対して、集熱板が90度になるように傾斜置きしたこと以外実施例1と同様に測定した。図16は実施例2における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフである。
(Example 2)
The measurement was conducted in the same manner as in Example 1 except that the heat storage device was inclined and placed so that the heat collecting plate was 90 degrees with respect to the highest solar altitude (azimuth angle of about 180 degrees). FIG. 16 is a graph showing the points at which the temperature change and melting point of the latent heat storage material in Example 2 were determined.

(実施例3)
温度センサーの配置を低部に3か所配置した以外は実施例1と同様の条件で測定した。図17は実施例3における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフである。
Example 3
Measurement was performed under the same conditions as in Example 1 except that three temperature sensors were arranged in the lower part. FIG. 17 is a graph showing points at which the temperature change and melting point of the latent heat storage material in Example 3 were determined.

(実施例4)
温度センサーの配置を容器の中部、低部に1つずつ配置した以外は実施例1と同様に測定した。図18は実施例4における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフである。
Example 4
The measurement was performed in the same manner as in Example 1 except that the temperature sensors were arranged one by one in the middle and the lower part of the container. FIG. 18 is a graph showing points at which the latent heat storage material temperature change and melting point in Example 4 were determined.

(実施例5)
温度センサーを高部、中部、低部に配置した以外は実施例1と同様に測定した。を図19は実施例5における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフである。
(Example 5)
Measurement was performed in the same manner as in Example 1 except that the temperature sensors were arranged in the high, middle, and low parts. FIG. 19 is a graph showing points at which the latent heat storage material temperature change and melting point in Example 5 were determined.

(比較例1)
潜熱蓄熱材入り容器の高部に温度センサーを配置した以外は実施例1と同様に測定した。図20は比較例1における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフである。
(Comparative Example 1)
The measurement was performed in the same manner as in Example 1 except that a temperature sensor was arranged at the upper part of the container containing the latent heat storage material. FIG. 20 is a graph showing points at which the temperature change and melting point of the latent heat storage material in Comparative Example 1 were determined.

(比較例2)
潜熱蓄熱材入り容器の中部に温度センサーを配置した以外は実施例1と同様に測定した。図21は比較例2における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフである。
(Comparative Example 2)
Measurement was performed in the same manner as in Example 1 except that a temperature sensor was arranged in the middle of the container containing the latent heat storage material. FIG. 21 is a graph showing the points at which the latent heat storage material temperature change and melting point in Comparative Example 2 were determined.

(比較例3)
潜熱蓄熱材入り容器の高部と中部に温度センサーを配置した以外は実施例1と同様に測定した。図22は比較例3における潜熱蓄熱材温度変化及び融解点を判定した点を示したグラフである。

Figure 2019168137
(Comparative Example 3)
The measurement was performed in the same manner as in Example 1 except that temperature sensors were arranged at the high and middle portions of the container containing the latent heat storage material. FIG. 22 is a graph showing points at which the temperature change and melting point of the latent heat storage material in Comparative Example 3 were determined.
Figure 2019168137

表1より、実施例1〜6では融解を確認することができた。対して比較例1では残留結晶が存在し、半固相(半液相)状態であった。つまり、潜熱蓄熱材は過冷却状態(液相状態)ではなかったので、潜熱蓄熱材は融解していなかった。比較例2、3では、1日室温放置で過冷却状態(液相状態)が維持されず、結晶化発熱した。これは、潜熱蓄熱材に結晶核残留があったためであるので、潜熱蓄熱材は融解していなかったことがわかる。   From Table 1, the melting could be confirmed in Examples 1 to 6. On the other hand, in Comparative Example 1, there were residual crystals, which were in a semi-solid phase (semi-liquid phase). That is, since the latent heat storage material was not in a supercooled state (liquid phase state), the latent heat storage material was not melted. In Comparative Examples 2 and 3, the supercooled state (liquid phase state) was not maintained after standing at room temperature for 1 day, and crystallization was generated. This is because there was crystal nucleus residue in the latent heat storage material, and it can be seen that the latent heat storage material was not melted.

以上のことより、潜熱蓄熱材を収容する容器の低部に配置され潜熱蓄熱材の温度を測定する温度センサーと、温度を用いて潜熱蓄熱材の融解状態を判定する判定手段と、を備える第1又は第2の実施形態にかかる温度検出装置は優れた潜熱蓄熱材の融解を判定する装置であることが示された。   Based on the above, the temperature sensor that is disposed in the lower part of the container that stores the latent heat storage material and measures the temperature of the latent heat storage material, and the determination unit that determines the melting state of the latent heat storage material using the temperature are provided. It has been shown that the temperature detection device according to the first or second embodiment is a device for determining melting of an excellent latent heat storage material.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10・・・蓄熱材温度検出装置、11・・・温度センサー、12・・・判定手段、20・・・蓄熱装置、21・・・蓄熱部、22・・・制御部、211・・・容器、212・・・集熱板、213・・・断熱材、214・・・発核手段、23・・・表示部、30・・・融解点。   DESCRIPTION OF SYMBOLS 10 ... Thermal storage material temperature detection apparatus, 11 ... Temperature sensor, 12 ... Determination means, 20 ... Thermal storage apparatus, 21 ... Thermal storage part, 22 ... Control part, 211 ... Container 212 ... Heat collecting plate, 213 ... Heat insulating material, 214 ... Nucleation means, 23 ... Display part, 30 ... Melting point.

Claims (6)

容器に収納された潜熱蓄熱材の融解状態を検出する蓄熱材温度検出装置であって、
前記容器の低部に配置され前記潜熱蓄熱材の温度を測定する温度センサーと、
前記温度センサーで測定した温度に基づいて前記潜熱蓄熱材の融解状態を判定する判定手段と、
を備える蓄熱材温度検出装置。
A heat storage material temperature detection device for detecting a melting state of a latent heat storage material stored in a container,
A temperature sensor disposed at a lower portion of the container and measuring a temperature of the latent heat storage material;
Determination means for determining the melting state of the latent heat storage material based on the temperature measured by the temperature sensor;
A heat storage material temperature detection device.
前記判定手段は、前記温度センサーで温度の経時的変化を測定した際の温度変化の傾きが、略ゼロから正の傾きへと変化したときに前記潜熱蓄熱材が融解したものと判定する請求項1記載の蓄熱材温度検出装置。   The determination unit determines that the latent heat storage material has melted when a gradient of a temperature change when measuring a temperature change with the temperature sensor changes from substantially zero to a positive gradient. The heat storage material temperature detection apparatus according to 1. 前記容器の高部及び中部の少なくとも一方に他の温度センサーが配置された請求項1又は2記載の蓄熱材温度検出装置。   The heat storage material temperature detection device according to claim 1 or 2, wherein another temperature sensor is disposed in at least one of a high portion and a middle portion of the container. 前記潜熱蓄熱材の状態を表示する表示部とを備える請求項1ないし3のいずれか1項に記載の蓄熱材温度検出装置。   The heat storage material temperature detection apparatus according to any one of claims 1 to 3, further comprising a display unit that displays a state of the latent heat storage material. 請求項1ないし4のいずれか1項に記載の蓄熱材温度検出装置と、
前記潜熱蓄熱材を収容する容器及び前記潜熱蓄熱材の過冷却状態を解除する発核手段とを備える蓄熱部と、
を備える蓄熱装置。
The heat storage material temperature detection device according to any one of claims 1 to 4,
A heat storage unit comprising a container for storing the latent heat storage material and a nucleation means for releasing the supercooled state of the latent heat storage material;
A heat storage device comprising:
前記発核手段を制御する制御部とを備える請求項5記載の蓄熱装置。   The heat storage device according to claim 5, further comprising a control unit that controls the nucleation unit.
JP2018054813A 2018-03-22 2018-03-22 Heat storage material temperature detector and heat storage device Active JP7059062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054813A JP7059062B2 (en) 2018-03-22 2018-03-22 Heat storage material temperature detector and heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054813A JP7059062B2 (en) 2018-03-22 2018-03-22 Heat storage material temperature detector and heat storage device

Publications (2)

Publication Number Publication Date
JP2019168137A true JP2019168137A (en) 2019-10-03
JP7059062B2 JP7059062B2 (en) 2022-04-25

Family

ID=68106522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054813A Active JP7059062B2 (en) 2018-03-22 2018-03-22 Heat storage material temperature detector and heat storage device

Country Status (1)

Country Link
JP (1) JP7059062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118740A1 (en) * 2020-12-03 2022-06-09 パナソニックホールディングス株式会社 Heat storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185411A (en) * 1992-12-17 1994-07-05 Toyota Motor Corp Heat accumulator for internal combustion engine
JP2014043203A (en) * 2012-08-28 2014-03-13 Toshiba Corp Heat storage device, air conditioning device and heat storage method
JP2014136974A (en) * 2013-01-15 2014-07-28 Mitsubishi Electric Corp Heat accumulation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847834B2 (en) 2012-05-14 2014-09-30 Tag-Comm Inc. Method and apparatus for generating dedicated data channels in backscatter RFID systems using band-pass modulation
JP6185411B2 (en) 2013-08-22 2017-08-23 帝人株式会社 Polyester resin composition for stretched film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185411A (en) * 1992-12-17 1994-07-05 Toyota Motor Corp Heat accumulator for internal combustion engine
JP2014043203A (en) * 2012-08-28 2014-03-13 Toshiba Corp Heat storage device, air conditioning device and heat storage method
JP2014136974A (en) * 2013-01-15 2014-07-28 Mitsubishi Electric Corp Heat accumulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118740A1 (en) * 2020-12-03 2022-06-09 パナソニックホールディングス株式会社 Heat storage device

Also Published As

Publication number Publication date
JP7059062B2 (en) 2022-04-25

Similar Documents

Publication Publication Date Title
US10203165B2 (en) Device and method for storing thermal energy
US10508854B2 (en) Cooling device for the cooled storage of medical products
KR101759124B1 (en) Thermoelectric generator
EP2568790B1 (en) Apparatus and method
JP2012188163A (en) Water server
WO2015078245A1 (en) Pcm cooling device, cooling system, controlling method and controlling unit for controlling the system
CN105789655B (en) Battery module thermometric and temperature control integral system
JP2016510394A (en) Cooling apparatus and method
JP7059062B2 (en) Heat storage material temperature detector and heat storage device
JP2015015208A (en) Battery module, power-supply unit including battery module and temperature management method of battery module
US20140130844A1 (en) Solar power generator
WO2020233455A1 (en) Intelligent temperature control system
JP2012079858A (en) Cooling device and power conditioner
JP7003080B2 (en) Solar water heater and solar heat utilization system
CN206687385U (en) A kind of automatic temperature adjusting cup
CN201870306U (en) Portable double-purpose cup capable of refrigerating and heating water
CA3109464C (en) Cold generation and storage
US10904472B2 (en) Transmission system
JP6639133B2 (en) Electronic equipment and imaging device
AU2018276134B2 (en) Active crystallisation control in phase change material thermal storage systems
JP3189798U (en) Intelligent insulated container
CN204001877U (en) A kind of communication base station
JP6591464B2 (en) Thermal storage system and thermal storage device
CN203355631U (en) Mannitol dissolution storage box
AU2021105617A4 (en) A modified refrigeration system for biomedical storage

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180831

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210318

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210318

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210405

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210409

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210514

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210521

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20210625

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210629

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211008

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211112

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20211222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220315

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220413

R151 Written notification of patent or utility model registration

Ref document number: 7059062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151