JP2014042880A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas Download PDF

Info

Publication number
JP2014042880A
JP2014042880A JP2012186808A JP2012186808A JP2014042880A JP 2014042880 A JP2014042880 A JP 2014042880A JP 2012186808 A JP2012186808 A JP 2012186808A JP 2012186808 A JP2012186808 A JP 2012186808A JP 2014042880 A JP2014042880 A JP 2014042880A
Authority
JP
Japan
Prior art keywords
mass
exhaust gas
catalyst
iron
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012186808A
Other languages
Japanese (ja)
Other versions
JP5921387B2 (en
Inventor
Yunosuke Nakahara
祐之輔 中原
Nakanori Hoshijin
央記 法師人
Seiji Moriuchi
誠治 森内
Hiroaki Okumura
博昭 奥村
Fumikazu Kimata
文和 木俣
Toyoshi Tsuda
豊史 津田
Seizo Miyata
清藏 宮田
Hideo Kameyama
秀雄 亀山
Yu Kaku
ユ 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Suzuki Motor Corp
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Mitsui Mining and Smelting Co Ltd
Suzuki Motor Corp
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Suzuki Motor Corp, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2012186808A priority Critical patent/JP5921387B2/en
Priority to CN201380024605.8A priority patent/CN104302392A/en
Priority to PCT/JP2013/072437 priority patent/WO2014034524A1/en
Priority to DE112013004202.9T priority patent/DE112013004202B4/en
Publication of JP2014042880A publication Critical patent/JP2014042880A/en
Application granted granted Critical
Publication of JP5921387B2 publication Critical patent/JP5921387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • B01D2255/702Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new catalyst for purifying an exhaust gas, which contains C-Fe-Ce, has durability against intense temperature change and also can show stable purification performance even though a flow rate of the exhaust gas changes.SOLUTION: The catalyst for purifying the exhaust gas has a structure in which a mixture containing carbon (C), iron (Fe) and cerium (Ce) is carried on an inorganic porous powdery carrier. A content of the mixture with respect to the inorganic porous powdery carrier is 10-300 mass%.

Description

本発明は、内燃機関から排出される排気ガスを浄化するために用いることができる排ガス浄化触媒に関する。   The present invention relates to an exhaust gas purification catalyst that can be used to purify exhaust gas discharged from an internal combustion engine.

ガソリンを燃料とする自動車の排気ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれる。前記炭化水素(HC)は酸化して水と二酸化炭素に転化させ、前記一酸化炭素(CO)は酸化して二酸化炭素に転化させ、前記窒素酸化物(NOx)は還元して窒素に転化させ、それぞれの有害成分を触媒で浄化する必要がある。
このような排気ガスを処理するための触媒(以下「排ガス浄化触媒」と称する)として、CO、HC及びNOxを酸化還元することができる3元触媒(Three way catalysts:TWC)が用いられている。当該3元触媒は、排気パイプのエンジンとマフラーの中間位置にコンバーターの形で取付けられるのが一般的である。
The exhaust gas of automobiles using gasoline as fuel contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). The hydrocarbon (HC) is oxidized and converted into water and carbon dioxide, the carbon monoxide (CO) is oxidized and converted into carbon dioxide, and the nitrogen oxide (NOx) is reduced and converted into nitrogen. It is necessary to purify each harmful component with a catalyst.
As a catalyst for treating such exhaust gas (hereinafter referred to as “exhaust gas purification catalyst”), a three-way catalyst (Three way catalysts: TWC) capable of oxidizing and reducing CO, HC and NOx is used. . The three-way catalyst is generally attached in the form of a converter at an intermediate position between the exhaust pipe engine and the muffler.

このような3元触媒としては、高い比表面積を有する耐火性酸化物多孔質体、例えば高い比表面積を有するアルミナ多孔質体に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属を担持し、これを基材、例えば耐火性セラミック又は金属製ハニカム構造で出来ているモノリス型(monolithic)基材に担持したり、或いは、耐火性粒子に担持したりしたものが知られている。   As such a three-way catalyst, a refractory oxide porous body having a high specific surface area, such as an alumina porous body having a high specific surface area, platinum (Pt), palladium (Pd), rhodium (Rh), etc. It is known to carry a noble metal and carry it on a substrate, for example, a monolithic substrate made of a refractory ceramic or a metal honeycomb structure, or on a refractory particle. Yes.

この種の3元触媒において、貴金属は、排気ガス中の炭化水素を酸化して二酸化炭素と水に変換し、一酸化炭素を酸化して二酸化炭素に変換する一方、窒素酸化物を窒素まで還元する機能を有しており、この両反応に対する触媒作用を同時に有効に生じさせるためには、燃料と空気の比(空燃比)を一定に(理論空燃比に)保つのが好ましい。
自動車等の内燃機関は、加速、減速、低速走行、高速走行等の運転状況に応じて空燃比は大きく変化するため、酸素センサー(ジルコニア)を用いてエンジンの作動条件によって変動する空燃比(A/F)を一定に制御している。しかし、このように空燃比(A/F)を制御するだけでは、触媒が十分に浄化触媒性能を発揮することができないため、触媒層自身にも空燃比(A/F)を制御する作用が求められる。そこで、空燃比の変化に起因して発生する触媒の浄化性能の低下を触媒自体の化学的作用により防止する目的で、触媒活性成分である貴金属に助触媒を加えた触媒が用いられている。
In this type of three-way catalyst, noble metals oxidize hydrocarbons in exhaust gas to convert them to carbon dioxide and water, oxidize carbon monoxide to convert to carbon dioxide, while reducing nitrogen oxides to nitrogen It is preferable to keep the ratio of fuel to air (air-fuel ratio) constant (to the stoichiometric air-fuel ratio) in order to effectively produce the catalytic action for both reactions at the same time.
In an internal combustion engine such as an automobile, the air-fuel ratio changes greatly depending on the operating conditions such as acceleration, deceleration, low-speed driving, and high-speed driving. Therefore, the air-fuel ratio (A) varies depending on the operating conditions of the engine using an oxygen sensor (zirconia). / F) is controlled to be constant. However, simply controlling the air-fuel ratio (A / F) in this way prevents the catalyst from fully exhibiting the purification catalyst performance, so that the catalyst layer itself also has the effect of controlling the air-fuel ratio (A / F). Desired. Therefore, a catalyst in which a promoter is added to a noble metal that is a catalytic active component is used for the purpose of preventing a reduction in the purification performance of the catalyst caused by a change in the air-fuel ratio by the chemical action of the catalyst itself.

このような助触媒として、還元雰囲気では酸素を放出し、酸化雰囲気では酸素を吸収する酸素ストレージ能(OSC:Oxygen Storage capacity)を有する助触媒(「OSC材」と称する)が知られている。例えばセリア(酸化セリウム、CeO2)や、セリア−ジルコニア複合酸化物などが、酸素ストレージ能を有するOSC材として知られている。 As such a co-catalyst, a co-catalyst (referred to as an “OSC material”) having an oxygen storage capacity (OSC) that releases oxygen in a reducing atmosphere and absorbs oxygen in an oxidizing atmosphere is known. For example, ceria (cerium oxide, CeO 2 ), ceria-zirconia composite oxide, and the like are known as OSC materials having oxygen storage ability.

ところで、触媒の価格のほとんどは貴金属が占めると言われるほど、貴金属の価格が高いため、貴金属に代わる新たな触媒活性成分の開発が行われている。
例えば、特許文献1(特開2005−296735号公報)には、セリア−ジルコニア複合酸化物を含有する担体上に酸化鉄を担持してなる触媒が開示されている。
また、特許文献2(特開2004−160433号公報)には、セリア、ジルコニア、アルミニウム、チタン及びマンガンからなる群より選択される少なくとも1種の金属と、鉄との複合酸化物からなる触媒が開示されている。
特許文献3(特開2008−18322号公報)には、酸化鉄がセリア−ジルコニア複合酸化物に分散して少なくとも部分的に固溶してなる構成の触媒が開示されている。
By the way, since it is said that noble metal occupies most of the price of a catalyst, since the price of noble metal is high, development of the new catalytic active component which replaces noble metal is performed.
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-296735) discloses a catalyst in which iron oxide is supported on a carrier containing a ceria-zirconia composite oxide.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-160433) discloses a catalyst made of a complex oxide of iron and at least one metal selected from the group consisting of ceria, zirconia, aluminum, titanium and manganese. It is disclosed.
Patent Document 3 (Japanese Patent Application Laid-Open No. 2008-18322) discloses a catalyst having a structure in which iron oxide is dispersed in a ceria-zirconia composite oxide and at least partially dissolved.

さらに特許文献4(特開2012−50980号公報)には、炭素(C)−鉄(Fe)−セリウム(Ce)からなる排ガス浄化触媒が開示されている。   Furthermore, Patent Document 4 (Japanese Patent Laid-Open No. 2012-50980) discloses an exhaust gas purification catalyst made of carbon (C) -iron (Fe) -cerium (Ce).

特開2005−296735号公報JP 2005-296735 A 特開2004−160433号公報JP 2004-160433 A 特開2008−18322号公報JP 2008-18322 A 特開2012−50980号公報JP 2012-50980 A

自動車用の触媒には、激しい温度変化に対する耐久性のほか、排ガスの流速が変化しても安定した浄化性能を発揮できる性能が求められる。前記排ガス浄化触媒の耐久性を保証するため、大気中で、900〜1,000℃の高温で長時間加熱処理すると、前記排ガス触媒はシンタリングにより、表面積が減少し、触媒活性が低下する傾向がある。とりわけ、触媒活性の高いC−Fe−Ce触媒は、シンタリング傾向が強いという問題があった。   Catalysts for automobiles are required to have the ability to exhibit stable purification performance even when the exhaust gas flow rate changes, in addition to durability against severe temperature changes. In order to guarantee the durability of the exhaust gas purification catalyst, when the heat treatment is performed at a high temperature of 900 to 1,000 ° C. for a long time in the atmosphere, the exhaust gas catalyst tends to have a reduced surface area due to sintering and a decrease in catalytic activity. There is. In particular, the C—Fe—Ce catalyst having a high catalytic activity has a problem of strong sintering tendency.

そこで本発明の目的は、C−Fe−Ceを含有する排ガス浄化触媒に関し、激しい温度変化に対する耐久性のほか、排ガスの流速が変化しても安定した浄化性能を発揮できる性能を備えた、新たな排ガス用触媒を提供することにある。   Therefore, an object of the present invention relates to an exhaust gas purifying catalyst containing C-Fe-Ce, and has a new ability to exhibit a stable purifying performance even when the exhaust gas flow rate changes, in addition to durability against severe temperature changes. It is to provide a catalyst for exhaust gas.

上記目的を達成するため、本発明は、炭素(C)と鉄(Fe)とセリウム(Ce)とを含む混合物が、無機多孔質粉末状担体に担持されてなる構成を備えたことを特徴とする排ガス浄化触媒を提案する。   In order to achieve the above object, the present invention is characterized in that a mixture containing carbon (C), iron (Fe) and cerium (Ce) is supported on an inorganic porous powder carrier. An exhaust gas purification catalyst is proposed.

本発明が提案する排ガス浄化触媒は、炭素(C)と鉄(Fe)とセリウム(Ce)とを含む混合物を、無機多孔質粉末状担体に担持させたことで、900〜1,000℃の高温に曝されてもシンタリングが抑制されるようになり、その結果、耐久性が高く、排ガスの流速が変化しても高いレベルで安定した浄化性能を発揮することができるようになった。
このように高温に曝されてもシンタリングが抑制される原因としては、無機多孔質粉末状担体の表面には微小な細孔が多数存在し、この各細孔中に進入した状態で、炭素(C)と鉄(Fe)とセリウム(Ce)とを含む混合物が存在するため、隣接する混合物との接触が妨げられる結果、シンタリングが抑制されるものと考えることができる。また、炭素(C)と鉄(Fe)とセリウム(Ce)とを含む混合物が無機多孔質粉末状担体上に分散され反応有効面積が上昇し、排ガスの流速が変化しても安定した浄化性能を発揮できたと考えることができる。
The exhaust gas purifying catalyst proposed by the present invention has a mixture of carbon (C), iron (Fe), and cerium (Ce) supported on an inorganic porous powder carrier. Sintering is suppressed even when exposed to high temperatures. As a result, durability is high, and stable purification performance can be exhibited at a high level even when the flow rate of exhaust gas changes.
The reason for the suppression of sintering even when exposed to high temperatures is that there are many fine pores on the surface of the inorganic porous powder-like carrier, and carbon enters the pores. Since there is a mixture containing (C), iron (Fe), and cerium (Ce), it can be considered that sintering is suppressed as a result of hindering contact with the adjacent mixture. In addition, a mixture containing carbon (C), iron (Fe), and cerium (Ce) is dispersed on the inorganic porous powder carrier, the effective reaction area is increased, and the purification performance is stable even if the exhaust gas flow rate changes. Can be considered to have been able to demonstrate.

実施例の触媒の性能試験で用いたモデルガス濃度を測定する装置の概略図である。It is the schematic of the apparatus which measures the model gas concentration used in the performance test of the catalyst of an Example. 図1の装置における反応管の概略図である。It is the schematic of the reaction tube in the apparatus of FIG. 実施例におけるT50の測定値を、炭素+鉄、セリウム、アルミナを頂点とする三角組成等活性線図として示した図である。It is the figure which showed the measured value of T50 in an Example as an activity diagram of a triangular composition etc. which makes carbon + iron, cerium, and alumina apexes.

次に、本発明を実施するための形態について説明する。但し、本発明が次に説明する実施形態に限定されるものではない。   Next, the form for implementing this invention is demonstrated. However, the present invention is not limited to the embodiment described below.

<排ガス浄化触媒>
本発明の実施形態の一例としての排ガス浄化触媒(「本触媒」と称する)は、炭素(C)と鉄(Fe)とセリウム(Ce)とを含む混合物が、無機多孔質粉末状担体に担持されてなる構成を備えた排ガス浄化触媒である。
<Exhaust gas purification catalyst>
An exhaust gas purification catalyst (referred to as “the present catalyst”) as an example of an embodiment of the present invention is a mixture containing carbon (C), iron (Fe), and cerium (Ce) supported on an inorganic porous powder carrier. This is an exhaust gas purification catalyst having the above structure.

ここで、炭素(C)と鉄(Fe)とセリウム(Ce)とを含む上記混合物としては、炭化鉄(Fe3C)、酸化鉄及び酸化セリウムを含有する混合物を挙げることができる。
この際、炭化鉄(Fe3C)、酸化鉄及び酸化セリウムは、それぞれ酸化・還元作用を示す活性点として働く。中でも、FeCは、酸化・還元作用を示す活性点として高い活性を示す。しかしその反面、FeCの単体では、耐熱性が低いために、例えば900℃〜1,000℃の耐久処理を行うと、その大部分が酸化されてFe等の酸化物となり、活性は大幅に低下することになるのが通常である。しかし、本触媒は、炭化鉄(Fe3C)、酸化鉄及び酸化セリウムを含有する混合物として、無機多孔質粉末状担体に担持させた結果、このような耐久処理を行った後でも高い触媒活性を発揮することができる。
Here, examples of the mixture containing carbon (C), iron (Fe), and cerium (Ce) include a mixture containing iron carbide (Fe 3 C), iron oxide, and cerium oxide.
At this time, iron carbide (Fe 3 C), iron oxide, and cerium oxide each act as an active point that exhibits an oxidation / reduction action. Among these, Fe 3 C shows high activity as an active site showing oxidation / reduction action. On the other hand, since the heat resistance of Fe 3 C alone is low, for example, when durability treatment at 900 ° C. to 1,000 ° C. is performed, most of it is oxidized to an oxide such as Fe 2 O 3 , Usually the activity will be significantly reduced. However, the present catalyst is a mixture containing iron carbide (Fe 3 C), iron oxide and cerium oxide. As a result of being supported on an inorganic porous powder carrier, the catalyst has high catalytic activity even after such durability treatment. Can be demonstrated.

本触媒において、前記無機多孔質粉末状担体(100質量%)に対する前記混合物の含有量は10.0〜300質量%であるのが好ましく、中でも20.0質量%以上或いは180質量%以下であるのが特に好ましく、その中でも30質量%以上或いは120質量%以下であるのが特に好ましい。
本触媒において、無機多孔質粉末状担体に対する混合物の含有量が300質量%以下であれば、複合炭酸化物粒子が密に接触して存在することを防ぐことができ、高温に曝された際のシンタリングを防ぐことができるから、有効面積の減少による浄化率の低下を抑えることができる。他方、10.0質量%以上であれば、触媒粒子の数を維持することができ、有効な活性点の存在により浄化率を維持することができる。
In the present catalyst, the content of the mixture with respect to the inorganic porous powder carrier (100% by mass) is preferably 10.0 to 300% by mass, and more preferably 20.0% by mass or more or 180% by mass or less. Of these, it is particularly preferable that the content is 30% by mass or more and 120% by mass or less.
In the present catalyst, if the content of the mixture with respect to the inorganic porous powder carrier is 300% by mass or less, the composite carbonate particles can be prevented from being in close contact with each other, and when exposed to a high temperature. Since sintering can be prevented, a reduction in the purification rate due to a decrease in effective area can be suppressed. On the other hand, if it is 10.0 mass% or more, the number of catalyst particles can be maintained, and the purification rate can be maintained by the presence of effective active sites.

また、前記混合物に含有される、CとFeとCe原子の質量比率(C:Fe:Ce)が、C、Fe及びCeの合計量(100質量%)に対して0.01〜1.4質量%:0.1〜98.9質量%:0.1〜98.9質量%であるのが好ましい。   Moreover, the mass ratio (C: Fe: Ce) of C, Fe, and Ce atoms contained in the mixture is 0.01 to 1.4 with respect to the total amount (100% by mass) of C, Fe, and Ce. It is preferable that it is the mass%: 0.1-98.9 mass%: 0.1-98.9 mass%.

かかる観点から、炭素(C)の含有量は、C、Fe及びCeの合計量(100質量%)に対して0.01〜1.4質量%であるのが好ましく、中でも0.3質量%以上或いは1.3質量%以下であるのがさらに好ましい。
鉄(Fe)の含有量は、C、Fe及びCeの合計量(100質量%)に対して0.1〜98.9質量%であるのが好ましく、中でも7.8質量%以上或いは98.7質量%以下であるのが特に好ましく、その中でも26.7質量%以上或いは90.8質量%以下であるのがさらに好ましい。
セリウム(Ce)の含有量は、C、Fe及びCeの合計量(100質量%)に対して0.1〜98.9質量%であるのが好ましく、中でも0.1質量%以上或いは92.1質量%以下であるのが特に好ましく、その中でも7.9質量%以上或いは73.0質量%以下であるのがさらに好ましい。
From this viewpoint, the content of carbon (C) is preferably 0.01 to 1.4% by mass with respect to the total amount (100% by mass) of C, Fe and Ce, and more preferably 0.3% by mass. More preferably, the content is 1.3% by mass or less.
The content of iron (Fe) is preferably 0.1 to 98.9% by mass with respect to the total amount (100% by mass) of C, Fe and Ce, and above all, 7.8% by mass or 98. It is particularly preferably 7% by mass or less, and more preferably 26.7% by mass or more or 90.8% by mass or less.
The content of cerium (Ce) is preferably 0.1 to 98.9% by mass with respect to the total amount (100% by mass) of C, Fe and Ce. The content is particularly preferably 1% by mass or less, and more preferably 7.9% by mass or more or 73.0% by mass or less.

また、前記混合物は、さらにCoを含有していてもよい。Coを含有することにより耐熱性を向上することができる。
Coの含有量は、C、Fe及びCeの合計量(100質量%)に対して0.1質量%より多く、且つ15質量%より少ないことが好ましく、中でも5質量%以上或いは10質量%以下であるのが好ましい。
The mixture may further contain Co. By containing Co, heat resistance can be improved.
The Co content is preferably more than 0.1% by mass and less than 15% by mass with respect to the total amount (100% by mass) of C, Fe and Ce, and more preferably 5% by mass or more or 10% by mass or less. Is preferred.

(無機多孔質粉末状担体)
無機多孔質粉末状担体としては、例えばシリカ、アルミナおよびチタニア化合物から成る群から選択される化合物、或いは、セリア−ジルコニア複合酸化物などのOSC材からなる無機多孔質粉末状担体を挙げることができる。
より具体的には、例えばアルミナ、シリカ、シリカ−アルミナ、アルミノ−シリケート類、アルミナ−ジルコニア、アルミナ−クロミアおよびアルミナ−セリアから選択される化合物からなる多孔質体粉末を挙げることができる。
(Inorganic porous powder carrier)
Examples of the inorganic porous powder carrier include a compound selected from the group consisting of silica, alumina, and a titania compound, or an inorganic porous powder carrier made of an OSC material such as ceria-zirconia composite oxide. .
More specifically, for example, a porous powder composed of a compound selected from alumina, silica, silica-alumina, alumino-silicates, alumina-zirconia, alumina-chromia and alumina-ceria can be mentioned.

アルミナとしては、比表面積が50m/gより大きなアルミナ、例えばγ,δ,θ,αアルミナを使用することができる。中でも、γもしくはθアルミナを用いるのが好ましい。なお、アルミナについては、耐熱性を上げるため、微量のランタン(La)を含むこともできる。 As the alumina, alumina having a specific surface area larger than 50 m 2 / g, for example, γ, δ, θ, α alumina can be used. Among them, it is preferable to use γ or θ alumina. In addition, about alumina, trace amount lanthanum (La) can also be included in order to improve heat resistance.

OSC材としては、例えばセリウム化合物、ジルコニウム化合物、セリア・ジルコニア複合酸化物などを挙げることができる。   Examples of the OSC material include a cerium compound, a zirconium compound, and a ceria / zirconia composite oxide.

(他の成分)
本触媒は、前記混合物に加えて貴金属が、無機多孔質粉末状担体に担持されてなる構成を備えたものであってもよい。
貴金属の担持量は担持する触媒粉末質量(100質量%)に対して0.01質量%以上であるのが好ましく、中でも0.41質量%以上であるのがさらに好ましい。
(Other ingredients)
The present catalyst may have a structure in which a noble metal is supported on an inorganic porous powder carrier in addition to the mixture.
The amount of the noble metal supported is preferably 0.01% by mass or more, more preferably 0.41% by mass or more, based on the mass of the catalyst powder to be supported (100% by mass).

この際、貴金属としては、パラジウム(Pd)、白金(Pt)、ロジウム(Rh)を挙げることができる。中でも、パラジウム(Pd)、白金(Pt)が顕著に好ましい。   In this case, examples of the noble metal include palladium (Pd), platinum (Pt), and rhodium (Rh). Of these, palladium (Pd) and platinum (Pt) are significantly preferred.

(製法)
次に、本触媒の製造方法の一例について説明する。但し、かかる製造方法に限定されるものではない。
(Manufacturing method)
Next, an example of a method for producing the present catalyst will be described. However, it is not limited to this manufacturing method.

例えば、鉄化合物とセリウム化合物の溶液に無機多孔質粉末状担体を加えて、該無機多孔質粉末状担体に鉄化合物及びセリウム化合物を付着させた後、大気中で加熱焼成することにより、該無機多孔質粉末状担体に酸化鉄及び酸化セリウムを担持させた後、一酸化炭素(CO)ガス等の反応性炭素含有ガス雰囲気下で加熱することにより本触媒を製造することができる。   For example, an inorganic porous powder carrier is added to a solution of an iron compound and a cerium compound, the iron compound and the cerium compound are attached to the inorganic porous powder carrier, and then heated and fired in the atmosphere to thereby produce the inorganic porous powder carrier. The catalyst can be produced by supporting iron oxide and cerium oxide on a porous powder carrier and then heating in a reactive carbon-containing gas atmosphere such as carbon monoxide (CO) gas.

この際、無機多孔質粉末状担体に鉄化合物及びセリウム化合物を付着させる方法としては、例えば鉄化合物とセリウム化合物の溶液に無機多孔質粉末状担体を加えた後、撹拌しながら、アンモニア水や炭酸ナトリウム等のアルカリ性物質を滴下し、PHを10〜11にすることにより、FeとCeの複合水酸化物、又は複合炭酸塩を沈殿させる。沈殿物を水洗及び、乾燥させる方法を挙げることができる。但し、かかる方法に限定するものではない。
また、反応性炭素含有ガス雰囲気下で加熱する方法のほかに、炭素含有物を共存させて不活性ガス雰囲気下で加熱する方法を採用することも可能である。
At this time, as a method for attaching the iron compound and the cerium compound to the inorganic porous powder carrier, for example, the inorganic porous powder carrier is added to the solution of the iron compound and the cerium compound, and then stirred with ammonia water or carbonic acid. An alkaline substance such as sodium is dropped to adjust the pH to 10 to 11, thereby precipitating a composite hydroxide of Fe and Ce or a composite carbonate. A method of washing the precipitate with water and drying can be mentioned. However, it is not limited to this method.
In addition to the method of heating in a reactive carbon-containing gas atmosphere, it is also possible to employ a method of heating in an inert gas atmosphere in the presence of a carbon-containing material.

このように、無機多孔質粉末状担体上に、溶液状態でFe化合物、Ce化合物を付着させるため、Fe及びCeが微小な細孔の中まで進入することができ、非常に分散状態の良い触媒を得ることができる。
また、COガス等の反応性炭素含有ガス雰囲気下で加熱する、言い換えれば、気相法によりCO処理すると、鉄酸化物とセリウム酸化物の混合物が無機多孔質粉末状担体に均一に分散された状態で担持させることができるばかりか、鉄炭化物としての炭素(C)を均一に分散させることができる。
As described above, since the Fe compound and Ce compound are attached in a solution state on the inorganic porous powdery support, the catalyst can enter Fe and Ce into minute pores and has a very good dispersion state. Can be obtained.
In addition, when heated in a reactive carbon-containing gas atmosphere such as CO gas, in other words, when CO treatment was performed by a vapor phase method, a mixture of iron oxide and cerium oxide was uniformly dispersed in the inorganic porous powder carrier. In addition to being supported in a state, carbon (C) as iron carbide can be uniformly dispersed.

<本触媒構造体>
本触媒を含む触媒層を基材に形成して排ガス浄化触媒構造体(「本触媒構造体」と称する)を作製することができる。
<This catalyst structure>
An exhaust gas purification catalyst structure (referred to as “the present catalyst structure”) can be produced by forming a catalyst layer containing the present catalyst on a substrate.

例えば、ハニカム状(モノリス)構造を呈している基材の表面に、本触媒を含む触媒組成物をウォッシュコートするなどして触媒層を形成して触媒構造体を形成することができる。   For example, the catalyst structure can be formed by forming a catalyst layer on the surface of a substrate having a honeycomb-like (monolith) structure by, for example, wash-coating a catalyst composition containing the present catalyst.

(基材)
本触媒構造体において、基材の材質としては、セラミックス等の耐火性材料や金属材料を挙げることができる。
セラミック製基材の材質としては、耐火性セラミック材料、例えばコージライト、コージライト−アルファアルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ−シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。
金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などを挙げることができる。
(Base material)
In the present catalyst structure, examples of the material of the base material include refractory materials such as ceramics and metal materials.
Examples of the material of the ceramic substrate include refractory ceramic materials such as cordierite, cordierite-alpha alumina, silicon nitride, zircon mullite, spojumen, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, Examples thereof include zircon, petalite, alpha alumina, and aluminosilicates.
The material of the metal substrate can include refractory metals such as other suitable corrosion resistant alloys based on stainless steel or iron.

基材の形状は、ハニカム状、ペレット状、球状を挙げることができる。   Examples of the shape of the substrate include a honeycomb shape, a pellet shape, and a spherical shape.

ハニカム材料としては、一般に、例えばセラミックス等のコージェライト質のものが多く用いられる。また、フェライト系ステンレス等の金属材料からなるハニカムを用いることもできる。
ハニカム形状の基材を用いる場合、例えば基材内部を流体が流通するように、基材内部に平行で微細な気体流通路、すなわちチャンネルを多数有するモノリス型基材を使用することができる。この際、モノリス型基材の各チャンネル内壁表面に、触媒組成物をウォッシュコートなどによってコートして触媒層を形成することができる。
In general, a cordierite material such as ceramics is often used as the honeycomb material. A honeycomb made of a metal material such as ferritic stainless steel can also be used.
When a honeycomb-shaped substrate is used, for example, a monolith type substrate having a large number of parallel and fine gas flow passages, that is, channels, can be used so that fluid flows through the substrate. At this time, the catalyst layer can be formed by coating the inner wall surface of each channel of the monolith substrate with the catalyst composition by wash coating or the like.

(触媒組成物)
本触媒構造体の触媒層を形成するための触媒組成物としては、上記本触媒のほかに、さらに必要に応じて安定剤、その他の成分を含有してもよい。
(Catalyst composition)
The catalyst composition for forming the catalyst layer of the present catalyst structure may further contain a stabilizer and other components as required in addition to the present catalyst.

例えば燃料リッチ雰囲気下でパラジウム酸化物(PdOx)の金属への還元を抑制することを目的として、安定剤を配合することができる。
この種の安定剤としては、例えばアルカリ土類金属やアルカリ金属を挙げることができる。中でも、マグネシウム、バリウム、カルシウムおよびストロンチウム、好適にはストロンチウムおよびバリウムから成る群から選択される金属のうちの一種又は二種以上を選択可能である。その中でも、PdOxが還元される温度が一番高い、つまり還元されにくいという観点から、バリウムが好ましい。
For example, a stabilizer can be blended for the purpose of suppressing reduction of palladium oxide (PdOx) to metal in a fuel-rich atmosphere.
Examples of this type of stabilizer include alkaline earth metals and alkali metals. Among them, it is possible to select one or more metals selected from the group consisting of magnesium, barium, calcium and strontium, preferably strontium and barium. Among these, barium is preferable from the viewpoint that the temperature at which PdOx is reduced is highest, that is, it is difficult to reduce.

また、バインダ成分など、公知の添加成分を含んでいてもよい。
バインダ成分としては、無機系バインダ、例えばアルミナゾル、シリカゾル、ジルコニアゾル等の水溶性溶液を使用することができる。これらは、焼成すると無機酸化物の形態をとることができる。
Moreover, you may contain well-known additive components, such as a binder component.
As the binder component, an inorganic binder, for example, an aqueous solution such as alumina sol, silica sol, or zirconia sol can be used. These can take the form of inorganic oxides upon firing.

(製法)
本触媒構造体を製造するための一例として、本触媒を水に加えて混合し、ボールミルなどで撹拌してスラリーとし、このスラリー中に、例えばセラミックハニカム体などの基材を浸漬し、これを引き上げて焼成して、基材表面に触媒層を形成する方法などを挙げることができる。
ただし、本触媒を製造するための方法は公知のあらゆる方法を採用することが可能であり、上記例に限定するものではない。
(Manufacturing method)
As an example for producing the present catalyst structure, the present catalyst is added to water and mixed, stirred with a ball mill or the like to form a slurry, and a substrate such as a ceramic honeycomb body is immersed in this slurry, A method of forming a catalyst layer on the surface of the substrate by pulling up and firing can be used.
However, any known method can be adopted as a method for producing the present catalyst, and the present invention is not limited to the above example.

<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.

以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。   Hereinafter, the present invention will be further described in detail based on the following examples and comparative examples.

<実施例1〜28、比較例1〜10>
硝酸鉄(II)(9水和物)及び硝酸セリウム(III)(6水和物)を純水に溶解した後、攪拌しながらアルミナ粉末(m001)またはOSC材(セリア−ジルコニア複合酸化物)を投入し、混合溶液を作製した。
この際、使用した硝酸鉄(II)(9水和物)、硝酸セリウム(III)(6水和物)、アルミナ粉末及びOSC材の質量は、硝酸鉄(II)(9水和物)に含有される鉄原子の質量、硝酸セリウム(III)(6水和物)に含有されるセリウム原子の質量、アルミナ、OSC材の質量が表1の組成になるように調整した。
<Examples 1 to 28, Comparative Examples 1 to 10>
After iron nitrate (II) (9 hydrate) and cerium nitrate (III) (hexahydrate) are dissolved in pure water, alumina powder (m001) or OSC material (ceria-zirconia composite oxide) is stirred with stirring. Was added to prepare a mixed solution.
At this time, the masses of iron nitrate (II) (9 hydrate), cerium nitrate (III) (hexahydrate), alumina powder and OSC material used were iron nitrate (II) (9 hydrate). The mass of iron atoms contained, the mass of cerium atoms contained in cerium nitrate (III) (hexahydrate), and the masses of alumina and OSC material were adjusted to the compositions shown in Table 1.

次に、該混合溶液中にアンモニア水をpH=10〜11になるまで滴下し、攪拌機の回転速度600rpmで3時間攪拌した。その後、その溶液をろ過して、沈殿を水で2〜3回水洗してから、その沈殿を120℃の乾燥機内で乾燥させた。次いで、大気雰囲気下、500℃で3時間焼成した後、乳鉢を用いて粉砕し、COガス雰囲気下、525℃で4時間加熱して、炭化鉄(Fe3C)、酸化鉄及び酸化セリウムを含む混合物がアルミナ又はOSC材に担持されてなる構成を備えた、C-Fe-Ce/アルミナ触媒又はC-Fe-Ce/OSC材触媒を得た。 Next, ammonia water was dropped into the mixed solution until pH = 10 to 11, and the mixture was stirred for 3 hours at a rotation speed of a stirrer of 600 rpm. Thereafter, the solution was filtered, and the precipitate was washed with water 2-3 times, and then the precipitate was dried in a dryer at 120 ° C. Next, after firing at 500 ° C. for 3 hours in an air atmosphere, pulverization is performed using a mortar, and heating is performed at 525 ° C. for 4 hours in a CO gas atmosphere, thereby adding iron carbide (Fe 3 C), iron oxide, and cerium oxide. A C—Fe—Ce / alumina catalyst or a C—Fe—Ce / OSC material catalyst having a configuration in which the mixture containing the catalyst was supported on alumina or an OSC material was obtained.

(各成分の定量方法)
鉄原子の質量及びセリウム原子の質量、及びアルミナの質量、及びOSC材質量はそれぞれ配合量と同じであるため、特に定量することは行わなかった。
他方、炭素量は炭素・硫黄分析計(堀場製作所製)によって測定することができ、配合量×500℃以上1000℃以下の加熱処理後のC量係数(19%)により求められることが分かった。さらに、炭素量は、高熱反応により減少することがあるため、1,000℃5時間の耐久処理を行った後の炭素量を測定したところ、上記の実施例では500℃以上の加熱をしているため、前記耐久処理前後で炭素量に変化は認められなかった。
(Quantitative method of each component)
Since the mass of the iron atom, the mass of the cerium atom, the mass of alumina, and the mass of the OSC material were the same as the blending amount, no particular quantification was performed.
On the other hand, the carbon content can be measured by a carbon / sulfur analyzer (manufactured by Horiba Seisakusho), and it was found that the carbon content was obtained from the blending amount × 500 ° C. to 1000 ° C. after the heat treatment (19%). . Furthermore, since the amount of carbon may decrease due to a high-temperature reaction, the amount of carbon after the endurance treatment at 1,000 ° C. for 5 hours was measured. In the above example, heating was performed at 500 ° C. or more. Therefore, no change in carbon content was observed before and after the endurance treatment.

Figure 2014042880
Figure 2014042880

(耐久試験方法)
排気ガス浄化触媒を表2に示す耐久条件で処理し、耐久性を評価した。
(Durability test method)
The exhaust gas purification catalyst was treated under the durability conditions shown in Table 2, and the durability was evaluated.

Figure 2014042880
Figure 2014042880

(触媒の性能試験方法)
表3に示したモデルガスを用いて触媒の性能試験を行った。
(Catalyst performance test method)
Using the model gas shown in Table 3, a catalyst performance test was conducted.

Figure 2014042880
Figure 2014042880

図1に、NOxやCOやH、HCとしてCを含むモデルガスの濃度を測定する装置の概略図を示す。また、上記測定装置の一部である反応管の概略図を図2に示す。
図1に示すように、標準ガスボンベ1、マスフローコントローラー2、水タンク3、水ポンプ4、蒸発器5、反応管6、冷却器8、ガス分析装置9などで構成される測定装置は、先ず標準ガスボンベ1から各モデルガスを発生させ、マスフローコントローラー2によりガスを混合し、水ポンプ4から導入された水を蒸発器5で気化させて、蒸発器5で各ガスを合流させ、反応管6へ導入する。そして、モデルガスが入った反応管6を電気加熱炉7により加熱する。
各モデルガスは、反応管6内の触媒10により酸化または還元される。反応後のガスは、冷却器8において水蒸気が除かれた後、ガス分析装置9で組成が分析される。
ガス分析装置9は、ガスクロマトグラフィーで、O、CO、NO、CO、HC(C)、H等の定量分析を行うことができ、NOx、NO、NO、CO等は、NOx分析計で定量的に分析することができる。
FIG. 1 shows a schematic diagram of an apparatus for measuring the concentration of a model gas containing C 3 H 3 as NOx, CO, H 2 , or HC. Moreover, the schematic of the reaction tube which is a part of the said measuring apparatus is shown in FIG.
As shown in FIG. 1, a measuring apparatus including a standard gas cylinder 1, a mass flow controller 2, a water tank 3, a water pump 4, an evaporator 5, a reaction tube 6, a cooler 8, a gas analyzer 9, etc. Each model gas is generated from the gas cylinder 1, the gas is mixed by the mass flow controller 2, the water introduced from the water pump 4 is vaporized by the evaporator 5, and the respective gases are merged by the evaporator 5, and are supplied to the reaction tube 6. Introduce. Then, the reaction tube 6 containing the model gas is heated by the electric heating furnace 7.
Each model gas is oxidized or reduced by the catalyst 10 in the reaction tube 6. The gas after the reaction is analyzed for composition by the gas analyzer 9 after the water vapor is removed in the cooler 8.
The gas analyzer 9 can perform quantitative analysis of O 2 , CO, N 2 O, CO 2 , HC (C 3 H 6 ), H 2, etc. by gas chromatography, NOx, NO, NO 2 , CO and the like can be quantitatively analyzed with a NOx analyzer.

上記測定装置を用いて、触媒の浄化性能は以下の算出式により各ガスの転化率として評価した。
NOx転化率={(入口のNOモル流量十NOモル流量)−(出口のNOモル流量十NOモル流量)}/(入口のNOモル流量十NOモル流量)×100%
Using the above measuring apparatus, the purification performance of the catalyst was evaluated as the conversion rate of each gas by the following calculation formula.
NOx conversion ratio = {(NO molar flow rate at the inlet + NO 2 molar flow rate) − (NO molar flow rate at the outlet + NO 2 molar flow rate)} / (NO molar flow rate at the inlet + NO 2 molar flow rate) × 100%

本触媒は、配合比率として、COガス雰囲気下で加熱処理して製造されるため、表面にアモルファスCが付着するので、FeCの化学量論的な炭素比率より多くのC量が測定されることがある。そこで、安定した触媒性能を比較するためには、耐久処理を行った触媒について評価するのが望ましい。
そこで、必要に応じて1,000℃5時間の耐久処理を行った後、NOxの転化率及びNOxの転化率が50%となる温度(T50)を測定した。
Since this catalyst is manufactured by heat treatment in a CO gas atmosphere as a blending ratio, amorphous C adheres to the surface, so that a larger amount of C than the stoichiometric carbon ratio of Fe 3 C is measured. Sometimes. Therefore, in order to compare stable catalyst performance, it is desirable to evaluate a catalyst that has been subjected to durability treatment.
Therefore, after performing an endurance treatment at 1,000 ° C. for 5 hours as necessary, the NOx conversion rate and the temperature (T50) at which the NOx conversion rate becomes 50% were measured.

(アルミナ粉末上にC−Fe−Ce触媒を分散させる効果の検討)
アルミナ粉末上にC−Fe−Ceを分散させた触媒のNOxの転化率が50%となる温度(T50)を測定した結果を表4に示す。
(Examination of the effect of dispersing C-Fe-Ce catalyst on alumina powder)
Table 4 shows the results of measuring the temperature (T50) at which the NOx conversion rate of the catalyst in which C—Fe—Ce is dispersed on alumina powder becomes 50%.

Figure 2014042880
Figure 2014042880

アルミナ粉末上に分散させた触媒は、耐久処理後もT50が低いことが分かった。これはアルミナ上に分散させることでシンタリングが抑制されたものと考えられる。
また、SV値を変化させた結果も合わせて表4に示している。アルミナ上に分散させた触媒は高SV下でもT50が低く活性が高いことが分かった。
The catalyst dispersed on the alumina powder was found to have a low T50 even after endurance treatment. It is considered that the sintering was suppressed by dispersing on alumina.
Table 4 also shows the results of changing the SV value. The catalyst dispersed on alumina was found to have a low T50 and high activity even under high SV.

(OSC材上にC−Fe−Ce触媒を分散させる効果の検討)
OSC材上にC−Fe−Ceを分散させた触媒のNOxの転化率が50%となる温度(T50)を測定した結果を表5に示す。
(Examination of the effect of dispersing the C—Fe—Ce catalyst on the OSC material)
Table 5 shows the results of measuring the temperature (T50) at which the NOx conversion rate of the catalyst in which C—Fe—Ce is dispersed on the OSC material is 50%.

Figure 2014042880
Figure 2014042880

表5の結果より、OSC材上にC−Fe−Ceを分散させた触媒は、アルミナ粉末上にC−Fe−Ceを分散させた触媒以上にT50が低く、担体に分散させていない触媒よりも明らかにT50が低いことが分かった。   From the results of Table 5, the catalyst in which C—Fe—Ce is dispersed on the OSC material has a lower T50 than the catalyst in which C—Fe—Ce is dispersed on the alumina powder, and the catalyst not dispersed on the carrier. It was also clear that T50 was low.

(良好なT50を示す組成範囲の検討)
1,000℃5時間の耐久処理を行った後の触媒の比率を表6に示した。
また、前記、触媒性能の評価方法により、NOxの転化率が50%となる温度(T50)を測定した結果を表6に合わせて示した。
(Examination of composition range showing good T50)
Table 6 shows the ratio of the catalyst after the endurance treatment at 1,000 ° C. for 5 hours.
Table 6 also shows the results of measuring the temperature (T50) at which the conversion rate of NOx becomes 50% by the above-described method for evaluating catalyst performance.

Figure 2014042880
Figure 2014042880

表6のT50測定値を、株式会社ライトストーンのOriginPro7.5グラフ作成ソフトを利用し、炭素+鉄、セリウム、アルミナを頂点とする三角組成等活性線図を作成し、T50が725℃、750℃、775℃、800℃、850℃、900℃、950℃となる組成を線(等活性温度線)で結んだ。その三角線図を図3に示す。
その結果、アルミナ(100質量%)に対する触媒成分(C+Fe+Ce)の比率は、12.3〜268質量%が好ましく、中でも21.4〜177質量%が好ましく、その中でも特に34.4〜116質量%が好ましい。また、T50が最低となる最適組成は、(炭素+鉄)、セリウム、アルミナがそれぞれ、18.50質量%、18.55質量%、62.94質量%であった。
このような結果から、無機多孔質粉末状担体(100質量%)に対する前記混合物の含有量は10.0〜300質量%であるのが好ましく、中でも20.0質量%以上或いは180質量%以下であるのが特に好ましく、その中でも30質量%以上或いは120質量%以下であるのが特に好ましいと考えることができる。
Using the Origin Pro 7.5 graph creation software of Lightstone Co., Ltd., the T50 measurement value in Table 6 was created, and an activity diagram such as a triangular composition with carbon + iron, cerium, and alumina as the vertices was created. T50 was 725 ° C, 750 Compositions of 750 ° C., 775 ° C., 800 ° C., 850 ° C., 900 ° C., and 950 ° C. were connected by lines (isoactive temperature lines). The triangular diagram is shown in FIG.
As a result, the ratio of the catalyst component (C + Fe + Ce) to alumina (100% by mass) is preferably 12.3 to 268% by mass, more preferably 21.4 to 177% by mass, and particularly 34.4 to 116% by mass. Is preferred. Moreover, the optimal composition with which T50 becomes the lowest was 18.50 mass%, 18.55 mass%, and 62.94 mass%, respectively (carbon + iron), cerium, and alumina.
From such results, the content of the mixture with respect to the inorganic porous powder carrier (100% by mass) is preferably 10.0 to 300% by mass, and more preferably 20.0% by mass or more or 180% by mass or less. It is particularly preferable that the content is 30% by mass or more or 120% by mass or less.

また、以上の結果及びこれまで行ってきた試験結果からすると、炭素(C)の含有量は、C、Fe及びCeの合計量(100質量%)に対して0.01〜1.4質量%であるのが好ましく、中でも0.3〜1.3であるのがさらに好ましいと考えることができる。鉄(Fe)の含有量は、C、Fe及びCeの合計量(100質量%)に対して0.1〜98.9質量%であるのが好ましく、中でも7.8〜98.7質量%であるのが特に好ましく、その中でも26.7〜90.8質量%であるのがさらに好ましいと考えることができる。セリウム(Ce)の含有量は、C、Fe及びCeの合計量(100質量%)に対して0.1〜98.9質量%であるのが好ましく、中でも0.1〜92.1質量%であるのが特に好ましく、その中でも7.9〜73.0質量%であるのがさらに好ましいと考えることができる。   Further, based on the above results and the test results that have been conducted so far, the content of carbon (C) is 0.01 to 1.4% by mass with respect to the total amount (100% by mass) of C, Fe and Ce. It is preferable that 0.3 to 1.3 is more preferable. The content of iron (Fe) is preferably 0.1 to 98.9% by mass with respect to the total amount (100% by mass) of C, Fe and Ce, and particularly 7.8 to 98.7% by mass. It is particularly preferable that 26.7 to 90.8% by mass is more preferable. The content of cerium (Ce) is preferably 0.1 to 98.9% by mass with respect to the total amount (100% by mass) of C, Fe and Ce, and more preferably 0.1 to 92.1% by mass. It is particularly preferable that 7.9 to 73.0% by mass is more preferable.

<実施例29〜31:貴金属添加効果の検討>
鉄原子の質量、セリウム原子の質量、及びアルミナの質量を表7に示した比率に変更した以外は、実施例1〜28と同様にして、触媒を作製した。そして、得られた触媒粉末を表7に示す担持貴金属量になるように量り取った硝酸Pd溶液中に添加し、回転速度600rpmで3時間攪拌した後120℃の乾燥機内で乾燥させた。次いで、大気雰囲気下、600℃で3時間焼成し、炭化鉄(Fe3C)、酸化鉄及び酸化セリウムを含む混合物がアルミナに担持されてなる構成を備えた、貴金属担持粉末触媒(実施例29〜31)を得た。
<Examples 29 to 31: Investigation of noble metal addition effect>
Catalysts were prepared in the same manner as in Examples 1 to 28 except that the masses of iron atoms, cerium atoms, and alumina were changed to the ratios shown in Table 7. Then, the obtained catalyst powder was added to a Pd nitrate solution weighed so as to have a supported noble metal amount shown in Table 7, stirred at a rotational speed of 600 rpm for 3 hours, and then dried in a dryer at 120 ° C. Next, a noble metal-supported powder catalyst (Example 29) having a structure in which a mixture containing iron carbide (Fe 3 C), iron oxide and cerium oxide is supported on alumina by firing at 600 ° C. for 3 hours in an air atmosphere. To 31).

実施例1の組成にPdを担持させた触媒のNOxの転化率が50%となる温度(T50)を測定した結果を表7に示す。
NOxのT50はPdの担持量を増すに従い低下し、Pdが排ガス触媒の性能向上に大きく寄与していることが分かった。
また、このPdの担持量は、通常排ガス浄化触媒に担持されている量の数分の1程度であり、高価なPdの使用量減少にも寄与することができる。
このような観点を考慮すると、貴金属の担持量は、担持する触媒粉末(100質量%)に対して0.01質量%以上であるのが好ましく、中でも0.41質量%以上であるのがさらに好ましいと考えられる。
Table 7 shows the results of measuring the temperature (T50) at which the NOx conversion rate of the catalyst having Pd supported on the composition of Example 1 becomes 50%.
The NOx T50 decreased as the amount of Pd supported increased, and it was found that Pd greatly contributed to the improvement of the performance of the exhaust gas catalyst.
The amount of Pd supported is about a fraction of the amount normally supported on the exhaust gas purification catalyst, and can contribute to a reduction in the amount of expensive Pd used.
Considering such a viewpoint, the amount of the noble metal supported is preferably 0.01% by mass or more with respect to the catalyst powder (100% by mass) to be supported, and more preferably 0.41% by mass or more. It is considered preferable.

Figure 2014042880
Figure 2014042880

<実施例32〜34:Co添加効果の検討>
硝酸鉄(II)(9水和物)、硝酸セリウム(III)(6水和物)及び硝酸コバルトを純水に溶解した後、攪拌しながらアルミナ粉末(m001)を投入し、混合溶液を作製した。使用する硝酸鉄(II)(9水和物)、硝酸セリウム(III)(6水和物)、硝酸コバルト及びアルミナ粉末の質量は、硝酸鉄(II)(9水和物)に含有される鉄原子の質量、硝酸セリウム(III)(6水和物)に含有されるセリウム原子の質量、硝酸コバルトに含有されるコバルト原子の質量、及びアルミナの質量が表8に示した比率となるように調整した。
<Examples 32 to 34: Examination of Co addition effect>
After iron (II) nitrate (9 hydrate), cerium nitrate (III) (hexahydrate) and cobalt nitrate are dissolved in pure water, alumina powder (m001) is added while stirring to prepare a mixed solution. did. The masses of iron (II) nitrate (9 hydrate), cerium nitrate (III) (hexahydrate), cobalt nitrate and alumina powder used are contained in iron (II) nitrate (9 hydrate). The mass of iron atoms, the mass of cerium atoms contained in cerium (III) nitrate (hexahydrate), the mass of cobalt atoms contained in cobalt nitrate, and the mass of alumina are in the ratios shown in Table 8. Adjusted.

次に、該混合溶液中に炭酸ナトリウム水溶液をpH=10〜11になるまで滴下し、攪拌機の回転速度600rpmで3時間攪拌した。その後、その溶液をろ過して、沈殿を水で2〜3回水洗してから、その沈殿を120℃の乾燥機内で乾燥させた。次いで、大気雰囲気下、500℃で3時間焼成した後、乳鉢を用いて粉砕した後、COガス雰囲気下、525℃で4時間加熱して、炭化鉄(Fe3C)、酸化鉄及び酸化セリウムを含む混合物がアルミナに担持されてなる構成を備えた、C-Fe-Ce−Co/アルミナ触媒を得た。 Next, an aqueous sodium carbonate solution was dropped into the mixed solution until pH = 10 to 11, and the mixture was stirred for 3 hours at a rotation speed of a stirrer of 600 rpm. Thereafter, the solution was filtered, and the precipitate was washed with water 2-3 times, and then the precipitate was dried in a dryer at 120 ° C. Next, after baking at 500 ° C. for 3 hours in an air atmosphere, pulverization using a mortar, and heating for 4 hours at 525 ° C. in a CO gas atmosphere, iron carbide (Fe 3 C), iron oxide and cerium oxide Thus, a C—Fe—Ce—Co / alumina catalyst having a constitution in which a mixture containing was supported on alumina was obtained.

C、Fe、Ce、Co、アルミナの比率、及びNOxのT50を表8に示した。   Table 8 shows the ratio of C, Fe, Ce, Co, and alumina, and T50 of NOx.

Figure 2014042880
Figure 2014042880

NOxのT50は、Coの添加量を増すに従い低下し、ある一定量を超えると上昇する。この結果からCoが排ガス触媒の性能向上に寄与していることが分かった。
このような観点を考慮すると、Coの含有量は、触媒材料(100質量%)に対して0.1質量%より多く、且つ15質量%より少ないことが好ましく、中でも5〜10質量%であるのがさらに好ましいと考えられる。
The NOx T50 decreases as the amount of Co added increases, and increases above a certain amount. From this result, it was found that Co contributes to the performance improvement of the exhaust gas catalyst.
Considering such a viewpoint, the Co content is preferably more than 0.1% by mass and less than 15% by mass with respect to the catalyst material (100% by mass), and in particular, 5 to 10% by mass. Is considered to be more preferable.

<実施例35:Co及びPt添加の効果>
硝酸鉄(II)(9水和物)、硝酸セリウム(III)(6水和物)及び硝酸コバルトを純水に溶解した後、攪拌しながらアルミナ粉末(m001)を投入し、混合溶液を作製した。使用する硝酸鉄(II)(9水和物)、硝酸セリウム(III)(6水和物)及び硝酸コバルト及びアルミナ粉末の質量は、硝酸鉄(II)(9水和物)に含有される鉄原子の質量、硝酸セリウム(III)(6水和物)に含有されるセリウム原子の質量、硝酸コバルトに含有されるコバルト原子の質量、及びアルミナの質量が表9に示した比率となるように調整した。
<Example 35: Effect of addition of Co and Pt>
After iron (II) nitrate (9 hydrate), cerium nitrate (III) (hexahydrate) and cobalt nitrate are dissolved in pure water, alumina powder (m001) is added while stirring to prepare a mixed solution. did. The mass of iron (II) nitrate (9 hydrate), cerium (III) nitrate (hexahydrate), cobalt nitrate and alumina powder used is contained in iron (II) nitrate (9 hydrate) The mass of iron atoms, the mass of cerium atoms contained in cerium (III) nitrate (hexahydrate), the mass of cobalt atoms contained in cobalt nitrate, and the mass of alumina are in the ratios shown in Table 9. Adjusted.

次に、該混合溶液中に炭酸ナトリウム水溶液をpH=10〜11になるまで滴下し、攪拌機の回転速度600rpmで3時間攪拌した。その後、その溶液をろ過して、沈殿を水で2〜3回水洗してから、その沈殿を120℃の乾燥機内で乾燥させた。次いで、大気雰囲気下、500℃で3時間焼成した後、塩化白金酸の水溶液に投入し、3時間攪拌し、白金(Pt)を担持させた。担持量は表9に示した。さらに、120℃の乾燥機内で乾燥させ、大気雰囲気下、500℃で3時間焼成した後、乳鉢を用いて粉砕した。その後、COガス雰囲気下、525℃で4時間加熱して、炭化鉄(FeC)、酸化鉄及び酸化セリウムを含む混合物がアルミナに担持された触媒にPtが担持された構成のPt/C−Fe−Ce−Co/アルミナ触媒を得た。 Next, an aqueous sodium carbonate solution was dropped into the mixed solution until pH = 10 to 11, and the mixture was stirred for 3 hours at a rotation speed of a stirrer of 600 rpm. Thereafter, the solution was filtered, and the precipitate was washed with water 2-3 times, and then the precipitate was dried in a dryer at 120 ° C. Subsequently, after baking for 3 hours at 500 ° C. in an air atmosphere, the solution was put into an aqueous solution of chloroplatinic acid and stirred for 3 hours to carry platinum (Pt). The supported amount is shown in Table 9. Furthermore, it was dried in a dryer at 120 ° C., calcined at 500 ° C. for 3 hours in an air atmosphere, and then pulverized using a mortar. Thereafter, Pt / C having a structure in which Pt is supported on a catalyst in which a mixture containing iron carbide (Fe 3 C), iron oxide and cerium oxide is supported on alumina by heating at 525 ° C. for 4 hours in a CO gas atmosphere. -Fe-Ce-Co / alumina catalyst was obtained.

<実施例36:Co及びPd添加の効果>
実施例35において、塩化白金酸の水溶液の代わりに、酢酸パラジウムのアセトン溶液を使用し、真空乾燥でパラジウム(Pd)を担持させること以外は、実施例35と同様にして、Pd/C−Fe−Ce−Co/アルミナ触媒を得た。Pd担持量は表9に示した。
<Example 36: Effect of addition of Co and Pd>
In Example 35, Pd / C—Fe was used in the same manner as in Example 35 except that an acetone solution of palladium acetate was used instead of an aqueous solution of chloroplatinic acid and palladium (Pd) was supported by vacuum drying. A Ce-Co / alumina catalyst was obtained. The amount of Pd supported is shown in Table 9.

Figure 2014042880
Figure 2014042880

NOxのT50は、SV値が3,000mL/min・gと高い場合でも低い値を示し、Pt又はPdが担持されたC−Fe−Ce−Co/アルミナ触媒は、Pt又はPdが通常排ガス浄化触媒に担持されている量の数分の1程度の少量しか担持されていない場合でも、良好な性能を示すことが分った。   NOx T50 shows a low value even when the SV value is as high as 3,000 mL / min · g, and Ct-Pe-Ce-Co / alumina catalyst loaded with Pt or Pd is usually treated with exhaust gas purification. It has been found that even when a small amount of about a fraction of the amount supported on the catalyst is supported, good performance is exhibited.

1・・・標準ガスボンベ、2・・・マスフローコントローラー、3・・・水タンク、4・・・水ポンプ、5・・・蒸発器、6・・・反応管、7・・・電気加熱炉、8・・・冷却器、9・・・ガス分析装置、10・・・触媒、11・・・石英砂、12・・・石英ウール、13・・・熱電対 DESCRIPTION OF SYMBOLS 1 ... Standard gas cylinder, 2 ... Mass flow controller, 3 ... Water tank, 4 ... Water pump, 5 ... Evaporator, 6 ... Reaction tube, 7 ... Electric heating furnace, 8 ... cooler, 9 ... gas analyzer, 10 ... catalyst, 11 ... quartz sand, 12 ... quartz wool, 13 ... thermocouple

Claims (9)

炭素(C)と鉄(Fe)とセリウム(Ce)とを含む混合物が、無機多孔質粉末状担体に担持されてなる構成を備えたことを特徴とする排ガス浄化触媒。   An exhaust gas purification catalyst comprising a structure in which a mixture containing carbon (C), iron (Fe), and cerium (Ce) is supported on an inorganic porous powder carrier. 前記混合物は、炭化鉄(Fe3C)、酸化鉄及び酸化セリウムを含む混合物であることを特徴とする請求項1記載の排ガス浄化触媒。 The exhaust gas purifying catalyst according to claim 1, wherein the mixture is a mixture containing iron carbide (Fe 3 C), iron oxide, and cerium oxide. 前記無機多孔質粉末状担体(100質量%)に対する前記混合物の含有量が10.0〜300質量%であり、且つ、前記混合物に含有される、CとFeとCe原子の質量比率(C:Fe:Ce)が、C、Fe及びCeの合計量(100質量%)に対し0.01〜1.4質量%:0.1〜98.9質量%:0.1〜98.9質量%であることを特徴とする請求項1又は2に記載の排ガス浄化触媒。   The content of the mixture with respect to the inorganic porous powder carrier (100% by mass) is 10.0 to 300% by mass, and the mass ratio of C, Fe and Ce atoms contained in the mixture (C: Fe: Ce) is 0.01 to 1.4% by mass: 0.1 to 98.9% by mass: 0.1 to 98.9% by mass with respect to the total amount (100% by mass) of C, Fe and Ce. The exhaust gas purifying catalyst according to claim 1 or 2, wherein 前記混合物は、さらにコバルト(Co)を含有することを特徴とする請求項1〜3の何れかに記載の排ガス浄化触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the mixture further contains cobalt (Co). 前記無機多孔質粉末状担体が、アルミナ又はセリア−ジルコニア複合酸化物を含有する無機多孔質粉末状担体であることを特徴とする請求項1〜4の何れかに記載の排ガス浄化触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 4, wherein the inorganic porous powder carrier is an inorganic porous powder carrier containing alumina or a ceria-zirconia composite oxide. 前記排ガス浄化触媒上に、さらに貴金属が担持されてなることを特徴とする請求項1〜5の何れかに記載の排ガス浄化触媒。   6. The exhaust gas purification catalyst according to claim 1, further comprising a noble metal supported on the exhaust gas purification catalyst. 前記貴金属が、白金(Pt)又はパラジウム(Pd)であることを特徴とする請求項6に記載の排ガス浄化触媒。   The exhaust gas purifying catalyst according to claim 6, wherein the noble metal is platinum (Pt) or palladium (Pd). 基材と、請求項1〜7の何れかに記載の排ガス浄化触媒を含む触媒層と、を備えた排ガス浄化触媒構造体。   An exhaust gas purification catalyst structure comprising: a base material; and a catalyst layer including the exhaust gas purification catalyst according to any one of claims 1 to 7. 鉄化合物とセリウム化合物を溶液に溶解させ無機多孔質粉末状担体を加えて、該無機多孔質粉末状担体に鉄化合物及びセリウム化合物を付着させた後、大気中で加熱焼成することにより、該無機多孔質粉末状担体に酸化鉄及び酸化セリウムを担持させた後、反応性炭素含有ガス雰囲気下で加熱して、炭素(C)と鉄(Fe)とセリウム(Ce)とを含む混合物が無機多孔質粉末状担体に担持されてなる排ガス浄化触媒を得ることを特徴とする、排ガス浄化触媒の製造方法。   An inorganic porous powder carrier is added by dissolving an iron compound and a cerium compound in a solution. After the iron compound and cerium compound are attached to the inorganic porous powder carrier, the inorganic compound is heated and fired in the atmosphere. After supporting iron oxide and cerium oxide on a porous powder carrier, the mixture containing carbon (C), iron (Fe), and cerium (Ce) is heated in a reactive carbon-containing gas atmosphere. A method for producing an exhaust gas purification catalyst, comprising obtaining an exhaust gas purification catalyst supported on a powdery carrier.
JP2012186808A 2012-08-27 2012-08-27 Exhaust gas purification catalyst Expired - Fee Related JP5921387B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012186808A JP5921387B2 (en) 2012-08-27 2012-08-27 Exhaust gas purification catalyst
CN201380024605.8A CN104302392A (en) 2012-08-27 2013-08-22 Exhaust gas purifying catalyst
PCT/JP2013/072437 WO2014034524A1 (en) 2012-08-27 2013-08-22 Exhaust gas purifying catalyst
DE112013004202.9T DE112013004202B4 (en) 2012-08-27 2013-08-22 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186808A JP5921387B2 (en) 2012-08-27 2012-08-27 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2014042880A true JP2014042880A (en) 2014-03-13
JP5921387B2 JP5921387B2 (en) 2016-05-24

Family

ID=50183339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186808A Expired - Fee Related JP5921387B2 (en) 2012-08-27 2012-08-27 Exhaust gas purification catalyst

Country Status (4)

Country Link
JP (1) JP5921387B2 (en)
CN (1) CN104302392A (en)
DE (1) DE112013004202B4 (en)
WO (1) WO2014034524A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206265A1 (en) 2015-04-30 2016-11-03 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purifying catalyst

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216234B2 (en) * 2013-11-29 2017-10-18 三井金属鉱業株式会社 Exhaust gas purification catalyst
CN107014940A (en) * 2017-05-09 2017-08-04 上海大学 Rapid analysis method when carbon monoxide, carbon dioxide and nitrous oxide coexist
CN109201079B (en) * 2017-07-05 2020-12-04 中国石油化工股份有限公司 Can reduce CO and NOxDischarged composition, preparation method and application thereof and fluidized catalytic cracking method
CN109201097B (en) * 2017-07-05 2020-11-13 中国石油化工股份有限公司 Can reduce CO and NOxDischarged composition, preparation method and application thereof and fluidized catalytic cracking method
CN111774080B (en) * 2017-07-05 2022-08-09 中国石油化工股份有限公司 Composition capable of reducing emission of CO and NOx, preparation method and application thereof
CN109201098B (en) * 2017-07-05 2020-11-13 中国石油化工股份有限公司 Can reduce CO and NOxDischarged composition, preparation method and application thereof and fluidized catalytic cracking method
CN109201058B (en) * 2017-07-05 2020-07-24 中国石油化工股份有限公司 Can reduce CO and NOxDischarged composition, preparation method and application thereof and fluidized catalytic cracking method
CN109201099B (en) * 2017-07-05 2020-06-16 中国石油化工股份有限公司 Composition capable of reducing CO and NOx emission, preparation method and application thereof, and fluidized catalytic cracking method
CN109201078B (en) * 2017-07-05 2020-07-24 中国石油化工股份有限公司 Can reduce CO and NOxDischarged composition, preparation method and application thereof and fluidized catalytic cracking method
CN109201080B (en) * 2017-07-05 2020-12-04 中国石油化工股份有限公司 Composition capable of reducing CO and NOx emission, preparation method and application thereof, and fluidized catalytic cracking method
CN109201075B (en) * 2017-07-05 2020-07-24 中国石油化工股份有限公司 Can reduce CO and NOxDischarged composition, preparation method and application thereof and fluidized catalytic cracking method
CN110917869B (en) * 2018-09-20 2022-09-06 中国石油化工股份有限公司 Method for reducing NOx emission in incompletely regenerated flue gas in catalytic cracking process
CN111036241B (en) * 2018-10-12 2022-11-15 中国石油化工股份有限公司 Catalyst with regular structure, preparation method and application thereof, and catalytic oxidation treatment method for ammonia-containing waste gas
CN109211884A (en) * 2018-11-08 2019-01-15 广西玉柴机器股份有限公司 A kind of chemiluminescent analyzer NOx conversion efficiency rapid detection method
CN111346656B (en) * 2018-12-20 2022-11-15 中国石油化工股份有限公司 Regular structure catalyst, preparation method and application thereof, and treatment method of incomplete regenerated flue gas
CN111346657B (en) * 2018-12-20 2021-05-14 中国石油化工股份有限公司 Regular structure catalyst, preparation method and application thereof, and treatment method of incomplete regenerated flue gas
JP7379248B2 (en) * 2020-03-27 2023-11-14 日本碍子株式会社 Porous ceramic structure and method for manufacturing porous ceramic structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336626A (en) * 2001-05-16 2002-11-26 Kawasaki Heavy Ind Ltd Gaseous emission treatment method and equipment
JP2005296735A (en) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc Catalyst and its manufacturing method
JP2008018322A (en) * 2006-07-12 2008-01-31 Toyota Motor Corp Exhaust gas purifying catalyst and its manufacturing method
JP2008168278A (en) * 2006-12-15 2008-07-24 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its manufacturing method
JP2012050980A (en) * 2010-08-05 2012-03-15 Hideo Kameyama Catalyst, oxidation catalyst, reduction catalyst, and exhaust gas cleaning catalyst
JP2012183467A (en) * 2011-03-04 2012-09-27 Hideo Kameyama Method for producing catalyst containing carbon, iron and cerium
JP2013111545A (en) * 2011-11-30 2013-06-10 Tokyo Univ Of Agriculture & Technology Catalyst for purifying exhaust gas and catalyst body supporting the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1604081A (en) 1978-01-20 1981-12-02 Gallaher Ltd Production of catalysts from activated supports
CN1059353C (en) * 1996-12-12 2000-12-13 北京工业大学 Catalyst for catalytic treatment of waste air contaminated by polycyclic aromatic hydrocarbon
JP2004160433A (en) 2002-01-31 2004-06-10 Toyota Central Res & Dev Lab Inc Metal composite material, catalyst for cleaning exhaust gas and method for cleaning exhaust gas
CN100386134C (en) * 2002-12-31 2008-05-07 中国人民解放军63971部队 Purifying catalyst for gas containing cyanogen and its preparing method
JP5488214B2 (en) 2010-06-07 2014-05-14 マツダ株式会社 Exhaust gas purification catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336626A (en) * 2001-05-16 2002-11-26 Kawasaki Heavy Ind Ltd Gaseous emission treatment method and equipment
JP2005296735A (en) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc Catalyst and its manufacturing method
JP2008018322A (en) * 2006-07-12 2008-01-31 Toyota Motor Corp Exhaust gas purifying catalyst and its manufacturing method
JP2008168278A (en) * 2006-12-15 2008-07-24 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its manufacturing method
JP2012050980A (en) * 2010-08-05 2012-03-15 Hideo Kameyama Catalyst, oxidation catalyst, reduction catalyst, and exhaust gas cleaning catalyst
JP2012183467A (en) * 2011-03-04 2012-09-27 Hideo Kameyama Method for producing catalyst containing carbon, iron and cerium
JP2013111545A (en) * 2011-11-30 2013-06-10 Tokyo Univ Of Agriculture & Technology Catalyst for purifying exhaust gas and catalyst body supporting the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013049563; 小田晴信 他: '"セリウム・鉄・カーボン系材料を用いた排ガス浄化触媒の研究"' 化学工学会第43回秋季大会研究発表講演要旨集 , 20110814, p.25 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206265A1 (en) 2015-04-30 2016-11-03 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purifying catalyst

Also Published As

Publication number Publication date
DE112013004202T5 (en) 2015-06-03
JP5921387B2 (en) 2016-05-24
CN104302392A (en) 2015-01-21
WO2014034524A1 (en) 2014-03-06
DE112013004202B4 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
JP5921387B2 (en) Exhaust gas purification catalyst
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
JP5816648B2 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
BR112017028424B1 (en) NITROUS OXIDE REMOVAL CATALYST COMPOSITE, EMISSION TREATMENT SYSTEM, AND, METHOD TO TREAT EXHAUST GASES
JP5502971B1 (en) Exhaust gas catalyst carrier and exhaust gas purification catalyst
JP2014522725A (en) Palladium solid solution catalyst and production method
CN1342101A (en) Catalyst composition containing oxygen storage components
WO2014041984A1 (en) Exhaust-gas-purification catalyst carrier
JP6906624B2 (en) Oxygen absorption and release materials, catalysts, exhaust gas purification systems, and exhaust gas treatment methods
EP2611536A1 (en) Catalyst for gasoline lean burn engines with improved nh3-formation activity
JP5992192B2 (en) Palladium catalyst
WO2016036592A1 (en) Titania-doped zirconia as platinum group metal support in catalysts for treatment of combustion engine exhausts streams
WO2006134787A1 (en) Exhaust gas purifying catalyst
JP6438384B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
WO2014104181A1 (en) Catalyst carrier and exhaust gas purifying catalyst
JP5940992B2 (en) Exhaust gas purification catalyst
JP6216234B2 (en) Exhaust gas purification catalyst
JP6637794B2 (en) Exhaust gas purification catalyst
WO2007122917A1 (en) Exhaust gas purifying catalyst and method for producing same
JP4852595B2 (en) Exhaust gas purification catalyst
JP2020131111A (en) Exhaust gas purifying catalyst
JP2020131086A (en) Exhaust gas purifying catalyst
JP6305921B2 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
JP2020131091A (en) Exhaust gas purifying catalyst
JP2022150376A (en) oxygen storage material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees