JP2014040341A - Boron nitride powder and use thereof - Google Patents

Boron nitride powder and use thereof Download PDF

Info

Publication number
JP2014040341A
JP2014040341A JP2012182972A JP2012182972A JP2014040341A JP 2014040341 A JP2014040341 A JP 2014040341A JP 2012182972 A JP2012182972 A JP 2012182972A JP 2012182972 A JP2012182972 A JP 2012182972A JP 2014040341 A JP2014040341 A JP 2014040341A
Authority
JP
Japan
Prior art keywords
boron nitride
nitride powder
powder
resin
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012182972A
Other languages
Japanese (ja)
Other versions
JP5969314B2 (en
Inventor
Hiroki Nishi
太樹 西
Hokuto Kuriyama
北斗 栗山
Atsushi Sugiura
敦史 杉浦
Atsuki Igarashi
厚樹 五十嵐
Bunya Kobayashi
文弥 小林
Masahide Kaneko
政秀 金子
Toshikatsu Mitsunaga
敏勝 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2012182972A priority Critical patent/JP5969314B2/en
Publication of JP2014040341A publication Critical patent/JP2014040341A/en
Application granted granted Critical
Publication of JP5969314B2 publication Critical patent/JP5969314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition which is used suitably as a heat radiating member of an exothermic electronic component such as a power device, particularly as an insulating layer and a thermal interface material of a printed wiring board and is excellent in thermal conductivity and relative dielectric constant and to provide boron nitride powder to be packed in the resin composition.SOLUTION: The boron nitride powder is characterized in that the calcium content thereof is 500-5,000 ppm, the porosity is 50-80%, the average sphericity is 0.7 or higher, the average particle size is 20-100 μm and the peak intensity ratio I(002)/I(100) of the (002) plane to the (100) plane is 9.0 or lower in a powder X-ray diffraction method. The graphitization index of the boron nitride powder is preferably 1.6-4.0 according to the powder X-ray diffraction method. The resin composition contains the boron nitride powder.

Description

本発明は、窒化ホウ素粉末及びその用途に関する。詳しくは、パワーデバイスなどの発熱性電子部品の放熱部材として好適に用いられる。特に、プリント配線板の絶縁層及び熱インターフェース材の樹脂組成物に充填される、熱伝導率及び比誘電率に優れた窒化ホウ素粉末に関する。 The present invention relates to boron nitride powder and uses thereof. Specifically, it is suitably used as a heat radiating member for heat-generating electronic components such as power devices. In particular, the present invention relates to a boron nitride powder that is filled in an insulating layer of a printed wiring board and a resin composition of a thermal interface material and has excellent thermal conductivity and relative dielectric constant.

パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、
使用時に発生する熱を如何に効率的に放熱するかが重要な課題となっている。従来から、このような放熱対策としては、(1)発熱性電子部品を実装するプリント配線板の絶縁層を高熱伝導化する、(2)発熱性電子部品又は発熱性電子部品を実装したプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付ける、ことが一般的に行われてきた。プリント配線板の絶縁層及び熱インターフェース材としては、シリコーン樹脂やエポキシ樹脂にセラミックス粉末を充填させたものが使用されている。
In heat-generating electronic components such as power devices, transistors, thyristors, and CPUs,
An important issue is how to efficiently dissipate the heat generated during use. Conventionally, such heat dissipation measures include (1) increasing the thermal conductivity of the insulating layer of the printed wiring board on which the heat generating electronic components are mounted, and (2) the heat generating electronic components or the printed wiring on which the heat generating electronic components are mounted. It has been common practice to attach the plate to a heat sink via an electrically insulating thermal interface material. As an insulating layer and a thermal interface material of a printed wiring board, a silicone resin or epoxy resin filled with ceramic powder is used.

近年、発熱性電子部品内の回路の高速・高集積化、及び発熱性電子部品のプリント配線板への実装密度の増加に伴って、電子機器内部の発熱密度は年々増加している。そのため、従来にも増して高い熱伝導率を有するセラミックス粉末が求められてきている。
さらに、プリント配線板の絶縁層では、伝送信号の遅れ及びノイズを抑制する為に、高熱伝導率であると同時に比誘電率が低いことも求められる。
2. Description of the Related Art In recent years, the heat generation density inside an electronic device has been increasing year by year with the increase in the speed and integration of circuits in the heat generating electronic component and the increase in the mounting density of the heat generating electronic component on a printed wiring board. Therefore, there has been a demand for ceramic powder having higher thermal conductivity than ever before.
Furthermore, the insulating layer of the printed wiring board is required to have high thermal conductivity and low relative dielectric constant in order to suppress transmission signal delay and noise.

以上のような背景により、(1)高熱伝導率、(2)高絶縁性、(3)比誘電率が低いこと等、電気絶縁材料として優れた性質を有している、六方晶窒化ホウ素(hexagonal Boron Nitride)粉末が注目されている。
しかし、六方晶窒化ホウ素粒子は、面内方向(a軸方向)の熱伝導率が400W/(m・K)であるのに対して、厚み方向(c軸方向)の熱伝導率が2W/(m・K)であり、結晶構造と鱗片形状に由来する熱伝導率の異方性が大きい。さらに、六方晶窒化ホウ素粉末を樹脂に充填すると、粒子同士が同一方向に揃って配向する。
そのため、例えば、熱インターフェース材の製造時に、六方晶窒化ホウ素粒子の面内方向(a軸方向)と熱インターフェース材の厚み方向が垂直になり、六方晶窒化ホウ素粒子の面内方向(a軸方向)の高熱伝導率を十分に活かすことができなかった。
Due to the above background, hexagonal boron nitride (1) has excellent properties as an electrical insulating material such as (1) high thermal conductivity, (2) high insulation, and (3) low relative dielectric constant. Hexagonal Boron Nitride) powder has attracted attention.
However, the hexagonal boron nitride particles have a thermal conductivity in the in-plane direction (a-axis direction) of 400 W / (m · K), whereas the thermal conductivity in the thickness direction (c-axis direction) is 2 W / (m · K), and the anisotropy of the thermal conductivity derived from the crystal structure and scale shape is large. Furthermore, when the hexagonal boron nitride powder is filled in the resin, the particles are aligned in the same direction.
Therefore, for example, when manufacturing the thermal interface material, the in-plane direction (a-axis direction) of the hexagonal boron nitride particles and the thickness direction of the thermal interface material are perpendicular, and the in-plane direction (a-axis direction) of the hexagonal boron nitride particles ) Could not be fully utilized.

特許文献1では、六方晶窒化ホウ素粒子の面内方向(a軸方向)を高熱伝導シートの厚み方向に配向させたものが提案されており、六方晶窒化ホウ素粒子の面内方向(a軸方向)の高熱伝導率を活かすことができる。しかし、(1)配向したシートを次工程にて積層する必要があり製造工程が煩雑になり易い、(2)積層・硬化後にシート状に薄く切断する必要があり、シートの厚みの寸法精度を確保することが困難という課題があった。
また、六方晶窒化ホウ素粒子の形状が鱗片形状であるため、樹脂への充填時に粘度が増加し、流動性が悪くなるため、高充填が困難であった。これらを改善するため、六方晶窒化ホウ素粒子の熱伝導率の異方性を抑制した種々の形状の窒化ホウ素粉末が提案されている。
Patent Document 1 proposes a method in which the in-plane direction (a-axis direction) of hexagonal boron nitride particles is oriented in the thickness direction of the high thermal conductive sheet. The in-plane direction (a-axis direction) of hexagonal boron nitride particles is proposed. ) High thermal conductivity can be utilized. However, (1) It is necessary to laminate oriented sheets in the next process and the manufacturing process tends to be complicated. (2) It is necessary to cut into thin sheets after lamination and curing, and the dimensional accuracy of the thickness of the sheet is improved. There was a problem that it was difficult to secure.
In addition, since the hexagonal boron nitride particles have a scaly shape, the viscosity increases at the time of filling into the resin and the fluidity deteriorates, so that high filling is difficult. In order to improve these, boron nitride powders having various shapes in which the anisotropy of the thermal conductivity of hexagonal boron nitride particles is suppressed have been proposed.

特許文献2及び3では、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向せずに凝集した窒化ホウ素粉末の使用が提案されており、熱伝導率の異方性が抑制された。しかし、形状が松ぼっくり状(例えば、特許文献2:段落[0020]図6参照)や塊状(例えば、特許文献3:段落[0037]図3〜5参照)であり、平均球形度が小さいため、樹脂やゴムへの充填に限界があり、熱伝導率の向上には限界があった。 Patent Documents 2 and 3 propose the use of boron nitride powder in which hexagonal boron nitride particles as primary particles are aggregated without being oriented in the same direction, and anisotropy of thermal conductivity is suppressed. However, the shape is pinecone (see, for example, Patent Document 2: Paragraph [0020] FIG. 6) or a block shape (for example, Patent Document 3: Paragraph [0037] see FIGS. 3 to 5), and the average sphericity is small. There was a limit in filling resin and rubber, and there was a limit in improving thermal conductivity.

特許文献4では、ホウ酸塩粒子を六方晶窒化ホウ素粒子で被覆した、平均球形度の高い窒化ホウ素粉末の使用が提案されている。熱伝導率の異方性の抑制と樹脂やゴムへの充填性の向上には一定の効果がある。しかし、熱伝導率の低いホウ酸塩粒子の含有率が高いため(例えば、段落[0020]、[0028]参照)、六方晶窒化ホウ素粒子の高熱伝導率を十分に活かすことがでないという課題があった。 Patent Document 4 proposes the use of boron nitride powder having high average sphericity, in which borate particles are coated with hexagonal boron nitride particles. There are certain effects in suppressing the anisotropy of the thermal conductivity and improving the filling property into the resin or rubber. However, since the content of borate particles with low thermal conductivity is high (see, for example, paragraphs [0020] and [0028]), there is a problem that the high thermal conductivity of hexagonal boron nitride particles cannot be fully utilized. there were.

また、六方晶窒化ホウ素粉末は、比誘電率がセラミックス粉末の中では最も低いことが知られている。さらに、空気の比誘電率は、六方晶窒化ホウ素粉末よりさらに低い。したがって、窒化ホウ素粒子内部の空隙率を適切に制御し且つ、樹脂に充填する際の混練の剪断応力に耐えうる粒子強度を付与することで、さらに比誘電率を低くすることが可能である。しかし、このような観点に立った技術の提案は今まで見られない。 Further, it is known that the hexagonal boron nitride powder has the lowest relative dielectric constant among ceramic powders. Furthermore, the dielectric constant of air is even lower than that of hexagonal boron nitride powder. Therefore, it is possible to further lower the relative dielectric constant by appropriately controlling the porosity inside the boron nitride particles and imparting the particle strength capable of withstanding the shear stress of kneading when filling the resin. However, no technical proposals from this point of view have been found so far.

特開2000−154265JP 2000-154265 A 特開平9−202663JP-A-9-202663 特開2011−98882JP2011-98882 特開2001−122615JP2001-122615A

本発明は、パワーデバイスなどの発熱性電子部品の放熱部材として好適に用いられ、特にプリント配線板の絶縁層及び熱インターフェース材の樹脂組成物に充填される、熱伝導率及び比誘電率に優れた窒化ホウ素粉末を提供することにある。  The present invention is suitably used as a heat radiating member of a heat-generating electronic component such as a power device, and is particularly excellent in thermal conductivity and relative dielectric constant filled in a resin composition of an insulating layer of a printed wiring board and a thermal interface material. It is to provide a boron nitride powder.

上記の課題を解決するために、本発明においては、以下の手段を採用する。
(1)カルシウムの含有率が500〜5000ppm、空隙率が50〜80%、平均球形度0.7以上、平均粒径が20〜100μm、粉末X線回折法における(002)面と(100)面のピーク強度比I(002)/I(100)が9.0以下であることを特徴とする窒化ホウ素粉末。
(2)粉末X線回折法による黒鉛化指数(GI)が1.6〜4.0であることを特徴とする前記(1)に記載の窒化ホウ素粉末。
(3)前記(1)又は(2)に記載の窒化ホウ素粉末を含有してなる樹脂組成物。
In order to solve the above problems, the following means are adopted in the present invention.
(1) Calcium content is 500 to 5000 ppm, porosity is 50 to 80%, average sphericity is 0.7 or more, average particle size is 20 to 100 μm, (002) plane in powder X-ray diffraction method and (100) A boron nitride powder having a peak intensity ratio I (002) / I (100) of 9.0 or less.
(2) The boron nitride powder as described in (1) above, wherein the graphitization index (GI) by powder X-ray diffraction method is 1.6 to 4.0.
(3) A resin composition comprising the boron nitride powder according to (1) or (2).

本発明により、熱伝導率及び比誘電率に優れた窒化ホウ素粉末が得られるという効果を奏する。 By this invention, there exists an effect that the boron nitride powder excellent in thermal conductivity and a dielectric constant is obtained.

本発明では、一次粒子を「六方晶窒化ホウ素粒子」、一次粒子同士が焼結により結合した状態で2個以上集合した状態を「窒化ホウ素粒子」と定義する。焼結による結合は、走査型電子顕微鏡(例えば「JSM−6010LA」(日本電子社製))を用いて、窒化ホウ素粒子の断面の一次粒子同士の結合部分を観察することにより評価することができる。観察の前処理として、窒化ホウ素粒子を樹脂で包埋後、CP(クロスセクションポリッシャー)法により加工し、試料台に固定した後にオスミウムコーティングを行った。観察倍率は1000倍である。 In the present invention, primary particles are defined as “hexagonal boron nitride particles”, and a state in which two or more primary particles are aggregated in a state of being bonded together by sintering is defined as “boron nitride particles”. Bonding by sintering can be evaluated by observing a bonding portion between primary particles of a cross section of boron nitride particles using a scanning electron microscope (for example, “JSM-6010LA” (manufactured by JEOL Ltd.)). . As pretreatment for observation, boron nitride particles were embedded in a resin, processed by CP (cross section polisher) method, fixed on a sample stage, and then coated with osmium. The observation magnification is 1000 times.

本発明の窒化ホウ素粉末は特定のカルシウム含有率、空隙率、平均球形度、平均粒径、配向性を有することにより、従来の技術では達成できなかった、熱伝導率及び比誘電率に優れた窒化ホウ素粉末を得ることができるものである。 The boron nitride powder of the present invention has a specific calcium content, porosity, average sphericity, average particle size, and orientation, and thus has excellent thermal conductivity and relative dielectric constant that could not be achieved by conventional techniques. Boron nitride powder can be obtained.

本発明の窒化ホウ素粉末は、カルシウムの含有率が500〜5000ppm、空隙率が50〜80%、平均球形度0.7以上、平均粒径が20〜100μm、粉末X線回折法における(002)面と(100)面のピーク強度比I(002)/I(100)が9.0以下、黒鉛化指数(GI)が1.6〜4.0であることである。このように設計された窒化ホウ素粉末はこれまで存在せず、樹脂に充填する際の混練の剪断応力に耐えうる粒子強度、及びこれを充填した樹脂組成物の高熱伝導率と低比誘電率を確保する意味で非常に重要な因子である。 The boron nitride powder of the present invention has a calcium content of 500 to 5000 ppm, a porosity of 50 to 80%, an average sphericity of 0.7 or more, an average particle size of 20 to 100 μm, and (002) in the powder X-ray diffraction method. The peak intensity ratio I (002) / I (100) between the plane and the (100) plane is 9.0 or less, and the graphitization index (GI) is 1.6 to 4.0. The boron nitride powder designed in this way has not existed so far, and the particle strength that can withstand the shear stress of kneading when filling the resin, and the high thermal conductivity and low relative dielectric constant of the resin composition filled therewith. This is a very important factor in securing.

<カルシウムの含有率及びその評価方法>
本発明の窒化ホウ素粉末において特に重要なことは、カルシウムの含有率を500〜5000ppmとしたことである。カルシウムの含有率が500ppmより小さいと、樹脂へ充填する際に受ける混練の剪断応力に耐えうる粒子強度を得ることができない。カルシウムの含有率が5000ppmより大きいと、六方晶窒化ホウ素粒子の熱伝導率が低下する。さらに好ましい範囲は、1000〜4500ppmである。カルシウムの含有率は、例えば、波長分散型蛍光X線分析装置「ZSX PrimusII」(RIGAKU社製)を用いて測定できる。前処理として、窒化ホウ素粉末をプレス成型した。測定時は、X線管球はRh管球を用い、X線管電力は3.0kW、測定径はΦ=30mmである。
<Calcium content and evaluation method>
What is particularly important in the boron nitride powder of the present invention is that the calcium content is 500 to 5000 ppm. If the calcium content is less than 500 ppm, it is impossible to obtain a particle strength that can withstand the shearing stress of kneading that is applied to the resin. When the calcium content is higher than 5000 ppm, the thermal conductivity of the hexagonal boron nitride particles decreases. A more preferable range is 1000 to 4500 ppm. The calcium content can be measured using, for example, a wavelength dispersive X-ray fluorescence analyzer “ZSX Primus II” (manufactured by RIGAKU). As a pretreatment, boron nitride powder was press-molded. At the time of measurement, the X-ray tube is an Rh tube, the X-ray tube power is 3.0 kW, and the measurement diameter is Φ = 30 mm.

<空隙率>
本発明の窒化ホウ素粉末においては、空隙率が50〜80%である。空隙率が50%より小さいと言うことは、比誘電率が小さい空気の占める体積が小さく、本発明の特徴である低比誘電率を発現することが出来ない。空隙率が80%を超えると、窒化ホウ素粒子の粒子強度が低下するため、樹脂への混練時に受ける剪断応力により球状構造が破壊され、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向する。
<Porosity>
In the boron nitride powder of the present invention, the porosity is 50 to 80%. When the porosity is smaller than 50%, the volume occupied by air having a small relative dielectric constant is small, and the low relative dielectric constant, which is a feature of the present invention, cannot be exhibited. When the porosity exceeds 80%, the particle strength of the boron nitride particles decreases, so that the spherical structure is destroyed by the shear stress received during kneading into the resin, and the hexagonal boron nitride particles as primary particles are oriented in the same direction.

<空隙率の評価方法>
空隙率は、水銀ポロシメーターを用いて細孔体積を測定することにより求めた値である。水銀ポロシメーターを用いた細孔体積としては、例えば「PASCAL 140−440」(FISONS INSTRUMENTS社製)を用いて測定することができる。この測定の原理は、式、ε=V/(V+1/ρ)×100、に基づいている。式中、εは窒化ホウ素粒子の空隙率(%)、Vは細孔体積から粒子間空隙を差し引いた値(cm/g)、ρは一次粒子の六方晶窒化ホウ素粒子の真比重2.34(g/cm)である。
<Evaluation method of porosity>
The porosity is a value determined by measuring the pore volume using a mercury porosimeter. The pore volume using a mercury porosimeter can be measured using, for example, “PASCAL 140-440” (manufactured by FISON INSTRUMENTS). The principle of this measurement is based on the equation, ε g = V g / (V g + 1 / ρ t ) × 100. In the formula, ε g is the porosity (%) of boron nitride particles, V g is a value obtained by subtracting the interparticle void from the pore volume (cm 3 / g), and ρ t is the true value of the hexagonal boron nitride particles of the primary particles. The specific gravity is 2.34 (g / cm 3 ).

<平均球形度>
本発明の窒化ホウ素粉末においては、平均球形度が0.7以上である。平均球形度が0.7より小さくなると、樹脂に窒化ホウ素粉末を混練した際に、樹脂と窒化ホウ素表面の摩擦抵抗が高くなるため、粘度が高くなり、高充填が困難になる。上限については、特に制限はないが、一次粒子の六方晶窒化ホウ素粒子は鱗片形状であるため、平均球形度を1.0にすることは難しく、上限としては、0.98程度が実際的である。
<Average sphericity>
In the boron nitride powder of the present invention, the average sphericity is 0.7 or more. When the average sphericity is less than 0.7, when the boron nitride powder is kneaded with the resin, the friction resistance between the resin and the boron nitride surface is increased, so that the viscosity is increased and high filling becomes difficult. The upper limit is not particularly limited. However, since the hexagonal boron nitride particles of the primary particles have a scale shape, it is difficult to set the average sphericity to 1.0, and an upper limit of about 0.98 is practical. is there.

<平均球形度の定義・評価方法>
平均球形度は、試料台上の導電性両面テープに固定した窒化ホウ素粉末を、走査型電子顕微鏡、例えば「JSM−6010LA」(日本電子社製)にて撮影し、得られた粒子像を画像解析ソフトウェア、例えば「A像くん」(旭化成エンジニアリング社製)に取り込み、次のようにして測定することができる。写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM) として算出することができる。この際の画像の倍率は100倍、画像解析の画素数は1510万画素であった。このようにして得られた任意の粒子100個の球形度を求めその平均値を平均球形度とした。
<Definition and evaluation method of average sphericity>
For the average sphericity, boron nitride powder fixed to a conductive double-sided tape on a sample stage was photographed with a scanning electron microscope such as “JSM-6010LA” (manufactured by JEOL Ltd.), and the resulting particle image was imaged. It can be taken in analysis software such as “A Image-kun” (Asahi Kasei Engineering) and measured as follows. The projected area (A) and the perimeter (PM) of the particles are measured from the photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The magnification of the image at this time was 100 times, and the number of pixels for image analysis was 15.1 million pixels. The sphericity of 100 arbitrary particles thus obtained was determined, and the average value was defined as the average sphericity.

<平均粒径>
本発明の窒化ホウ素粉末においては、平均粒径が20〜100μmである。20μmより小さいと、窒化ホウ素粒子同士及の接点の増加にともなう接触熱抵抗の増加により熱伝導率が低下する。100μmより大きいと、窒化ホウ素粒子の粒子強度が低下するため、樹脂への混練時に受ける剪断応力により球状構造が破壊され、一次粒子の六方晶窒化ホウ素粒子が同一方向に配向する。
<Average particle size>
In the boron nitride powder of the present invention, the average particle size is 20 to 100 μm. If it is smaller than 20 μm, the thermal conductivity decreases due to an increase in contact thermal resistance accompanying an increase in the contact between the boron nitride particles. When the particle size is larger than 100 μm, the particle strength of the boron nitride particles decreases, so that the spherical structure is destroyed by the shear stress received during kneading into the resin, and the primary hexagonal boron nitride particles are oriented in the same direction.

<平均粒径の定義・評価方法>
平均粒径は、レーザー回折光散乱法による粒度分布測定において、累積粒度分布の累積値50%の粒径である。粒度分布測定機としては、例えば「MT3300EX」(日機装社製)にて測定することができる。測定に際しては、溶媒には水、分散剤としてはヘキサメタリン酸を用い、前処理として、30秒間、ホモジナイザーを用いて20Wの出力をかけて分散処理させた。水の屈折率には1.33を用い、窒化ホウ素粉末の屈折率については1.80を用いた。一回当たりの測定時間は30秒である。
<Definition and evaluation method of average particle size>
The average particle size is a particle size having a cumulative value of 50% in the particle size distribution measurement by the laser diffraction light scattering method. As a particle size distribution measuring device, for example, “MT3300EX” (manufactured by Nikkiso Co., Ltd.) can be used for measurement. In the measurement, water was used as a solvent, hexametaphosphoric acid was used as a dispersant, and a pretreatment was performed for 30 seconds using a homogenizer with an output of 20 W for dispersion treatment. The refractive index of water was 1.33, and the refractive index of boron nitride powder was 1.80. The measurement time per time is 30 seconds.

<ピーク強度比I(002)/I(100)>
本発明の窒化ホウ素粉末においては、熱伝導率の異方性が抑制されていること、つまり配向性が小さいがことが好ましい。配向性は、粉末X線回折法による(002)面の回折線のピーク強度I(002)と(100)面の回折線のピーク強度I(100)との比I(002)/I(100)で測定することができる。六方晶窒化ホウ素粒子の厚み方向は結晶学的な(002)面すなわちc軸方向、面内方向は(100)面すなわちa軸方向にそれぞれ一致している。窒化ホウ素粒子を構成する一次粒子の六方晶窒化ホウ素粒子が、完全にランダムな配向(無配向)で有る場合、I(002)/I(100)≒6.7になる(「JCPDS[粉末X線回折データベース]」No.34−0421[BN]の結晶密度値[Dx])。高結晶の六方晶窒化ホウ素ではI(002)/I(100)は一般に20より大きい。
本発明の窒化ホウ素粉末においては、I(002)/I(100)は9.0以下である。I(002)/I(100)が9.0より大きいと、六方晶窒化ホウ素粒子の配向により樹脂組成物の熱伝導率が減少する。
<Peak intensity ratio I (002) / I (100)>
In the boron nitride powder of the present invention, it is preferable that the thermal conductivity anisotropy is suppressed, that is, the orientation is small. The orientation is a ratio I (002) / I (100) between the peak intensity I (002) of the (002) plane diffraction line and the peak intensity I (100) of the (100) plane diffraction line by the powder X-ray diffraction method. ) Can be measured. The thickness direction of the hexagonal boron nitride particles coincides with the crystallographic (002) plane, that is, the c-axis direction, and the in-plane direction coincides with the (100) plane, that is, the a-axis direction. When the hexagonal boron nitride particles of the primary particles constituting the boron nitride particles have a completely random orientation (non-orientation), I (002) / I (100) ≈6.7 (“JCPDS [powder X Line diffraction database] ”No. 34-0421 [BN] crystal density value [Dx]). For highly crystalline hexagonal boron nitride, I (002) / I (100) is generally greater than 20.
In the boron nitride powder of the present invention, I (002) / I (100) is 9.0 or less. If I (002) / I (100) is greater than 9.0, the thermal conductivity of the resin composition decreases due to the orientation of the hexagonal boron nitride particles.

<ピーク強度比I(002)/I(100)の評価方法>
配向性、すなわち粉末X線回折法によるI(002)/I(100)の測定は、例えば、「D8 ADVANCE Super Speed」(ブルカー・エイエックスエス社製)を用いて測定できる。前処理として、窒化ホウ素粉末をプレス成型した後、X線を成型体の面内方向の平面の法線に対して、互いに対称となるように照射した。測定時は、X線源はCuKα線を用い、管電圧は45kV、管電流は360mAである。
<Evaluation method of peak intensity ratio I (002) / I (100)>
The orientation, that is, the measurement of I (002) / I (100) by the powder X-ray diffraction method can be measured using, for example, “D8 ADVANCE Super Speed” (manufactured by Bruker AXS). As a pretreatment, after boron nitride powder was press-molded, X-rays were irradiated so as to be symmetrical to each other with respect to the normal line of the in-plane direction of the molded body. At the time of measurement, CuKα ray is used as the X-ray source, the tube voltage is 45 kV, and the tube current is 360 mA.

<黒鉛化指数(GI)>
黒鉛化指数(GI:Graphitization Index)はX線回折図の(100)面、(101)面及び(102)面のピークの積分強度比すなわち面積比を、GI=〔面積{(100)+(101)}〕/〔面積(102)〕、によって求めることがでる(J.Thomas,et.al,J.Am.Chem.Soc.84,4619(1962))。完全に結晶化したものでは、(GI)1.60になるとされているが、高結晶性でかつ粒子が十分に成長した鱗片形状の六方晶窒化ホウ素粉末の場合、粒子が配向しやすいためGIはさらに小さくなる。すなわち、GIは鱗片形状の六方晶窒化ホウ素粉末の結晶性の指標であり、この値が小さいほど結晶性が高い。
本発明の窒化ホウ素粉末においては、GIが1.6〜4.0が好ましい。GIが4.0より大きいと、一次粒子の六方晶窒化ホウ素粒子の結晶性が低いため、高熱伝導率を得ることができない場合がある。また、GIが1.6より小さいと、鱗片形状が発達しすぎているため、球状構造の維持が難しくなる場合があり、粒子強度が低下する恐れがある。
<Graphitization index (GI)>
The graphitization index (GI) is the integrated intensity ratio of the peaks of the (100) plane, (101) plane, and (102) plane of the X-ray diffraction diagram, that is, the area ratio, GI = [area {(100) + ( 101)}] / [area (102)] (J. Thomas, et.al, J. Am. Chem. Soc. 84, 4619 (1962)). When fully crystallized, it is said that (GI) is 1.60. However, in the case of a flaky hexagonal boron nitride powder having high crystallinity and sufficiently grown particles, the particles are easy to be oriented. Becomes even smaller. That is, GI is an index of crystallinity of the scale-shaped hexagonal boron nitride powder, and the smaller this value, the higher the crystallinity.
In the boron nitride powder of the present invention, GI is preferably 1.6 to 4.0. When GI is larger than 4.0, the crystallinity of the hexagonal boron nitride particles as the primary particles is low, and thus high thermal conductivity may not be obtained. On the other hand, if the GI is smaller than 1.6, the scale shape is too developed, so that it may be difficult to maintain the spherical structure, and the particle strength may be reduced.

<黒鉛化指数(GI)の評価方法>
GIの測定は、例えば、「D8 ADVANCE Super Speed」(ブルカー・エイエックスエス社製)を用いて測定できる。前処理として、窒化ホウ素粉末に解砕処理を行い、一次粒子の六方晶窒化ホウ素粉末を得た後、プレス成型した。X線は、成型体の面内方向の平面の法線に対して、互いに対称となるように照射した。測定時は、X線源はCuKα線を用い、管電圧は45kV、管電流は360mAである。
<Evaluation method of graphitization index (GI)>
The GI can be measured using, for example, “D8 ADVANCE Super Speed” (manufactured by Bruker AXS). As a pretreatment, the boron nitride powder was crushed to obtain primary hexagonal boron nitride powder, and then press molded. X-rays were irradiated so as to be symmetric with respect to the normal line of the plane in the in-plane direction of the molded body. At the time of measurement, CuKα ray is used as the X-ray source, the tube voltage is 45 kV, and the tube current is 360 mA.

<BN純度及びその評価方法>
更に、本発明の窒化ホウ素粉末においては、そのBN純度が95質量%以上であることが好ましい。BN純度は、窒化ホウ素粉末をアルカリ分解後ケルダール法による水蒸気蒸留を行い、留出液中の全窒素を中和適定することによって測定することができる。
<BN purity and its evaluation method>
Furthermore, in the boron nitride powder of the present invention, the BN purity is preferably 95% by mass or more. The BN purity can be measured by subjecting the boron nitride powder to alkali decomposition followed by steam distillation by the Kjeldahl method and neutralizing the total nitrogen in the distillate.

<窒化ホウ素粉末を含有してなる樹脂組成物>
つぎに、本発明の窒化ホウ素粉末を含有してなる樹脂組成物について説明する。樹脂組成物中の窒化ホウ素粉末の割合は20〜80体積%であることが好ましい。また、本発明の窒化ホウ素粉末より平均粒径の小さいセラミックミックス粉末、例えば窒化アルミニウム、酸化アルミニウム、酸化亜鉛、二酸化ケイ素、窒化ホウ粉末素等を適宜添加しても良い。粒子の充填構造をより密にすることができるので、充填性が向上し、結果として樹脂組成物の熱伝導率を著しく向上させることができる。
<Resin composition comprising boron nitride powder>
Next, a resin composition containing the boron nitride powder of the present invention will be described. The proportion of boron nitride powder in the resin composition is preferably 20 to 80% by volume. Further, a ceramic mix powder having an average particle size smaller than that of the boron nitride powder of the present invention, for example, aluminum nitride, aluminum oxide, zinc oxide, silicon dioxide, boron nitride powder, etc. may be added as appropriate. Since the packing structure of the particles can be made denser, the packing property is improved, and as a result, the thermal conductivity of the resin composition can be remarkably improved.

<樹脂>
樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂等を用いることができる。特にエポキシ樹脂は、耐熱性と銅箔回路への接着強度が優れていることから、プリント配線板の絶縁層として好適である。また、シリコーン樹脂は耐熱性、柔軟性及びヒートシンク等への密着性が優れていることから熱インターフェース材として好適である。
<Resin>
Examples of the resin include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, and other polyamides, polybutylene terephthalate, polyethylene Polyesters such as terephthalate, polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene) Propylene / diene rubber-styrene) resin or the like can be used. In particular, epoxy resin is suitable as an insulating layer of a printed wiring board because of its excellent heat resistance and adhesive strength to a copper foil circuit. Silicone resin is suitable as a thermal interface material because it is excellent in heat resistance, flexibility and adhesion to a heat sink.

以下、本発明を実施例、比較例をあげて更に具体的に説明する。
<実施例1〜11、比較例1〜8>
酸素含有量が2.4%、BN純度96.3%、及び平均粒径が3.8μmであるアモルファス窒化ホウ素粉末、酸素含有量が0.1%、BN純度98.8%、及び平均粒径が12.8μmである六方晶窒化ホウ素粉末、炭酸カルシウム(「PC−700」白石工業社製)及び水を、ヘンシェルミキサーを用いて混合した後、ボールミルで粉砕し、水スラリーを得た。さらに、水スラリー100質量部に対して、ポリビニルアルコール樹脂(「ゴーセノール」日本合成化学社製)を0.5質量部添加し、溶解するまで50℃で加熱撹拌した後、噴霧乾燥機にて乾燥温度230℃で球状化処理を行った。なお、噴霧乾燥機の球状化装置としては、回転式アトマイザーを使用した。得られた処理物をバッチ式高周波炉にて焼成した後、焼成物に解砕及び分級処理を行い、窒化ホウ素粉末を得た。表1に示すように、原料配合、ボールミル粉砕条件、噴霧乾燥条件、焼成条件を調整して、表2(実施例)および表3(比較例)に示す19種の粉末A〜Sを製造した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
<Examples 1-11, Comparative Examples 1-8>
Amorphous boron nitride powder having an oxygen content of 2.4%, a BN purity of 96.3%, and an average particle size of 3.8 μm, an oxygen content of 0.1%, a BN purity of 98.8%, and an average particle A hexagonal boron nitride powder having a diameter of 12.8 μm, calcium carbonate (“PC-700” manufactured by Shiroishi Kogyo Co., Ltd.) and water were mixed using a Henschel mixer and then pulverized with a ball mill to obtain a water slurry. Furthermore, after adding 0.5 parts by mass of polyvinyl alcohol resin (“GOHSENOL” manufactured by Nippon Synthetic Chemical Co., Ltd.) to 100 parts by mass of the water slurry, the mixture is heated and stirred at 50 ° C. until dissolved, and then dried by a spray dryer. Spheroidization was performed at a temperature of 230 ° C. A rotary atomizer was used as the spheroidizing device for the spray dryer. The obtained processed product was fired in a batch type high frequency furnace, and then the fired product was crushed and classified to obtain boron nitride powder. As shown in Table 1, 19 kinds of powders A to S shown in Table 2 (Example) and Table 3 (Comparative Example) were produced by adjusting the raw material composition, ball mill pulverization conditions, spray drying conditions, and firing conditions. .

Figure 2014040341
Figure 2014040341

<樹脂への充填>
得られた窒化ホウ素粉末A〜Sの樹脂への充填材としての特性を評価するため、エポキシ樹脂(「エピコート807」三菱化学社製)と硬化剤(「アクメックスH−84B」日本合成化工社製)に対し窒化ホウ素粉末が60体積%となるように混合し、PET製シートの上に厚みが1.0mmになるように塗布した後、500Paの減圧脱泡を10分間行った。その後、温度150℃、圧力160kg/cm条件で60分間のプレス加熱加圧を行って0.5mmのシートとした。なお混合後のスラリーの流動性が悪く、塗布ができない場合は、「充填不可」とした。
<Filling with resin>
In order to evaluate the properties of the obtained boron nitride powders A to S as fillers in the resin, an epoxy resin (“Epicoat 807” manufactured by Mitsubishi Chemical Corporation) and a curing agent (“Acmex H-84B” Nippon Synthetic Chemical Industry Co., Ltd.) The product was mixed so that the boron nitride powder was 60% by volume and applied to a PET sheet so as to have a thickness of 1.0 mm, and then vacuum degassing at 500 Pa was performed for 10 minutes. Thereafter, press heating and pressing were performed for 60 minutes under the conditions of a temperature of 150 ° C. and a pressure of 160 kg / cm 2 to obtain a 0.5 mm sheet. In addition, when the fluidity | liquidity of the slurry after mixing was bad and application was impossible, it was set as "impossible of filling."

得られた窒化ホウ素粉末の粒子強度、及びシートの熱伝導率・誘電率を次に示す方法に従って評価した。それらの結果を表2(実施例)、表3(比較例)に示す。 The particle strength of the obtained boron nitride powder and the thermal conductivity / dielectric constant of the sheet were evaluated according to the following methods. The results are shown in Table 2 (Example) and Table 3 (Comparative Example).

市販の窒化ホウ素粉末2種類(市販品A及びB)についても、窒化ホウ素粉末A〜Sと同様に、粒子強度、及びシートの熱伝導率・誘電率を評価した。それらの結果を表3に併せて示す。 For two types of commercially available boron nitride powders (commercial products A and B), the particle strength and the thermal conductivity / dielectric constant of the sheet were evaluated in the same manner as the boron nitride powders A to S. The results are also shown in Table 3.

<粒子強度評価法>
JIS R1639−5に準じて測定を実施した。測定装置としては、微小圧縮試験器(「MCT−W500」島津製作所社製)を用いた。粒子強度(σ:MPa)は、粒子内の位置によって変化する無次元数(α=2.48:−)と圧壊試験力(P:N)と粒子径(d:μm)からσ=α×P/(π×d)の式を用いて算出した。
<Particle strength evaluation method>
The measurement was carried out according to JIS R1639-5. As a measuring device, a micro compression tester (“MCT-W500” manufactured by Shimadzu Corporation) was used. The particle strength (σ: MPa) is calculated from the dimensionless number (α = 2.48 :−), the crushing test force (P: N), and the particle diameter (d: μm) that change depending on the position in the particle. It calculated using the formula of P / ((pi) * d < 2 >).

<熱伝導率評法>
熱伝導率(H;W/(m・K))は、熱拡散率(A:m/sec)と比重(B:kg/m)、比熱容量(C:J/(kg・K))から、H=A×B×Cとして、算出した。熱拡散率は、測定用試料としてシートを幅10mm×10mm×厚み0.5mmに加工し、レーザーフラッシュ法により求めた。測定装置はキセノンフラッシュアナライザ(「LFA447NanoFlash」NETZSCH社製)を用いた。比重はアルキメデス法を用いて求めた。比熱容量は、DSC(「ThermoPlus Evo DSC8230」リガク社製)を用いて求めた。
<Thermal conductivity rating method>
Thermal conductivity (H; W / (m · K)), thermal diffusivity (A: m 2 / sec), specific gravity (B: kg / m 3 ), specific heat capacity (C: J / (kg · K)) ) Was calculated as H = A × B × C. The thermal diffusivity was determined by a laser flash method by processing a sheet as a measurement sample into a width of 10 mm × 10 mm × thickness of 0.5 mm. A xenon flash analyzer (“LFA447 NanoFlash” manufactured by NETZSCH) was used as a measurement apparatus. Specific gravity was determined using the Archimedes method. The specific heat capacity was determined using DSC (“ThermoPlus Evo DSC8230” manufactured by Rigaku Corporation).

<誘電率評法>
シート上に銅ペーストを印刷・乾燥し、電極を形成した試料を用い、温度25℃、周波数1MHzの条件下にて、JISC6481に準じて測定を実施し、静電容量(X;F)を求めた。測定器には、LCRメータ(「HP4284」横河・ヒューレット・パッカード社製)を用いた。比誘電率(E)は、静電容量(X;F)とシートの厚み(Y;m)と電極の面積(Z;m)と真空の誘電率(8.85×10−12;F/m)から、
E=X×Y/(Z×8.85×10−12)の式を用いて、算出した。
<Dielectric constant rating>
Using a sample on which a copper paste is printed and dried on a sheet and an electrode is formed, measurement is performed in accordance with JISC6481 under conditions of a temperature of 25 ° C. and a frequency of 1 MHz, and the capacitance (X; F) is obtained. It was. An LCR meter (“HP4284” manufactured by Yokogawa / Hewlett Packard) was used as the measuring instrument. The relative dielectric constant (E) is the capacitance (X; F), sheet thickness (Y; m), electrode area (Z; m 2 ), and vacuum dielectric constant (8.85 × 10 −12 ; F / M)
It calculated using the formula of E = X * Y / (Z * 8.85 * 10 < -12 >).

Figure 2014040341
Figure 2014040341

Figure 2014040341
Figure 2014040341

実施例と比較例の対比から明らかなように、本発明の窒化ホウ素粉末を含有してなる樹脂組成物は、優れた熱伝導率及び比誘電率を示している。   As is clear from the comparison between Examples and Comparative Examples, the resin composition containing the boron nitride powder of the present invention exhibits excellent thermal conductivity and relative dielectric constant.

本発明は特に、窒化ホウ素粉末のカルシウム含有率に着目し、粒子強度に与える影響について検討した結果、特定のカルシウム含有率において、内部に空隙を持つ場合でも、樹脂やゴムに充填する際の混練の剪断応力に耐えうる粒子強度を発現する事を突き止めた。見出したカルシウム含有率は非常に低く、六方晶窒化ホウ素粒子の高熱伝導率を十分に活かすことができる。得られた窒化ホウ素粉末を樹脂やゴムに充填した組成物は、窒化ホウ素粉末の60体積%以上の高充填が可能であり、熱伝導率及び比誘電率が大幅に改善された。 In particular, the present invention pays attention to the calcium content of boron nitride powder, and as a result of examining the influence on the particle strength, kneading at the time of filling resin or rubber even when there is a void in the specific calcium content It was found out that the particle strength that can withstand the shear stress was developed. The found calcium content is very low, and the high thermal conductivity of the hexagonal boron nitride particles can be fully utilized. The composition obtained by filling the obtained boron nitride powder into a resin or rubber can be filled with boron nitride powder in a high volume of 60% by volume or more, and the thermal conductivity and relative dielectric constant are greatly improved.

本発明の窒化ホウ素粉末は、樹脂への充填材として使用される。また、本発明の窒化ホウ素粉末を含有した樹脂組成物は、プリント配線板の絶縁層及び熱インターフェース材として使用される。
The boron nitride powder of the present invention is used as a filler for a resin. In addition, the resin composition containing the boron nitride powder of the present invention is used as an insulating layer and a thermal interface material of a printed wiring board.

Claims (3)

カルシウムの含有率が500〜5000ppm、空隙率が50〜80%、平均球形度0.7以上、平均粒径が20〜100μm、粉末X線回折法における(002)面と(100)面のピーク強度比I(002)/I(100)が9.0以下であることを特徴とする窒化ホウ素粉末。 The calcium content is 500 to 5000 ppm, the porosity is 50 to 80%, the average sphericity is 0.7 or more, the average particle size is 20 to 100 μm, and the peaks on the (002) plane and (100) plane in the powder X-ray diffraction method A boron nitride powder having an intensity ratio I (002) / I (100) of 9.0 or less. 粉末X線回折法による黒鉛化指数が1.6〜4.0であることを特徴とする請求項1に記載の窒化ホウ素粉末。 2. The boron nitride powder according to claim 1, which has a graphitization index by a powder X-ray diffraction method of 1.6 to 4.0. 請求項1〜2のいずれか一項に記載の窒化ホウ素粉末を含有してなる樹脂組成物。
A resin composition comprising the boron nitride powder according to claim 1.
JP2012182972A 2012-08-22 2012-08-22 Boron nitride powder and its use Active JP5969314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182972A JP5969314B2 (en) 2012-08-22 2012-08-22 Boron nitride powder and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182972A JP5969314B2 (en) 2012-08-22 2012-08-22 Boron nitride powder and its use

Publications (2)

Publication Number Publication Date
JP2014040341A true JP2014040341A (en) 2014-03-06
JP5969314B2 JP5969314B2 (en) 2016-08-17

Family

ID=50392952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182972A Active JP5969314B2 (en) 2012-08-22 2012-08-22 Boron nitride powder and its use

Country Status (1)

Country Link
JP (1) JP5969314B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136959A1 (en) * 2013-03-07 2014-09-12 電気化学工業株式会社 Boron-nitride powder and resin composition containing same
JP2015193504A (en) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 Boron nitride particle, resin composition and heat-conductive sheet
JP2016027143A (en) * 2014-07-02 2016-02-18 住友ベークライト株式会社 Thermally conductive sheet, cured product of thermally conductive sheet, and semiconductor device
WO2017034003A1 (en) * 2015-08-26 2017-03-02 デンカ株式会社 Thermally conductive resin composition
JP2017082091A (en) * 2015-10-28 2017-05-18 デンカ株式会社 Epoxy resin composition, epoxy resin sheet and metal base circuit board using the same
JP2018020932A (en) * 2016-08-03 2018-02-08 デンカ株式会社 Aggregate of hexagonal boron nitride primary particle, resin composition and application thereof
WO2018066277A1 (en) 2016-10-07 2018-04-12 デンカ株式会社 Boron nitride aggregated grain, method for producing same, and thermally conductive resin composition using same
US10106413B2 (en) 2014-02-05 2018-10-23 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
WO2019073690A1 (en) 2017-10-13 2019-04-18 デンカ株式会社 Boron nitride powder, method for producing same, and heat-dissipating member produced using same
US10752503B2 (en) 2016-10-21 2020-08-25 Denka Company Limited Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same
KR20210022569A (en) 2018-06-29 2021-03-03 덴카 주식회사 Bulk boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
CN113329970A (en) * 2019-01-29 2021-08-31 电化株式会社 Boron nitride powder and resin composition
KR20210138720A (en) 2019-03-28 2021-11-19 덴카 주식회사 Boron nitride powder and manufacturing method thereof, and composite material and heat dissipation member
KR20210142639A (en) 2019-03-27 2021-11-25 덴카 주식회사 A bulk boron nitride particle, a heat conductive resin composition, and a heat dissipation member
KR20210142640A (en) 2019-03-27 2021-11-25 덴카 주식회사 A bulk boron nitride particle, a heat conductive resin composition, and a heat dissipation member
JP6987941B1 (en) * 2020-09-11 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet
WO2022050415A1 (en) * 2020-09-07 2022-03-10 デンカ株式会社 Insulating resin composition, insulating resin cured body, layered body, and circuit substrate
JP2022097544A (en) * 2017-04-28 2022-06-30 積水化学工業株式会社 Boron nitride particle aggregate and thermosetting material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256308A (en) * 1985-05-10 1987-03-12 Kawasaki Steel Corp Hexagonal boron nitride powder having excellent sintering characteristic
JPH01103960A (en) * 1987-10-16 1989-04-21 Showa Denko Kk Production of boron nitride sintered compact
JPH09202663A (en) * 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk Melamine borate particle, its production and use thereof and production of hexagonal boron nitride powder
US20020006373A1 (en) * 2000-05-18 2002-01-17 Clere Thomas M. Agglomerated hexagonal boron nitride powders, method of making, and uses thereof
WO2011104996A1 (en) * 2010-02-23 2011-09-01 三菱電機株式会社 Thermosetting resin composition, b-stage thermally conductive sheet, and power module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256308A (en) * 1985-05-10 1987-03-12 Kawasaki Steel Corp Hexagonal boron nitride powder having excellent sintering characteristic
JPH01103960A (en) * 1987-10-16 1989-04-21 Showa Denko Kk Production of boron nitride sintered compact
JPH09202663A (en) * 1996-01-24 1997-08-05 Denki Kagaku Kogyo Kk Melamine borate particle, its production and use thereof and production of hexagonal boron nitride powder
US20020006373A1 (en) * 2000-05-18 2002-01-17 Clere Thomas M. Agglomerated hexagonal boron nitride powders, method of making, and uses thereof
WO2011104996A1 (en) * 2010-02-23 2011-09-01 三菱電機株式会社 Thermosetting resin composition, b-stage thermally conductive sheet, and power module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016024985; J.R.Wank et al.: 'Vibro-fluidization of fine boron nitride powder at low pressure' Powder Technology , 2001, PP.195-204 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656868B2 (en) 2013-03-07 2017-05-23 Denka Company Limited Boron-nitride powder and resin composition containing same
WO2014136959A1 (en) * 2013-03-07 2014-09-12 電気化学工業株式会社 Boron-nitride powder and resin composition containing same
US10414653B2 (en) 2014-02-05 2019-09-17 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
US10106413B2 (en) 2014-02-05 2018-10-23 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
US20180354793A1 (en) 2014-02-05 2018-12-13 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JP2015193504A (en) * 2014-03-31 2015-11-05 ナガセケムテックス株式会社 Boron nitride particle, resin composition and heat-conductive sheet
JP2016027143A (en) * 2014-07-02 2016-02-18 住友ベークライト株式会社 Thermally conductive sheet, cured product of thermally conductive sheet, and semiconductor device
KR102560615B1 (en) * 2015-08-26 2023-07-27 덴카 주식회사 Thermally conductive resin composition
WO2017034003A1 (en) * 2015-08-26 2017-03-02 デンカ株式会社 Thermally conductive resin composition
CN107922743A (en) * 2015-08-26 2018-04-17 电化株式会社 Heat conductive resin composition
KR20180048612A (en) * 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
JPWO2017034003A1 (en) * 2015-08-26 2018-06-14 デンカ株式会社 Thermally conductive resin composition
CN107922743B (en) * 2015-08-26 2019-03-08 电化株式会社 Heat conductive resin composition
JP2017082091A (en) * 2015-10-28 2017-05-18 デンカ株式会社 Epoxy resin composition, epoxy resin sheet and metal base circuit board using the same
JP2018020932A (en) * 2016-08-03 2018-02-08 デンカ株式会社 Aggregate of hexagonal boron nitride primary particle, resin composition and application thereof
WO2018066277A1 (en) 2016-10-07 2018-04-12 デンカ株式会社 Boron nitride aggregated grain, method for producing same, and thermally conductive resin composition using same
US11732173B2 (en) 2016-10-07 2023-08-22 Denka Company Limited Surface-treated aggregated boron nitride powder, aggregated boron nitride powder, and thermally conductive resin composition
US11268004B2 (en) 2016-10-07 2022-03-08 Denka Company Limited Boron nitride aggregated grain
US10752503B2 (en) 2016-10-21 2020-08-25 Denka Company Limited Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same
JP2022097544A (en) * 2017-04-28 2022-06-30 積水化学工業株式会社 Boron nitride particle aggregate and thermosetting material
WO2019073690A1 (en) 2017-10-13 2019-04-18 デンカ株式会社 Boron nitride powder, method for producing same, and heat-dissipating member produced using same
KR20200068673A (en) 2017-10-13 2020-06-15 덴카 주식회사 Boron nitride powder, manufacturing method and heat dissipation member using the same
KR20210022569A (en) 2018-06-29 2021-03-03 덴카 주식회사 Bulk boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
CN113329970A (en) * 2019-01-29 2021-08-31 电化株式会社 Boron nitride powder and resin composition
KR20210142639A (en) 2019-03-27 2021-11-25 덴카 주식회사 A bulk boron nitride particle, a heat conductive resin composition, and a heat dissipation member
KR20210142640A (en) 2019-03-27 2021-11-25 덴카 주식회사 A bulk boron nitride particle, a heat conductive resin composition, and a heat dissipation member
KR20210138720A (en) 2019-03-28 2021-11-19 덴카 주식회사 Boron nitride powder and manufacturing method thereof, and composite material and heat dissipation member
WO2022050415A1 (en) * 2020-09-07 2022-03-10 デンカ株式会社 Insulating resin composition, insulating resin cured body, layered body, and circuit substrate
JP6987941B1 (en) * 2020-09-11 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet
WO2022054479A1 (en) * 2020-09-11 2022-03-17 デクセリアルズ株式会社 Thermally conductive sheet and production method for thermally conductive sheet
JP2022047001A (en) * 2020-09-11 2022-03-24 デクセリアルズ株式会社 Thermal conductive sheet and method for manufacturing thermal conductive sheet

Also Published As

Publication number Publication date
JP5969314B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5969314B2 (en) Boron nitride powder and its use
JP6296568B2 (en) Boron nitride powder and resin composition containing the same
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
TWI644855B (en) Hexagonal crystal boron nitride powder, its manufacturing method, resin composition and resin flake
JP6351585B2 (en) Resin-impregnated boron nitride sintered body and use thereof
JP6125273B2 (en) Boron nitride molded body, production method and use thereof
TWI698409B (en) Thermally conductive resin composition
JP6704271B2 (en) Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
KR20210022569A (en) Bulk boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
JP6720014B2 (en) Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
JP6125282B2 (en) Boron nitride composite powder and thermosetting resin composition using the same
US20120286194A1 (en) Thermal conductive sheet, insulating sheet, and heat dissipating member
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
US20120285674A1 (en) Thermal conductive sheet, insulating sheet, and heat dissipating member
JP2018052782A (en) Hexagonal boron nitride primary particle agglomerate
JP2016155937A (en) Thermal conductive particle composition, method for producing thermal conductive particle composition, thermal conductive resin composition, and thermal conductive resin cured body
JP7124249B1 (en) Heat-dissipating sheet and method for manufacturing heat-dissipating sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150812

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250