JP2014040128A - アクティブダンパー - Google Patents

アクティブダンパー Download PDF

Info

Publication number
JP2014040128A
JP2014040128A JP2012182298A JP2012182298A JP2014040128A JP 2014040128 A JP2014040128 A JP 2014040128A JP 2012182298 A JP2012182298 A JP 2012182298A JP 2012182298 A JP2012182298 A JP 2012182298A JP 2014040128 A JP2014040128 A JP 2014040128A
Authority
JP
Japan
Prior art keywords
hydraulic
command value
rotational speed
hydraulic cylinder
pump motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012182298A
Other languages
English (en)
Inventor
Mitsuaki Hayashi
林  光昭
Yuji Shiga
裕二 志賀
Yasuhiro Arata
康弘 荒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012182298A priority Critical patent/JP2014040128A/ja
Priority to PCT/JP2013/054342 priority patent/WO2013125638A1/ja
Publication of JP2014040128A publication Critical patent/JP2014040128A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

【課題】油圧シリンダの推力制御可能範囲を拡張することの可能なアクティブダンパーを提供する。
【解決手段】制振対象物と支持架台との間に介装された油圧シリンダと、前記油圧シリンダへ作動油を吐出する油圧ポンプと、前記油圧ポンプを駆動するポンプモータと、前記油圧シリンダと前記油圧ポンプとを結ぶ作動油流路に接続された油圧回路と、前記油圧シリンダの推力指令値と推力現在値との偏差に制御ゲインを乗算して前記ポンプモータの回転速度指令値を算出すると共に、前記回転速度指令値が前記ポンプモータの正負いずれか一方向の最高回転速度を越えた場合に前記油圧回路を作動させる制御装置とを備える。
【選択図】図1

Description

本発明は、アクティブダンパーに関する。
周知の通り、アクティブダンパーは、アクチュエータを動的に制御することによって衝撃の緩和や振動の抑制(制振)を行うものであり、車両に用いられるサスペンションや、プレス機に用いられるダイクッション装置などの各種装置に応用されている。一般的なアクティブダンパーは、制振対象物と支持架台との間に介装された油圧シリンダと、油圧シリンダへ作動油を吐出する油圧ポンプと、油圧ポンプを駆動するポンプモータと、ポンプモータを制御するコントローラとを備えている(下記特許文献1及び2参照)。
特開2000−264033号公報 特開2009−196597号公報
ところで、上記従来構成のアクティブダンパーによると、油圧シリンダで発生する推力は、ポンプモータで回転制御される油圧ポンプの吐出流量で決定される。従って、油圧シリンダの推力応答は、ポンプモータの回転速度Nで制約されてしまい、ポンプモータの最高回転速度を越える領域(最高回転速度をNmaxとすると、N>NmaxとN<−Nmaxの領域)では油圧シリンダの推力制御が不能になるという問題がある。
本発明は、上述した事情に鑑みてなされたものであり、油圧シリンダの推力制御可能範囲を拡張することの可能なアクティブダンパーを提供することを目的とする。
上記目的を達成するために、本発明では、アクティブダンパーに係る第1の解決手段として、制振対象物と支持架台との間に介装された油圧シリンダと、前記油圧シリンダへ作動油を吐出する油圧ポンプと、前記油圧ポンプを駆動するポンプモータと、前記油圧シリンダと油圧ポンプとを結ぶ作動油流路に接続された油圧回路と、前記油圧シリンダの推力指令値と推力現在値との偏差に制御ゲインを乗算して前記ポンプモータの回転速度指令値を算出し、前記回転速度指令値が前記ポンプモータの正負いずれか一方向の最高回転速度を越えた場合に前記油圧回路を作動させる制御装置とを備える、という手段を採用する。
また、本発明では、アクティブダンパーに係る第2の解決手段として、上記第1の解決手段において、前記作動油流路に接続された第1のアキュムレータを備える、という手段を採用する。
また、本発明では、アクティブダンパーに係る第3の解決手段として、上記第1または第2の解決手段において、前記油圧回路は、油圧源となる第2のアキュムレータが油圧切換弁を介して前記作動油流路に接続される構成となっており、前記制御装置は、前記回転速度指令値が前記ポンプモータの正方向の最高回転速度を越えた場合には、前記油圧シリンダにより前記制振対象物が押される方向に油圧が印加されるように前記油圧切換弁を制御する一方、前記回転速度指令値が前記ポンプモータの負方向の最高回転速度を越えた場合には、前記油圧シリンダにより前記制振対象物が引かれる方向に油圧が印加されるように前記油圧切換弁を制御する、という手段を採用する。
また、本発明では、アクティブダンパーに係る第4の解決手段として、上記第3の解決手段において、前記制御装置は、前記回転速度指令値が前記ポンプモータの正方向の最高回転速度を越えた場合、前記偏差が零より大きい期間において、前記油圧シリンダにより前記制振対象物が押される方向に油圧が印加されるように前記油圧切換弁を制御し、前記偏差が零以下となった時点で前記油圧切換弁の制御を停止する、という手段を採用する。
また、本発明では、アクティブダンパーに係る第5の解決手段として、上記第3の解決手段において、前記制御装置は、前記回転速度指令値が前記ポンプモータの負方向の最高回転速度を越えた場合、前記偏差が零より小さい期間において、前記油圧シリンダにより前記制振対象物が引かれる方向に油圧が印加されるように前記油圧切換弁を制御し、前記偏差が零以上となった時点で前記油圧切換弁の制御を停止する、という手段を採用する。
また、本発明では、アクティブダンパーに係る第6の解決手段として、上記第1〜第5のいずれか一つの解決手段において、前記制御装置は、上位制御装置から入力される減衰力指令値に対して自重支持負担分に相当する荷重を加算することで前記推力指令値を算出する、という手段を採用する。
本発明によれば、油圧シリンダと油圧ポンプとを結ぶ作動油流路に油圧回路を接続し、ポンプモータの回転速度指令値がポンプモータの正負いずれか一方向の最高回転速度を越えた場合に前記油圧回路を作動させることにより、ポンプモータの最高回転速度を越える領域で不足する油圧ポンプ吐出流量を補うことができ、その結果、油圧シリンダの推力制御可能範囲を拡張することが可能となる。
本実施形態に係るアクティブダンパー1の概略構成図である。 本実施形態におけるコントローラ20の機能ブロック図である。 従来構成(油圧回路19が設けられていない構成)のアクティブダンパーの一部を抜粋した図(a)と、従来構成における油圧シリンダ101の推力制御可能範囲の一例をグラフで示した図と表で示した図(b)(c)である。 本実施形態(油圧回路19が設けられた構成)におけるアクティブダンパー1の一部を抜粋した図(a)(b)と、本実施形態における油圧シリンダ11の推力制御可能範囲の一例をグラフで示した図と表で示した図(c)(d)である。 本実施形態の第1の変形例を示す図である。 本実施形態の第2の変形例を示す図である。 本実施形態の第3の変形例を示す図である。
以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係るアクティブダンパー1の概略構成図である。この図1に示すように、本実施形態に係るアクティブダンパー1は、制振対象物2と支持架台3との間に介装された油圧シリンダ11にて発生する推力を動的に制御することで制振対象物2の振動抑制(制振)を実現するものであり、油圧シリンダ11、油圧ポンプ12、貯油タンク13、ポンプモータ14、第1のアキュムレータ15、圧力センサ16、モータドライバ17、パルスジェネレータ18、油圧回路19及びコントローラ20から構成されている。
このアクティブダンパー1の用途を例えば車両用サスペンションと想定すると、制振対象物2は車体(バネ上質量M)であり、支持架台3はタイヤの支持アーム(バネ下質量m)である。また、図中の振動源は路面であり、この路面と支持架台3との間に介在するバネ要素4はタイヤである。さらに、制振対象物2(車体)と支持架台3(支持アーム)との間に介装されたバネ要素5はスプリングコイルであり、減衰要素6は例えばガス封入式のダンパーである。
油圧シリンダ11は、制振対象物2と支持架台3との間に介装され、油圧によって制振対象物2の制振制御に必要な推力を発生するものであり、シリンダ11a、ピストン11b及びロッド11cを備えている。シリンダ11aは、作動油を内部に収容する円筒状の部品である。ピストン11bは、シリンダ11aの内部空間を2つの部屋(第1室R1、第2室R2)に分割すると共にシリンダ11aの内壁に沿って往復移動自在に収容された円盤状の部品である。作動油は第2室R2に収容される。
ロッド11cは、自身の中心軸線とピストン11bの中心軸線とが一致するように一端がピストン11bに固定された棒状の部品である。このロッド11cの他端は、シリンダ11aの第2室R2側から外側に貫通して、油圧シリンダ11で発生する推力を作用させるべき制振対象物2と連結されている。
油圧ポンプ12は、例えば二方向吐出型の容量ポンプであり、入力軸がポンプモータ14の回転軸に接続されていると共に、一方の吐出口が作動油流路L1を介して油圧シリンダ11の第2室R2に接続され、他方の吐出口が排出流路L2を介して貯油タンク13に接続されている。この油圧ポンプ12は、入力軸の回転方向によって作動油の吐出方向(言い換えれば、どちらの吐出口から作動油が吐出されるか)が決定され、入力軸の回転速度(回転数)によって吐出流量が決定される。貯油タンク13は、油圧ポンプ12から排出される作動油を貯留するための容器である。
ポンプモータ14は、例えばACサーボモータであり、モータドライバ17から供給されるモータ駆動信号に応じて回転する回転軸を有している。前述のように、ポンプモータ14の回転軸は油圧ポンプ12の入力軸に接続されているので、ポンプモータ14の回転方向及び回転速度を制御することにより、油圧ポンプ12による作動油の吐出方向及び吐出流量を任意に制御できる。つまり、ポンプモータ14の回転方向及び回転速度を制御することにより、油圧シリンダ11の第1室R1と第2室R2の間に任意の圧力差を生じさせることができ、その結果、油圧シリンダ11にて発生する推力(制振対象物2に作用する力)を任意に制御できるようになる。
なお、本実施形態では、ポンプモータ14が正方向に回転した場合に、油圧シリンダ11により制振対象物2が押される方向に油圧が印加され、ポンプモータ14が負方向に回転した場合に、油圧シリンダ11により制振対象物2が引かれる方向に油圧が印加されるものとする。
第1のアキュムレータ15は、油圧シリンダ11と油圧ポンプ12とを結ぶ作動油流路L1の途中(油圧シリンダ11に近い位置が好ましい)に接続された蓄圧器である。この第1のアキュムレータ15は、窒素ガスが封入されたゴム膜を本体内部に備えており、作動油流路L1の圧力が窒素ガス封入圧力より高くなると、ゴム膜が圧縮されて作動油を内部に蓄積し、作動油流路L1の圧力が窒素ガス封入圧力より低くなると、ゴム膜の膨張によって作動油を放出するものである。
圧力センサ16は、作動油流路L1の圧力を検出し、その圧力検出値をコントローラ20に出力する。モータドライバ17は、コントローラ20から入力される回転速度指令値に応じてポンプモータ14を駆動するためのモータ駆動信号(駆動電流)を生成してポンプモータ14に出力する。パルスジェネレータ18は、例えばロータリーエンコーダであり、ポンプモータ14の回転に応じたパルス信号(具体的には、ポンプモータ14が一定角度回転するのに要した時間を1周期とするパルス信号)を生成してモータドライバ17に出力するパルス発生器である。
このように、モータドライバ17には、パルスジェネレータ18から出力されるパルス信号がフィードバックされており、回転速度指令値によって指示される回転速度と実際のポンプモータ14の回転速度とが一致するようにフィードバック制御を行うことができるようになっている。
油圧回路19は、油圧源となる第2のアキュムレータ19aが油圧切換弁19bを介して作動油流路L1に接続される構成となっている。詳細は後述するが、油圧切換弁19bは、コントローラ20によって、ポンプモータ14の回転速度指令値が正方向の最高回転速度を越えた場合には、油圧シリンダ11により制振対象物2が押される方向に油圧が印加されるように開閉制御される一方、ポンプモータ14の回転速度指令値が負方向の最高回転速度を越えた場合には、油圧シリンダ11により制振対象物2が引かれる方向に油圧が印加されるように開閉制御される。
コントローラ20は、圧力センサ16から入力される圧力検出値、及び上位制御装置30から入力される減衰力指令値に基づいてポンプモータ14の回転制御を行う制御装置であり、図2に示すように、推力換算部20a、推力指令値算出部20b、偏差算出部20c、制御ゲイン乗算部20d、回転速度リミッタ20e、比例ゲイン乗算部20f、制御停止指令値生成部20g、第1のスイッチ20h、第2のスイッチ20i、第1のスイッチ制御部20j及び第2のスイッチ制御部20kを備えている。
ここで、上位制御装置30から入力される減衰力指令値とは、例えば、制御対象物2と支持架台3との相対速度に基づいて算出された、その相対速度への抵抗力に相当する値(言い換えれば減衰係数)である。つまり、上位制御装置30は、制御対象物2と支持架台3との相対速度を検出する相対速度検出部31の出力信号に基づいて、相対速度への抵抗力に相当する減衰力指令値を算出してコントローラ20に出力する。
推力換算部20aは、圧力センサ16から入力される圧力検出値を基に作動油流路L1の圧力(以下、作動油圧力と称す)を認識し、この作動油圧力に所定の変換係数を乗算することにより、油圧シリンダ11にて現在発生している推力(以下、推力現在値と称す)を算出する。推力指令値算出部20bは、上位制御装置30から入力される減衰力指令値に対して油圧シリンダ11の自重支持負担分に相当する一定荷重を加算することで推力指令値を算出する。
制振対象物2の自重は、その質量Mと重力加速度gを用いてM×gで表され、例えば制振対象物2と支持架台3との間に介装されたバネ要素5及び減衰要素6の自重支持負担分を9割とすると、油圧シリンダ11の自重支持負担分は、M×g×(1−0.9)で表される。偏差算出部20cは、上記のように推力指令値算出部20bにて算出された推力指令値(=減衰力指令値+油圧シリンダ11の自重支持負担分)と推力換算部20aにて算出された推力現在値との偏差(以下、制御偏差εと称す)を算出する。
制御ゲイン乗算部20dは、偏差算出部20cにて算出された制御偏差εに制御ゲインGを乗算することで、制御偏差εをゼロにするための、言い換えれば推力指令値と推力現在値とを一致させるためポンプモータ14の回転速度指令値Nを算出する。回転速度リミッタ20eは、制御ゲイン乗算部20dにて算出された回転速度指令値Nを正負方向の最高回転速度の範囲内(最高回転速度をNmaxとすると、−Nmax≦N≦Nmaxの範囲)に制限してモータドライバ17に出力する。
比例ゲイン乗算部20fは、偏差算出部20cから入力される制御偏差εに比例ゲインKを乗算することで油圧切換弁19bを開閉制御するための開閉指令値を算出し、その開閉指令値を第1のスイッチ20h及び第2のスイッチ20iに出力する。制御停止指令値生成部20gは、油圧切換弁19bの開閉制御を停止するための制御停止指令値を算出し、その制御停止指令値を第1のスイッチ20h及び第2のスイッチ20iに出力する。
第1のスイッチ20hは、第1のスイッチ制御部20jによる制御の下、比例ゲイン乗算部20fから入力される開閉指令値と、制御停止指令値生成部20gから入力される制御停止指令値とのいずれか一方を選択的に油圧切換弁19bに出力する。第2のスイッチ20iは、第2のスイッチ制御部20kによる制御の下、比例ゲイン乗算部20fから入力される開閉指令値と、制御停止指令値生成部20gから入力される制御停止指令値とのいずれか一方を選択的に油圧切換弁19bに出力する。
第1のスイッチ制御部20jは、制御ゲイン乗算部20dから入力される回転速度指令値Nがポンプモータ14の正方向の最高回転速度Nmaxを越えた場合、制御偏差εが零より大きい期間において、開閉指令値が油圧切換弁19bに出力されるように第1のスイッチ20hを制御し、制御偏差εが零以下となった時点で制御停止指令値が油圧切換弁19bに出力されるように第1のスイッチ20hを制御する。
回転速度指令値Nがポンプモータ14の正方向の最高回転速度Nmaxを越えた場合、制御偏差εも正の値であるので、開閉指令値も正の値となる。従って、制御偏差εが零より大きい期間が継続する限り、正の開閉指令値が油圧切換弁19bに出力されて、油圧回路19によって、油圧シリンダ11により制振対象物2が押される方向に油圧が印加されることになる。なお、制御偏差εが零以下となった時点で制御停止指令値が油圧切換弁19bに出力されると、油圧回路19による油圧の印加が停止する。
第2のスイッチ制御部20kは、制御ゲイン乗算部20dから入力される回転速度指令値Nがポンプモータ14の負方向の最高回転速度−Nmaxを越えた場合、制御偏差εが零より小さい期間において、開閉指令値が油圧切換弁19bに出力されるように第2のスイッチ20iを制御し、制御偏差εが零以上となった時点で制御停止指令値が油圧切換弁19bに出力されるように第2のスイッチ20iを制御する。
回転速度指令値Nがポンプモータ14の負方向の最高回転速度−Nmaxを越えた場合、制御偏差εも負の値であるので、開閉指令値も負の値となる。従って、制御偏差εが零より小さい期間が継続する限り、負の開閉指令値が油圧切換弁19bに出力されて、油圧回路19によって、油圧シリンダ11により制振対象物2が引かれる方向に油圧が印加されることになる。なお、制御偏差εが零以上となった時点で制御停止指令値が油圧切換弁19bに出力されると、油圧回路19による油圧の印加が停止する。
以下では、上記のように構成されたアクティブダンパー1の作用効果について図3及び図4を参照しながら説明する。
図3(a)は、従来構成(油圧回路19が設けられていない構成)のアクティブダンパーの一部を抜粋した図である。この図において、油圧シリンダ101は本実施形態の油圧シリンダ11に相当し、アキュムレータ102は本実施形態の第1のアキュムレータ15に相当し、油圧ポンプ103は本実施形態の油圧ポンプ12に相当し、ポンプモータ104は本実施形態のポンプモータ14に相当する。
図3(b)と(c)は、従来構成(油圧回路19が設けられていない構成)における油圧シリンダ101の推力制御可能範囲の一例をグラフで示した図と表で示した図である。従来構成のアクティブダンパーによると、油圧シリンダ101で発生する推力は、ポンプモータ104で回転制御される油圧ポンプ103の吐出流量で決定される。従って、油圧シリンダ101の推力応答は、ポンプモータ104の回転速度Nで制約されてしまい、ポンプモータ104の最高回転速度を越える領域(最高回転速度をNmaxとすると、N>NmaxとN<−Nmaxの領域)では油圧シリンダ101の推力制御が不能になる。
一方、図4(a)(b)は、本実施形態におけるアクティブダンパー1の一部を抜粋した図であり、特に、図4(a)は、ポンプモータ14の回転速度指令値Nが正方向の最高回転速度Nmaxを越えた場合の、作動油の流れ方向を図示したものであり、図4(b)は、ポンプモータ14の回転速度指令値Nが負方向の最高回転速度−Nmaxを越えた場合の、作動油の流れ方向を図示したものである。
本実施形態のコントローラ20は、ポンプモータ14の回転速度指令値Nが正負方向の最高回転速度範囲内(−Nmax≦N≦Nmaxの範囲)に収まっている場合には、従来構成と同様に、ポンプモータ14の回転制御のみで油圧シリンダ11の推力制御を行うが、ポンプモータ14の回転速度指令値Nが正方向の最高回転速度Nmaxを越えた場合には、制御偏差εが零以下となるまで(言い換えれば、回転速度指令値Nが正負方向の最高回転速度範囲内に収まるまで)正の開閉指令値を油圧切換弁19bに出力することで、油圧回路19によって、油圧シリンダ11により制振対象物2が押される方向に油圧を印加する(図4(a)参照)。
また、コントローラ20は、ポンプモータ14の回転速度指令値Nが負方向の最高回転速度−Nmaxを越えた場合には、制御偏差εが零以上となるまで(言い換えれば、回転速度指令値Nが正負方向の最高回転速度範囲内に収まるまで)負の開閉指令値を油圧切換弁19bに出力することで、油圧回路19によって、油圧シリンダ11により制振対象物2が引かれる方向に油圧を印加する(図4(b)参照)。
図4(c)と(d)は、本実施形態(油圧回路19が設けられた構成)における油圧シリンダ11の推力制御可能範囲の一例をグラフで示した図と表で示した図である。これらの図に示すように、本実施形態により、従来構成と比較して油圧シリンダ11の推力制御可能範囲が大きく拡張されていることがわかる。
以上のように、本実施形態によれば、油圧シリンダ11と油圧ポンプ12とを結ぶ作動油流路L1に油圧回路19を接続し、ポンプモータ14の回転速度指令値Nが正負いずれか一方向の最高回転速度を越えた場合(N>Nmax、或いはN<−Nmaxの場合)に油圧回路19を作動させることにより、ポンプモータ14の最高回転速度Nmaxを越える領域で不足する油圧ポンプ12の吐出流量を補うことができ、その結果、油圧シリンダ11の推力制御可能範囲を拡張することが可能となる。
また、本実施形態に係るアクティブダンパー1は、制振対象物2(バネ上質量M)の自重を支持する力の一部を油圧シリンダ11に分担させることにより、油圧シリンダ11は一定方向のみの推力を発生させれば良い構成を採用している。油圧シリンダ11は、制振対象物2の自重を支持する力の一部を定常的に発生させつつ、その自重支持の定常力を基準として、ポンプモータ14の回転制御による作動油の流入出量を調整することにより、制振制御に必要な制御力(推力)を制振対象物2に作用させることができる。
油圧シリンダ11における、支持架台3(バネ下質量m)から制振対象物2(バネ上質量M)への振動伝達を考えると、第1のアキュムレータ15の封入ガスの圧縮性の作用により、バネ下側の振動がバネ上側に伝わりにくい特性を持つ。このため、ポンプモータ14の回転制御により、第1のアキュムレータ15への作動油の流入出量を調整して制御力を作用することが可能であって、ポンプモータ14の回転制御で追従できない高周波領域の応答については、第1のアキュムレータ15の封入ガスの圧縮性の作用により、バネ下側からバネ上側への振動が伝わりにくい構成となっている。
従って、本実施形態によれば、ポンプモータ14の回転制御で追従可能な低周波領域の振動成分は、バネ上側(制振対象物2)への制御力として作用させる一方、ポンプモータ14の回転制御で追従できない高周波領域の振動成分は第1のアキュムレータ15で吸収できるので、従来のように余計な制御や無駄な損失を増やすことなく、ポンプモータの応答が追従できない高周波領域においてバネ下(支持架台)からバネ上(制振対象物)への振動伝達を抑制することが可能となる。
なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
(1)上記実施形態では、油圧シリンダ11と油圧ポンプ12とを結ぶ作動油流路L1に第1のアキュムレータ15を接続する構成を採用したが、この第1のアキュムレータ15は必ずしも設ける必要はなく、第1のアキュムレータ15がなくとも、油圧シリンダ11の推力制御可能範囲を拡張できるという効果は得られる。
(2)上記実施形態では、油圧回路19の構成として、油圧源となる第2のアキュムレータ19aが油圧切換弁19bを介して作動油流路L1に接続される構成を例示したが、コントローラ20による制御によって、回転速度指令値Nがポンプモータ14の正方向の最高回転速度Nmaxを越えた場合には、油圧シリンダ11により制振対象物2が押される方向に油圧が印加でき、回転速度指令値Nがポンプモータ14の負方向の最高回転速度−Nmaxを越えた場合には、油圧シリンダ11により制振対象物2が引かれる方向に油圧が印加できれば、どのような構成を採用しても良い。
(3)上記実施形態では、油圧ポンプ12から油圧シリンダ11の第2室R2のみに作動油を供給する構成を採用する場合を例示したが、本発明はこれに限定されず、図5に示すように、油圧ポンプ12から油圧シリンダ11の第1室R1及び第2室R2の両方に作動油を供給する構成を採用しても良い。なお、図5では油圧回路19の図示を省略している。
(4)上記実施形態では、アクティブダンパー1の用途として例えば車両用サスペンションと想定したが、本発明はこれに限定されず、プレス機に設けられるダイクッション装置など、制振対象物と支持架台との間に介装された油圧シリンダにて発生する推力を動的に制御することにより、制振対象物の制振制御を行う用途に広く利用することができる。
(5)上記実施形態では、第1のアキュムレータ15を作動油流路L1の途中(油圧シリンダ11に近い位置)に接続する場合を例示したが、本発明はこれに限定されず、アキュムレータ15を作動油流路L1のどの位置に接続しても良い。例えば図6では、作動油流路L1の一端が油圧ホース21を介して油圧シリンダ11と接続され、作動油流路L1の他端が油圧ホース22を介して第1のアキュムレータ15と接続されている場合を示している。なお、図6では油圧回路19の図示を省略している。
(6)例えば図7に示すように、モータドライバ17に替えてトルク制御用のモータドライバ17Aを設けても良い。つまり、このモータドライバ17Aは、コントローラ20から入力される回転速度指令値Nに応じてポンプモータ14をトルク制御するためのモータ駆動信号を生成してポンプモータ14に出力する。この場合、パルスジェネレータ18は不要となる。
1…アクティブダンパー、2…制振対象物、3…支持架台、11…油圧シリンダ、12…油圧ポンプ、13…貯油タンク、14…ポンプモータ、15…第1のアキュムレータ、16圧力センサ、17、17A…モータドライバ、18…パルスジェネレータ、19…油圧回路、19a…第2のアキュムレータ、19b…油圧切換弁、20…コントローラ(制御装置)、30…上位制御装置、31…相対速度検出部

Claims (6)

  1. 制振対象物と支持架台との間に介装された油圧シリンダと、
    前記油圧シリンダへ作動油を吐出する油圧ポンプと、
    前記油圧ポンプを駆動するポンプモータと、
    前記油圧シリンダと前記油圧ポンプとを結ぶ作動油流路に接続された油圧回路と、
    前記油圧シリンダの推力指令値と推力現在値との偏差に制御ゲインを乗算して前記ポンプモータの回転速度指令値を算出し、前記回転速度指令値が前記ポンプモータの正負いずれか一方向の最高回転速度を越えた場合に前記油圧回路を作動させる制御装置と、
    を備えることを特徴とするアクティブダンパー。
  2. 前記作動油流路に接続された第1のアキュムレータを備えることを特徴とする請求項1に記載のアクティブダンパー。
  3. 前記油圧回路は、油圧源となる第2のアキュムレータが油圧切換弁を介して前記作動油流路に接続される構成となっており、
    前記制御装置は、前記回転速度指令値が前記ポンプモータの正方向の最高回転速度を越えた場合には、前記油圧シリンダにより前記制振対象物が押される方向に油圧が印加されるように前記油圧切換弁を制御する一方、前記回転速度指令値が前記ポンプモータの負方向の最高回転速度を越えた場合には、前記油圧シリンダにより前記制振対象物が引かれる方向に油圧が印加されるように前記油圧切換弁を制御することを特徴とする請求項1または2に記載のアクティブダンパー。
  4. 前記制御装置は、前記回転速度指令値が前記ポンプモータの正方向の最高回転速度を越えた場合、前記偏差が零より大きい期間において、前記油圧シリンダにより前記制振対象物が押される方向に油圧が印加されるように前記油圧切換弁を制御し、前記偏差が零以下となった時点で前記油圧切換弁の制御を停止することを特徴とする請求項3に記載のアクティブダンパー。
  5. 前記制御装置は、前記回転速度指令値が前記ポンプモータの負方向の最高回転速度を越えた場合、前記偏差が零より小さい期間において、前記油圧シリンダにより前記制振対象物が引かれる方向に油圧が印加されるように前記油圧切換弁を制御し、前記偏差が零以上となった時点で前記油圧切換弁の制御を停止することを特徴とする請求項3に記載のアクティブダンパー。
  6. 前記制御装置は、上位制御装置から入力される減衰力指令値に対して自重支持負担分に相当する荷重を加算することで前記推力指令値を算出することを特徴とする請求項1〜5のいずれか一項に記載のアクティブダンパー。
JP2012182298A 2012-02-23 2012-08-21 アクティブダンパー Pending JP2014040128A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012182298A JP2014040128A (ja) 2012-08-21 2012-08-21 アクティブダンパー
PCT/JP2013/054342 WO2013125638A1 (ja) 2012-02-23 2013-02-21 アクティブダンパー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182298A JP2014040128A (ja) 2012-08-21 2012-08-21 アクティブダンパー

Publications (1)

Publication Number Publication Date
JP2014040128A true JP2014040128A (ja) 2014-03-06

Family

ID=50392797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182298A Pending JP2014040128A (ja) 2012-02-23 2012-08-21 アクティブダンパー

Country Status (1)

Country Link
JP (1) JP2014040128A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105422713A (zh) * 2015-12-31 2016-03-23 河海大学常州校区 一种蓄能缓冲器
CN105443637A (zh) * 2015-12-31 2016-03-30 河海大学常州校区 一种蓄能缓冲器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105422713A (zh) * 2015-12-31 2016-03-23 河海大学常州校区 一种蓄能缓冲器
CN105443637A (zh) * 2015-12-31 2016-03-30 河海大学常州校区 一种蓄能缓冲器

Similar Documents

Publication Publication Date Title
JP7336194B2 (ja) 能動液圧リップル消去方法およびシステム
EP2868931B1 (en) Actuator
US20190308484A1 (en) Integrated multiple actuator electro-hydraulic units
KR101916612B1 (ko) 철도용 제진 장치
CA2898605C (en) Actuator unit
CN105235552B (zh) 车辆悬挂系统以及悬挂安装车辆部件的方法
JP5486367B2 (ja) アクチュエータユニット
WO2008038433A1 (en) Vibration transmission damping apparatus
JP5929628B2 (ja) アクティブダンパー
EP2937574B1 (en) Actuator unit
JP2014040128A (ja) アクティブダンパー
JP2015102101A (ja) 緩衝器
JP2016211676A (ja) ダンパー
JP2011201332A (ja) 鉄道車両用制振装置
WO2013125638A1 (ja) アクティブダンパー
JP5910158B2 (ja) アクティブダンパー
JP5702200B2 (ja) 緩衝器の制御装置
JP6098122B2 (ja) 油圧アクチュエータ
JP5527175B2 (ja) 車両のサスペンション装置
KR20160081047A (ko) 회전식 전기 및 기계 복합형 능동현수장치 및 차량
JP2021099123A (ja) 緩衝器
WO2024062892A1 (ja) シリンダ装置
JP2012184791A (ja) 緩衝器
JP2015101261A (ja) サスペンション装置
JP2015101259A (ja) サスペンション装置