JP2014039895A - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP2014039895A
JP2014039895A JP2012182466A JP2012182466A JP2014039895A JP 2014039895 A JP2014039895 A JP 2014039895A JP 2012182466 A JP2012182466 A JP 2012182466A JP 2012182466 A JP2012182466 A JP 2012182466A JP 2014039895 A JP2014039895 A JP 2014039895A
Authority
JP
Japan
Prior art keywords
water
treated
membrane
reducing agent
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012182466A
Other languages
Japanese (ja)
Other versions
JP6315881B2 (en
Inventor
Kazushi Kondo
和史 近藤
Shigeki Sawada
繁樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2012182466A priority Critical patent/JP6315881B2/en
Publication of JP2014039895A publication Critical patent/JP2014039895A/en
Application granted granted Critical
Publication of JP6315881B2 publication Critical patent/JP6315881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform water treatment at a high water recovery ratio without precipitating substances based on metal ions, silica or the like included in the water to be treated to a reverse osmosis membrane face.SOLUTION: In a state where a reducing agent 16 is added to the water 12 to be treated, and dissolved oxygen is substantially removed, membrane filtering treatment is performed with a membrane filter 20, thus the sticking of insoluble substances to the membrane filter 20 is suppressed, and a drainage volume in a membrane separation device 22 can be reduced. Further, by adding acid 18 to the water 12 to be treated and performing desalting treatment with a reverse osmosis membrane 24 while maintaining pH in a predetermined range, even in the case a concentration rate in the desalting treatment is increased to the solubility of silica or more, the precipitation of silica scale to a reverse osmotic membrane face can be suppressed. Thus, water treatment can be performed at a high water recovery ratio without precipitating substances based on metal ions, silica or the like included in the water 12 to be treated to the reverse osmosis membrane face.

Description

本発明は、浄水処理、工業用水製造等に用いられる水処理方法及び水処理装置に関するものである。   The present invention relates to a water treatment method and a water treatment apparatus used for water purification, industrial water production, and the like.

従来から、金属イオン、シリカ、不溶性物質を含む地下水等の被処理水を、逆浸透膜を用いて脱塩処理する際には、被処理水が濃縮されると逆浸透膜面に析出する物質を、予め被処理水から除去した後に、脱塩処理する方法が採用されている。これらの物質を除去する方法としては、鉄イオンやマンガンイオンを遊離塩素存在下において酸化した後、PAC(ポリ塩化アルミニウム)等の無機凝集剤で凝集フロック化させて、沈澱・ろ過もしくはろ過させる方法が一般的である。更には、沈澱・ろ過もしくはろ過の後に、精密ろ過膜や限外ろ過膜でろ過する方法もある。又、これらの金属酸化物が低濃度の場合には、PAC等の無機凝集剤を添加した後、直接、精密ろ過膜や限外ろ過膜でろ過することもある。しかし、これらの方法では多種類の薬剤を使うため、薬剤費用が高くなり、薬剤の管理に費やす労力も増加するという問題を有していた。   Conventionally, when water to be treated, such as groundwater containing metal ions, silica, and insoluble substances, is desalted using a reverse osmosis membrane, the substance that precipitates on the surface of the reverse osmosis membrane when the water to be treated is concentrated Is previously removed from the water to be treated, followed by a desalting treatment. As a method for removing these substances, iron ions or manganese ions are oxidized in the presence of free chlorine, and then aggregated with an inorganic flocculant such as PAC (polyaluminum chloride), and then precipitated, filtered or filtered. Is common. Furthermore, there is a method of filtering with a microfiltration membrane or an ultrafiltration membrane after precipitation / filtration or filtration. In addition, when these metal oxides are in a low concentration, they may be directly filtered through a microfiltration membrane or an ultrafiltration membrane after adding an inorganic flocculant such as PAC. However, since these methods use many kinds of drugs, there is a problem that the cost of the drugs becomes high and the labor spent on the management of the drugs increases.

又、地下水には、表流水と比較してシリカが高濃度に含まれているため、脱塩処理に係る濃縮倍率を、シリカの溶解度以上とならないように下げる必要があり、その結果として水回収率を低下させざるを得ないという問題も有している。これに対し、逆浸透膜の前段に限外ろ過膜を設けて、被処理水中のコロイダルシリカ成分を除去することで、濃縮水のシリカ濃度を高めることができるという発明が発案されている(例えば、特許文献1参照)。しかしながら、一般的には逆浸透膜の前段に限外ろ過膜を設けても、濃縮水のシリカ濃度が100〜200mg/Lに達すると、逆浸透膜面にシリカスケールが析出してしまう。   In addition, since groundwater contains silica in a higher concentration than surface water, it is necessary to reduce the concentration factor for desalination so that it does not exceed the solubility of silica, and as a result, water recovery There is also a problem that the rate must be reduced. In contrast, an invention has been devised in which an ultrafiltration membrane is provided in front of a reverse osmosis membrane to remove the colloidal silica component in the water to be treated, thereby increasing the silica concentration of the concentrated water (for example, , See Patent Document 1). However, generally, even if an ultrafiltration membrane is provided before the reverse osmosis membrane, when the silica concentration of the concentrated water reaches 100 to 200 mg / L, silica scale is deposited on the reverse osmosis membrane surface.

一方、本発明者らは、金属イオン、シリカ、不溶性物質を含む地下水等の被処理水を、逆浸透膜を用いて脱塩処理する方法に関し、図3に示すような水処理装置100を用いて水処理を行う方法を発案している(特許文献2参照)。この方法では、井戸14から井戸ポンプP2により原水供給ラインL2を介して被処理水12を揚水し、被処理水12に対し還元剤タンクT2から還元剤ポンプP4により還元剤16を添加した後、予めろ過膜20の1次側に保護層が設けられている膜分離装置22により膜ろ過処理を行う。還元剤16の添加量は、溶存酸素計(DO)26により測定する、逆浸透膜(RO)24による脱塩処理後の濃縮水の溶存酸素濃度が、略0mg/Lに維持されるように管理されている。そして、膜ろ過処理された被処理水12を、1次処理水送液ラインL4を通じて中間タンクT6に貯留した後、昇圧ポンプP10により1次処理水供給ラインL10を介して逆浸透膜24に供給し、脱塩処理を行う。この方法によれば、逆浸透膜面に金属酸化物を析出させることなく、安定して水処理を行うこととなる。   On the other hand, the present inventors relate to a method for desalinating water to be treated such as ground water containing metal ions, silica and insoluble substances using a reverse osmosis membrane, and using a water treatment apparatus 100 as shown in FIG. A method of performing water treatment has been devised (see Patent Document 2). In this method, the treated water 12 is pumped from the well 14 through the raw water supply line L2 by the well pump P2, and the reducing agent 16 is added to the treated water 12 from the reducing agent tank T2 by the reducing agent pump P4. A membrane filtration process is performed by a membrane separation device 22 in which a protective layer is provided on the primary side of the filtration membrane 20 in advance. The amount of the reducing agent 16 added is such that the dissolved oxygen concentration of the concentrated water after the desalting treatment by the reverse osmosis membrane (RO) 24 measured by the dissolved oxygen meter (DO) 26 is maintained at approximately 0 mg / L. It is managed. The treated water 12 subjected to membrane filtration is stored in the intermediate tank T6 through the primary treated water feed line L4, and then supplied to the reverse osmosis membrane 24 through the primary treated water supply line L10 by the booster pump P10. And desalting is performed. According to this method, water treatment is stably performed without depositing a metal oxide on the reverse osmosis membrane surface.

特開昭59−90688号公報JP 59-90688 A 特開2010−137209号公報JP 2010-137209 A

しかしながら、図3の水処理装置100を用いた水処理方法では、膜分離装置22のろ過膜20に、予め保護層を設けておく必要がある。この際には、中間タンクT6に図示せぬ供給ラインより水道水を供給して貯留した後、前処理ポンプP20を稼働させ、保護剤供給ラインL30より膜分離装置22の1次側に送液を行い、得られた膜分離装置22の1次処理水を中間タンクT6に回収し、中間タンクT6と膜分離装置22との間を水道水が循環できる状態にする。そして、この循環処理の最中に、保護剤供給ラインL30へ、保護剤タンクT20から保護剤ポンプP22により保護剤40を注入することで、膜分離装置22のろ過膜20の1次側に、保護層を形成している。このような作業を前処理として行う必要があるため、作業が煩雑になるだけでなく、保護剤40の使用や廃棄に伴う費用が発生し、コストが増加してしまうという問題を有していた。   However, in the water treatment method using the water treatment device 100 of FIG. 3, it is necessary to provide a protective layer in advance on the filtration membrane 20 of the membrane separation device 22. At this time, after supplying and storing tap water from a supply line (not shown) to the intermediate tank T6, the pretreatment pump P20 is operated, and the liquid is fed from the protective agent supply line L30 to the primary side of the membrane separation device 22. The primary treated water of the obtained membrane separation device 22 is collected in the intermediate tank T6, and the tap water can be circulated between the intermediate tank T6 and the membrane separation device 22. During this circulation process, the protective agent 40 is injected into the protective agent supply line L30 from the protective agent tank T20 by the protective agent pump P22, so that the primary side of the filtration membrane 20 of the membrane separation device 22 is A protective layer is formed. Since it is necessary to perform such work as pretreatment, not only is the work complicated, but there is a problem in that costs associated with the use and disposal of the protective agent 40 are generated and the cost increases. .

本発明は上記課題に鑑みてなされたものであり、その目的とするところは、被処理水に含まれる金属イオン、シリカ等にもとづく物質を逆浸透膜面に析出させることなく、高い水回収率で水処理を行うことにある。   The present invention has been made in view of the above problems, and its object is to achieve a high water recovery rate without depositing substances based on metal ions, silica, etc. contained in the water to be treated on the reverse osmosis membrane surface. It is to carry out water treatment.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)金属イオン、シリカ、不溶性物質を含む被処理水を、ろ過膜により膜ろ過処理して不溶性物質を除去した後、逆浸透膜により脱塩処理する水処理方法であって、前記被処理水に還元剤を添加して該被処理水中の溶存酸素を実質的に除去し、金属イオンの酸化析出を抑制した状態、かつ、前記被処理水に酸を添加して該被処理水のpHを所定の範囲に維持した状態で、前記膜ろ過処理及び脱塩処理をする水処理方法(請求項1)。   (1) A water treatment method in which water to be treated containing metal ions, silica, and insoluble substances is subjected to membrane filtration treatment with a filtration membrane to remove insoluble substances, and then desalted with a reverse osmosis membrane. A state in which dissolved oxygen in the treated water is substantially removed by adding a reducing agent to the water and oxidation precipitation of metal ions is suppressed, and an acid is added to the treated water to adjust the pH of the treated water A water treatment method in which the membrane filtration treatment and the desalting treatment are carried out in a state where is maintained in a predetermined range (Claim 1).

本項に記載の水処理方法は、金属イオン、シリカ、不溶性物質を含む、地下水等の被処理水を対象とした水処理方法であり、被処理水が含む不溶性物質は、特に限定されないが、被処理水として地下水を用いた場合には、例えば、酸化鉄、酸化マンガン等の金属酸化物、カルシウム化合物、土壌成分、有機物、微生物等が挙げられる。又、金属イオンとしては、鉄、マンガン、カルシウム、マグネシウム等の金属のイオンが挙げられる。そして、本水処理方法では、上記のような被処理水に対し、還元剤と酸とを添加する。還元剤は、被処理水中の溶存酸素を実質的に除去するように添加され、これにより被処理水中の金属イオンの酸化析出を抑制する。又、酸は、被処理水のpHを所定の範囲に維持するように添加される。そして、還元剤と酸とを添加した状態の被処理水を、ろ過膜により膜ろ過処理し、被処理水中の不溶性物質を除去する。更に、膜ろ過処理した被処理水を、逆浸透膜により脱塩処理し、被処理水中の金属イオンやシリカを除去する。   The water treatment method described in this section is a water treatment method for water to be treated such as ground water containing metal ions, silica, and insoluble materials, and the insoluble material contained in the water to be treated is not particularly limited, When groundwater is used as the water to be treated, examples thereof include metal oxides such as iron oxide and manganese oxide, calcium compounds, soil components, organic substances, and microorganisms. In addition, examples of metal ions include metal ions such as iron, manganese, calcium, and magnesium. And in this water treatment method, a reducing agent and an acid are added with respect to the above-mentioned to-be-treated water. The reducing agent is added so as to substantially remove dissolved oxygen in the water to be treated, thereby suppressing the oxidative precipitation of metal ions in the water to be treated. The acid is added so as to maintain the pH of the water to be treated in a predetermined range. And the to-be-processed water of the state which added the reducing agent and the acid is membrane-filtered by a filtration membrane, and the insoluble substance in to-be-processed water is removed. Furthermore, the water to be treated that has been subjected to membrane filtration is desalted with a reverse osmosis membrane to remove metal ions and silica in the water to be treated.

すなわち、本項に記載の水処理方法は、被処理水に還元剤を添加し、被処理水に含まれる金属イオンの酸化析出を抑制しているため、ろ過膜に付着し、薬品洗浄等によっても除去し難い膜閉塞の原因となる不溶性物質の量を最小限に留めることとなり、ろ過膜のメンテナンス回数を低減し、排水量を減らすものとなる。更に、被処理水に酸を添加し、被処理水のpHを所定の範囲に維持しているため、逆浸透膜による脱塩処理における濃縮倍率を、シリカの溶解度以上に上げた場合においても、逆浸透膜面へのシリカスケールの析出を抑制するものとなる。従って、被処理水に含まれる金属イオン、シリカ等にもとづく物質を逆浸透膜面に析出させることなく、高い水回収率で水処理を行うものとなる。   In other words, the water treatment method described in this section adds a reducing agent to the water to be treated, and suppresses the oxidative precipitation of metal ions contained in the water to be treated. In addition, the amount of insoluble substances that cause membrane clogging that is difficult to remove will be kept to a minimum, reducing the number of maintenance of the filtration membrane and reducing the amount of drainage. Furthermore, since an acid is added to the water to be treated and the pH of the water to be treated is maintained within a predetermined range, even when the concentration rate in the desalting treatment by the reverse osmosis membrane is increased beyond the solubility of silica, This suppresses the deposition of silica scale on the reverse osmosis membrane surface. Therefore, water treatment is performed at a high water recovery rate without depositing substances based on metal ions, silica and the like contained in the water to be treated on the reverse osmosis membrane surface.

(2)上記(1)項において、前記酸の添加量を、前記脱塩処理に伴う濃縮水のpHが4.5〜5.5になるように設定する水処理方法(請求項2)。
本項に記載の水処理方法は、被処理水に添加する酸の添加量を、脱塩処理に伴う濃縮水のpHが、4.5〜5.5になるように設定することで、逆浸透膜による脱塩処理における濃縮倍率を、シリカの溶解度以上に上げた場合においても、逆浸透膜面へのシリカスケールの析出を安定して抑制するものである。
(2) The water treatment method as set forth in (1) above, wherein the amount of the acid added is set so that the pH of the concentrated water accompanying the desalting treatment is 4.5 to 5.5.
The water treatment method described in this section is reversed by setting the amount of acid added to the water to be treated so that the pH of the concentrated water accompanying the desalting treatment is 4.5 to 5.5. Even when the concentration rate in the desalting treatment by the osmosis membrane is increased to be higher than the solubility of silica, the silica scale deposition on the reverse osmosis membrane surface is stably suppressed.

(3)上記(1)(2)項において、前記還元剤を、前記脱塩処理に伴う濃縮水又は透過水に溶存酸素が実質的に含まれなくなるように添加する水処理方法(請求項3)。
本項に記載の水処理方法は、脱塩処理に伴う濃縮水又は透過水に溶存酸素が実質的に含まれなくなるように、被処理水に還元剤を添加するものであり、例えば、濃縮水又は透過水の溶存酸素濃度を0.1mg/L以下に保持するように、還元剤を添加する。なお、本説明において「溶存酸素が実質的に含まれなくなるように」とは、溶存酸素計等で測定した濃縮水や透過水の溶存酸素濃度に応じて、濃縮水や透過水中の溶存酸素を、計算上で必要十分に除去できるだけの量の還元剤を添加することを示している。これを実行するために、例えば、濃縮水の通水ラインに溶存酸素計を設置し、濃縮水の溶存酸素を測定することとしてもよい。このように、濃縮水又は透過水に溶存酸素が実質的に含まれなくなるように、還元剤を添加することで、被処理水に含まれる金属イオンの酸化析出を、安定して抑制するものである。
(3) A water treatment method according to (1) or (2) above, wherein the reducing agent is added so that dissolved oxygen is not substantially contained in the concentrated water or permeate accompanying the desalting treatment (claim 3). ).
The water treatment method described in this section is to add a reducing agent to the water to be treated so that dissolved oxygen is not substantially contained in the concentrated water or permeate accompanying the desalting treatment. Alternatively, a reducing agent is added so as to keep the dissolved oxygen concentration of the permeated water at 0.1 mg / L or less. In this description, “so that dissolved oxygen is not substantially contained” means that the dissolved oxygen in the concentrated water or the permeated water is determined according to the dissolved oxygen concentration of the concentrated water or the permeated water measured with a dissolved oxygen meter or the like. This shows that a reducing agent is added in an amount that can be removed sufficiently and sufficiently in the calculation. In order to perform this, for example, a dissolved oxygen meter may be installed in the concentrated water flow line, and the dissolved oxygen may be measured. Thus, by adding a reducing agent so that dissolved oxygen is not substantially contained in the concentrated water or permeated water, it is possible to stably suppress the oxidative precipitation of metal ions contained in the water to be treated. is there.

(4)上記(1)から(3)項において、前記還元剤を添加した後に、前記酸を添加する水処理方法(請求項4)。
本項に記載の水処理方法は、被処理水に還元剤を添加した後に、酸を添加することにより、還元剤の添加によってpHが変動した被処理水に対して、pHを所定の範囲に維持するように酸を添加することとなるため、還元剤の添加により被処理水中の溶存酸素を実質的に除去しながらも、酸の添加により被処理水のpHを所定の範囲に安定して維持するものとなる。
(4) The water treatment method according to (1) to (3) above, wherein the acid is added after the reducing agent is added (claim 4).
In the water treatment method described in this section, by adding a reducing agent to the water to be treated and then adding an acid, the pH is kept within a predetermined range with respect to the water to be treated whose pH has been changed by the addition of the reducing agent. Since the acid is added to maintain the pH of the water to be treated within a predetermined range by adding the acid while substantially removing dissolved oxygen in the water to be treated by adding a reducing agent. Will be maintained.

(5)上記(1)から(4)項において、前記ろ過膜として、精密ろ過膜もしくは限外ろ過膜を用いる水処理方法(請求項5)。
本項に記載の水処理方法は、膜ろ過処理を行うためのろ過膜として、精密ろ過膜もしくは限外ろ過膜を用いることにより、被処理水中の不溶性物質の除去を、十分に行うものである。ここで、精密ろ過膜もしくは限外ろ過膜は、通水方式(内圧式、外圧式等)、膜素材(有機、無機等)、膜形状等を問わず全て用いることができるが、続く脱塩処理に用いる逆浸透膜の膜閉塞を防止するため、膜孔径が0.1μm以下の膜を用いることが好ましい。ろ過方式としては酸素の溶解を低減し得るためデッドエンド方式が好ましく、逆通水の頻度は、精密ろ過膜もしくは限外ろ過膜の能力、及び、被処理水の性状から適宜決定する。
(5) In the above items (1) to (4), a water treatment method using a microfiltration membrane or an ultrafiltration membrane as the filtration membrane (claim 5).
The water treatment method described in this section sufficiently removes insoluble substances in the water to be treated by using a microfiltration membrane or an ultrafiltration membrane as a membrane for performing membrane filtration. . Here, any microfiltration membrane or ultrafiltration membrane can be used regardless of water flow method (internal pressure type, external pressure type, etc.), membrane material (organic, inorganic, etc.), membrane shape, etc. In order to prevent membrane clogging of the reverse osmosis membrane used for the treatment, it is preferable to use a membrane having a membrane pore diameter of 0.1 μm or less. As the filtration method, the dead end method is preferable because it can reduce the dissolution of oxygen, and the frequency of reverse water flow is appropriately determined from the ability of the microfiltration membrane or ultrafiltration membrane and the properties of the water to be treated.

(6)上記(1)から(5)項において、前記還元剤として、重亜硫酸ナトリウムを用いる水処理方法。
本項に記載の水処理方法は、被処理水に添加する還元剤として、重亜硫酸ナトリウムを用いることにより、被処理水中の溶存酸素と適切な速度で反応させ、溶存酸素の実質的な除去を行うものである。
(6) The water treatment method according to (1) to (5) above, wherein sodium bisulfite is used as the reducing agent.
The water treatment method described in this section uses sodium bisulfite as a reducing agent to be added to the water to be treated, so that it reacts with dissolved oxygen in the water to be treated at an appropriate rate to substantially remove the dissolved oxygen. Is what you do.

(7)上記(1)から(6)項において、前記酸として、塩酸もしくは硫酸を用いる水処理方法。
本項に記載の水処理方法は、被処理水に添加する酸として、pH調整に用いられることが多く、比較的入手が容易な、塩酸もしくは硫酸を用いることで、被処理水のpHの維持を容易に行うものである。
(7) The water treatment method using hydrochloric acid or sulfuric acid as the acid in the above items (1) to (6).
The water treatment method described in this section is often used for pH adjustment as an acid to be added to the water to be treated, and the pH of the water to be treated is maintained by using hydrochloric acid or sulfuric acid, which is relatively easily available. Is easily performed.

(8)金属イオン、シリカ、不溶性物質を含む被処理水の処理を行う水処理装置であって、前記被処理水に還元剤を添加するための還元剤添加手段と、前記被処理水に酸を添加し、前記被処理水のpHを所定の範囲に維持するための酸添加手段と、前記還元剤及び前記酸が添加された前記被処理水に膜ろ過処理を行い、不溶性物質を除去するためのろ過膜と、前記膜ろ過処理後の前記被処理水に脱塩処理を行うための逆浸透膜とを含む水処理装置(請求項6)。   (8) A water treatment apparatus for treating water to be treated containing metal ions, silica, and insoluble substances, comprising a reducing agent adding means for adding a reducing agent to the water to be treated, and an acid in the water to be treated. And adding an acid addition means for maintaining the pH of the water to be treated in a predetermined range, and subjecting the water to be treated to which the reducing agent and the acid have been added to a membrane filtration treatment to remove insoluble substances. The water treatment apparatus (Claim 6) including the filtration membrane for this and the reverse osmosis membrane for performing a desalination process to the said to-be-processed water after the said membrane filtration process.

(9)上記(8)項において、前記酸添加手段は、前記脱塩処理に伴う濃縮水のpHが4.5〜5.5になるように前記酸を添加する水処理装置(請求項7)。
(10)上記(8)(9)項において、前記還元剤添加手段は、前記脱塩処理に伴う濃縮水又は透過水に溶存酸素が実質的に含まれなくなるように前記還元剤を添加する水処理装置(請求項8)。
(11)上記(8)から(10)項において、前記還元剤添加手段は、前記酸が添加される前の前記被処理水に対し、前記還元剤を添加する水処理装置(請求項9)。
(9) In the above item (8), the acid addition means adds the acid so that the pH of the concentrated water accompanying the desalting treatment is 4.5 to 5.5 (Claim 7). ).
(10) In the above items (8) and (9), the reducing agent addition means is a water to which the reducing agent is added so that dissolved oxygen is not substantially contained in the concentrated water or permeated water accompanying the desalting treatment. A processing device (claim 8).
(11) In the above items (8) to (10), the reducing agent adding means adds the reducing agent to the water to be treated before the acid is added (claim 9). .

(12)上記(8)から(11)項において、前記ろ過膜は、精密ろ過膜もしくは限外ろ過膜である水処理装置(請求項10)。
(13)上記(8)から(12)項において、前記還元剤は、重亜硫酸ナトリウムである水処理装置。
(14)上記(8)から(13)項において、前記酸は、塩酸もしくは硫酸である水処理装置。
(12) The water treatment device according to (8) to (11) above, wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane (claim 10).
(13) The water treatment device according to (8) to (12) above, wherein the reducing agent is sodium bisulfite.
(14) The water treatment device according to the above (8) to (13), wherein the acid is hydrochloric acid or sulfuric acid.

そして、(8)から(14)項に記載の水処理装置は、各々、上記(1)から(7)項に記載の水処理方法を実施するための装置であり、上記(1)から(7)項に対応する同等の作用を奏するものである。   And the water treatment apparatus as described in (8) to (14) term is an apparatus for implementing the water treatment method as described in said (1) to (7) term, respectively (1) to ( The equivalent action corresponding to the item 7) is exhibited.

本発明はこのように構成したので、被処理水に含まれる金属イオン、シリカ等にもとづく物質を逆浸透膜面に析出させることなく、高い水回収率で水処理を行うことが可能となる。   Since this invention was comprised in this way, it becomes possible to perform a water treatment with a high water recovery rate, without precipitating the substance based on the metal ion, silica, etc. which are contained in to-be-processed water on a reverse osmosis membrane surface.

本発明の実施の形態に係る水処理装置を模式的に示す模式図である。It is a schematic diagram which shows typically the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る水処理装置を用いて行う水処理方法の一例を示すフローチャートである。It is a flowchart which shows an example of the water treatment method performed using the water treatment apparatus which concerns on embodiment of this invention. 従来の水処理装置を示す模式図である。It is a schematic diagram which shows the conventional water treatment apparatus.

以下、本発明の実施の形態を図面に基づき説明する。ここで、従来技術と同一部分、若しくは相当する部分については同一符号で示し、詳しい説明を省略する。
図1は、本発明の実施の形態に係る水処理装置10を模式的に示す模式図である。本発明の実施の形態に係る水処理装置10は、図3に示した従来の水処理装置100との比較において、大きく以下の点が異なっている。まず、本発明の実施の形態に係る水処理装置10では、従来の水処理装置100で行っていた膜分離装置22のろ過膜20への保護層の形成を行わないこととし、保護層の形成のための設備を備えていない。又、井戸14から揚水した被処理水12に対し、還元剤16を添加した後に、更に酸18を添加することとし、そのための設備が追加されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, parts that are the same as or correspond to those in the prior art are denoted by the same reference numerals, and detailed description thereof is omitted.
Drawing 1 is a mimetic diagram showing typically water treatment equipment 10 concerning an embodiment of the invention. The water treatment apparatus 10 according to the embodiment of the present invention is largely different from the conventional water treatment apparatus 100 shown in FIG. 3 in the following points. First, in the water treatment device 10 according to the embodiment of the present invention, the protective layer is not formed on the filtration membrane 20 of the membrane separation device 22 which is performed in the conventional water treatment device 100, and the protective layer is formed. Not equipped for. Moreover, after adding the reducing agent 16 with respect to the to-be-processed water 12 pumped from the well 14, the acid 18 is further added and the installation for that is added.

又、図1において、主要な水処理の経路となる水処理ラインは、被処理水12中の不溶性物質を膜ろ過により固液分離した後、被処理水12中に残存する金属イオンやシリカを脱塩処理するラインである。具体的には、図1に示すように、井戸14より揚水した地下水(被処理水12)を膜分離装置22へ移送し、膜分離後に得られる1次処理水を中間タンクT6を介して逆浸透膜24に移送し、脱塩処理後の透過水を処理水タンクT8に移送するまでのラインをいう。   In FIG. 1, a water treatment line that is a main water treatment path is used for solid-liquid separation of insoluble substances in the water to be treated 12 by membrane filtration, and then metal ions and silica remaining in the water to be treated 12 are removed. This is a line for desalting. Specifically, as shown in FIG. 1, the groundwater (treated water 12) pumped from the well 14 is transferred to the membrane separation device 22, and the primary treated water obtained after membrane separation is reversed via the intermediate tank T6. It refers to a line from the transfer to the osmosis membrane 24 to the transfer of the desalted permeated water to the treated water tank T8.

次に、図1及び図2を参照して、本発明の実施の形態に係る水処理装置10、及び、これを用いた水処理方法について詳しく説明する。本説明は、地下水を被処理水として飲料水化する場合を例にして、図2に示すフローチャートに沿って行うこととし、水処理装置10の構成については、適宜図1を参照されたい。なお、図2は、水処理装置10を用いた水処理方法を、被処理水12に対する処理工程毎に示したフローチャートの一例である。
S10(地下水揚水):井戸14から井戸ポンプP2により、原水供給ラインL2を介して、被処理水12である地下水を揚水する。
Next, with reference to FIG.1 and FIG.2, the water treatment apparatus 10 which concerns on embodiment of this invention, and the water treatment method using the same are demonstrated in detail. This description will be made along the flowchart shown in FIG. 2 by taking as an example the case where groundwater is used as treated water, and for the configuration of the water treatment apparatus 10, refer to FIG. 1 as appropriate. FIG. 2 is an example of a flowchart illustrating a water treatment method using the water treatment apparatus 10 for each treatment process for the water to be treated 12.
S10 (groundwater pumping): Groundwater which is the treated water 12 is pumped from the well 14 by the well pump P2 through the raw water supply line L2.

S20(還元剤添加):原水供給ラインL2中の被処理水12に対し、還元剤タンクT2と還元剤ポンプP4とを備える還元剤添加手段により、還元剤16を添加する。これにより、被処理水12中の溶存酸素を実質的に除去する。還元剤16は、被処理水12中の溶存酸素を除去し得るものであれば特に限定されるものではなく、例えば、亜硫酸ナトリウム、重亜硫酸ナトリウム、チオ硫酸ナトリウム等が用いられるが、反応速度の面から重亜硫酸ナトリウムが好適である。
還元剤16の添加量は、後述する逆浸透膜(RO)24による脱塩処理に伴う濃縮水を、濃縮排水ラインL16に設けた溶存酸素計(DO)26により測定し、この測定した濃縮水の溶存酸素濃度が常時0mg/L付近となるように設定する。この際に、例えば、溶存酸素計26の測定データを図示せぬ制御部に送り、測定値が所定値(例えば0.1mg/L)を一定時間(例えば120秒間)超えた場合に、還元剤16の添加量を増加するように、還元剤ポンプP4に指示するよう構成してもよい。この場合の還元剤16の増加量は、例えば増加した酸素量に応じた量(反応当量)、又はこれを越える量とし、溶存酸素濃度が所定値に戻った際には、還元剤16の添加量を初期添加量に戻すよう構成してもよい。又、予め被処理水12に含まれる溶存酸素量、本水処理行程中に混入する酸素量、酸素との反応以外に消費される還元剤16の消費量等のデータを収集し、当該データに基づき、必要とされる還元剤16の量を算出し、当該計算値以上の還元剤16を添加することとしてもよい。
S20 (reducing agent addition): The reducing agent 16 is added to the water to be treated 12 in the raw water supply line L2 by the reducing agent adding means including the reducing agent tank T2 and the reducing agent pump P4. Thereby, the dissolved oxygen in the to-be-processed water 12 is removed substantially. The reducing agent 16 is not particularly limited as long as it can remove dissolved oxygen in the water 12 to be treated. For example, sodium sulfite, sodium bisulfite, sodium thiosulfate, or the like is used. From the aspect, sodium bisulfite is preferred.
The amount of the reducing agent 16 added is determined by measuring concentrated water accompanying desalination treatment by a reverse osmosis membrane (RO) 24, which will be described later, with a dissolved oxygen meter (DO) 26 provided in the concentrated drainage line L16, and measuring the concentrated water. Is set so that the dissolved oxygen concentration is always around 0 mg / L. At this time, for example, when the measurement data of the dissolved oxygen meter 26 is sent to a control unit (not shown) and the measured value exceeds a predetermined value (for example, 0.1 mg / L) for a certain time (for example, 120 seconds), the reducing agent. You may comprise so that the reducing agent pump P4 may be instruct | indicated so that the addition amount of 16 may be increased. In this case, the increasing amount of the reducing agent 16 is, for example, an amount corresponding to the increased oxygen amount (reaction equivalent) or an amount exceeding this, and when the dissolved oxygen concentration returns to a predetermined value, the reducing agent 16 is added. You may comprise so that the quantity may be returned to the initial addition amount. In addition, data such as the amount of dissolved oxygen contained in the water to be treated 12, the amount of oxygen mixed during the main water treatment process, the amount of consumption of the reducing agent 16 consumed in addition to the reaction with oxygen are collected, and the data is collected. Based on this, the amount of the reducing agent 16 required may be calculated, and the reducing agent 16 greater than the calculated value may be added.

S30(酸添加):上記S20において、還元剤16が添加された被処理水12に対し、酸タンクT4と酸ポンプP6とを備える酸添加手段により、酸18を添加する。これにより、被処理水12のpHを所定の範囲、一例として、pH4.5〜5.5程度に維持する。これを実行するために、例えば、後述する逆浸透膜24による脱塩処理に伴う濃縮水のpHを、濃縮水の経路、図1の例では濃縮排水ラインL16に設けたpH測定器(pH)30により測定し、この測定した濃縮水のpHが常時4.5〜5.5となるように、酸18を添加する。或いは、上記S10で被処理水12として揚水する地下水のpH値、上記S20での還元剤16の添加によるpHの変動、その後の脱塩処理までの本水処理行程におけるpHの変動等のデータを収集し、当該データに基づき、濃縮水のpHが常時4.5〜5.5となるような酸18の添加量を算出し、当該添加量の酸18を添加することとしてもよい。なお、酸18には、塩酸や硫酸等を用いる。
S40(膜ろ過処理):上記S20及びS30において、還元剤16及び酸18が添加された被処理水12を、ろ過膜20を備える膜分離装置(MS)22により膜ろ過処理する。ろ過膜20としては、限外ろ過膜や精密ろ過膜を用いる。なお、膜ろ過処理により発生した濃縮水は、膜分離装置22により再ろ過、或いは、排水ラインL8を介して排水される。
S50(中間タンク貯留):上記S40において、膜分離装置22により膜ろ過処理された被処理水12を、1次処理水送液ラインL4を介して中間タンクT6に貯留する。なお、膜分離装置22への逆通水を行う際には、中間タンクT6から被処理水12を、逆洗ポンプP8により逆通水ラインL6を経て膜分離装置22の2次側に供給し、その排水は排水ラインL8より排出するようにする。
S30 (acid addition): The acid 18 is added to the water to be treated 12 to which the reducing agent 16 has been added in S20 by an acid addition means including an acid tank T4 and an acid pump P6. Thereby, the pH of the to-be-processed water 12 is maintained in the predetermined range, for example, about pH 4.5-5.5. In order to execute this, for example, the pH of the concentrated water accompanying the desalination treatment by the reverse osmosis membrane 24 to be described later is converted into a pH measuring device (pH) provided in the path of the concentrated water, in the concentrated drainage line L16 in the example of FIG. The acid 18 is added so that the pH of the measured concentrated water is always 4.5 to 5.5. Alternatively, data such as pH value of groundwater pumped as treated water 12 in S10, pH change due to addition of reducing agent 16 in S20, pH change in the main water treatment process until subsequent desalting treatment, etc. It is good also as calculating the addition amount of the acid 18 that the pH of concentrated water always becomes 4.5-5.5 based on the data collected, and adding the acid 18 of the addition amount. As the acid 18, hydrochloric acid, sulfuric acid or the like is used.
S40 (membrane filtration treatment): In S20 and S30, the water to be treated 12 to which the reducing agent 16 and the acid 18 are added is subjected to membrane filtration treatment by a membrane separation device (MS) 22 including the filtration membrane 20. As the filtration membrane 20, an ultrafiltration membrane or a microfiltration membrane is used. The concentrated water generated by the membrane filtration process is re-filtered by the membrane separation device 22 or drained through the drain line L8.
S50 (intermediate tank storage): In S40, the water to be treated 12 subjected to membrane filtration by the membrane separation device 22 is stored in the intermediate tank T6 via the primary treated water feed line L4. When performing reverse water flow to the membrane separation device 22, the treated water 12 is supplied from the intermediate tank T6 to the secondary side of the membrane separation device 22 via the reverse water flow line L6 by the backwash pump P8. The drainage is discharged from the drainage line L8.

S60(脱塩処理):中間タンクT6から、昇圧ポンプP10により1次処理水供給ラインL10を介して、逆浸透膜(RO)24へ被処理水12を供給し、脱塩処理を行う。そして、脱塩処理後の透過水として得られた被処理水12(透過水)については、S70へ移行し、脱塩処理後の濃縮水となった被処理水12(濃縮水)については、S90へ移行する。
S70(導電率計測):上記S60において、脱塩処理後の透過水として得られた被処理水12(透過水)の導電率を、導電率計(CD)28により計測する。そして、計測結果が、所定の値(例えば、70μS/cm)以下の被処理水12(所定値以下)については、S80へ移行する。又、導電率が所定の値を超える被処理水12(所定値超え)については、処理水循環ラインL18を介して中間タンクT6へ返送(S50へ復帰)する。
S80(処理水タンク貯留):上記S70において、導電率が所定の値以下であった被処理水12(所定値以下)を、処理水ラインL12を介して処理水タンクT8へ貯留する。これにより、処理水タンクT8には、飲料水化された地下水が貯留されることとなる。
S60 (desalting treatment): The treated water 12 is supplied from the intermediate tank T6 to the reverse osmosis membrane (RO) 24 via the primary treated water supply line L10 by the booster pump P10, and the desalting treatment is performed. And about the to-be-processed water 12 (permeated water) obtained as the permeated water after a desalting process, it transfers to S70, About the to-be-processed water 12 (concentrated water) used as the concentrated water after a desalting process, The process proceeds to S90.
S70 (Conductivity measurement): In S60 described above, the conductivity of the treated water 12 (permeated water) obtained as the permeated water after the desalting treatment is measured by the conductivity meter (CD) 28. And about the to-be-processed water 12 (below predetermined value) whose measurement result is a predetermined value (for example, 70 microS / cm) or less, it transfers to S80. In addition, the water to be treated 12 whose conductivity exceeds a predetermined value (exceeding the predetermined value) is returned to the intermediate tank T6 via the treated water circulation line L18 (returned to S50).
S80 (Treatment water tank storage): In S70, the treated water 12 (below the predetermined value) whose conductivity is not more than a predetermined value is stored in the treatment water tank T8 via the treatment water line L12. Thereby, the ground water made into drinking water will be stored in the treated water tank T8.

S90(濃縮水分岐):上記S60において、脱塩処理後の濃縮水となった被処理水12(濃縮水)を、循環用と排水用とに分岐する。そして、循環用の濃縮水として分岐した被処理水12(循環用)については、循環ラインL14を介して逆浸透膜24へ再び供給(S60へ復帰)する。又、排水用の濃縮水として分岐した被処理水12(排水用)については、S100へ移行する。
S100(溶存酸素測定):上記S90において、排水用の濃縮水として分岐した被処理水12(排水用)の溶存酸素濃度を、溶存酸素計(DO)26により測定する。そして、この測定結果を、上記S20における還元剤16の添加量に反映させる。なお、図1の例では、溶存酸素計26を濃縮排水ラインL16に設けているが、この位置に限定されるものではなく、逆浸透膜24により分離される透過水又は濃縮水の経路(例えば、L12、L14、L18等)のいずれに設けてもよい。
S110(排水):上記S100において、溶存酸素濃度を測定した後の、排水用の濃縮水としての被処理水12を、濃縮排水ラインL16を経て排水する。
S90 (concentrated water branch): In S60 described above, the water to be treated 12 (concentrated water) that has become the concentrated water after the desalting treatment is branched into circulation and drainage. And the to-be-processed water 12 (for circulation) branched as the concentrated water for circulation is supplied again to the reverse osmosis membrane 24 via the circulation line L14 (return to S60). Moreover, about the to-be-processed water 12 (for drainage) branched as the concentrated water for drainage, it transfers to S100.
S100 (Measurement of dissolved oxygen): In S90 described above, the dissolved oxygen concentration of the treated water 12 (for wastewater) branched as concentrated water for wastewater is measured by a dissolved oxygen meter (DO) 26. And this measurement result is reflected in the addition amount of the reducing agent 16 in said S20. In the example of FIG. 1, the dissolved oxygen meter 26 is provided in the concentrated drainage line L <b> 16, but is not limited to this position, and the permeated water or concentrated water path separated by the reverse osmosis membrane 24 (for example, , L12, L14, L18, etc.).
S110 (drainage): In S100, the water to be treated 12 as the concentrated water for drainage after measuring the dissolved oxygen concentration is drained through the concentrated drainage line L16.

続いて、図1に示す本発明の実施の形態に係る水処理装置10を用いる水処理方法について、より具体的に実施例を挙げて説明する。
本実施例においては、地下水(井戸水)に、メタケイ酸ソーダ5水塩、カオリン、塩化第一鉄4水和物、塩化マンガン(II)4水和物、65%硫酸を添加し、pHが4.5〜5.5、シリカ濃度が50mg/L、鉄濃度が1mg/L、マンガン濃度が0.1mg/Lとなるように調製した模擬原水を、供給原水(被処理水12)として使用した。そして、以下の条件で地下水の飲料水化を行った。
Next, the water treatment method using the water treatment apparatus 10 according to the embodiment of the present invention shown in FIG. 1 will be described more specifically with examples.
In this example, sodium metasilicate pentahydrate, kaolin, ferrous chloride tetrahydrate, manganese (II) chloride tetrahydrate, 65% sulfuric acid were added to groundwater (well water), and the pH was 4 Simulated raw water prepared to have a silica concentration of 50 mg / L, an iron concentration of 1 mg / L, and a manganese concentration of 0.1 mg / L was used as the feed raw water (treated water 12). . And groundwater was made into drinking water under the following conditions.

まず、調製した原水を、井戸ポンプP2より原水供給ラインL2を介して膜分離装置22に移送し(図2のS10)、この間に、原水供給ラインL2内の被処理水12に対し、還元剤タンクT2と還元剤ポンプP4とを備える還元剤供給手段により還元剤16を、酸タンクT4と酸ポンプP6とを備える酸添加手段により酸18として硫酸を、夫々添加した(図2のS20、S30)。又、逆浸透膜24による脱塩後の濃縮排水を溶存酸素計26により測定し(図2のS100)、得られた測定値に応じて還元剤16の添加量の管理を行い、濃縮排水の溶存酸素濃度が0.0mg/Lでほぼ安定保持されるようにした。溶存酸素計26には、株式会社堀場アドバンスドテクノ社製工業用溶存酸素計(型名:HD−480、測定方式:ガルバニ電池法、分解能0.01mg/L、繰り返し性±0.5%、直線性±0.5%)を用いた。   First, the prepared raw water is transferred from the well pump P2 to the membrane separation device 22 via the raw water supply line L2 (S10 in FIG. 2), and during this time, the reducing agent is supplied to the treated water 12 in the raw water supply line L2. Reductant 16 was added by a reducing agent supply means having a tank T2 and a reducing agent pump P4, and sulfuric acid was added as an acid 18 by an acid addition means having an acid tank T4 and an acid pump P6 (S20 and S30 in FIG. 2). ). Further, the concentrated waste water after desalting by the reverse osmosis membrane 24 is measured by the dissolved oxygen meter 26 (S100 in FIG. 2), and the amount of the reducing agent 16 added is controlled according to the obtained measurement value, and the concentrated waste water The dissolved oxygen concentration was kept almost stable at 0.0 mg / L. The dissolved oxygen meter 26 includes an industrial dissolved oxygen meter manufactured by HORIBA Advanced Techno Co., Ltd. (model name: HD-480, measurement method: galvanic cell method, resolution 0.01 mg / L, repeatability ± 0.5%, linear Sex ± 0.5%) was used.

そして、膜分離装置22により膜ろ過処理を行い(図2のS40)、得られた膜ろ過処理後の被処理水12を、1次処理水送液ラインL4を経て中間タンクT6に貯留した(図2のS50)。膜分離装置22には、ウェルシィ社製限外ろ過膜「ウェルピュアS」を用い、膜ろ過流速2.4m/Dayで通水できるように設定した。
次いで、中間タンクT6から昇圧ポンプP10により、1次処理水供給ラインL10を介して、被処理水12を逆浸透膜24に供給し、脱塩処理を行った(図2のS60)。そして、得られた透過水を、導電率計28により計測し(図2のS70)、70μS/cm以下の条件で処理水ラインL12を介して処理水タンクT8に貯留し(図2のS80)、70μS/cmを超える条件で、処理水循環ラインL18を介して中間タンクT6に返送する様に設定した。又、濃縮水は、一部を循環ラインL14を通じ昇圧ポンプP10に供給し、残りは、濃縮排水ラインL16を経て排水した(図2のS90、S110)。
And the membrane filtration process was performed with the membrane separator 22 (S40 of FIG. 2), and the to-be-processed water 12 after the obtained membrane filtration process was stored in the intermediate tank T6 through the primary treated water feed line L4 ( (S50 in FIG. 2). The membrane separator 22 was an ultrafiltration membrane “Well Pure S” manufactured by Welsey, Inc., and set so that water could pass through at a membrane filtration flow rate of 2.4 m / day.
Next, the treated water 12 was supplied from the intermediate tank T6 to the reverse osmosis membrane 24 through the primary treated water supply line L10 by the booster pump P10, and the desalting treatment was performed (S60 in FIG. 2). Then, the obtained permeated water is measured by the conductivity meter 28 (S70 in FIG. 2) and stored in the treated water tank T8 through the treated water line L12 under the condition of 70 μS / cm or less (S80 in FIG. 2). , And set to be returned to the intermediate tank T6 via the treated water circulation line L18 under conditions exceeding 70 μS / cm. A part of the concentrated water was supplied to the booster pump P10 through the circulation line L14, and the rest was drained through the concentrated drainage line L16 (S90 and S110 in FIG. 2).

ここで、逆浸透膜24として用いた膜は、ダウ社製BW30−4040であり、回収率が90%で処理できるように設定した。又、膜分離装置22の限外ろ過膜の逆通水は、通常運転時(水処理運転時)の通水時間が、夫々24時間、48時間経過した後に実施する条件で評価を実施した。
上記のような条件で地下水の飲料水化を行った結果、通水時間が48時間経過しても、膜分離装置22の限外ろ過膜は、温度補正した膜間差圧が初期値から1%の上昇、逆浸透膜24は0.8%の上昇にとどまり、種々の金属およびシリカが含まれている供給水を高濃縮しても、安定稼働していることを確認した。又、得られた濃縮水には結晶物等の析出が起こっておらず、シリカ濃度を分析したところ、510mg/Lであることを確認した。
Here, the membrane used as the reverse osmosis membrane 24 is BW30-4040 manufactured by Dow, and was set so that the recovery rate could be 90%. Further, the reverse water flow of the ultrafiltration membrane of the membrane separation device 22 was evaluated under the condition that the water flow time during normal operation (water treatment operation) was performed after 24 hours and 48 hours, respectively.
As a result of drinking water from groundwater under the above conditions, the transmembrane differential pressure of the ultrafiltration membrane of the membrane separator 22 is 1 from the initial value even if the water flow time is 48 hours. %, The reverse osmosis membrane 24 increased only to 0.8%, and it was confirmed that stable operation was achieved even when the feed water containing various metals and silica was highly concentrated. Further, no precipitation of crystals or the like occurred in the concentrated water obtained, and the silica concentration was analyzed and confirmed to be 510 mg / L.

比較例Comparative example

次に、上述した実施例と比較するために行った、比較例について説明する。
1つ目の比較例では、還元剤16の添加量を、供給原水中の溶存酸素濃度に相当する量とし、逆浸透膜24による脱塩処理後の濃縮排水中の溶存酸素濃度が、継続して0.2mg/L以上となる状態を含む、溶存酸素の除去が十分とはいえない条件下で、通水および再生を実施し、かつ、限外ろ過膜の逆通水の頻度を24時間とした点以外は、実施例と同様の条件で、地下水の飲料水化を行った。
上記のような条件で行った結果、1つ目の比較例では、通水時間が24時間経過すると、膜分離装置22の限外ろ過膜の温度補正した膜間差圧は、初期と比較して20%上昇する結果となった。又、逆浸透膜24は、膜分離装置22の閉塞に伴う流量低下により、供給水量が低下し、90%の高濃縮が行えない結果となった。その際の、逆浸透膜24で得られた濃縮水のシリカ濃度は、450mg/Lを示していたが、差圧が穏やかに上昇する結果となった。
Next, a comparative example performed for comparison with the above-described embodiment will be described.
In the first comparative example, the addition amount of the reducing agent 16 is set to an amount corresponding to the dissolved oxygen concentration in the feed raw water, and the dissolved oxygen concentration in the concentrated waste water after the desalination treatment by the reverse osmosis membrane 24 is continued. The water flow and regeneration were carried out under conditions where removal of dissolved oxygen was not sufficient, including the state of 0.2 mg / L or more, and the frequency of reverse water flow through the ultrafiltration membrane was 24 hours. Except for the points described above, drinking water for groundwater was obtained under the same conditions as in the examples.
As a result of the above conditions, in the first comparative example, when the water flow time has elapsed for 24 hours, the transmembrane pressure difference of the ultrafiltration membrane of the membrane separation device 22 is compared with the initial value. The result was a 20% increase. In addition, the reverse osmosis membrane 24 had a reduced flow rate due to the blockage of the membrane separation device 22, resulting in a decrease in the amount of supplied water and a high concentration of 90%. At that time, the silica concentration of the concentrated water obtained by the reverse osmosis membrane 24 showed 450 mg / L, but the differential pressure increased gently.

続いて、2つ目の比較例では、酸18の添加による被処理水12のpH調整を実施しなかった点以外は、実施例と同様の条件で、地下水の飲料水化を行った。
上記のような条件で行った結果、2つ目の比較例では、通水時間が48時間経過しても、膜分離装置22の限外ろ過膜は、初期膜間差圧に対して2%程度の微増にとどまり、安定的な運転を行っていた。しかし、逆浸透膜24は、24時間稼働で、初期膜間差圧に対して50%上昇する結果となり、運転を停止することとなった。
Subsequently, in the second comparative example, groundwater was made into drinking water under the same conditions as in the example except that the pH of the treated water 12 was not adjusted by adding the acid 18.
As a result of the above conditions, in the second comparative example, the ultrafiltration membrane of the membrane separation device 22 was 2% of the initial transmembrane pressure even when the water passage time was 48 hours. Only a slight increase in the degree, stable operation was performed. However, the reverse osmosis membrane 24 was operated for 24 hours, resulting in a 50% increase in the initial transmembrane pressure difference, and the operation was stopped.

さて、上記構成をなす本発明の実施の形態によれば、次のような作用効果を得ることが可能である。すなわち、本発明の実施の形態に係る水処理装置10を用いた水処理方法は、金属イオン、シリカ、不溶性物質を含む、地下水等の被処理水12を対象とした水処理方法である。そして、図1及び図2に示すように、被処理水12に対し、還元剤タンクT2と還元剤ポンプP4とを備える還元剤添加手段により、還元剤16を添加し(S20)、更に、酸タンクT4と酸ポンプP6とを備える酸添加手段により、酸18を添加する(S30)。還元剤16は、被処理水12中の溶存酸素を実質的に除去するように添加され、これにより被処理水12中の金属イオンの酸化析出を抑制する。又、酸18は、被処理水12のpHを所定の範囲に維持するように添加される。そして、還元剤16と酸18とを添加した状態の被処理水12を、膜分離装置22のろ過膜20により膜ろ過処理し、被処理水12中の不溶性物質を除去する(S40)。更に、膜ろ過処理した被処理水12を、逆浸透膜24により脱塩処理し、被処理水12中の金属イオンやシリカを除去する(S60)。   Now, according to the embodiment of the present invention configured as described above, the following operational effects can be obtained. That is, the water treatment method using the water treatment apparatus 10 according to the embodiment of the present invention is a water treatment method for water to be treated 12 such as ground water containing metal ions, silica, and insoluble substances. Then, as shown in FIGS. 1 and 2, reducing agent 16 is added to the water 12 to be treated by reducing agent adding means including a reducing agent tank T2 and a reducing agent pump P4 (S20), and further, an acid. The acid 18 is added by the acid addition means including the tank T4 and the acid pump P6 (S30). The reducing agent 16 is added so as to substantially remove dissolved oxygen in the water to be treated 12, thereby suppressing oxidative precipitation of metal ions in the water to be treated 12. The acid 18 is added so as to maintain the pH of the water 12 to be treated in a predetermined range. And the to-be-processed water 12 of the state which added the reducing agent 16 and the acid 18 is membrane-filtered by the filtration membrane 20 of the membrane separator 22, and the insoluble substance in the to-be-processed water 12 is removed (S40). Further, the water to be treated 12 subjected to the membrane filtration is desalted by the reverse osmosis membrane 24 to remove metal ions and silica in the water to be treated 12 (S60).

すなわち、本発明の実施の形態に係る水処理方法は、被処理水12に還元剤16を添加し、被処理水12に含まれる金属イオンの酸化析出を抑制しているため、膜分離装置22のろ過膜20に付着し、薬品洗浄等によっても除去し難い膜閉塞の原因となる不溶性物質の量を最小限に留めることが可能となり、ろ過膜20のメンテナンス回数を低減し、排水量を減らすことができる。更に、被処理水12に酸18を添加し、被処理水12のpHを所定の範囲に維持しているため、逆浸透膜24による脱塩処理における濃縮倍率を、シリカの溶解度以上に上げた場合においても、逆浸透膜面へのシリカスケールの析出を抑制することができる。従って、被処理水12に含まれる金属イオン、シリカ等にもとづく物質を逆浸透膜面に析出させることなく、高い水回収率で水処理を行うことが可能となる。   That is, in the water treatment method according to the embodiment of the present invention, the reducing agent 16 is added to the water to be treated 12 to suppress the oxidative precipitation of metal ions contained in the water to be treated 12. It is possible to minimize the amount of insoluble substances adhering to the filter membrane 20 and causing membrane clogging that is difficult to remove even by chemical cleaning, etc., reducing the number of times the filter membrane 20 is maintained and reducing the amount of drainage. Can do. Furthermore, since the acid 18 was added to the water 12 to be treated and the pH of the water 12 to be treated was maintained within a predetermined range, the concentration rate in the desalting treatment by the reverse osmosis membrane 24 was increased to be higher than the solubility of silica. Even in this case, the deposition of silica scale on the reverse osmosis membrane surface can be suppressed. Therefore, it is possible to perform water treatment at a high water recovery rate without depositing substances based on metal ions, silica and the like contained in the water to be treated 12 on the reverse osmosis membrane surface.

又、本発明の実施の形態に係る水処理方法は、被処理水12に添加する酸18の添加量を、脱塩処理に伴う濃縮水のpHが、4.5〜5.5になるように設定することで、逆浸透膜24による脱塩処理における濃縮倍率を、シリカの溶解度以上に上げた場合においても、逆浸透膜面へのシリカスケールの析出を安定して抑制することができる。
更に、本発明の実施の形態に係る水処理方法は、逆浸透膜24による脱塩処理に伴う濃縮水又は透過水に、溶存酸素が実質的に含まれなくなるように、被処理水12に還元剤16を添加するものであり、例えば、実施例のように、濃縮水の溶存酸素濃度を0.0mg/Lでほぼ安定保持するように、還元剤を添加する。これを実行するために、図1の例のように、濃縮排水ラインL16に溶存酸素計26を設置し、濃縮水の溶存酸素を測定することとしてもよい(S100)。このように、濃縮水又は透過水に溶存酸素が実質的に含まれなくなるように、還元剤16を添加することで、被処理水12に含まれる金属イオンの酸化析出を、安定して抑制することができる。
In the water treatment method according to the embodiment of the present invention, the acid 18 added to the water to be treated 12 is added so that the pH of the concentrated water accompanying the desalting treatment is 4.5 to 5.5. By setting to, the silica scale deposition on the reverse osmosis membrane surface can be stably suppressed even when the concentration rate in the desalting treatment by the reverse osmosis membrane 24 is increased to the silica solubility or higher.
Furthermore, in the water treatment method according to the embodiment of the present invention, the water to be treated 12 is reduced so that the concentrated water or permeated water accompanying the desalting treatment by the reverse osmosis membrane 24 does not substantially contain dissolved oxygen. The agent 16 is added. For example, as in the example, the reducing agent is added so that the dissolved oxygen concentration of the concentrated water is kept almost stable at 0.0 mg / L. In order to execute this, as shown in the example of FIG. 1, a dissolved oxygen meter 26 may be installed in the concentrated drain line L16 to measure dissolved oxygen in the concentrated water (S100). Thus, by adding the reducing agent 16 so that the dissolved oxygen is not substantially contained in the concentrated water or the permeated water, the oxidative precipitation of the metal ions contained in the water to be treated 12 is stably suppressed. be able to.

又、本発明の実施の形態に係る水処理方法は、被処理水12に還元剤16を添加した後に、酸18を添加することにより、還元剤16の添加によってpHが変動した被処理水12に対して、pHを所定の範囲に維持するように酸18を添加することとなるため、還元剤16の添加により被処理水12中の溶存酸素を実質的に除去しながらも、酸18の添加により被処理水12のpHを所定の範囲に安定して維持することが可能となる。
更に、膜ろ過処理を行うためのろ過膜20として、精密ろ過膜もしくは限外ろ過膜を用いることにより、被処理水12中の不溶性物質の除去を、十分に行うことができる。
In addition, in the water treatment method according to the embodiment of the present invention, after the reducing agent 16 is added to the water to be treated 12, the acid 18 is added, whereby the water to be treated 12 whose pH is changed by the addition of the reducing agent 16. On the other hand, since the acid 18 is added so as to maintain the pH within a predetermined range, the addition of the reducing agent 16 substantially eliminates the dissolved oxygen in the water 12 to be treated, but the acid 18 Addition makes it possible to stably maintain the pH of the water to be treated 12 within a predetermined range.
Furthermore, by using a microfiltration membrane or an ultrafiltration membrane as the filtration membrane 20 for performing the membrane filtration treatment, it is possible to sufficiently remove insoluble substances in the water 12 to be treated.

又、本発明の実施の形態に係る水処理方法は、被処理水12に添加する還元剤16として、重亜硫酸ナトリウムを用いることにより、被処理水12中の溶存酸素と適切な速度で反応させ、溶存酸素の実質的な除去を行うことができる。
更に、被処理水12に添加する酸18として、pH調整に用いられることが多く、比較的入手が容易な、塩酸もしくは硫酸を用いることとすれば、被処理水12のpHの維持を容易に行うことができる。
このように、本発明の実施の形態に係る水処理方法は、大型設備を必要としないため、省スペース化を図ることが可能であり、また、還元処理を基本とするため、薬液量を低減し、処理工程を簡略化することが可能となる。従って、本発明の方法によれば、極めて安価に水質のよい飲料水を安定して得ることが可能となる。
Moreover, the water treatment method according to the embodiment of the present invention uses sodium bisulfite as the reducing agent 16 to be added to the water to be treated 12 so as to react with the dissolved oxygen in the water to be treated 12 at an appropriate rate. The substantial removal of dissolved oxygen can be performed.
Furthermore, as the acid 18 added to the water to be treated 12, it is often used for pH adjustment, and if hydrochloric acid or sulfuric acid, which is relatively easily available, is used, it is easy to maintain the pH of the water to be treated 12. It can be carried out.
Thus, since the water treatment method according to the embodiment of the present invention does not require a large facility, it is possible to save space, and since it is based on a reduction treatment, the amount of chemical solution is reduced. As a result, the processing steps can be simplified. Therefore, according to the method of the present invention, it is possible to stably obtain drinking water with good water quality at a very low cost.

10:水処理装置、12:被処理水、16:還元剤、18:酸、20:ろ過膜、24:逆浸透膜(RO)、P4:還元剤ポンプ、P6:酸ポンプ、T2:還元剤タンク、T4:酸タンク   10: water treatment device, 12: treated water, 16: reducing agent, 18: acid, 20: filtration membrane, 24: reverse osmosis membrane (RO), P4: reducing agent pump, P6: acid pump, T2: reducing agent Tank, T4: Acid tank

Claims (10)

金属イオン、シリカ、不溶性物質を含む被処理水を、ろ過膜により膜ろ過処理して不溶性物質を除去した後、逆浸透膜により脱塩処理する水処理方法であって、
前記被処理水に還元剤を添加して該被処理水中の溶存酸素を実質的に除去し、金属イオンの酸化析出を抑制した状態、かつ、前記被処理水に酸を添加して該被処理水のpHを所定の範囲に維持した状態で、前記膜ろ過処理及び脱塩処理をすることを特徴とする水処理方法。
A water treatment method in which water to be treated containing metal ions, silica and insoluble substances is subjected to membrane filtration with a filtration membrane to remove insoluble substances, and then desalted with a reverse osmosis membrane,
A state in which a reducing agent is added to the water to be treated to substantially remove dissolved oxygen in the water to be treated, and oxidation precipitation of metal ions is suppressed, and an acid is added to the water to be treated. A water treatment method comprising performing the membrane filtration treatment and the desalting treatment in a state where the pH of water is maintained within a predetermined range.
前記酸の添加量を、前記脱塩処理に伴う濃縮水のpHが4.5〜5.5になるように設定することを特徴とする請求項1記載の水処理方法。   The water treatment method according to claim 1, wherein the amount of the acid added is set so that the pH of the concentrated water accompanying the desalting treatment is 4.5 to 5.5. 前記還元剤を、前記脱塩処理に伴う濃縮水又は透過水に溶存酸素が実質的に含まれなくなるように添加することを特徴とする請求項1又は2記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the reducing agent is added so that dissolved oxygen is substantially not contained in the concentrated water or permeated water accompanying the desalting treatment. 前記還元剤を添加した後に、前記酸を添加することを特徴とする請求項1から3のいずれか1項記載の水処理方法。   The water treatment method according to claim 1, wherein the acid is added after the reducing agent is added. 前記ろ過膜として、精密ろ過膜もしくは限外ろ過膜を用いることを特徴とする請求項1から4のいずれか1項記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein a microfiltration membrane or an ultrafiltration membrane is used as the filtration membrane. 金属イオン、シリカ、不溶性物質を含む被処理水の処理を行う水処理装置であって、
前記被処理水に還元剤を添加するための還元剤添加手段と、
前記被処理水に酸を添加し、前記被処理水のpHを所定の範囲に維持するための酸添加手段と、
前記還元剤及び前記酸が添加された前記被処理水に膜ろ過処理を行い、不溶性物質を除去するためのろ過膜と、
前記膜ろ過処理後の前記被処理水に脱塩処理を行うための逆浸透膜とを含むことを特徴とする水処理装置。
A water treatment apparatus for treating water to be treated containing metal ions, silica and insoluble substances,
Reducing agent addition means for adding a reducing agent to the treated water;
Acid addition means for adding an acid to the treated water and maintaining the pH of the treated water in a predetermined range;
A filtration membrane for removing the insoluble material by performing membrane filtration on the treated water to which the reducing agent and the acid have been added;
A water treatment apparatus comprising a reverse osmosis membrane for performing a desalting treatment on the treated water after the membrane filtration treatment.
前記酸添加手段は、前記脱塩処理に伴う濃縮水のpHが4.5〜5.5になるように前記酸を添加することを特徴とする請求項6記載の水処理装置。   The water treatment apparatus according to claim 6, wherein the acid addition means adds the acid so that the pH of the concentrated water accompanying the desalting treatment is 4.5 to 5.5. 前記還元剤添加手段は、前記脱塩処理に伴う濃縮水又は透過水に溶存酸素が実質的に含まれなくなるように前記還元剤を添加することを特徴とする請求項6又は7記載の水処理装置。   The water treatment according to claim 6 or 7, wherein the reducing agent addition means adds the reducing agent so that dissolved oxygen is substantially not contained in the concentrated water or permeated water accompanying the desalting treatment. apparatus. 前記還元剤添加手段は、前記酸が添加される前の前記被処理水に対し、前記還元剤を添加することを特徴とする請求項6から8のいずれか1項記載の水処理装置。   The water treatment apparatus according to any one of claims 6 to 8, wherein the reducing agent adding means adds the reducing agent to the water to be treated before the acid is added. 前記ろ過膜は、精密ろ過膜もしくは限外ろ過膜であることを特徴とする請求項6から9のいずれか1項記載の水処理装置。   The water treatment device according to any one of claims 6 to 9, wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
JP2012182466A 2012-08-21 2012-08-21 Water treatment method and water treatment apparatus Active JP6315881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182466A JP6315881B2 (en) 2012-08-21 2012-08-21 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182466A JP6315881B2 (en) 2012-08-21 2012-08-21 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2014039895A true JP2014039895A (en) 2014-03-06
JP6315881B2 JP6315881B2 (en) 2018-04-25

Family

ID=50392635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182466A Active JP6315881B2 (en) 2012-08-21 2012-08-21 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP6315881B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163979A (en) * 1993-12-16 1995-06-27 Japan Organo Co Ltd Reverse osmosis membrane treatment
JPH091141A (en) * 1995-06-14 1997-01-07 Japan Organo Co Ltd Method for operating reverse osmosis membrane device
JPH1085764A (en) * 1996-09-12 1998-04-07 Japan Organo Co Ltd Method for treating water containing bromic acid by active carbon
JPH11138162A (en) * 1997-11-06 1999-05-25 Kurita Water Ind Ltd Polishing waste water treating device
JP2001099595A (en) * 1999-09-30 2001-04-13 New Tokyo International Airport Authority Apparatus and method for recycling air conditioned cooling water
WO2002026362A1 (en) * 2000-09-29 2002-04-04 Ionics, Incorporated High recovery reverse osmosis process and apparatus
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2003001255A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2005230731A (en) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd Method and apparatus for water treatment
JP2010137209A (en) * 2008-12-09 2010-06-24 Uerushii:Kk Water treatment method
JP2011031146A (en) * 2009-07-30 2011-02-17 Miura Co Ltd Water treatment system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163979A (en) * 1993-12-16 1995-06-27 Japan Organo Co Ltd Reverse osmosis membrane treatment
JPH091141A (en) * 1995-06-14 1997-01-07 Japan Organo Co Ltd Method for operating reverse osmosis membrane device
JPH1085764A (en) * 1996-09-12 1998-04-07 Japan Organo Co Ltd Method for treating water containing bromic acid by active carbon
JPH11138162A (en) * 1997-11-06 1999-05-25 Kurita Water Ind Ltd Polishing waste water treating device
JP2001099595A (en) * 1999-09-30 2001-04-13 New Tokyo International Airport Authority Apparatus and method for recycling air conditioned cooling water
WO2002026362A1 (en) * 2000-09-29 2002-04-04 Ionics, Incorporated High recovery reverse osmosis process and apparatus
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2003001255A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2005230731A (en) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd Method and apparatus for water treatment
JP2010137209A (en) * 2008-12-09 2010-06-24 Uerushii:Kk Water treatment method
JP2011031146A (en) * 2009-07-30 2011-02-17 Miura Co Ltd Water treatment system

Also Published As

Publication number Publication date
JP6315881B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
CN100443423C (en) Electroplating wastewater treatment reclaiming technique
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
JP6325658B2 (en) Filtration method
JP5564174B2 (en) Purification method and apparatus for purification of water containing metal components
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP6142937B1 (en) Reverse osmosis membrane device operation management method and reverse osmosis membrane treatment system
JP2005288442A (en) Method for washing membrane module
US9868656B2 (en) Wastewater treatment device
JP5303501B2 (en) Water treatment method and water treatment apparatus
JP5807634B2 (en) Reverse osmosis membrane treatment method
WO2013031689A1 (en) Method and apparatus for purifying water containing radioactive substance and/or heavy metal
JP2010201312A (en) Membrane separation method
CN104507873A (en) Desalination treatment device, and operation method for desalination treatment device
JP2012196614A (en) Method and system for wastewater treatment
JP2009183825A (en) Water treatment apparatus
WO2014129383A1 (en) Water treatment system
JP5339054B2 (en) Water treatment method
WO2018030109A1 (en) Membrane filtration method and membrane filtration system
JP6315881B2 (en) Water treatment method and water treatment apparatus
JP2007268359A (en) Membrane separation method
JP2006281174A (en) Method, apparatus and system for recycling wastewater
US20140251907A1 (en) Method for separating radioactive nuclides by means of ceramic filter membranes
WO2018163468A1 (en) Method for managing operation of reverse osmotic membrane device, and reverse osmosis membrane treatment system
JP6699681B2 (en) Reverse osmosis membrane device operation management method and reverse osmosis membrane treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180327

R150 Certificate of patent or registration of utility model

Ref document number: 6315881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350