JP5303501B2 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP5303501B2
JP5303501B2 JP2010069944A JP2010069944A JP5303501B2 JP 5303501 B2 JP5303501 B2 JP 5303501B2 JP 2010069944 A JP2010069944 A JP 2010069944A JP 2010069944 A JP2010069944 A JP 2010069944A JP 5303501 B2 JP5303501 B2 JP 5303501B2
Authority
JP
Japan
Prior art keywords
water
calcium sulfate
tank
permeable membrane
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010069944A
Other languages
Japanese (ja)
Other versions
JP2011200788A (en
Inventor
草介 小野田
克義 谷田
明宏 田路
幹夫 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2010069944A priority Critical patent/JP5303501B2/en
Publication of JP2011200788A publication Critical patent/JP2011200788A/en
Application granted granted Critical
Publication of JP5303501B2 publication Critical patent/JP5303501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カルシウムイオン及び硫酸イオンを含む原水、例えば、廃棄物の最終処分場から発生する浸出水等を脱塩処理するための水処理方法及び水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus for desalinating raw water containing calcium ions and sulfate ions, for example, leachate generated from a final disposal site for waste.

現在、廃棄物は、焼却処理後、最終処分場に埋め立て処理されることが一般的である。最終処分場に降った雨水は、安定化を待つ埋め立て廃棄物の中にしみ込み、廃棄物に含まれる物質を溶かし出した浸出水となる。この浸出水が外部環境にしみ出せば、水質汚濁の原因となる。浸出水には、特に、焼却された廃棄物に由来するカルシウム等が含まれることが多く、そのまま外部環境に排出したのでは、配管又は処理設備内にスケールとして付着するという問題があった。   At present, waste is generally landfilled at a final disposal site after incineration. Rainwater that falls on the final disposal site soaks into landfill waste awaiting stabilization and becomes leachate that dissolves the substances contained in the waste. If this leachate seeps into the external environment, it can cause water pollution. In particular, the leachate often contains calcium or the like derived from incinerated waste, and if it is discharged as it is to the outside environment, there is a problem that it adheres as a scale in piping or treatment equipment.

このため、従来は、浸出水に炭酸ナトリウムをカルシウム除去剤として添加し、浸出液中のカルシウム分を炭酸カルシウムとして除去するライムソーダ法が行われていた。カルシウム分を除去した後、脱窒処理、凝集沈殿処理等の処理を行い、処理水を処理設備外へ排水していた。しかし、この処理方法では、カルシウム分を確実に除去できる反面、大量の炭酸ナトリウムを必要とするために、処理コストが高かった。   For this reason, conventionally, a lime soda method has been performed in which sodium carbonate is added to the leachate as a calcium remover, and the calcium content in the leachate is removed as calcium carbonate. After removing the calcium content, treatment such as denitrification treatment and coagulation sedimentation treatment was performed, and the treated water was drained out of the treatment facility. However, this treatment method can reliably remove the calcium content, but requires a large amount of sodium carbonate, and thus the treatment cost is high.

また、脱塩処理のために電気透析装置を水処理装置に組み込む技術もあるが、電気透析によって濃縮水が大量に発生した場合には、処理コストが上昇するという問題があった。濃縮水をなるべく高濃度とすれば処理コストを抑制しうるが、電気透析装置では10倍以上の濃縮を行うことは困難であった。   There is also a technique for incorporating an electrodialyzer into a water treatment apparatus for desalting, but there is a problem that the treatment cost increases when a large amount of concentrated water is generated by electrodialysis. If the concentration of concentrated water is as high as possible, the processing cost can be suppressed, but it has been difficult to concentrate 10 times or more with an electrodialysis apparatus.

ここで、塩類を含む浸出水等を逆浸透膜に透過させて処理水と塩類を含む濃縮液に分離し、濃縮液を透過膜によってろ過し、透過膜の透過水をさらに濃縮水処理用の逆浸透膜に透過させ、高度濃縮水を排出する一方、透過膜によってろ過された濃縮水を晶析処理し、上澄みを透過膜へ導入することを特徴とする水処理方法及び水処理装置が、特許文献1に開示されている。   Here, the leachate containing salt is permeated through the reverse osmosis membrane to separate the treated water and the concentrated solution containing salts, the concentrated solution is filtered through the permeable membrane, and the permeated water of the permeable membrane is further processed for concentrated water treatment. A water treatment method and a water treatment apparatus characterized by allowing permeation through a reverse osmosis membrane and discharging highly concentrated water while crystallizing the concentrated water filtered by the permeable membrane and introducing the supernatant into the permeable membrane. It is disclosed in Patent Document 1.

特許文献1に開示されている水処理方法及び水処理装置は、逆浸透膜によって塩類を含む原水を処理するため、カルシウム、マグネシウム、ナトリウム、塩素イオン、硫酸イオン等の塩類、リン、窒素分等を確実に分離し、脱塩処理水を得ることができる。また、逆浸透膜の濃縮水を透過膜で処理した後、さらに濃縮水処理用逆浸透膜に透過させるため、濃縮水処理用逆浸透膜で分離される高度濃縮水が少量で済み、その処理が容易である。   Since the water treatment method and the water treatment apparatus disclosed in Patent Document 1 treat raw water containing salts with a reverse osmosis membrane, salts such as calcium, magnesium, sodium, chloride ions, sulfate ions, phosphorus, nitrogen content, etc. Can be reliably separated to obtain demineralized water. In addition, after the concentrated water of the reverse osmosis membrane is treated with the permeable membrane, it is further permeated to the reverse osmosis membrane for concentrated water treatment. Is easy.

特許第3098965号公報Japanese Patent No. 3098965

特許文献1に開示されている水処理方法及び水処理装置は、塩類を含む浸出水等の濃縮率が高く、塩類除去が容易である。しかし、原水の塩類濃度が高い場合には、逆浸透膜表面又は配管内で析出しやすいという問題がある。また、塩類濃度が低い場合には、透過膜によってろ過された濃縮水の塩類濃度が十分に高くならず、晶析処理効率が低いという問題がある。このため、原水の塩類濃度が大きく変化するような条件では、脱塩能力を十分に発揮できない可能性があり、その点で改良の余地があった。   The water treatment method and water treatment apparatus disclosed in Patent Document 1 have a high concentration rate of leachate containing salt and the like, and salt removal is easy. However, when the salt concentration of the raw water is high, there is a problem that it is likely to precipitate on the reverse osmosis membrane surface or in the pipe. Further, when the salt concentration is low, there is a problem that the salt concentration of the concentrated water filtered by the permeable membrane is not sufficiently high, and the crystallization treatment efficiency is low. For this reason, under conditions where the salt concentration of the raw water changes greatly, there is a possibility that the desalting ability cannot be fully exhibited, and there is room for improvement in that respect.

本発明は、原水中の塩類濃度が高い場合でも、低い場合でも、硫酸カルシウムの除去能力を十分に発揮することが可能であり、カルシウム除去剤の使用量をできるだけ少なくし得る水処理方法及び水処理装置の提供を目的とする。   The present invention provides a water treatment method and water that can sufficiently exhibit the ability to remove calcium sulfate, even when the salt concentration in the raw water is high or low, and can reduce the amount of calcium remover used as much as possible. An object is to provide a processing apparatus.

本発明者等は、スケール発生原因となる原水中のカルシウム濃度及び硫酸イオン濃度が大きく変化しても、膜の目詰まりを防止しつつ、硫酸カルシウム除去効率を高く維持するための方法について鋭意検討した。その結果、カルシウムイオン及び硫酸イオンを含む原水を透過膜装置で処理することにより、濃縮液中の硫酸カルシウム濃度を過飽和状態にできることに着目した。さらに、硫酸カルシウム濃度が過飽和状態となった濃縮液に、硫酸カルシウム種結晶を添加し、晶析した硫酸カルシウムの一部を硫酸カルシウム種結晶として回収すれば、カルシウム除去剤が不要となることを見出し、本発明を完成するに至った。   The present inventors diligently studied a method for maintaining high calcium sulfate removal efficiency while preventing clogging of the membrane even when the calcium concentration and sulfate ion concentration in the raw water causing scale generation change greatly. did. As a result, attention was paid to the fact that the calcium sulfate concentration in the concentrate can be brought into a supersaturated state by treating raw water containing calcium ions and sulfate ions with a permeable membrane device. Furthermore, if a calcium sulfate seed crystal is added to the concentrated solution in which the calcium sulfate concentration is supersaturated, and a portion of the crystallized calcium sulfate is recovered as a calcium sulfate seed crystal, a calcium remover is no longer necessary. The headline and the present invention were completed.

具体的に、本発明は、
カルシウムイオン及び硫酸イオンを含む原水を透過膜装置によって処理水と濃縮水に分離する水処理方法において、
濃縮水を、晶析反応槽及び沈殿槽を経て原水槽へと返送し、
濃縮水の一部を透過膜装置の入口側へと循環させ、
晶析反応槽においては、濃縮液に硫酸カルシウム種結晶を添加して、濃縮液中のカルシウムイオン及び硫酸イオンを硫酸カルシウム結晶として晶析させ、
沈殿槽においては、晶析反応槽から送られてきた濃縮水中の硫酸カルシウム結晶を沈殿させると共に、上清を原水槽へと返送し、
沈殿槽に沈殿した硫酸カルシウム結晶の一部は、硫酸カルシウム種結晶として晶析反応槽へと回収され、
沈殿槽に沈殿した硫酸カルシウム結晶の残部は、系外へと排出される、
ことを特徴とする水処理方法に関する。
Specifically, the present invention
In a water treatment method for separating raw water containing calcium ions and sulfate ions into treated water and concentrated water by a permeable membrane device,
Concentrated water is returned to the raw water tank through the crystallization reaction tank and the precipitation tank,
Circulate a part of the concentrated water to the inlet side of the permeable membrane device,
In the crystallization reaction tank, calcium sulfate seed crystals are added to the concentrate, and the calcium ions and sulfate ions in the concentrate are crystallized as calcium sulfate crystals.
In the precipitation tank, the calcium sulfate crystals in the concentrated water sent from the crystallization reaction tank are precipitated and the supernatant is returned to the raw water tank.
A part of the calcium sulfate crystals precipitated in the precipitation tank is recovered as a calcium sulfate seed crystal into the crystallization reaction tank,
The remainder of the calcium sulfate crystals precipitated in the settling tank is discharged out of the system.
The present invention relates to a water treatment method.

また、本発明は、
カルシウムイオン及び硫酸イオンを含む原水を貯水する原水槽と、
原水槽から送水される原水を処理水と濃縮水に分離する透過膜装置と、
濃縮水を原水槽へと返送する返水経路と、
濃縮水の一部を透過膜装置の入口側へと循環させる循環経路と、
を備える水処理装置であって、
返水経路には、槽内の濃縮液に硫酸カルシウム種結晶を添加して、濃縮液中のカルシウムイオン及び硫酸イオンを硫酸カルシウム結晶として晶析させる晶析反応槽と、
晶析反応槽から送られてきた濃縮水中の硫酸カルシウム結晶を沈殿させると共に、上清を原水槽へと返送する沈殿槽とが設けられ、
沈殿槽に沈殿した硫酸カルシウム結晶の一部は、硫酸カルシウム種結晶として沈殿槽から回収経路を経て晶析反応槽へと回収され、
沈殿槽に沈殿した硫酸カルシウム結晶の残部は、系外へと排出される、
ことを特徴とする水処理装置に関する。
The present invention also provides:
A raw water tank for storing raw water containing calcium ions and sulfate ions;
A permeable membrane device for separating raw water sent from the raw water tank into treated water and concentrated water;
A water return route for returning the concentrated water to the raw tank,
A circulation path for circulating a part of the concentrated water to the inlet side of the permeable membrane device;
A water treatment device comprising:
In the water return path, a crystallization reaction tank for adding calcium sulfate seed crystals to the concentrate in the tank to crystallize calcium ions and sulfate ions in the concentrate as calcium sulfate crystals,
A precipitation tank is provided for precipitating calcium sulfate crystals in the concentrated water sent from the crystallization reaction tank and returning the supernatant to the raw water tank.
A part of the calcium sulfate crystals precipitated in the precipitation tank is recovered as a calcium sulfate seed crystal from the precipitation tank through the recovery path to the crystallization reaction tank,
The remainder of the calcium sulfate crystals precipitated in the settling tank is discharged out of the system.
The present invention relates to a water treatment apparatus.

晶析反応槽中の硫酸カルシウム結晶量が、晶析反応槽内で過飽和となっている硫酸カルシウム量の0.01倍以上となるように、沈殿槽に沈殿した硫酸カルシウム結晶を晶析反応槽へと返送することが好ましい。本発明の水処理方法及び水処理装置は、原水中のカルシウム分を硫酸カルシウムとして晶析させ、その一部を透過膜装置の濃縮水の晶析剤として利用するため、カルシウム除去剤をほとんど使用することなく、高いカルシウム除去率を維持しうる。   The calcium sulfate crystals precipitated in the precipitation tank are crystallized in the crystallization reaction tank so that the amount of calcium sulfate crystals in the crystallization reaction tank is 0.01 times or more the amount of calcium sulfate supersaturated in the crystallization reaction tank. It is preferable to send it back to. The water treatment method and the water treatment apparatus of the present invention crystallize calcium content in raw water as calcium sulfate, and a part thereof is used as a crystallizer for concentrated water in the permeable membrane device, so that the calcium removal agent is almost used. Without this, a high calcium removal rate can be maintained.

ここで、「晶析反応槽内で過飽和となっている硫酸カルシウム量」とは、晶析反応槽内における「(イオン化している硫酸カルシウム量−飽和溶解度分の硫酸カルシウム量)」を意味する。この値が正の値の場合には、晶析反応槽内の硫酸カルシウムが過飽和になっていると考えられる。   Here, “the amount of calcium sulfate supersaturated in the crystallization reaction tank” means “(amount of calcium sulfate ionized−amount of calcium sulfate corresponding to the saturation solubility)” in the crystallization reaction tank. . When this value is a positive value, it is considered that calcium sulfate in the crystallization reaction tank is supersaturated.

透過膜装置の濃縮水中の硫酸カルシウム濃度は、飽和濃度の1.01倍以上であることが好ましい。   The calcium sulfate concentration in the concentrated water of the permeable membrane device is preferably 1.01 or more times the saturation concentration.

透過膜装置における被処理水(原水+濃縮水の一部)の膜面流速は、5000m/時以上15000m/時以下であることが好ましい。透過膜へのスケール付着を防止するためである。   The membrane surface flow rate of the water to be treated (raw water + part of concentrated water) in the permeable membrane device is preferably 5000 m / hour or more and 15000 m / hour or less. This is to prevent the scale from adhering to the permeable membrane.

本発明の水処理方法において、濃縮水の一部は、透過膜装置の入口側へと循環させる。また、本発明の水処理装置は、濃縮水の一部を透過膜装置の入口側へと循環させる循環経路をさらに備える。このような構成とすることにより、透過膜装置の濃縮水を晶析反応槽以降の経路へと循環させなくても、濃縮水を硫酸カルシウムの飽和濃度以上まで濃縮することが可能となる。 In the water treatment method of the present invention, a portion of the retentate, Ru is circulated to the inlet side of the permeable membrane device. The water treatment apparatus of the present invention, further Ru comprising a circulation path for circulating a portion of the concentrated water to the inlet side of the permeable membrane device. By adopting such a configuration, it is possible to concentrate the concentrated water to a saturation concentration of calcium sulfate or higher without circulating the concentrated water of the permeable membrane device to the path after the crystallization reaction tank.

透過膜装置の透過膜は、スケールが付着しにくい平膜状であることが好ましい。   The permeable membrane of the permeable membrane device is preferably in the form of a flat membrane to which scale does not easily adhere.

透過膜装置の処理水は、さらに逆浸透膜(RO膜)装置によって処理することもできる。透過膜装置によって、原水中に含まれる2価以上の金属イオンを選択的に除去することにより、RO膜装置で透過膜装置の処理水を処理する際に、安定的な運転が可能になる。   The treated water of the permeable membrane device can be further treated by a reverse osmosis membrane (RO membrane) device. By selectively removing bivalent or higher-valent metal ions contained in the raw water with the permeable membrane device, stable operation is possible when treating the treated water of the permeable membrane device with the RO membrane device.

本発明の水処理方法及び水処理装置によれば、原水中のカルシウムイオン濃度及び硫酸イオン濃度が高い場合には、晶析反応槽及び沈殿槽で硫酸カルシウム結晶をすぐに除去できる。一方、原水中のカルシウムイオン濃度及び硫酸イオン濃度が低い場合には、透過膜の濃縮水が循環することによって、徐々にこれらイオンの濃度が硫酸カルシウムの飽和濃度以上にまで濃縮されるため、晶析反応槽及び沈殿槽で硫酸カルシウム結晶を効率よく除去できる。このため、原水中のカルシウムイオン濃度及び硫酸イオン濃度が大きく変動しても、透過膜の目詰まりを防止しつつ、高い硫酸カルシウム除去率を維持することが可能である。   According to the water treatment method and the water treatment apparatus of the present invention, when the calcium ion concentration and the sulfate ion concentration in the raw water are high, the calcium sulfate crystals can be immediately removed in the crystallization reaction tank and the precipitation tank. On the other hand, when the calcium ion concentration and the sulfate ion concentration in the raw water are low, the concentration of these ions is gradually concentrated to the calcium sulfate saturation concentration or more by circulating the concentrated water in the permeable membrane. Calcium sulfate crystals can be efficiently removed in the deposition reaction tank and the precipitation tank. For this reason, even if the calcium ion concentration and the sulfate ion concentration in the raw water vary greatly, it is possible to maintain a high calcium sulfate removal rate while preventing clogging of the permeable membrane.

また、原水の処理に伴って発生する硫酸カルシウム結晶の一部を、晶析剤として回収するため、外部からの晶析剤添加がほとんど不要であり、コストパフォーマンスに優れる。   Moreover, since a part of the calcium sulfate crystal generated with the treatment of raw water is recovered as a crystallization agent, external crystallization agent addition is almost unnecessary, and the cost performance is excellent.

本発明の水処理装置の一例を示すフロー図である。It is a flowchart which shows an example of the water treatment apparatus of this invention. 本発明の水処理装置の別の一例を示すフロー図である。It is a flowchart which shows another example of the water treatment apparatus of this invention. 特許文献1に開示されている水処理装置のフロー図である。It is a flowchart of the water treatment apparatus currently disclosed by patent document 1. FIG. 実施例1の実験結果を示すグラフである。4 is a graph showing experimental results of Example 1. 実施例2の実験結果を示すグラフ(種結晶量1倍〜10倍)である。It is a graph (seed crystal amount 1 time-10 times) which shows the experimental result of Example 2. FIG. 実施例2の実験結果を示すグラフ(種結晶量30倍〜100倍)である。It is a graph (seed crystal amount 30 times-100 times) which shows the experimental result of Example 2. FIG.

以下に、本発明の実施の形態について、図面を参酌しながら説明する。なお、本発明は以下の記載に限定されない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to the following description.

<実施形態1>
図1は、本発明の水処理装置の一例を示すフロー図を示す。浸出水等のカルシウムイオン及び硫酸イオンを含む原水は、まず原水槽1内に貯水される。原水に含まれる土砂等の固形分は、原水を原水槽1に給水する前に、フィルター等を用いて除去されることが好ましい。
<Embodiment 1>
FIG. 1 is a flowchart showing an example of the water treatment apparatus of the present invention. Raw water containing calcium ions and sulfate ions such as leachate is first stored in the raw water tank 1. Solids such as earth and sand contained in the raw water are preferably removed using a filter or the like before the raw water is supplied to the raw water tank 1.

原水は、経路2を経て透過膜装置3の入口(図1では、下側)へと供給される。ここでは、透過膜装置としてナノろ過(NF)膜装置を用いている。経路2の透過膜装置3の入口手前にはポンプ(図示せず)を設け、透過膜装置3に供給する原水を昇圧する。透過膜装置3のNF膜は、原水中の1価のイオン(ナトリウムイオン、塩素イオン等)を透過させ、2価以上のイオン(カルシウムイオン、硫酸イオン等)は透過させない。このため、原水中の2価以上のイオンが選択的に濃縮され、透過膜装置3の出口(図1では、上側)から経路5へと濃縮水が取り出される。一方、2価以上のイオンが除去された処理水は、経路12から取り出される。濃縮水の硫酸カルシウム濃度を、硫酸カルシウム飽和濃度の1.01倍以上にまで濃縮することが好ましい。   The raw water is supplied to the inlet (lower side in FIG. 1) of the permeable membrane device 3 via the path 2. Here, a nanofiltration (NF) membrane device is used as the permeable membrane device. A pump (not shown) is provided in front of the inlet of the permeable membrane device 3 in the path 2 to increase the pressure of the raw water supplied to the permeable membrane device 3. The NF membrane of the permeable membrane device 3 permeates monovalent ions (sodium ions, chlorine ions, etc.) in the raw water and does not permeate ions more than divalent (calcium ions, sulfate ions, etc.). For this reason, divalent or higher ions in the raw water are selectively concentrated, and the concentrated water is taken out from the outlet (upper side in FIG. 1) of the permeable membrane device 3 to the path 5. On the other hand, the treated water from which divalent or higher valent ions have been removed is taken out from the path 12. It is preferable to concentrate the calcium sulfate concentration of concentrated water to 1.01 or more times the calcium sulfate saturation concentration.

経路5を分岐して循環経路4を設け、循環経路4によって濃縮水の一部を透過膜装置3の入口に返送する構成としてもよい。この構成によれば、経路5以降の設備を循環させることなく被処理水中の硫酸カルシウムを濃縮することが可能である。また、透過膜装置3の濃縮水の圧力を利用できるため、経路2の透過膜装置3の入口手前に設置するポンプの動力を低減することが可能となる。すなわち、ポンプの小型化及び省電力化を図ることが可能となる。   The route 5 may be branched to provide the circulation route 4, and a part of the concentrated water may be returned to the inlet of the permeable membrane device 3 by the circulation route 4. According to this configuration, it is possible to concentrate calcium sulfate in the water to be treated without circulating the equipment after the path 5. Moreover, since the pressure of the concentrated water of the permeable membrane apparatus 3 can be utilized, it becomes possible to reduce the power of the pump installed in front of the inlet of the permeable membrane apparatus 3 of the path 2. That is, it becomes possible to reduce the size and power consumption of the pump.

透過膜装置3は、硫酸カルシウムのスケールが付着しにくい平膜状のNF膜を備えることが好ましい。また、NF膜へのスケール付着を防止するために、NF膜装置における被処理水(原水+濃縮水)の膜面流速を、5000m/時以上15000m/時以下に調整することが好ましい。   It is preferable that the permeable membrane device 3 includes a flat membrane-like NF membrane to which calcium sulfate scale hardly adheres. In order to prevent the scale from adhering to the NF membrane, it is preferable to adjust the membrane surface flow rate of the water to be treated (raw water + concentrated water) in the NF membrane device to 5000 m / hour or more and 15000 m / hour or less.

晶析反応槽6では、濃縮水に硫酸カルシウムの種結晶を添加する。晶析反応槽6内の濃縮水は、硫酸カルシウム濃度が飽和濃度以上であるが、そのままの状態では、硫酸カルシウムは晶析しない。しかし、粒状の硫酸カルシウムを種結晶として濃縮水に添加することにより、濃縮水中の硫酸カルシウムが種結晶を核として晶析し、硫酸カルシウム結晶が沈殿する。晶析反応槽6では、種結晶を添加した後、一定時間、濃縮水を撹拌することが好ましい。   In the crystallization reaction tank 6, calcium sulfate seed crystals are added to the concentrated water. The concentrated water in the crystallization reaction tank 6 has a calcium sulfate concentration equal to or higher than a saturated concentration, but calcium sulfate does not crystallize in the same state. However, by adding granular calcium sulfate as seed crystals to the concentrated water, calcium sulfate in the concentrated water is crystallized using the seed crystals as nuclei, and calcium sulfate crystals are precipitated. In the crystallization reaction tank 6, it is preferable to stir the concentrated water for a certain time after adding the seed crystal.

ここで、原水槽から供給される原水中のカルシウムイオン濃度及び硫酸イオン濃度が高い場合、透過膜装置3の濃縮水中のカルシウムイオン濃度及び硫酸イオン濃度は、短期間で硫酸カルシウムの飽和濃度以上に達することができる。その場合、濃縮水は、短期間で晶析反応槽6へと送水され、硫酸カルシウムは結晶として、その後、沈殿槽8で除去される。   Here, when the calcium ion concentration and the sulfate ion concentration in the raw water supplied from the raw water tank are high, the calcium ion concentration and the sulfate ion concentration in the concentrated water of the permeable membrane device 3 are equal to or higher than the saturation concentration of calcium sulfate in a short period of time. Can reach. In that case, the concentrated water is sent to the crystallization reaction tank 6 in a short period of time, and the calcium sulfate is removed in the precipitation tank 8 as crystals.

一方、原水中のカルシウムイオン濃度及び硫酸イオン濃度が低い場合でも、透過膜装置3の濃縮水が経路5→7→11→2を循環することにより、濃縮水中のカルシウムイオン濃度及び硫酸イオン濃度を硫酸カルシウムの飽和濃度以上とすることができる。   On the other hand, even when the calcium ion concentration and the sulfate ion concentration in the raw water are low, the concentrated water of the permeable membrane device 3 circulates through the paths 5 → 7 → 11 → 2, thereby reducing the calcium ion concentration and the sulfate ion concentration in the concentrated water. The saturation concentration of calcium sulfate can be exceeded.

図3は、特許文献1に開示されている水処理装置を示す。図3の水処理装置21では、原水を逆浸透ろ過膜装置(RO膜装置)22で処理し、RO膜装置22の濃縮水をさらにNF膜装置23で処理する。そして、NF膜装置23の濃縮水から硫酸カルシウムを晶析槽24において沈殿除去する構成となっている。この構成では、原水中のカルシウムイオン濃度及び硫酸イオン濃度が低い場合には、NF膜装置23の濃縮水中のカルシウムイオン濃度及び硫酸イオン濃度も低く、晶析槽24の処理水量が多い。その結果、大規模な晶析槽24が必要となり、晶析槽24内の硫酸カルシウム晶析率も低くならざるを得ず、大量のカルシウム除去剤も必要となる。   FIG. 3 shows a water treatment device disclosed in Patent Document 1. In the water treatment device 21 of FIG. 3, raw water is treated by a reverse osmosis filtration membrane device (RO membrane device) 22, and the concentrated water of the RO membrane device 22 is further treated by an NF membrane device 23. Then, calcium sulfate is precipitated and removed from the concentrated water of the NF membrane device 23 in the crystallization tank 24. In this configuration, when the calcium ion concentration and the sulfate ion concentration in the raw water are low, the calcium ion concentration and the sulfate ion concentration in the concentrated water of the NF membrane device 23 are also low, and the amount of treated water in the crystallization tank 24 is large. As a result, a large-scale crystallization tank 24 is required, the crystallization rate of calcium sulfate in the crystallization tank 24 must be lowered, and a large amount of calcium removing agent is also required.

しかし、本発明の水処理装置では、循環経路4と透過膜装置3との間で濃縮水を連続的に循環させる構成とすることにより、原水中のカルシウムイオン濃度及び硫酸イオン濃度を、硫酸カルシウムの飽和濃度以上にまで濃縮することができる。すなわち、そのような構成とすれば、原水中のカルシウムイオン濃度及び硫酸イオン濃度が低い場合でも、低濃縮率の濃縮液を大量に晶析反応槽6及び沈殿槽8で処理することがない。このため、晶析反応槽6及び沈殿槽8の容積は小さくて済み、沈殿槽8内の硫酸カルシウム晶析率も高い。   However, in the water treatment apparatus of the present invention, the concentrated water is continuously circulated between the circulation path 4 and the permeable membrane apparatus 3, so that the calcium ion concentration and the sulfate ion concentration in the raw water are reduced to calcium sulfate. It can concentrate to more than the saturation concentration of. That is, with such a configuration, even when the calcium ion concentration and the sulfate ion concentration in the raw water are low, the concentrated liquid having a low concentration rate is not treated in large quantities in the crystallization reaction tank 6 and the precipitation tank 8. For this reason, the volume of the crystallization reaction tank 6 and the precipitation tank 8 may be small, and the calcium sulfate crystallization rate in the precipitation tank 8 is also high.

本発明の水処理方法及び水処理装置では、硫酸カルシウム種結晶を添加することにより、過飽和状態の硫酸カルシウムが種結晶を核として晶析し、種結晶がない場合と比較して大きな硫酸カルシウム結晶として晶析する。その結果、沈殿槽8では硫酸カルシウム結晶の沈殿速度が高い。   In the water treatment method and the water treatment apparatus of the present invention, by adding a calcium sulfate seed crystal, the supersaturated calcium sulfate is crystallized using the seed crystal as a nucleus, which is larger than the case where there is no seed crystal. As crystallization. As a result, the precipitation rate of calcium sulfate crystals is high in the precipitation tank 8.

次に、晶析反応槽6内の濃縮液は、経路7を経て沈殿槽8へと供給される。沈殿槽8では、沈殿性の高い大きな硫酸カルシウム結晶が底部に沈殿する。このため、沈殿槽8における硫酸カルシウムの除去率は高く、沈殿に要する時間も短い。   Next, the concentrated liquid in the crystallization reaction tank 6 is supplied to the precipitation tank 8 via the path 7. In the sedimentation tank 8, large calcium sulfate crystals with high sedimentation are deposited at the bottom. For this reason, the removal rate of calcium sulfate in the precipitation tank 8 is high, and the time required for precipitation is also short.

沈殿槽8の底部に沈殿した硫酸カルシウム結晶は、適宜、排出経路9から晶析スラリー液として系外へ抜き出される。排出経路9には回収経路10が接続されており、硫酸カルシウム結晶の一部は、晶析反応槽6へと返送される。返送された硫酸カルシウム結晶は、晶析反応槽6内の濃縮液中の硫酸カルシウムを晶析させるための種結晶として機能する。   The calcium sulfate crystals precipitated at the bottom of the settling tank 8 are appropriately extracted from the discharge path 9 as a crystallization slurry. A recovery path 10 is connected to the discharge path 9, and a part of the calcium sulfate crystals is returned to the crystallization reaction tank 6. The returned calcium sulfate crystal functions as a seed crystal for crystallizing calcium sulfate in the concentrated liquid in the crystallization reaction tank 6.

沈殿槽8から晶析反応槽6への硫酸カルシウム結晶の返送量は、晶析反応槽6内の濃縮水中の硫酸カルシウム結晶量が、晶析反応槽6内で過飽和となっている硫酸カルシウム量の0.01倍以上となるように、調整することが好ましい。なお、濃縮水の懸濁物質濃度を測定するため、晶析反応槽6に懸濁物質濃度測定装置を設けることが好ましい。   The amount of calcium sulfate crystals returned from the precipitation tank 8 to the crystallization reaction tank 6 is that the amount of calcium sulfate crystals in the concentrated water in the crystallization reaction tank 6 is supersaturated in the crystallization reaction tank 6. It is preferable to adjust so that it may be 0.01 times or more. In addition, in order to measure the suspended solid concentration of concentrated water, it is preferable to provide a suspended solid concentration measuring device in the crystallization reaction tank 6.

硫酸カルシウム結晶が取り除かれた沈殿槽8の上清は、経路10を経て原水槽1へと供給され、再利用される。すなわち、原水槽1→透過膜装置3→晶析反応槽6→沈殿槽8→原水槽1という順に、原水及び透過膜装置3の濃縮水が原水槽1へと返送される(経路5→経路10は、返水経路として機能している)。このように、本発明の水処理装置では、原水を透過膜装置3によって処理する際に、ドレン水を抜き出す必要性が低く、100%に近い水回収率を達成することが可能である。   The supernatant of the precipitation tank 8 from which the calcium sulfate crystals have been removed is supplied to the raw water tank 1 via the path 10 and reused. That is, the raw water and the concentrated water of the permeable membrane device 3 are returned to the raw water tank 1 in the order of the raw water tank 1 → the permeation membrane device 3 → the crystallization reaction tank 6 → the precipitation tank 8 → the raw water tank 1. 10 is functioning as a water return route). Thus, in the water treatment device of the present invention, when raw water is treated by the permeable membrane device 3, the need for extracting drain water is low, and a water recovery rate close to 100% can be achieved.

また、図3の水処理装置と異なり、原水中に含まれる1価のイオンは、原水槽1→透過膜装置3→晶析反応槽6→沈殿槽8→原水槽1の経路において濃縮されないため、浸透圧の上昇が小さく、低圧で運転することが可能である。NF膜装置は、RO膜装置より低圧で運転できるため、本発明の水処理装置では、原水及び濃縮水を送水するためのポンプは、1価のイオンが濃縮される場合と比較して、より低圧で小型なタイプで足り、消費電力を節約し得る。   In addition, unlike the water treatment apparatus in FIG. 3, monovalent ions contained in the raw water are not concentrated in the path of the raw water tank 1 → the permeation membrane apparatus 3 → the crystallization reaction tank 6 → the precipitation tank 8 → the raw water tank 1. The increase in osmotic pressure is small and it is possible to operate at a low pressure. Since the NF membrane device can be operated at a lower pressure than the RO membrane device, in the water treatment device of the present invention, the pump for feeding the raw water and the concentrated water is more in comparison with the case where monovalent ions are concentrated. A low-pressure and small type is sufficient, and power consumption can be saved.

なお、透過膜装置3の処理水は、カルシウムイオン及び硫酸イオンが除去されているため、配管等にスケールを生じにくい。1価のイオン濃度が高い場合には、必要に応じてRO膜装置により処理した後、系外へ排水することが好ましい(実施形態2を参照)。   In addition, since the treated water of the permeable membrane device 3 has calcium ions and sulfate ions removed, it is difficult for scales to occur in piping and the like. In the case where the monovalent ion concentration is high, it is preferable that the RO membrane device is used as necessary, and then drained out of the system (see Embodiment 2).

<実施形態2>
図2は、本発明の水処理装置の別の一例を示すフロー図を示す。図1に示した水処理装置とは、透過膜装置3の処理水を、さらにRO膜装置13で処理すること以外は共通する。ここでは、その共通部分についての説明は省略する。
<Embodiment 2>
FIG. 2 is a flowchart showing another example of the water treatment apparatus of the present invention. The water treatment device shown in FIG. 1 is common except that the treated water of the permeable membrane device 3 is further treated by the RO membrane device 13. Here, description of the common parts is omitted.

透過膜装置3の処理水は、経路12を経てRO膜装置13へと供給される。RO膜装置13の濃縮水の一部は、循環経路14によって経路12へと循環されるが、カルシウムイオン及び硫酸イオンが透過膜装置3によって除去されているため、RO膜にはスケールが付着しにくい。RO膜装置13の濃縮水の残部を、経路15を経て経路2に接続させ、透過膜装置3に供給しても良い。   The treated water of the permeable membrane device 3 is supplied to the RO membrane device 13 via the path 12. A part of the concentrated water of the RO membrane device 13 is circulated to the route 12 by the circulation route 14, but since calcium ions and sulfate ions are removed by the permeable membrane device 3, scale adheres to the RO membrane. Hateful. The remaining concentrated water of the RO membrane device 13 may be connected to the route 2 via the route 15 and supplied to the permeable membrane device 3.

RO膜装置13の処理水の一部は、経路16を経て洗浄槽18に貯水され、RO膜装置13のRO膜を洗浄するための洗浄水として利用される。RO膜装置13の処理水の残部は、経路17を経てRO処理水槽19に貯水され、適宜系外に取り出される。このRO膜装置13の処理水は、1価のイオンも除去されているため、環境中に安全に排水することができる。   A part of the treated water of the RO membrane device 13 is stored in the cleaning tank 18 via the path 16 and used as cleaning water for cleaning the RO membrane of the RO membrane device 13. The remainder of the treated water of the RO membrane device 13 is stored in the RO treated water tank 19 via the path 17 and taken out of the system as appropriate. Since the monovalent ions are also removed from the treated water of the RO membrane device 13, it can be safely drained into the environment.

洗浄槽18に貯水されたRO膜装置13の透過水は、経路20を経て経路2及び/又は経路12へと返送し、再利用することもできる。   The permeated water of the RO membrane device 13 stored in the cleaning tank 18 can be returned to the path 2 and / or the path 12 via the path 20 and reused.

[実施例1]
図1に示す構成の水処理装置を用いて、硫酸カルシウムが飽和状態である浸出水に対して、濃縮倍率が1.05、1.10、1.20、1.30、1.40倍となるようNF膜で濃縮を行った。NF膜によるCa2+及びSO 2−の阻止率は100%と仮定した。濃縮水のCa2+及びSO 2−を測定し、そのモル濃度をかけてイオン積を算出した。その結果を、図4に示す。各濃縮倍率とイオン積値の関係から、1.3倍濃縮までであれば、濃縮水中で硫酸カルシウムは過飽和となるが、1.4倍濃縮では過飽和分が析出することが確認された(1.3倍〜1.4倍でイオン積にほとんど差がない)。
[Example 1]
Using the water treatment apparatus having the configuration shown in FIG. 1, the concentration ratio is 1.05, 1.10, 1.20, 1.30, 1.40 times with respect to leachate in which calcium sulfate is saturated. Concentration was performed using an NF membrane. The rejection of Ca 2+ and SO 4 2− by the NF film was assumed to be 100%. Concentrated water Ca 2+ and SO 4 2− were measured, and the ion product was calculated by multiplying the molar concentration. The result is shown in FIG. From the relationship between each concentration ratio and ion product value, it was confirmed that calcium sulfate is supersaturated in concentrated water if it is up to 1.3 times concentrated, but supersaturated components are precipitated in 1.4 times concentrated (1 .3 times to 1.4 times, there is almost no difference in ion product).

[実施例2]
図1に示す構成の水処理装置を用いて、1.2倍濃縮した浸出水に、過飽和している硫酸カルシウム量に対し、1〜100倍の種結晶(硫酸カルシウム)を投入し、攪拌した。SS分(懸濁物質)をろ過し、ろ液中のCa2+及びSO 2−を測定した。その結果を、図5及び図6に示す。なお、攪拌時間0hrは種結晶投入前を意味する。
[Example 2]
Using the water treatment apparatus having the configuration shown in FIG. 1, seed crystals (calcium sulfate) 1 to 100 times the amount of supersaturated calcium sulfate were added to the leachate concentrated 1.2 times and stirred. . The SS component (suspended material) was filtered, and Ca 2+ and SO 4 2− in the filtrate were measured. The results are shown in FIGS. The stirring time of 0 hr means before the seed crystal is charged.

種結晶量が少ないほど晶析の進行は遅く、30倍以上では攪拌時間約30分で、過飽和分のほとんどの硫酸カルシウムが析出した。また、種晶量が多いほど、低濃度まで晶析が進行した。   The smaller the amount of seed crystals, the slower the crystallization progressed, and at 30 times or more, the stirring time was about 30 minutes, and most of the supersaturated calcium sulfate was deposited. In addition, crystallization progressed to a lower concentration as the seed crystal amount increased.

本発明の水処理方法及び水処理装置は、スケールの要因となるイオンの濃度が高い浸出水又は排水処理等の技術分野において有用である。   The water treatment method and water treatment apparatus of the present invention are useful in technical fields such as leachate or wastewater treatment having a high concentration of ions that cause scale.

1:原水槽
2,5,7,11,12,15,16,17,20:経路
3:透過膜装置
4,14:循環経路
6:晶析反応槽
8:沈殿槽
9:排出経路
10:回収経路
13:RO膜装置
18:洗浄槽
19:RO処理水槽
21:特許文献1の水処理装置
22:RO膜装置
23:NF膜装置
24:晶析槽
25:塩類を含む固形物
26:高圧RO膜装置
27:第2RO膜装置
1: Raw water tank 2, 5, 7, 11, 12, 15, 16, 17, 20: Path 3: Permeation membrane device 4, 14: Circulation path 6: Crystallization reaction tank 8: Precipitation tank 9: Discharge path 10: Collection path 13: RO membrane device 18: Washing tank 19: RO treatment water tank 21: Water treatment device of Patent Document 1 22: RO membrane device 23: NF membrane device 24: Crystallization tank 25: Solid matter containing salts 26: High pressure RO membrane device 27: second RO membrane device

Claims (12)

カルシウムイオン及び硫酸イオンを含む原水を透過膜装置によって処理水と濃縮水に分離する水処理方法において、
濃縮水を、晶析反応槽及び沈殿槽を経て原水槽へと返送し、
濃縮水の一部を透過膜装置の入口側へと循環させ、
晶析反応槽においては、濃縮液に硫酸カルシウム種結晶を添加して、濃縮液中のカルシウムイオン及び硫酸イオンを硫酸カルシウム結晶として晶析させ、
沈殿槽においては、晶析反応槽から送られてきた濃縮水中の硫酸カルシウム結晶を沈殿させると共に、上清を原水槽へと返送し、
沈殿槽に沈殿した硫酸カルシウム結晶の一部は、硫酸カルシウム種結晶として晶析反応槽へと回収され、
沈殿槽に沈殿した硫酸カルシウム結晶の残部は、系外へと排出される、
ことを特徴とする水処理方法。
In a water treatment method for separating raw water containing calcium ions and sulfate ions into treated water and concentrated water by a permeable membrane device,
Concentrated water is returned to the raw water tank through the crystallization reaction tank and the precipitation tank,
Circulate a part of the concentrated water to the inlet side of the permeable membrane device,
In the crystallization reaction tank, calcium sulfate seed crystals are added to the concentrate, and the calcium ions and sulfate ions in the concentrate are crystallized as calcium sulfate crystals.
In the precipitation tank, the calcium sulfate crystals in the concentrated water sent from the crystallization reaction tank are precipitated and the supernatant is returned to the raw water tank.
A part of the calcium sulfate crystals precipitated in the precipitation tank is recovered as a calcium sulfate seed crystal into the crystallization reaction tank,
The remainder of the calcium sulfate crystals precipitated in the settling tank is discharged out of the system.
A water treatment method characterized by the above.
前記晶析反応槽中の硫酸カルシウム結晶量が、前記晶析反応槽内で過飽和となっている硫酸カルシウム量の0.01倍以上となるように、前記沈殿槽に沈殿した硫酸カルシウム結晶を前記晶析反応槽へと返送する、請求項1に記載の水処理方法。   The calcium sulfate crystals precipitated in the precipitation tank are adjusted so that the amount of calcium sulfate crystals in the crystallization reaction tank is 0.01 times or more of the amount of calcium sulfate supersaturated in the crystallization reaction tank. The water treatment method according to claim 1, wherein the water treatment method is returned to the crystallization reaction tank. 前記透過膜装置の濃縮水中の硫酸カルシウム濃度が、飽和濃度の1.01倍以上である、請求項1又は2に記載の水処理方法。   The water treatment method according to claim 1 or 2, wherein the concentration of calcium sulfate in the concentrated water of the permeable membrane device is 1.01 or more times the saturation concentration. 透過膜装置における被処理水の膜面流速が、5000m/時以上15000m/時以下である、請求項1乃至3のいずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein a membrane surface flow rate of water to be treated in the permeable membrane device is 5000 m / hour or more and 15000 m / hour or less. 前記透過膜装置の透過膜が平膜状である、請求項1乃至のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 4 , wherein the permeable membrane of the permeable membrane device has a flat membrane shape. 前記透過膜装置の処理水をさらに逆浸透膜装置によって処理する、請求項1乃至のいずれか1項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 5 , wherein the treated water of the permeable membrane device is further treated by a reverse osmosis membrane device. カルシウムイオン及び硫酸イオンを含む原水を貯水する原水槽と、
原水槽から送水される原水を処理水と濃縮水に分離する透過膜装置と、
濃縮水を原水槽へと返送する返水経路と、
濃縮水の一部を透過膜装置の入口側へと循環させる循環経路と、
を備える水処理装置であって、
返水経路には、槽内の濃縮液に硫酸カルシウム種結晶を添加して、濃縮液中のカルシウムイオン及び硫酸イオンを硫酸カルシウム結晶として晶析させる晶析反応槽と、
晶析反応槽から送られてきた濃縮水中の硫酸カルシウム結晶を沈殿させると共に、上清を原水槽へと返送する沈殿槽とが設けられ、
沈殿槽に沈殿した硫酸カルシウム結晶の一部は、硫酸カルシウム種結晶として沈殿槽から回収経路を経て晶析反応槽へと回収され、
沈殿槽に沈殿した硫酸カルシウム結晶の残部は、系外へと排出される、
ことを特徴とする水処理装置。
A raw water tank for storing raw water containing calcium ions and sulfate ions;
A permeable membrane device for separating raw water sent from the raw water tank into treated water and concentrated water;
A water return route for returning the concentrated water to the raw tank,
A circulation path for circulating a part of the concentrated water to the inlet side of the permeable membrane device;
A water treatment device comprising:
In the water return path, a crystallization reaction tank for adding calcium sulfate seed crystals to the concentrate in the tank to crystallize calcium ions and sulfate ions in the concentrate as calcium sulfate crystals,
A precipitation tank is provided for precipitating calcium sulfate crystals in the concentrated water sent from the crystallization reaction tank and returning the supernatant to the raw water tank.
A part of the calcium sulfate crystals precipitated in the precipitation tank is recovered as a calcium sulfate seed crystal from the precipitation tank through the recovery path to the crystallization reaction tank,
The remainder of the calcium sulfate crystals precipitated in the settling tank is discharged out of the system.
The water treatment apparatus characterized by the above-mentioned.
前記晶析反応槽中の硫酸カルシウム結晶量が、前記晶析反応槽中で過飽和となっている硫酸カルシウム量の0.01倍以上となるように、前記沈殿槽に沈殿した硫酸カルシウム結晶を前記晶析反応槽へと返送する、請求項に記載の水処理装置。 The calcium sulfate crystals precipitated in the precipitation tank are adjusted so that the amount of calcium sulfate crystals in the crystallization reaction tank is 0.01 times or more the amount of calcium sulfate supersaturated in the crystallization reaction tank. The water treatment apparatus according to claim 7 , which is returned to the crystallization reaction tank. 前記透過膜装置の濃縮水中の硫酸カルシウム濃度が、飽和濃度の1.01倍以上である、請求項又はに記載の水処理装置。 The water treatment device according to claim 7 or 8 , wherein a concentration of calcium sulfate in the concentrated water of the permeable membrane device is 1.01 or more times a saturation concentration. 透過膜装置における被処理水の膜面流速が、5000m/時以上15000m/時以下である、請求項乃至のいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 7 to 9 , wherein a membrane surface flow velocity of water to be treated in the permeable membrane apparatus is 5000 m / hour or more and 15000 m / hour or less. 前記透過膜装置の透過膜が平膜状である、請求項乃至10のいずれか1項に記載の水処理装置。 The permeable membrane of the permeable membrane device is a flat membrane, the water treatment apparatus according to any one of claims 7 to 10. 前記透過膜装置の処理水をさらに処理する逆浸透膜装置を備える、請求項乃至11のいずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 7 to 11 , further comprising a reverse osmosis membrane device for further treating the treated water of the permeable membrane device.
JP2010069944A 2010-03-25 2010-03-25 Water treatment method and water treatment apparatus Active JP5303501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069944A JP5303501B2 (en) 2010-03-25 2010-03-25 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069944A JP5303501B2 (en) 2010-03-25 2010-03-25 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2011200788A JP2011200788A (en) 2011-10-13
JP5303501B2 true JP5303501B2 (en) 2013-10-02

Family

ID=44878097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069944A Active JP5303501B2 (en) 2010-03-25 2010-03-25 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5303501B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210468A1 (en) 2021-03-30 2022-10-06 三菱重工業株式会社 Waste water volume reduction process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068982A1 (en) * 2013-04-25 2015-03-12 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
JP6038318B2 (en) * 2013-07-05 2016-12-07 三菱重工業株式会社 Water treatment system and method, cooling facility, power generation facility
CN105358491B (en) 2013-07-05 2018-06-08 三菱重工业株式会社 Method for treating water and water treatment system
CN104402124A (en) * 2014-12-05 2015-03-11 杭州水处理技术研究开发中心有限公司 Calcium sulfate seed crystal crystallization device and calcium sulfate seed crystal crystallization method
JP2016133342A (en) * 2015-01-16 2016-07-25 三菱重工環境・化学エンジニアリング株式会社 Water treatment method
JP6288217B1 (en) 2016-11-17 2018-03-07 栗田工業株式会社 Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
CN116835819A (en) * 2023-08-07 2023-10-03 北京新源智慧水务科技有限公司 Softening and descaling treatment device and method for seed crystal crystallization method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2863820B2 (en) * 1991-02-27 1999-03-03 オルガノ株式会社 Method for treating sulfate-containing waste liquid and improved reaction tank
JPH10137757A (en) * 1996-11-11 1998-05-26 Shinko Pantec Co Ltd Water treatment and device therefor
JP3377941B2 (en) * 1997-12-26 2003-02-17 神鋼パンテツク株式会社 Leachate treatment method and apparatus
JP2001252662A (en) * 2000-03-10 2001-09-18 Toray Ind Inc Fresh water generating method
JP4737670B2 (en) * 2005-03-30 2011-08-03 株式会社ササクラ Method and apparatus for treating wastewater containing calcium and sulfuric acid
CN101689480A (en) * 2007-07-03 2010-03-31 东亚合成株式会社 System for continuously using resist stripper liquid based on nanofiltration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210468A1 (en) 2021-03-30 2022-10-06 三菱重工業株式会社 Waste water volume reduction process

Also Published As

Publication number Publication date
JP2011200788A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5303501B2 (en) Water treatment method and water treatment apparatus
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP6281274B2 (en) High hardness wastewater treatment device and treatment method
US20080121585A1 (en) Water treatment using de-supersaturation
JP5901288B2 (en) Wastewater treatment equipment
TWI438153B (en) Method and apparatus for purifying metal-containing water purifying
WO2016147414A1 (en) Water treatment system and power generation apparatus
JP2003300069A (en) Fresh water generating method and fresh water generator
JP2005288442A (en) Method for washing membrane module
KR101530571B1 (en) A desalination of cooling tower make-up water and effluent recycling system
JP5879901B2 (en) Organic wastewater recovery processing apparatus and recovery processing method
JP2011088053A (en) Equipment and method for desalination treatment
EP3015160A1 (en) Scale detection device and method for concentrating device, and water reclamation processing system
JPWO2013031689A1 (en) Method and apparatus for purifying radioactive material and / or heavy metal-containing water
CN205099501U (en) Water treatment system
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2015031661A (en) Method for cleaning incineration fly ash
JP2014198290A (en) Treatment apparatus and treatment method of organic effluent
JP2001149950A (en) Water treating method and water treating device
JP2009207953A (en) Wastewater treatment apparatus and method
CN102815810A (en) Desalination system and desalination method
JP3366258B2 (en) Method and apparatus for evaporating and concentrating sulfuric acid-containing wastewater
KR20140044548A (en) A water treatment apparatus using nano membrane for softening water and method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5303501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250