JP2014036544A - Method for controlling electrostatic actuator - Google Patents

Method for controlling electrostatic actuator Download PDF

Info

Publication number
JP2014036544A
JP2014036544A JP2012177982A JP2012177982A JP2014036544A JP 2014036544 A JP2014036544 A JP 2014036544A JP 2012177982 A JP2012177982 A JP 2012177982A JP 2012177982 A JP2012177982 A JP 2012177982A JP 2014036544 A JP2014036544 A JP 2014036544A
Authority
JP
Japan
Prior art keywords
signal
voltage
stator
static elimination
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012177982A
Other languages
Japanese (ja)
Other versions
JP6031886B2 (en
Inventor
Tokuo Takahashi
徳男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012177982A priority Critical patent/JP6031886B2/en
Publication of JP2014036544A publication Critical patent/JP2014036544A/en
Application granted granted Critical
Publication of JP6031886B2 publication Critical patent/JP6031886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling an electrostatic actuator, capable of reducing electrostatic charge hindering moving operation of a mover without increasing a size of a device.SOLUTION: A method for controlling an electrostatic actuator is disclosed. An electrostatic actuator 100 to which this method is applicable comprises a stator 1 and a mover 2, a plurality of electrodes 3 for making the mover move being provided in the stator. In the method, when making the mover move, for example, movement signals respectively with mutually different four phases are supplied to the plurality of electrodes, and when the movement signals are not supplied, an AC static charge elimination signal of which a voltage changes to be alternately negative and positive with the same waveform and which reduces the charge amount of electrostatic charge generated in the stator and the mover, is supplied to each of the plurality of electrodes, thus reducing the electrostatic charge, and a signal having decreasing positive and negative voltage times where a positive voltage time and a negative voltage time decrease together due to gradual increase of frequency, attenuation of pulse, or the like, or a signal of which a voltage is attenuated, is used as the static charge elimination signal.

Description

本発明は、静電アクチュエータの制御方法に関する。   The present invention relates to a method for controlling an electrostatic actuator.

従来、固定子と移動子とを備え、固定子に設けた複数の電極に移動信号を与えることで、移動子に電荷を誘起させて、この電荷によって固定子と移動子間に作用する静電気力により、固定子に対して移動子を移動させる静電アクチュエータが知られている。
ただ、図8の部分拡大断面図で模式的に示すように、従来の静電アクチュエータ200は、固定子1と移動子2とが擦れて摩擦帯電による静電気が固定子1及び移動子2に発生すると、移動子2が固定子1に張り付いて停止したり、動きが鈍ったりし、移動子2の円滑な移動が妨げられてしまう。静電気の帯電は、環境の電位が偏っていたり、乾燥したり
しているときに生じ易い。同図では、固定子1に負の静電気が帯電し、移動子2に正の静電気が帯電した例を示し、固定子1の静電気を、固定子1の移動子2との対向面側に描き、移動子2の静電気を、移動子2の固定子1との対向面とは反対側に描いてある。
そこで、移動子の円滑な移動動作ができるように、帯電を防止した静電アクチュエータが提案されている(特許文献1、特許文献2)。
Conventionally, an electrostatic force that has a stator and a mover and induces a charge on the mover by giving a move signal to a plurality of electrodes provided on the stator and acts between the stator and the mover by this charge. Thus, an electrostatic actuator that moves the mover relative to the stator is known.
However, as schematically shown in the partial enlarged cross-sectional view of FIG. 8, the conventional electrostatic actuator 200 generates static electricity due to frictional charging in the stator 1 and the moving element 2 due to friction between the stator 1 and the moving element 2. Then, the mover 2 sticks to the stator 1 and stops, or the movement of the mover 2 becomes slow, and the smooth movement of the mover 2 is hindered. Static charge is likely to occur when the environmental potential is biased or dry. The figure shows an example in which the stator 1 is charged with negative static electricity and the mover 2 is charged with positive static electricity. The static electricity of the stator 1 is drawn on the surface of the stator 1 facing the mover 2. The static electricity of the mover 2 is drawn on the opposite side of the face of the mover 2 facing the stator 1.
Thus, electrostatic actuators that prevent charging have been proposed so that the moving element can be smoothly moved (Patent Documents 1 and 2).

特許文献1の静電アクチュエータでは、電荷を誘起させるための電極を、固定子のみならず移動子にも設けた形態の静電アクチュエータにおいて、移動子の移動動作時に、固定子及び移動子の電極に与える信号を、前半期と後半期に分けて、前半期は移動信号を与え、後半期は移動信号の電圧の正負の偏りを打ち消す波形の信号を与えることで、移動信号で生じる電圧の正負の偏りによる電荷の発生を防ぐ技術を提案している。また、特許文献1では、移動子の停止時に、固定子と移動子の互いに対向する電極に極性が異なる電圧で正負が交互に切り替わる信号を与えることで、帯電を除電する技術も提案している。   In the electrostatic actuator of Patent Document 1, in an electrostatic actuator in which an electrode for inducing charges is provided not only in the stator but also in the moving element, the moving electrode moves in the stator and moving electrode. The signal to be applied to is divided into the first half and the second half, the first half is given a movement signal, and the second half is given a waveform signal that cancels the positive and negative bias of the voltage of the movement signal. We have proposed a technology that prevents the generation of charges due to the bias. Patent Document 1 also proposes a technique for removing charge by applying a signal in which positive and negative are alternately switched with voltages having different polarities to electrodes facing each other of the stator and the moving element when the moving element is stopped. .

特許文献2の静電アクチュエータでは、固定子と移動子とが対向する部分、例えば、移動子に対向する固定子の対向面など移動子が対向する固定子の部分に、移動時に移動子に接触するように除電ブラシを設けた静電アクチュエータが提案されている。   In the electrostatic actuator disclosed in Patent Document 2, a portion where the stator and the mover face each other, for example, a portion of the stator that the mover faces, such as an opposite surface of the stator that faces the mover, contacts the mover when moving. Thus, an electrostatic actuator provided with a static eliminating brush has been proposed.

特許文献3では、静電アクチュエータではないが、各種部材に対する帯電防止策として、部材の構成材料にカーボンファィバを混練りした樹脂などの導電性材料を用いたり、表面に導電性ポリマーを塗布するなど帯電防止処理を施した材料を用いたりして、部材そのものに或る程度の導電性を与え帯電しにくい様にする技術を提案している。
特許文献4では、静電気帯電の除電ではないが、移動動作させるため駆動用の正負の電荷を移動子に与える手段として、イオン風を用いた静電アクチュエータを提案している。
In Patent Document 3, although it is not an electrostatic actuator, as an antistatic measure for various members, a conductive material such as a resin in which carbon fiber is kneaded is used as a constituent material of the member, or a conductive polymer is applied on the surface. A technique has been proposed in which a material subjected to a prevention treatment is used to give a certain degree of conductivity to the member itself so that it is difficult to be charged.
Patent Document 4 proposes an electrostatic actuator using ionic wind as means for giving positive and negative electric charges for driving to a moving element for moving operation, although it is not static elimination of electrostatic charging.

特開平9−238482号公報JP-A-9-238482 特開平6−121549号公報JP-A-6-121549 特開2006−80458号公報JP 2006-80458 A 特開平4−75483号公報JP-A-4-75483

しかしながら、特許文献1の帯電防止策は、電荷を誘起させるための電極を、固定子と共に移動子にも設ける必要がある形態の静電アクチュエータにのみ有効な帯電防止策であり、電極を移動子には設けずに固定子に設ける形態の静電アクチュエータには利用できない。しかも、電極を固定子及び移動子の両方に設ける形態の静電アクチュエータは、電極を固定子側にのみ設ける形態に比べて構造が複雑になるという欠点を有し、コスト高になるなど、複雑な構造が向かない用途には適用できない。
特許文献2の帯電防止策は、除電ブラシを利用する結果、除電ブラシによる擦り傷やブラシ屑などが、固定子或いは移動子の対向面に塵となって付着するという、新たな問題を生じることがある。また、静電アクチュエータを展示物として用いる場合は、外観が損なわれてしまう。
However, the antistatic measure of Patent Document 1 is an antistatic measure that is effective only for an electrostatic actuator in a form in which an electrode for inducing charge needs to be provided not only on the stator but also on the mover. Cannot be used for the electrostatic actuator in the form of being provided on the stator without being provided. Moreover, the electrostatic actuator in the form in which the electrodes are provided on both the stator and the mover has the disadvantage that the structure is complicated compared to the form in which the electrodes are provided only on the stator side, and the cost is high. It cannot be applied to applications where the proper structure is not suitable.
As a result of using the static elimination brush, the antistatic measure of Patent Document 2 may cause a new problem that scratches or brush scraps from the static elimination brush adhere as dust to the opposing surface of the stator or the mover. is there. Moreover, when an electrostatic actuator is used as an exhibit, the appearance is impaired.

特許文献3の帯電防止策は、一般的な各種部材に対する方策であるが、これを静電アクチュエータに適用しようとすると、移動子表面の表面抵抗率が、静電アクチュエータとして好ましい表面抵抗率よりも小さくなってしまい、静電アクチュエータには適用できない。移動子表面の表面抵抗率は、移動の為に誘起した電荷を次の電荷の誘起まで保持しておく必要から、或る程度の絶縁性が必要だからである。
特許文献4で利用するイオン風を帯電防止に利用することも考えられるが、イオン風を使うには、イオン発生器および送風機が必要であり、静電アクチュエータが大型化する上、重量も重くなり、またコスト高にも繋がり、好ましくない。
The antistatic measure of Patent Document 3 is a measure for various general members. However, when this is applied to an electrostatic actuator, the surface resistivity of the slider surface is more than the surface resistivity preferable for the electrostatic actuator. It becomes small and cannot be applied to an electrostatic actuator. This is because the surface resistivity of the mover surface needs to retain a certain amount of insulation because the charge induced for the movement needs to be held until the next charge is induced.
Although it is conceivable to use the ionic wind used in Patent Document 4 for antistatic purposes, the use of the ionic wind requires an ion generator and a blower, which increases the size of the electrostatic actuator and increases the weight. Moreover, it leads to high cost, which is not preferable.

そこで、本発明の課題は、移動子の移動動作の妨げとなる帯電を、装置を大型化せずに減らすことができる静電アクチュエータの制御方法を提供することである。   Therefore, an object of the present invention is to provide a method for controlling an electrostatic actuator that can reduce the charging that hinders the moving operation of the moving element without increasing the size of the apparatus.

本発明による静電アクチュエータの制御方法は、以下の構成とした。
(1)固定子と前記固定子上に配置された移動子とを備え、前記固定子及び前記移動子の互いの対向面に平行な方向に前記移動子を移動させる移動信号を前記固定子に設けられた複数の電極に供給する静電アクチュエータの制御方法であって、
前記移動信号を前記複数の電極に供給しないときに、前記複数の電極の各々に、前記固定子及び前記移動子に生じる帯電の帯電量を減少させる交流の除電信号を供給する静電アクチュエータの制御方法。
(2)前記除電信号は、正の電圧を印加する時間及び負の電圧を印加する時間である電圧正負時間が、時間と共に減少する信号である、前記(1)の静電アクチュエータの制御方法。
(3)前記除電信号は、正の電圧を印加する時間及び負の電圧を印加する時間である電圧正負時間における電圧の絶対値の最大値が、時間と共に減衰する信号である、前記(1)の静電アクチュエータの制御方法。
The electrostatic actuator control method according to the present invention has the following configuration.
(1) A stator and a mover disposed on the stator are provided, and a movement signal for moving the mover in a direction parallel to the opposing surfaces of the stator and the mover is sent to the stator. A method of controlling an electrostatic actuator that supplies to a plurality of electrodes provided,
Control of an electrostatic actuator that supplies an AC static elimination signal that reduces the amount of charge generated in the stator and the moving element to each of the plurality of electrodes when the movement signal is not supplied to the plurality of electrodes. Method.
(2) The electrostatic actuator control method according to (1), wherein the static elimination signal is a signal in which a voltage positive / negative time which is a time for applying a positive voltage and a time for applying a negative voltage decreases with time.
(3) The static elimination signal is a signal in which the maximum value of the absolute value of the voltage in the voltage positive / negative time, which is the time to apply a positive voltage and the time to apply a negative voltage, decays with time. Method for controlling the electrostatic actuator.

本発明の静電アクチュエータの制御方法によれば、移動子の移動動作の妨げとなる帯電を、装置を大型化せずに減らすことができる。   According to the electrostatic actuator control method of the present invention, it is possible to reduce charging that hinders the moving operation of the moving element without increasing the size of the apparatus.

本発明による静電アクチュエータの制御方法の一実施形態を適用可能な静電アクチュエータの一例を示す側面図(a)と、部分拡大断面図(b)。The side view (a) which shows an example of the electrostatic actuator which can apply one Embodiment of the control method of the electrostatic actuator by this invention, and a partial expanded sectional view (b). 本発明による静電アクチュエータの制御方法の一実施形態における4相式の移動信号に対応した電極を有する静電アクチュエータを例示する部分拡大断面図。The fragmentary expanded sectional view which illustrates the electrostatic actuator which has the electrode corresponding to the four-phase type movement signal in one embodiment of the control method of the electrostatic actuator by the present invention. 4相式の移動信号の一例を示す図。The figure which shows an example of a 4-phase type movement signal. 除電信号の一例(電圧正負時間減少)を示す図。The figure which shows an example (voltage positive / negative time reduction | decrease) of a static elimination signal. 除電信号の一例(電圧減衰)を示す図。The figure which shows an example (voltage attenuation | damping) of a static elimination signal. 移動信号及び除電信号を供給可能な電源部の一例を示すブロック図。The block diagram which shows an example of the power supply part which can supply a movement signal and a static elimination signal. 電極を3系統、固定子の3領域に設けた一例を示す平面図。The top view which shows an example which provided the electrode in 3 area | regions and 3 area | regions of a stator. 従来の静電アクチュエータの一例を示す部分拡大断面図。The partial expanded sectional view which shows an example of the conventional electrostatic actuator.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、図面は概念図であり、構成要素の縮尺関係、縦横比等は誇張されていることがある。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the drawings are conceptual diagrams, and the scale relationships, aspect ratios, and the like of components may be exaggerated.

〔要旨〕
図1は、本発明の静電アクチュエータの制御方法の一実施形態を適用可能な静電アクチュエータの一例を示し、図1(a)は側面図、図1(b)は部分拡大断面図である。
同図に示す静電アクチュエータ100は、固定子1と移動子2とを備え、前記固定子1に設けられた複数の電極3に移動信号Smが供給されることによって、前記移動子2に電荷を誘起させて、この電荷によって前記固定子1と前記移動子2間に作用する静電気力により、前記移動子2を、前記固定子1と前記移動子2との互いの対向面に平行な方向に移動させることができる。
なお、図1に示す静電アクチュエータ100では、移動子2は固定子1上に配置されているように描いてあり、図面下方向が地面、言い換えると図面下方向が重力方向であるときは、文字どおり、移動子2は固定子1の上方に配置されることになる。しかし、本発明において、「固定子上に配置された移動子」の意味は、移動子2と固定子1との位置関係として、固定子1に対して重力方向から遠い方に移動子2が配置される位置関係に限定されず、固定子1及び移動子2の互いの対向面が接触する位置関係であれば良く、例えば、固定子1及び移動子2の互いの対向面が、重力方向に対して垂直面となる位置関係でも良い。
[Summary]
FIG. 1 shows an example of an electrostatic actuator to which an embodiment of the method for controlling an electrostatic actuator of the present invention can be applied. FIG. 1 (a) is a side view and FIG. 1 (b) is a partially enlarged sectional view. .
The electrostatic actuator 100 shown in the figure includes a stator 1 and a mover 2, and a charge signal is supplied to the mover 2 by supplying a move signal Sm to a plurality of electrodes 3 provided on the stator 1. The electrostatic force acting between the stator 1 and the movable element 2 due to this electric charge causes the movable element 2 to move in a direction parallel to the opposing surfaces of the stator 1 and the movable element 2. Can be moved to.
In the electrostatic actuator 100 shown in FIG. 1, the moving element 2 is depicted as being disposed on the stator 1, and when the downward direction in the drawing is the ground, in other words, the downward direction in the drawing is the direction of gravity, Literally, the mover 2 is arranged above the stator 1. However, in the present invention, the meaning of “mover arranged on the stator” means that the mover 2 is located farther from the direction of gravity with respect to the stator 1 as the positional relationship between the mover 2 and the stator 1. It is not limited to the positional relationship to be arranged, and any positional relationship where the opposing surfaces of the stator 1 and the moving element 2 are in contact with each other may be used. For example, the opposing surfaces of the stator 1 and the moving element 2 are in the direction of gravity. The positional relationship may be a vertical plane.

固定子1に対向する移動子2の対向面の大きさは、固定子1が移動子2に対向可能とする対向面の大きさに対して、小さい。この結果、移動子2は固定子1が移動子2に対向可能とする対向面に平行な方向に移動動作することができる。例えば、固定子1の前記大きさは、縦1000mm、横600mmの長方形であり、移動子2の前記大きさは、縦500mm、横500mmの正方形である。   The size of the facing surface of the mover 2 that faces the stator 1 is smaller than the size of the facing surface that allows the stator 1 to face the mover 2. As a result, the mover 2 can move in a direction parallel to the facing surface that allows the stator 1 to face the mover 2. For example, the size of the stator 1 is a rectangle having a length of 1000 mm and a width of 600 mm, and the size of the mover 2 is a square having a length of 500 mm and a width of 500 mm.

複数の電極3の各々は、基板上又は基板内部に形成された導電性を有するものであり、公知の材料、形状、及び配置を採用することができる。複数の電極3の各々は、導電性を有していれば特に制限はなく、銅、銀、金等の金属やそれらの合金を用いても良く、ITO(錫ドープ酸化インジウム)等の透明材料を用いても良い。また、例えば、直線状の形状で、互いに平行で紙面に対して垂直な方向に延びていても良い。また、例えば、複数の電極3の各々は、例えば、0.3mmピッチなど、等しい間隔で配列されていても良い。   Each of the plurality of electrodes 3 has conductivity formed on or inside the substrate, and a known material, shape, and arrangement can be adopted. Each of the plurality of electrodes 3 is not particularly limited as long as it has conductivity, and a metal such as copper, silver or gold or an alloy thereof may be used, and a transparent material such as ITO (tin-doped indium oxide). May be used. Further, for example, they may be linear and extend in a direction parallel to each other and perpendicular to the paper surface. Further, for example, each of the plurality of electrodes 3 may be arranged at an equal interval such as a 0.3 mm pitch.

固定子1及び移動子2には、公知のものを用いることができる。固定子1は、基板と、基板上又は基板内部に形成された複数の電極2と、を有していれば良く、特開2011−205786号公報に記載されているような、電極を保護するカバーフィルム又は移動子2との摩擦を低減する摺動構造膜を有していてもよい。例えば、固定子1は、複数の電極3を形成した厚さ25μmのポリイミド製フレキシブルプリント基板に対して、その移動子2側と接する対向面に厚さ12μmの絶縁性塗膜を紫外線硬化型アクリル系樹脂塗料で塗工形成した摺動構造膜を用いることができる。複数の電極3には、ITO(錫ドープ酸化インジウム)などの透明なものを用いることもできる。
複数の電極3に対しては、後述図2で説明するように、バスライン4、接続端子5を介して、移動信号Sm及び除電信号Seが供給される。接続端子5には、後述する電源部6が、静電アクチュエータ100の少なくとも駆動時には接続されることによって、移動信号Sm及び除電信号Seが、複数の電極3に供給される。接続端子5を介して電源部6を接続することで、電源部6は異なる固定子1に共通して使い回しが出来るようになっている。
As the stator 1 and the mover 2, known ones can be used. The stator 1 only needs to have a substrate and a plurality of electrodes 2 formed on or in the substrate, and protects the electrodes as described in JP 2011-205786 A. You may have a sliding structure film | membrane which reduces friction with a cover film or the moving element 2. FIG. For example, the stator 1 is an ultraviolet curable acrylic film having a 12 μm thick insulating coating on the opposite surface in contact with the movable element 2 side of a polyimide flexible printed circuit board having a thickness of 25 μm on which a plurality of electrodes 3 are formed. It is possible to use a sliding structure film formed by coating with a base resin paint. A transparent material such as ITO (tin-doped indium oxide) can be used for the plurality of electrodes 3.
As will be described later with reference to FIG. 2, the movement signal Sm and the charge removal signal Se are supplied to the plurality of electrodes 3 through the bus line 4 and the connection terminal 5. The connection terminal 5 is connected to a power supply unit 6 to be described later at least when the electrostatic actuator 100 is driven, so that the movement signal Sm and the charge removal signal Se are supplied to the plurality of electrodes 3. By connecting the power supply unit 6 via the connection terminal 5, the power supply unit 6 can be used in common for different stators 1.

移動子2は、誘電体を有していれば良く、抵抗体層を有していても良い。例えば、厚さ50μmのポリエチレンテレフタレートフィルムからなる絶縁性基材の片面に、ATO(アンチモンドープ酸化錫)粒子を含有する紫外線硬化型アクリル系樹脂塗料で塗布形成した抵抗体層を有するものを用いることができる。抵抗体層の表面抵抗率は、例えば、109〜1014Ω/sq(Ω/□とも記す。)、好ましくは、1×1012〜9×1012Ω/sqである。この範囲より小さくても、逆に大きくても、移動子2の円滑な移動動作が損なわれることがある。電荷の円滑な誘起と誘起された電荷が次の電荷が誘起されるまでの間の適度な保持を実現するためである。
抵抗体層は、例えば、移動子2の固定子1との対向面の反対側の面に設けることができる。
The mover 2 only needs to have a dielectric, and may have a resistor layer. For example, use one having a resistor layer coated and formed with an ultraviolet curable acrylic resin paint containing ATO (antimony-doped tin oxide) particles on one side of an insulating substrate made of a polyethylene terephthalate film having a thickness of 50 μm. Can do. The surface resistivity of the resistor layer is, for example, 10 9 to 10 14 Ω / sq (also referred to as Ω / □), preferably 1 × 10 12 to 9 × 10 12 Ω / sq. Even if it is smaller than this range or larger than this range, the smooth movement operation of the moving element 2 may be impaired. This is because smooth induction of charge and proper retention of the induced charge until the next charge is induced are realized.
The resistor layer can be provided, for example, on the surface opposite to the surface of the movable element 2 facing the stator 1.

さらに、本静電アクチュエータの制御方法の実施形態では、前記静電アクチュエータ100に、移動信号Smを複数の電極3に供給しないときに、この複数の電極3の各々に対して、同一波形で電圧が交互に正負に切り替わり、固定子1及び移動子2に生じる帯電の帯電量を減少させる交流の除電信号Seを供給することで、前記帯電が減じるようにすることができる。   Furthermore, in the embodiment of the control method of the electrostatic actuator, when the movement signal Sm is not supplied to the plurality of electrodes 3 to the electrostatic actuator 100, a voltage with the same waveform is applied to each of the plurality of electrodes 3. Are alternately switched between positive and negative, and the charge can be reduced by supplying an alternating charge-removing signal Se that reduces the amount of charge generated in the stator 1 and the mover 2.

〔移動信号Sm〕
固定子1が備える複数の電極3に供給される移動信号Smには、従来公知の各種方式のものを採用することができる。例えば、2相式、3相式、4相式など、複数相の移動信号Smを供給する方式を採用することができる。
[Moving signal Sm]
As the movement signal Sm supplied to the plurality of electrodes 3 provided in the stator 1, various types of conventionally known methods can be employed. For example, a method of supplying a plurality of phase movement signals Sm such as a two-phase method, a three-phase method, and a four-phase method can be employed.

図2の部分拡大断面図で示す、静電アクチュエータの制御方法の一実施形態を適用可能な静電アクチュエータ100では、4相の移動信号Smにより動作することができる。このため、同図に示す静電アクチュエータ100は、4相の移動信号Smに対応可能なように、固定子1が備える複数の電極3は、各相に対応した、複数の電極3a、複数の電極3b、複数の電極3c、複数の電極3dから構成されている。これらの電極3は、順番に、電極3a、電極3b、電極3c、電極3d、電極3a、電極3b、電極3c、電極3d、・・・・の順に等間隔に配置されている。そして、複数の電極3a、複数の電極3b、複数の電極3c、及び複数の電極3dの各々には、移動信号Smとして、互いに異なる相の4相の信号、移動信号Sm1、移動信号Sm2、移動信号Sm3、及び、移動信号Sm4が供給される。このため、複数の電極3aは移動信号Sm1が供給されるバスライン4aに接続され、複数の電極3bは移動信号Sm2が供給されるバスライン4bに接続され、複数の電極3cは移動信号Sm3が供給されるバスライン4cに接続され、複数の電極3dは移動信号Sm4が供給されるバスライン4dに接続されている。   The electrostatic actuator 100 to which one embodiment of the electrostatic actuator control method shown in the partially enlarged cross-sectional view of FIG. 2 can be applied can be operated by a four-phase movement signal Sm. For this reason, the plurality of electrodes 3 included in the stator 1 correspond to each phase so that the electrostatic actuator 100 shown in FIG. It consists of an electrode 3b, a plurality of electrodes 3c, and a plurality of electrodes 3d. These electrodes 3 are arranged at equal intervals in the order of electrode 3a, electrode 3b, electrode 3c, electrode 3d, electrode 3a, electrode 3b, electrode 3c, electrode 3d,. Then, each of the plurality of electrodes 3a, the plurality of electrodes 3b, the plurality of electrodes 3c, and the plurality of electrodes 3d has four-phase signals of different phases, a movement signal Sm1, a movement signal Sm2, and a movement as the movement signal Sm. A signal Sm3 and a movement signal Sm4 are supplied. Therefore, the plurality of electrodes 3a are connected to the bus line 4a to which the movement signal Sm1 is supplied, the plurality of electrodes 3b are connected to the bus line 4b to which the movement signal Sm2 is supplied, and the plurality of electrodes 3c are connected to the movement signal Sm3. The plurality of electrodes 3d are connected to the bus line 4c to which the movement signal Sm4 is supplied.

バスライン4aには接続端子5aから移動信号Sm1が供給され、バスライン4bには接続端子5bから移動信号Sm2が供給され、バスライン4cには接続端子5cから移動信号Sm3が供給され、バスライン4dには接続端子5dから移動信号Sm4が供給される。
なお、本明細書において、異なる相の相毎の電極3a、電極3b、電極3c、及び、電極3dを纏めて言うときは、単に「電極3」と言うこともある。
同様に、バスライン4a、バスライン4b、バスライン4c、及び、バスライン4dを纏めて言うときは、単に「バスライン4」と言うこともある。
同様に、接続端子5a、接続端子5b、接続端子5c、及び、接続端子5d、を纏めて言うときは、単に「接続端子5」と言うこともある。
The bus line 4a is supplied with the movement signal Sm1 from the connection terminal 5a, the bus line 4b is supplied with the movement signal Sm2 from the connection terminal 5b, and the bus line 4c is supplied with the movement signal Sm3 from the connection terminal 5c. 4d is supplied with a movement signal Sm4 from the connection terminal 5d.
In this specification, when the electrodes 3a, 3b, 3c, and 3d for different phases are collectively referred to as “electrode 3”, they may be simply referred to as “electrode 3”.
Similarly, when the bus line 4a, the bus line 4b, the bus line 4c, and the bus line 4d are collectively referred to, they may be simply referred to as “bus line 4”.
Similarly, when the connection terminal 5a, the connection terminal 5b, the connection terminal 5c, and the connection terminal 5d are collectively referred to, they may be simply referred to as “connection terminal 5”.

図3は、4相の移動信号Smとしての、移動信号Sm1、移動信号Sm2、移動信号Sm3、及び、移動信号Sm4の一例である。移動信号Sm1、移動信号Sm2、移動信号Sm3、及び、移動信号Sm4の各々は、互いに同一電圧で矩形波であり、正負の絶対値の最大値が等しい。前記電圧は、例えば、ピーク・ツー・ピークで800Vppである。移動信号Sm1、移動信号Sm2、移動信号Sm3、及び、移動信号Sm4の各々は、この順に4分の1周期ずつ、位相がずれている。また、移動信号Sm1、移動信号Sm2、移動信号Sm3、及び、移動信号Sm4の各々は、共に、デューティ比が50%である。
なお、本発明においては、移動信号Smのデューティ比は必ずしも50%に限定されるものではない。
FIG. 3 is an example of the movement signal Sm1, the movement signal Sm2, the movement signal Sm3, and the movement signal Sm4 as the four-phase movement signal Sm. Each of the movement signal Sm1, the movement signal Sm2, the movement signal Sm3, and the movement signal Sm4 is a rectangular wave with the same voltage, and the maximum value of the positive and negative absolute values is equal. The voltage is, for example, 800 Vpp peak-to-peak. The movement signal Sm1, the movement signal Sm2, the movement signal Sm3, and the movement signal Sm4 are out of phase by a quarter period in this order. Further, each of the movement signal Sm1, the movement signal Sm2, the movement signal Sm3, and the movement signal Sm4 has a duty ratio of 50%.
In the present invention, the duty ratio of the movement signal Sm is not necessarily limited to 50%.

〔除電信号Se〕
除電信号Seは、移動信号Smが複数の電極3に供給されないときに、複数の電極3の各々に、固定子1及び移動子2のに生じる帯電の帯電量を減少させる交流の信号である。この除電信号Seによって、前記帯電を減らすことができる。
除電信号Seは、強制的に、正の帯電と負の帯電を交互に生じさせつつ、正の帯電量と負の帯電量を、時間と共に減衰させるような信号である。正の帯電と負の帯電を交互に生じさせても、それらの帯電量を減衰させないで一定のまま信号を加えたのでは、最後に加えた信号波形によって、帯電が残ってしまうので、帯電量が時間とともに強制的に減衰するような信号となっている。
[Static elimination signal Se]
The static elimination signal Se is an AC signal that reduces the amount of charge generated in the stator 1 and the mover 2 in each of the plurality of electrodes 3 when the movement signal Sm is not supplied to the plurality of electrodes 3. The charge can be reduced by the charge removal signal Se.
The charge removal signal Se is a signal that forcibly causes positive charge and negative charge alternately and attenuates the positive charge amount and the negative charge amount with time. Even if a positive charge and a negative charge are alternately generated, if a signal is added as it is without attenuating those charges, the charge will remain depending on the signal waveform added last. The signal is forcibly attenuated with time.

除電信号Seは、移動信号Smが供給されないときは、常に供給されてもよく、或いは、移動信号Smが供給されないときの除電が必要なときのみなど一部の期間だけ供給されてもよく、いずれでもよい。
なお、「固定子及び移動子に生じる」の「生じる」とは、静電気の帯電が生じる可能性があるもののまだ静電気の帯電が生じていない状態、静電気の帯電が生じている状態の両方の状態を含む。
The neutralization signal Se may be always supplied when the movement signal Sm is not supplied, or may be supplied only for a part of the period, such as when neutralization is required when the movement signal Sm is not supplied. But you can.
Note that “occurs” of “occurs in the stator and moving element” means both states in which static charge may occur but static charge has not occurred yet and static charge has been generated. including.

除電信号Seが供給される時間は、特に制限はないが、例えば1sで充分である。1sの間に周波数50Hzの除電信号Seが供給されれば、正負に切り替わる帯電は50回繰り返され、繰り返される毎に帯電量が減少していくことになる。   The time for supplying the static elimination signal Se is not particularly limited, but for example 1 s is sufficient. If the static elimination signal Se with a frequency of 50 Hz is supplied during 1 s, the charging to be switched between positive and negative is repeated 50 times, and the charging amount decreases each time it is repeated.

除電信号Seは、供給される複数の電極3が図2のように4相に対応して、複数の電極3a、複数の電極3b、複数の電極3c、及び複数の電極3dから構成されるものであっても、これらには全て同一波形の信号として供給される(図2参照)。このため、除電信号Seによって、移動子2が移動することはない。このとき、各相毎の、複数の電極3a、複数の電極3b、複数の電極3c、及び複数の電極3dに、同一波形であっても相がずれた信号を供給してもよい。相がずれた信号が供給されたからと言って、移動子2は必ず移動するものでもない。   The static elimination signal Se is composed of a plurality of electrodes 3a, a plurality of electrodes 3b, a plurality of electrodes 3c, and a plurality of electrodes 3d corresponding to the four phases as shown in FIG. Even so, they are all supplied as signals having the same waveform (see FIG. 2). For this reason, the mover 2 is not moved by the static elimination signal Se. At this time, a signal having the same waveform but shifted phase may be supplied to the plurality of electrodes 3a, the plurality of electrodes 3b, the plurality of electrodes 3c, and the plurality of electrodes 3d for each phase. The mover 2 does not necessarily move just because a signal out of phase is supplied.

除電信号Seの一例を図4及び図5に示す。図4に例示する除電信号Sefは、正の電圧の時間と、負の電圧の時間とが共に減少していく、電圧正負時間が減少する信号の一例である。したがって、図4に例示する除電信号Sefは、正の電圧を印加する時間及び負の電圧を印加する時間である電圧正負時間が、時間と共に減少する信号でもある。
図5に例示する除電信号Sevは、電圧が減衰する信号の一例である。したがって、図5に例示する除電信号Sevは、正の電圧を印加する時間及び負の電圧を印加する時間である電圧正負時間における電圧の絶対値の最大値が、時間と共に減衰する信号でもある。
図4に例示する除電信号Sef、及び図5に例示する除電信号Sevは、共に、正負の電圧の絶対値の最大値が互いに等しい矩形波の交流で、デューティ比が50%の信号である。図4に例示する除電信号Sefは、デューティ比50%であるために、周波数が漸増する信号でもある。
電圧が正負に交互に、好ましくは等しい時間で、切り替わる交流の除電信号Seが供給されることで、正負の帯電を交互に強制的に生じさせつつ帯電量を減少させていくことができる。
本発明においては、除電信号Seは矩形波に限定されない。ただ、除電信号Seとして矩形波は、後述する電源部6をデジタル処理回路で構成することができる利点がある。
An example of the static elimination signal Se is shown in FIGS. The neutralization signal Sef illustrated in FIG. 4 is an example of a signal in which the positive voltage time and the negative voltage time are both decreased, in which both the positive voltage time and the negative voltage time decrease. Therefore, the static elimination signal Sef illustrated in FIG. 4 is also a signal in which the time for applying the positive voltage and the voltage positive / negative time, which is the time for applying the negative voltage, decrease with time.
The static elimination signal Sev illustrated in FIG. 5 is an example of a signal whose voltage is attenuated. Therefore, the static elimination signal Sev illustrated in FIG. 5 is also a signal in which the maximum value of the absolute value of the voltage in the voltage positive / negative time, which is the time for applying the positive voltage and the time for applying the negative voltage, attenuates with time.
The neutralization signal Sef illustrated in FIG. 4 and the neutralization signal Sev illustrated in FIG. 5 are both rectangular wave alternating currents having the same maximum absolute value of positive and negative voltages, and are signals having a duty ratio of 50%. The static elimination signal Sef illustrated in FIG. 4 is also a signal whose frequency gradually increases because the duty ratio is 50%.
By supplying the AC neutralization signal Se that alternately switches between positive and negative voltages, preferably at equal time, it is possible to reduce the charge amount while forcibly generating positive and negative charges alternately.
In the present invention, the static elimination signal Se is not limited to a rectangular wave. However, the rectangular wave as the charge removal signal Se has an advantage that the power supply unit 6 described later can be configured by a digital processing circuit.

移動子2をポリエステル系樹脂フィルム製とするなど、樹脂フィルムのものを用いた場合、フィルムは一般に負の静電気帯電を帯び易いために、固定子1側の複数の電極3に供給する除電信号Seとしては、電圧が負になっている時間を長めの信号、或いは電圧が負になっているときの電圧の絶対値を大きめの信号、或いは、これら両方を有する信号としても良い。
なお、本発明の除電信号Seには該当しないが、移動信号Smの周波数に比べて、帯電誘起が追いつかず移動不可能な程度に高い周波数、例えば1kHzなどの信号で、周波数一定且つ電圧一定且つデューティ比一定の交流信号を供給すると、固定子1と移動子2に発生した静電気の正負が偏った帯電の偏りは解消させることができるが、帯電そのものは、移動子2の円滑な移動動作を回復できる程度までには減らすことができず、本発明による除電信号Seに比べて劣る。
When a resin film is used, such as the mover 2 made of a polyester resin film, since the film is generally easily charged with negative electrostatic charges, the static elimination signal Se supplied to the plurality of electrodes 3 on the stator 1 side. For example, a signal having a longer time during which the voltage is negative, a signal having a larger absolute value of the voltage when the voltage is negative, or a signal having both of them may be used.
Although it does not correspond to the static elimination signal Se of the present invention, it has a constant frequency, a constant voltage, and a frequency that is higher than the frequency of the movement signal Sm, such as 1 kHz, at a high frequency that does not catch up with charging induction and cannot move. If an alternating current signal with a constant duty ratio is supplied, the charging bias with the positive and negative static electricity generated in the stator 1 and the moving element 2 can be eliminated. However, the charging itself can smoothly move the moving element 2. It cannot be reduced to the extent that it can be recovered, and is inferior to the static elimination signal Se according to the present invention.

電圧正負時間の減少の仕方、及び電圧の減衰の仕方は、例えば、等差級数的、等比級数的、階段的などでよく、特に制限はない。
なお、本明細書において、電圧正負時間が減少する除電信号Sef、及び、電圧が減衰する除電信号Sevを纏めて言うときは、単に「除電信号Se」と言うこともある。
The method of decreasing the voltage positive / negative time and the method of voltage decay may be, for example, geometrical series, geometrical series, stepwise, etc., and there is no particular limitation.
In this specification, when the static elimination signal Sef in which the voltage positive / negative time decreases and the static elimination signal Sev in which the voltage attenuates are collectively referred to simply as the “static elimination signal Se”.

(除電信号Sef)
図4に一例を示した電圧正負時間が減少する除電信号Sefは、電圧は一定でよく、例えば、電圧は800Vpp一定として、周波数を10Hzから初めて1kHzまで上げた後、複数の電極3の各々への供給を一斉に停止する。これにより、帯電を減らすことができる。
また、電圧正負時間が減少する図4の除電信号Sefは、周波数も一定でもよく、例えば周波数は50Hz一定として、電圧を順に1周期で、有限時間の正、有限時間のゼロ、有限時間の負、有限時間のゼロと変位させて、正の電圧の時間と、負の電圧の時間が共に減少するようにしてもよい。矩形波においては、1周期において、電圧が正の時間のパルス幅、及び、電圧が負の時間のパルス幅が、共に減少するとともに、ゼロボルトの時間が次第に増えていく信号である。
(Static elimination signal Sef)
The static elimination signal Sef for decreasing the voltage positive / negative time shown in FIG. 4 may be constant. For example, the voltage is constant at 800 Vpp, and after increasing the frequency from 10 Hz to 1 kHz for the first time, to each of the plurality of electrodes 3. Stop supplying all of them at once. Thereby, electrification can be reduced.
Further, the static elimination signal Sef of FIG. 4 in which the voltage positive / negative time decreases may have a constant frequency. For example, the frequency is constant at 50 Hz, and the voltage is sequentially in one cycle, positive for a finite time, zero for a finite time, negative for a finite time. The time of the positive voltage and the time of the negative voltage may be decreased by displacing from zero for a finite time. In the rectangular wave, in one cycle, the pulse width when the voltage is positive and the pulse width when the voltage is negative both decrease and the time of zero volt gradually increases.

除電信号Sefによって帯電が減少する理由は、次のように考えられる。すなわち、除電信号Sefは、電圧が正負に交互に切り替わる信号であり、複数の電極3の全てに供給する為に、固定子1と移動子2とは、前記複数の電極3の対向面が、正の帯電と負の帯電とを交互に繰り返すことになる。しかし、帯電するためには時定数がある為に、除電信号Sefの矩形波の波形の立ち上がりに応じて瞬時に正又は負に帯電することはない。このため、除電信号Sefの1周期における正の電圧の時間と負の電圧の時間が減少するほど、正又は負に帯電させるための充分な時間が確保できなくなり、帯電量は減少していくことになる。この結果、電圧正負時間が減少する除電信号Sefを供給することによって、正の帯電と、負の帯電とを、交互に繰り返しながら、正に帯電したときの帯電量と、負に帯電したときの帯電量が、減少していくことになる。その結果、帯電は移動子2の移動の妨げになるような帯電量未満の、ほぼニュートラルな状態に収束すると考えられる。   The reason why charging is reduced by the static elimination signal Sef is considered as follows. That is, the static elimination signal Sef is a signal in which the voltage is alternately switched between positive and negative, and in order to supply all of the plurality of electrodes 3, the stator 1 and the mover 2 are arranged so that the opposing surfaces of the plurality of electrodes 3 are Positive charging and negative charging are alternately repeated. However, since there is a time constant for charging, charging is not instantaneously positive or negative according to the rising of the waveform of the rectangular wave of the static elimination signal Sef. For this reason, as the time of the positive voltage and the time of the negative voltage in one cycle of the static elimination signal Sef decreases, sufficient time for charging positively or negatively cannot be secured, and the charge amount decreases. become. As a result, by supplying the static elimination signal Sef for decreasing the voltage positive / negative time, the positive charge and the negative charge are alternately repeated, and the charge amount when positively charged and the charge when negatively charged are negatively charged. The amount of charge will decrease. As a result, it is considered that the charging converges to a substantially neutral state where the amount of charge is less than the amount of charge that hinders the movement of the moving element 2.

除電信号Sefの電圧は、正の電圧、及び負の電圧のそれぞれが、帯電を生じ得る電圧以上であれば良く、特に制限はない。すなわち、除電信号Sefは、帯電を生じ得る正の電圧の時間と、帯電を生じ得る負の電圧の時間とが共に減少していく、電圧正負時間が減少する信号である。帯電を生じ得る電圧は絶対値で、例えば100V以上が好ましい。これ未満であると、電荷が充分に生じないことがあるからである。
複数の電極3に移動信号Smを供給する後述電源部6に、容易に除電信号Seも供給可能なように出来る点では、大きい電圧でも移動信号Smと大差のない電圧であることが好ましい。例えば、除電信号Seとしての電圧正負時間が減少する除電信号Sefにおいて、1000Vppで効果が得られている。
The voltage of the static elimination signal Sef is not particularly limited as long as each of the positive voltage and the negative voltage is higher than a voltage at which charging can occur. That is, the static elimination signal Sef is a signal for decreasing the voltage positive / negative time in which both the time of the positive voltage that can cause charging and the time of the negative voltage that can cause charging are decreased. The voltage that can cause charging is an absolute value, for example, preferably 100 V or more. This is because if it is less than this, the electric charge may not be sufficiently generated.
From the standpoint that the neutralization signal Se can be easily supplied to the power supply unit 6 that supplies the movement signals Sm to the plurality of electrodes 3, it is preferable that the voltage is not so different from the movement signal Sm even with a large voltage. For example, in the static elimination signal Sef in which the voltage positive / negative time as the static elimination signal Se decreases, the effect is obtained at 1000 Vpp.

電圧正負時間が減少する除電信号Sefの電圧正負時間減少前の開始時点の1周期内における電圧正の時間或いは電圧負の時間(電圧正の時間と電圧負の時間の合計が1周期に相当し、デューティ比50%の信号の場合は周波数の逆数の1/2に対応する。)は、特に制限はないが、例えば周波数が1Hzのときでは最初の1周期に1s必要になるために、その分、除電に要する時間が長くなる。時間的余裕があればこれでもよい。ただ、除電を例えば1sで終わらせる必要がある場合などでは、周波数で見れば10Hz〜50Hzの範囲から始めるのが好ましい。すなわち、デューティ比50%のとき周波数10Hzでは、電圧正の時間或いは電圧負の時間は、(1s/10)×0.5=50msであり、周波数100Hzでは5msである。
電圧正負時間が減少する除電信号Sefの電圧正負時間減少後の終了時点の1周期内における電圧正の時間或いは電圧負の時間は、デューティ比50%の信号でみた周波数で言えば、移動信号Smの周波数が通常、1〜10Hz、最大でも100Hz程度であることから、電圧の変化に帯電が追従できない早さとして、移動信号Smの最大周波数に対して10倍以上の周波数、例えば、1kHz以上とすることが好ましい。すなわち、デューティ比50%のとき周波数1kHzでは、電圧正の時間或いは電圧負の時間は、(1s/1000)×0.5=0.5msである。
ただ、周波数を高くし過ぎても帯電に対しては無意味となる上、電力消費の上でも無駄となる点を考慮して、終了時点の電圧正の時間或いは電圧負の時間を決めると良い。
なお、電圧正負時間が減少する除電信号Sefは、電圧は一定でよいが、電圧が一定であることは必須ではない。ただし、電圧を漸増させるのは逆に帯電を増やす方向となるので、電圧変化はあっても減衰する変化が好ましい。また、周波数は一定でも良いが、周波数を減衰させるのは逆に帯電を増やす方向となるので、周波数変化はあっても漸増する変化が好ましい。
Voltage positive time or voltage negative time (total of voltage positive time and voltage negative time corresponds to one cycle) within one cycle before the start of voltage positive / negative time reduction of the static elimination signal Sef in which the voltage positive / negative time decreases. In the case of a signal with a duty ratio of 50%, it corresponds to 1/2 of the reciprocal of the frequency.) Is not particularly limited, but for example, when the frequency is 1 Hz, 1 s is required for the first period. Minutes, the time required for static elimination increases. This is also acceptable if you have time. However, when it is necessary to finish the static elimination in 1 s, for example, it is preferable to start from the range of 10 Hz to 50 Hz in terms of frequency. That is, when the duty ratio is 50%, at a frequency of 10 Hz, the voltage positive time or the voltage negative time is (1 s / 10) × 0.5 = 50 ms, and at a frequency of 100 Hz, it is 5 ms.
The voltage positive time or the voltage negative time within one cycle after the voltage positive / negative time decrease of the static elimination signal Sef in which the voltage positive / negative time decreases can be expressed by the movement signal Sm in terms of the frequency viewed from the signal with a duty ratio of 50%. Is usually 1 to 10 Hz, and at most about 100 Hz, the speed at which charging cannot follow the change in voltage is 10 times the maximum frequency of the movement signal Sm, for example, 1 kHz or more. It is preferable to do. That is, when the duty ratio is 50% and the frequency is 1 kHz, the voltage positive time or the voltage negative time is (1 s / 1000) × 0.5 = 0.5 ms.
However, considering the point that charging becomes meaningless and power consumption is wasted even if the frequency is set too high, the voltage positive time or the voltage negative time at the end time should be determined. .
Note that the voltage of the static elimination signal Sef that decreases the voltage positive / negative time may be constant, but it is not essential that the voltage is constant. However, since gradually increasing the voltage is in the direction of increasing charging, a change that attenuates even if there is a voltage change is preferable. Further, although the frequency may be constant, since the frequency is attenuated in the direction of increasing the charge, a change that gradually increases is preferable even if the frequency changes.

(除電信号Sev)
図5に一例を示した電圧が減衰する除電信号Sevは、周波数は一定でよく、例えば、周波数は50Hz一定として、電圧を1000Vppから開始して10Vppまで下げた後、複数の電極3の各々への供給を一斉に停止する。正負の絶対値が等しい矩形波の除電信号Sevを供給しているので、開始時の正の最大電圧は500V、負の絶対値の最大電圧も500Vである。これにより、帯電を減らすことができる。
(Static elimination signal Sev)
The neutralization signal Sev with which the voltage shown in FIG. 5 attenuates may have a constant frequency. For example, the frequency is constant at 50 Hz, and the voltage starts from 1000 Vpp and decreases to 10 Vpp. Stop supplying all of them at once. Since the square wave static elimination signal Sev having the same positive and negative absolute values is supplied, the maximum positive voltage at the start is 500V, and the maximum negative absolute voltage is also 500V. Thereby, electrification can be reduced.

除電信号Sevによって帯電が減少する理由は、次のように考えられる。すなわち、除電信号Sevは、電圧が正負に交互に切り替わる信号であり、複数の電極3の全てに供給する為に、固定子1と移動子2とは、前記複数の電極3の対向面が、正の帯電と負の帯電とを交互に繰り返すことになる。しかも、電圧が減衰する為に、除電信号Sevを供給することによって、正の帯電と、負の帯電とを、交互に繰り返しながら、正に帯電したときの帯電量と、負に帯電したときの帯電量が、減少していくことになる。その結果、帯電は移動子2の移動の妨げになるような帯電量未満の、ほぼニュートラルな状態に収束すると考えられる。   The reason why charging is reduced by the static elimination signal Sev is considered as follows. That is, the static elimination signal Sev is a signal in which the voltage is alternately switched between positive and negative. In order to supply all of the plurality of electrodes 3, the stator 1 and the mover 2 are arranged so that the opposing surfaces of the plurality of electrodes 3 are Positive charging and negative charging are alternately repeated. In addition, since the voltage is attenuated, by supplying the static elimination signal Sev, positive charge and negative charge are alternately repeated, and the amount of charge when positively charged and when the charge is negatively charged The amount of charge will decrease. As a result, it is considered that the charging converges to a substantially neutral state where the amount of charge is less than the amount of charge that hinders the movement of the moving element 2.

電圧が減衰する除電信号Sevの電圧減衰前の開始時点の電圧は、特に制限はないが、移動信号Smの電圧と同程度でもよい。移動信号Smの電圧と同程度であれば、移動信号Smを供給するための後述する電源部6に、ことさら耐電圧の高い部品を用いる必要がないからである。したがって、除電信号Sevの電圧減衰前の開始時点の電圧は、例えば1000Vppとすることができる。つまり、 正の電圧500Vと、負の電圧−500Vである。   The voltage at the start of the static elimination signal Sev whose voltage is attenuated before the voltage decay is not particularly limited, but may be approximately the same as the voltage of the movement signal Sm. This is because it is not necessary to use a component having a high withstand voltage for the power supply unit 6 to be described later for supplying the movement signal Sm as long as the voltage is the same as the voltage of the movement signal Sm. Therefore, the voltage at the start point before the voltage decay of the static elimination signal Sev can be set to, for example, 1000 Vpp. That is, the positive voltage is 500V and the negative voltage is -500V.

電圧が減衰する除電信号Sevの電圧減衰後の終了時点の電圧は、0Vppである必要はない。電圧があまりに低いときは静電気帯電が生じないためである。したがって、除電信号Sevの電圧減衰後の終了時点の電圧は50Vpp、好ましくは20Vpp、より好ましくは10Vpp以下である。
電圧が減衰する除電信号Sevの周波数は、前記したように時定数が存在するので正又は負の帯電が生じ得る時間を確保できる周波数以下とするのが好ましい。例えば、除電信号Sevの周波数は、移動信号Smの周波数と同程度でよい。したがって、除電信号Sevの周波数は、例えば、1〜100Hzとすることが好ましい。
デューティ比は50%以外でもよい。交互に繰り返す正の帯電と、負の帯電の各々の帯電量を、なるべく等しくて減じる波形であれば良い。
なお、電圧が減衰する除電信号Sevは、周波数は一定でよいが、周波数が一定であることは必須ではない。ただし、周波数を減少させるのは逆に帯電を増やす方向となるので、周波数変化はあっても漸増する変化が好ましい。
The voltage at the end of the neutralization signal Sev whose voltage is attenuated after the voltage attenuation does not have to be 0 Vpp. This is because electrostatic charging does not occur when the voltage is too low. Therefore, the voltage at the end point after the voltage decay of the static elimination signal Sev is 50 Vpp, preferably 20 Vpp, more preferably 10 Vpp or less.
As described above, the frequency of the static elimination signal Sev at which the voltage attenuates is preferably equal to or less than a frequency at which a time during which positive or negative charging can occur can be secured. For example, the frequency of the static elimination signal Sev may be approximately the same as the frequency of the movement signal Sm. Therefore, the frequency of the static elimination signal Sev is preferably set to 1 to 100 Hz, for example.
The duty ratio may be other than 50%. Any waveform may be used as long as the charge amounts of the positive charge and the negative charge that are alternately repeated are reduced as much as possible.
The frequency of the static elimination signal Sev whose voltage is attenuated may be constant, but it is not essential that the frequency is constant. However, since the frequency is decreased in the direction of increasing the charge, a gradually increasing change is preferable even if the frequency is changed.

〔電源部6〕
前記した移動信号Sm及び除電信号Seを固定子1の複数の電極3に供給させるための電源部6としては、その構成は特に制限はない。電源部6は、前記した移動信号Sm及び除電信号Seを固定子1の複数の電極3に供給することができるものであればよい。電源部6は、移動信号Sm及び除電信号Seを出力する駆動信号出力部と言うこともできる。
以下、電源部6の構成について、その一例を説明する。ここで説明する電源部6は、除電信号Seにおける電圧正負時間減少の除電信号Sefとして、デューティ比50%一定で周波数を漸増する形式のもので説明する。
[Power supply 6]
The configuration of the power supply unit 6 for supplying the movement signal Sm and the charge removal signal Se to the plurality of electrodes 3 of the stator 1 is not particularly limited. The power supply unit 6 only needs to be able to supply the movement signal Sm and the charge removal signal Se to the plurality of electrodes 3 of the stator 1. The power supply unit 6 can also be referred to as a drive signal output unit that outputs the movement signal Sm and the charge removal signal Se.
Hereinafter, an example of the configuration of the power supply unit 6 will be described. The power source unit 6 described here will be described as a static elimination signal Sef for decreasing the voltage positive / negative time in the static elimination signal Se in a form of gradually increasing the frequency with a constant duty ratio of 50%.

図6は、電源部6の構成を示すブロック図である。移動信号Smとして、同図に示す電源部6は、互いに相が異なる4相の移動信号Smを供給可能な例である。さらに、同図に示す電源部6は、4相の移動信号Smを、固定子1の3領域のそれぞれの複数の電極3に独立に供給可能なように、3系統有する例でもある。   FIG. 6 is a block diagram illustrating a configuration of the power supply unit 6. As the movement signal Sm, the power supply unit 6 shown in the figure is an example capable of supplying four-phase movement signals Sm having different phases. Furthermore, the power supply unit 6 shown in the figure is also an example having three systems so that a four-phase movement signal Sm can be independently supplied to each of the plurality of electrodes 3 in the three regions of the stator 1.

前記固定子1の3領域とは、例えば、図7で例示する固定子1で言えば、移動子2を固定子1に対してY方向(図面上下方向)に相対移動可能な、複数の電極3が形成された領域Yと、この領域Yに対して図面で左側と右側であって、移動子2を固定子1に対してX方向(図面左右方向)に相対移動可能な領域A及び領域B、の3領域である。
図7のような3領域に分けた複数の電極3の配置は、領域Aで移動子2を固定子1に対してY方向に相対移動させたときに、X方向への蛇行や偏った移動によって、移動子2が領域Yから外れそうになって、領域A或いは領域Bに進入したときに、領域Yに戻すことができる、配置である。
For example, in the case of the stator 1 illustrated in FIG. 7, the three regions of the stator 1 are a plurality of electrodes that can move the mover 2 relative to the stator 1 in the Y direction (vertical direction in the drawing). A region Y in which 3 is formed, and a region A and a region on the left and right sides of the region Y in which the movable element 2 can be moved relative to the stator 1 in the X direction (left and right direction in the figure) B, 3 regions.
The arrangement of the plurality of electrodes 3 divided into three regions as shown in FIG. 7 is such that when the mover 2 is moved relative to the stator 1 in the Y direction in the region A, the zigzag or biased movement in the X direction is performed. Thus, when the mover 2 is likely to be out of the region Y and enters the region A or the region B, it can be returned to the region Y.

図6のブロック図の説明に戻って、同図において、6は電源部、61は本体、62はコントロールボックス、63はACアダプターまたは電池である。本体61中、64は自動切換え回路/電圧変換回路、65はI/F(インターフェイス)、66〜68は高圧4線SW(switching)回路である。
電源部6は、本体61、コントロールボックス62、ACアダプターまたは電池63を含む。本体61は、ACアダプターまたは電池63からの電力の供給を受けて、コントロールボックス62からの指令信号に従って動作し、移動信号Smと除電信号Seを生成し、複数の電極3に供給する。
電源部6は、本体61の高圧4線SW回路66,67,68の各々から、固定子1の領域Y、領域A及び領域Bのそれぞれの複数の電極3に、移動信号Sm或いは除電信号Seを供給することができる。
Returning to the description of the block diagram of FIG. 6, in this figure, 6 is a power supply unit, 61 is a main body, 62 is a control box, and 63 is an AC adapter or a battery. In the main body 61, 64 is an automatic switching circuit / voltage conversion circuit, 65 is an I / F (interface), and 66 to 68 are high voltage 4-wire SW (switching) circuits.
The power supply unit 6 includes a main body 61, a control box 62, an AC adapter or a battery 63. The main body 61 receives supply of power from the AC adapter or the battery 63, operates in accordance with a command signal from the control box 62, generates a movement signal Sm and a charge removal signal Se, and supplies the movement signal Sm and the charge removal signal Se to the plurality of electrodes 3.
The power supply unit 6 sends a movement signal Sm or a static elimination signal Se from each of the high-voltage 4-wire SW circuits 66, 67, 68 of the main body 61 to each of the plurality of electrodes 3 in the region Y, region A, and region B of the stator 1. Can be supplied.

(本体61とACアダプターまたは電池63)
本体61は、ACアダプターまたは電池63から電力の供給を受けて動作する。ACアダプターまたは電池63からの電力の供給は、本体61の自動切換え回路/電圧変換回路64において行なわれる。自動切換え回路/電圧変換回路64は、ACアダプターと電池との両方からの電力の供給が可能なときには、電池を回路から切り離して電池からの電力の供給を遮断するとともにACアダプターだけから電力の供給が行なわれるようにする。
(Main unit 61 and AC adapter or battery 63)
The main body 61 operates by receiving power supplied from the AC adapter or the battery 63. The power supply from the AC adapter or the battery 63 is performed in the automatic switching circuit / voltage conversion circuit 64 of the main body 61. When the power can be supplied from both the AC adapter and the battery, the automatic switching circuit / voltage conversion circuit 64 disconnects the battery from the circuit and cuts off the power supply from the battery, and supplies power only from the AC adapter. To be performed.

(コントロールボックス62)
コントロールボックス62は、静電アクチュエータ100における移動子2の移動動作と、除電を制御するコントローラである。コントロールボックス62には操作者による操作が可能なように押ボタンスイッチ、切替スイッチ、十字スイッチ、ジョイスティック、等のうちの1以上の操作手段が設けられている。操作者がそれらの1以上を操作すると、コントロールボックス62は指令信号を、本体61のI/F65に出力する。
(Control box 62)
The control box 62 is a controller that controls the moving operation of the moving element 2 and the charge removal in the electrostatic actuator 100. The control box 62 is provided with one or more operation means such as a push button switch, a changeover switch, a cross switch, and a joystick so that an operation by the operator is possible. When the operator operates one or more of them, the control box 62 outputs a command signal to the I / F 65 of the main body 61.

上記指令信号は、例えば、開始、終了、前進、後退、移動速度、除電等を含む。開始は+高圧発生回路及び−高圧発生回路からの高電圧出力を開始する指令信号であり、終了は+高圧発生回路及び−高圧発生回路からの高電圧出力を停止する指令信号である。前進は移動子2を前進移動させる指令信号であり、後退は移動子2を後退移動させる指令信号である。移動速度は、移動子2の移動速度を決定する指令信号であり、移動信号Smの周波数を決定する指令信号でもある。移動速度を早くするときは、より高い周波数とする指令信号となり、移動速度を遅くするときはより低い周波数とする指令信号となる。   The command signal includes, for example, start, end, advance, reverse, movement speed, static elimination, and the like. The start is a command signal for starting high voltage output from the + high voltage generation circuit and the −high voltage generation circuit, and the end is a command signal for stopping high voltage output from the + high voltage generation circuit and the −high voltage generation circuit. Forward movement is a command signal for moving the moving element 2 forward, and backward movement is a command signal for moving the moving element 2 backward. The moving speed is a command signal that determines the moving speed of the moving element 2 and is also a command signal that determines the frequency of the moving signal Sm. When the moving speed is increased, the command signal is set to a higher frequency, and when the moving speed is decreased, the command signal is set to a lower frequency.

(本体61の動作)
本体61の動作は、コントロールボックス62を操作者が操作することによって、制御することができる。例えば、コントロールボックス62の操作によって、移動子2の移動速度、移動方向、除電などを制御することができる。コントロールボックス62を操作者が操作すると、コントロールボックス62から指令信号が出力される。この指令信号は本体61のI/F65を通じて本体61のデータ処理部であるCPU(central processor unit)に入力される。入力された指令信号に基づいて本体61のCPUが本体61の各部分(図6参照)の動作を決める信号を各部に出力する。その信号にしたがって各部分が動作することによって、本体61は、移動信号Sm或いは除電信号Seを出力する。
本体部61の各部は、自動切換え回路/電圧変換回路64からの電力供給を受けて動作する。例えば、CPUには、定電圧化されて一定電圧の電力が供給される。
(Operation of the main body 61)
The operation of the main body 61 can be controlled by the operator operating the control box 62. For example, it is possible to control the moving speed, moving direction, static elimination, etc. of the moving element 2 by operating the control box 62. When the operator operates the control box 62, a command signal is output from the control box 62. This command signal is input to a CPU (central processor unit) which is a data processing unit of the main body 61 through the I / F 65 of the main body 61. Based on the input command signal, the CPU of the main body 61 outputs a signal for determining the operation of each part (see FIG. 6) of the main body 61 to each part. When each part operates according to the signal, the main body 61 outputs a movement signal Sm or a static elimination signal Se.
Each part of the main body 61 operates by receiving power supply from the automatic switching circuit / voltage conversion circuit 64. For example, the CPU is supplied with a constant voltage and a constant voltage.

移動信号Sm及び除電信号Seの正及び負の電圧は、+高圧発生回路及び−高圧発生回路から出力される電圧によって決定される。+高圧発生回路は正の電圧を発生して高圧4線SW回路66,67,68に出力し、−高圧発生回路は負の電圧を発生して高圧4線SW回路66,67,68に出力する。
ここでの+高圧発生回路は+900Vまでの正の電圧を発生でき、−高圧発生回路は−900Vまでの負の電圧を発生できるようになっている。
本体61のCPUは、コントロールボックス62からの指令信号に基づいて、必要なデータ処理を行い、+高圧発生回路及び−高圧発生回路に出力させる電圧値を、電圧デコーダを経由して、+高圧発生回路及び−高圧発生回路に出力する。前記電圧値は、移動信号Smのときは時間で一定であるが、除電信号Seとして電圧が減衰する除電信号Sevのときは時間経過と共に減衰し、除電信号Seとして電圧正負時間が減少する除電信号Sefのときは時間で一定である。
また、本体61のCPUは、コントロールボックス62からの指令信号に基づいて、必要なデータ処理を行い、デコーダを経て、正・逆/停止パターン回路に、移動信号Sm或いは除電信号Seに応じたスイッチ操作信号を出力させる。スイッチ操作信号は、高圧4線SW回路66,67,68に主力され、高圧4線SW回路66,67,68は、スイッチ操作信号に基づいて、+高圧発生回路及び−高圧発生回路から出力された高電圧をスイッチ操作して移動信号Sm或いは除電信号Seを生成する。
例えば、移動子2の移動速度を遅くするときは、スイッチ速度が遅くなり周波数の低い移動信号Smが生成され、周波数が漸増する形式の電圧正負時間減少の除電信号Sefを出力させるときは、スイッチ速度が次第に早くなり周波数が漸増する形式の除電信号Sefが生成される。
The positive and negative voltages of the movement signal Sm and the static elimination signal Se are determined by voltages output from the + high voltage generation circuit and the −high voltage generation circuit. The high voltage generation circuit generates a positive voltage and outputs it to the high voltage 4-wire SW circuits 66, 67, 68. The high voltage generation circuit generates a negative voltage and outputs it to the high voltage 4-wire SW circuits 66, 67, 68. To do.
Here, the + high voltage generation circuit can generate a positive voltage up to + 900V, and the −high voltage generation circuit can generate a negative voltage up to −900V.
The CPU of the main body 61 performs necessary data processing based on the command signal from the control box 62, and generates a voltage value to be output to the + high voltage generation circuit and the −high voltage generation circuit via the voltage decoder. Output to the circuit and the high voltage generation circuit. The voltage value is constant over time when the signal is a movement signal Sm. However, when the signal is a static elimination signal Sev whose voltage decays as the static elimination signal Se, the voltage value decays with time and the static elimination signal whose voltage positive / negative time decreases as the static elimination signal Se. In the case of Sef, the time is constant.
In addition, the CPU of the main body 61 performs necessary data processing based on a command signal from the control box 62, and after passing through the decoder, switches to the forward / reverse / stop pattern circuit according to the movement signal Sm or the static elimination signal Se. An operation signal is output. The switch operation signal is mainly applied to the high-voltage 4-wire SW circuits 66, 67, 68. The high-voltage 4-wire SW circuits 66, 67, 68 are output from the + high-voltage generation circuit and the −high-voltage generation circuit based on the switch operation signal. The high voltage is switched to generate the movement signal Sm or the static elimination signal Se.
For example, when the moving speed of the moving element 2 is slowed down, the switch speed is slowed down and a moving signal Sm having a low frequency is generated, and when the static elimination signal Sef having a voltage positive / negative time decrease in a form in which the frequency gradually increases is output, The static elimination signal Sef having a form in which the speed gradually increases and the frequency gradually increases is generated.

本実施形態では、移動信号Smは図3に示す4相式の信号であるので、本体61は移動信号Smとして、移動信号Sm1、移動信号Sm2、移動信号Sm3、及び移動信号Sm4の4相の信号を出力する。移動信号Sm1、移動信号Sm2、移動信号Sm3、及び移動信号Sm4のそれぞれは、互いに独立している3つの高圧4線SW回路66,67,68の各々から出力される。すなわち、高圧4線SW回路66、高圧4線SW回路67、及び高圧4線SW回路68の各々は独立しており、各々が各々の移動信号Sm1、移動信号Sm2、移動信号Sm3、及び移動信号Sm4からなる移動信号Smを発生し出力する。このため、高圧4線SW回路66、高圧4線SW回路67、及び高圧4線SW回路68の各々は、各々の移動信号Smが互いに異なる信号として、且つ互いに同期し例えば互いに1/4周期だけ位相がずれた信号として発生し出力することができる。   In this embodiment, since the movement signal Sm is a four-phase signal shown in FIG. 3, the main body 61 has four phases of movement signal Sm1, movement signal Sm2, movement signal Sm3, and movement signal Sm4 as movement signal Sm. Output a signal. Each of the movement signal Sm1, the movement signal Sm2, the movement signal Sm3, and the movement signal Sm4 is output from each of the three high-voltage four-line SW circuits 66, 67, and 68 that are independent of each other. That is, the high-voltage 4-wire SW circuit 66, the high-voltage 4-wire SW circuit 67, and the high-voltage 4-wire SW circuit 68 are independent of each other, and each has a movement signal Sm1, a movement signal Sm2, a movement signal Sm3, and a movement signal. A movement signal Sm composed of Sm4 is generated and output. For this reason, each of the high-voltage 4-wire SW circuit 66, the high-voltage 4-wire SW circuit 67, and the high-voltage 4-wire SW circuit 68 is such that each movement signal Sm is different from each other and is synchronized with each other, for example, by a quarter cycle. It can be generated and output as a signal out of phase.

このように、電源部6は3系統の独立した高圧4線SW回路66,67,68を備えた構成となっているが、1つのCPUによって制御されており、指令信号に基づいて前記3系統の独立した高圧4線SW回路66,67,68は、互いに協調して動作する。図6のブロック図で例示する構成の電源部6では、高圧4線SW回路66は領域YにおいてY方向に移動させるY駆動用の4相の移動信号Smとして移動信号Sm1,Sm2,Sm3,及びSm4を出力する。同様に、高圧4線SW回路67は領域AにおいてX方向に移動させるX駆動A用の4相の移動信号Smとして移動信号Sm1,Sm2,Sm3,及びSm4を出力する。同様に、高圧4線SW回路67は領域BにおいてX方向に移動させるX駆動B用の4相の移動信号Smとして移動信号Sm1,Sm2,Sm3,及びSm4を出力する。   As described above, the power supply unit 6 has a configuration including three independent high-voltage four-wire SW circuits 66, 67, and 68, but is controlled by one CPU, and the three systems are controlled based on a command signal. The independent high-voltage 4-wire SW circuits 66, 67 and 68 operate in cooperation with each other. In the power supply unit 6 having the configuration illustrated in the block diagram of FIG. 6, the high-voltage four-wire SW circuit 66 includes the movement signals Sm1, Sm2, Sm3, and the four-phase movement signals Sm for Y driving that move in the Y direction in the region Y. Sm4 is output. Similarly, the high-voltage four-wire SW circuit 67 outputs movement signals Sm1, Sm2, Sm3, and Sm4 as four-phase movement signals Sm for X drive A that are moved in the X direction in the region A. Similarly, the high-voltage four-wire SW circuit 67 outputs movement signals Sm1, Sm2, Sm3, and Sm4 as four-phase movement signals Sm for X drive B that are moved in the X direction in the region B.

前記Y駆動用の4相の移動信号Smは、図7の固定子1の領域Yの複数の電極3に供給し、前記X駆動A用の4相の移動信号Smは、図7の固定子1のA領域の複数の電極3に供給し、前記X駆動B用の4相の移動信号Smは、図7の固定子1のA領域の複数の電極3に供給する。   The four-phase movement signal Sm for Y driving is supplied to the plurality of electrodes 3 in the region Y of the stator 1 of FIG. 7, and the four-phase movement signal Sm for X driving A is supplied to the stator of FIG. The four-phase movement signals Sm for the X drive B are supplied to the plurality of electrodes 3 in the A region of the stator 1 in FIG.

次に、除電するときは、電源部6は、固定子1の複数の電極3の全てに同一の除電信号Seを供給する。この除電信号Seは、図4で例示した電圧正負時間が減少する除電信号Sef、或いは、図5に例示した電圧が減衰する除電信号Sevである。例えば、除電信号Seとして、電圧正負時間が減少する除電信号Sefを採用した電源部6である場合は、本体61は、コントロールボックス62から除電の指令信号が入力されると、高圧4線SW回路66、高圧4線SW回路67、及び高圧4線SW回路68は、全て同一の除電信号Sefを出力する。この電圧正負時間が減少する除電信号Sefは、
前記移動速度を早くするときは周波数をより早くする指令信号をCPUが出力し、移動速度を遅くするときは周波数をより低くする指令信号をCPUが出力したのと同じように、CPUが周波数を次第に早くする指令信号すると共に、4線の出力を移動信号Smのように互いに異なる4相の信号とはせずに、全て位相の揃った同一の信号とする指令信号を出力する。
また、除電信号Seとして、電圧が減衰する除電信号Sevを採用した電源部6である場合は、CPUが周波数を増加させる指令信号の代わりに、電圧を次第に低くする指令信号を出力する。
Next, when removing electricity, the power supply unit 6 supplies the same electricity removal signal Se to all of the plurality of electrodes 3 of the stator 1. This static elimination signal Se is the static elimination signal Sef in which the voltage positive / negative time illustrated in FIG. 4 decreases, or the static elimination signal Sev in which the voltage exemplified in FIG. 5 attenuates. For example, when the power supply unit 6 adopts a static elimination signal Sef in which the voltage positive / negative time decreases as the static elimination signal Se, when the static elimination command signal is input from the control box 62, the main body 61 receives the high voltage 4-wire SW circuit. 66, the high-voltage four-wire SW circuit 67, and the high-voltage four-wire SW circuit 68 all output the same static elimination signal Sef. The static elimination signal Sef in which the voltage positive / negative time decreases is
When the moving speed is increased, the CPU outputs a command signal for increasing the frequency, and when the moving speed is decreased, the CPU outputs a command signal for decreasing the frequency. The command signal is made to be gradually earlier, and the command signal is made to be the same signal with the same phase, without changing the output of the four lines to the four-phase signals different from each other like the movement signal Sm.
Further, in the case of the power supply unit 6 adopting the static elimination signal Sev whose voltage is attenuated as the static elimination signal Se, the CPU outputs a command signal for gradually lowering the voltage instead of the command signal for increasing the frequency.

以上のように、帯電を減らすための除電信号Seは、除電を自動処理せずにマニュアル操作によって行う場合は、移動信号Smを供給する電源6が備えるコントロールボックス62に除電指令用のスイッチの追加が必要にはなるが、CPUが実行するデータ処理内容をソフトウェア的に変更して、電源6の動作に変更を加えるのみで実現でき、装置を大型化せずに実現できる。
なお、除電信号Seの供給は、操作者の操作によるコントロールボックス62からの強制的な指令信号によらずに、或いはこれと併用して、CPUが実行するデータ処理内容をソフトウェア的に変更することで、CPUに、移動子2の移動停止時に自動的に供給できるような指令を出力させて、自動処理してもよい。
As described above, the static elimination signal Se for reducing the charge is added with a static elimination command switch in the control box 62 of the power source 6 that supplies the movement signal Sm when the static elimination is performed manually without performing automatic processing. However, it can be realized only by changing the contents of data processing executed by the CPU by software and changing the operation of the power supply 6 without increasing the size of the apparatus.
The supply of the static elimination signal Se is to change the data processing contents executed by the CPU in software without using or in combination with a forced command signal from the control box 62 operated by the operator. Thus, the CPU may be automatically processed by outputting a command that can be automatically supplied when the movement of the moving element 2 is stopped.

1 固定子
2 移動子
3,3a〜3d 電極
4,4a〜4d バスライン
5,5a〜5d 入力端子
6 電源部
61 本体
62 コントロールボックス
63 ACアダプターまたは電池
64 自動切換え回路/電圧変換回路
65 I/F(インターフェイス)
66 高圧4線SW回路(領域Y用)
67 高圧4線SW回路(駆動A用)
68 高圧4線SW回路(駆動B用)
100 静電アクチュエータ
200 従来の静電アクチュエータ
A 領域A
B 領域B
Sm,Sm1〜Sm4 移動信号
Se 除電信号
Sef 除電信号(電圧正負時間が減少)
Sev 除電信号(電圧が減衰)
Y 領域Y
DESCRIPTION OF SYMBOLS 1 Stator 2 Mover 3, 3a-3d Electrode 4, 4a-4d Bus line 5, 5a-5d Input terminal 6 Power supply part 61 Main body 62 Control box 63 AC adapter or battery 64 Automatic switching circuit / voltage conversion circuit 65 I / F (interface)
66 High-voltage 4-wire SW circuit (for area Y)
67 High-voltage 4-wire SW circuit (for drive A)
68 High-voltage 4-wire SW circuit (for drive B)
100 Electrostatic actuator 200 Conventional electrostatic actuator A Region A
B area B
Sm, Sm1 to Sm4 Movement signal Se static elimination signal Sef static elimination signal (voltage positive / negative time decreases)
Sev Static elimination signal (Voltage is attenuated)
Y area Y

Claims (3)

固定子と前記固定子上に配置された移動子とを備え、前記固定子及び前記移動子の互いの対向面に平行な方向に前記移動子を移動させる移動信号を前記固定子に設けられた複数の電極に供給する静電アクチュエータの制御方法であって、
前記移動信号を前記複数の電極に供給しないときに、前記複数の電極の各々に、前記固定子及び前記移動子に生じる帯電の帯電量を減少させる交流の除電信号を供給する静電アクチュエータの制御方法。
The stator includes a stator and a mover disposed on the stator, and the stator is provided with a movement signal for moving the mover in a direction parallel to the opposing surfaces of the stator and the mover. A method of controlling an electrostatic actuator that supplies a plurality of electrodes,
Control of an electrostatic actuator that supplies an AC static elimination signal that reduces the amount of charge generated in the stator and the moving element to each of the plurality of electrodes when the movement signal is not supplied to the plurality of electrodes. Method.
前記除電信号は、正の電圧を印加する時間及び負の電圧を印加する時間である電圧正負時間が、時間と共に減少する信号である、請求項1に記載の静電アクチュエータの制御方法。   2. The electrostatic actuator control method according to claim 1, wherein the static elimination signal is a signal in which a voltage positive / negative time, which is a time for applying a positive voltage and a time for applying a negative voltage, decreases with time. 前記除電信号は、正の電圧を印加する時間及び負の電圧を印加する時間である電圧正負時間における電圧の絶対値の最大値が、時間と共に減衰する信号である、請求項1に記載の静電アクチュエータの制御方法。   The static elimination signal according to claim 1, wherein the static elimination signal is a signal in which a maximum value of an absolute value of a voltage in a voltage positive / negative time which is a time for applying a positive voltage and a time for applying a negative voltage is attenuated with time. Electric actuator control method.
JP2012177982A 2012-08-10 2012-08-10 Control method of electrostatic actuator Expired - Fee Related JP6031886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177982A JP6031886B2 (en) 2012-08-10 2012-08-10 Control method of electrostatic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177982A JP6031886B2 (en) 2012-08-10 2012-08-10 Control method of electrostatic actuator

Publications (2)

Publication Number Publication Date
JP2014036544A true JP2014036544A (en) 2014-02-24
JP6031886B2 JP6031886B2 (en) 2016-11-24

Family

ID=50285200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177982A Expired - Fee Related JP6031886B2 (en) 2012-08-10 2012-08-10 Control method of electrostatic actuator

Country Status (1)

Country Link
JP (1) JP6031886B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153034A (en) * 1985-12-25 1987-07-08 Taihei Kagaku Seihin Kk Statical electricity retaining device
JPH04275072A (en) * 1991-02-28 1992-09-30 Res Dev Corp Of Japan Microstepwise driving method and device for filmlike article
JPH06121549A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Electrostatic actuator
JPH06151567A (en) * 1992-11-02 1994-05-31 Nippon Steel Corp Electrostatic chuck device
JPH1114919A (en) * 1997-06-26 1999-01-22 Sharp Corp Deformable mirror, method and device for its assebmly, and optical device
JP2000025948A (en) * 1998-07-10 2000-01-25 Yaskawa Electric Corp Electrostatic floating conveyor
JP2011205786A (en) * 2010-03-25 2011-10-13 Dainippon Printing Co Ltd Four-wire electrostatic actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153034A (en) * 1985-12-25 1987-07-08 Taihei Kagaku Seihin Kk Statical electricity retaining device
JPH04275072A (en) * 1991-02-28 1992-09-30 Res Dev Corp Of Japan Microstepwise driving method and device for filmlike article
JPH06121549A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Electrostatic actuator
JPH06151567A (en) * 1992-11-02 1994-05-31 Nippon Steel Corp Electrostatic chuck device
JPH1114919A (en) * 1997-06-26 1999-01-22 Sharp Corp Deformable mirror, method and device for its assebmly, and optical device
JP2000025948A (en) * 1998-07-10 2000-01-25 Yaskawa Electric Corp Electrostatic floating conveyor
JP2011205786A (en) * 2010-03-25 2011-10-13 Dainippon Printing Co Ltd Four-wire electrostatic actuator

Also Published As

Publication number Publication date
JP6031886B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
EP0744821B1 (en) Electrostatic actuator with different electrode spacing
US9176587B2 (en) Tactile sense presentation device and tactile sense presentation method
US9063572B2 (en) Tactile stimulation apparatus having a composite section comprising a semiconducting material
WO2007061901A3 (en) Method and apparatus for quiet fan speed control
JP6031886B2 (en) Control method of electrostatic actuator
WO2022135466A1 (en) Haptic feedback module and electronic device
US20170040910A1 (en) Control system for linear switched capacitive devices
US10096214B2 (en) Tactile presentation device and control method for the same
CN104025238A (en) Contactor
JP3217306U (en) Brushless DC dynamo
JP5309752B2 (en) Electrostatic actuator
JP5437931B2 (en) AC voltage generator
JP3452718B2 (en) Electrostatic actuator
JP5176559B2 (en) Printed matter
JP5309753B2 (en) controller
KR101103684B1 (en) Frequency-Dependent Damping Generation Device for Haptic Interface, and Haptic Interface Control Device Therewith
JPH07327378A (en) Powder handling apparatus
JP4047911B2 (en) DC drive electrostatic actuator
JP2009145625A (en) Printed matter
JP4877150B2 (en) Printed matter
JP5262390B2 (en) Particle transport equipment
JP2005333718A (en) Electrostatic actuator
JPWO2019142605A1 (en) Plane motor
JPH05308783A (en) Operation of electrostatic actuator
JP2009284573A (en) Electrostatic actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6031886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees