JP2014035876A - Electrode manufacturing method and battery manufacturing method - Google Patents

Electrode manufacturing method and battery manufacturing method Download PDF

Info

Publication number
JP2014035876A
JP2014035876A JP2012176339A JP2012176339A JP2014035876A JP 2014035876 A JP2014035876 A JP 2014035876A JP 2012176339 A JP2012176339 A JP 2012176339A JP 2012176339 A JP2012176339 A JP 2012176339A JP 2014035876 A JP2014035876 A JP 2014035876A
Authority
JP
Japan
Prior art keywords
electrode
current collector
active material
strip
containing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012176339A
Other languages
Japanese (ja)
Other versions
JP6021508B2 (en
Inventor
Takashi Kobayashi
隆史 小林
Ikuo Uematsu
育生 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012176339A priority Critical patent/JP6021508B2/en
Publication of JP2014035876A publication Critical patent/JP2014035876A/en
Application granted granted Critical
Publication of JP6021508B2 publication Critical patent/JP6021508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode manufacturing method with a small strain amount.SOLUTION: According to an embodiment, an electrode manufacturing method including a compression-molding step, and a tension providing step is provided. In the compression-molding step, an active material containing layer of a belt-like electrode plate 25 is compression-molded. The belt-like electrode plate 25 comprises: a belt-like collector; a collector exposure section that is formed on at least one long side of the belt-like collector and on both face of which the active material containing layer does not exist; and an active material containing layer formed on at least one part other than the collector exposure section of the belt-like collector. In the tension providing step, the belt-like electrode plate 25 is arranged on a roller having a step portion projecting from a circumferential face and a recess adjacent to the step portion, so that the collector exposure section is positioned at the step portion and the active material containing layer is positioned at the recess, so as to apply tension in a long side direction of the belt-like electrode plate 25. A level difference of the step portion satisfies a formula (1); 750<H. In the formula, H is a magnitude (%) of the level difference when thickness of the active material containing layer of an electrode per single face of the belt-like collector is 100%.

Description

本発明の実施形態は、電極の製造方法及び電池の製造方法に関する。   Embodiments described herein relate generally to an electrode manufacturing method and a battery manufacturing method.

電池は、従来の小型電子機器用途に加え、近年ではハイブリッド電気自動車の電源用途に用いられている。それに伴い、高容量、長サイクル寿命、急速充電性等を兼ね備えたバッテリが求められている。制限ある電池内に出来るだけ多くの活物質を充填するため、電極もより高密度に圧縮されるようになった。   In recent years, batteries have been used for power supply applications of hybrid electric vehicles in addition to conventional applications of small electronic devices. Accordingly, there is a demand for a battery having high capacity, long cycle life, quick chargeability, and the like. In order to fill a limited battery with as much active material as possible, the electrodes are also compressed to a higher density.

電極の製造では、例えば金属箔からなる集電体に活物質含有スラリーを塗布し、乾燥した後、ロールプレス装置などで塗布部を圧縮する。圧縮された塗布部の下地集電体も塑性変形によって伸びるが、活物質含有スラリーが塗布されない未塗布部は集電体にプレス圧力が掛からないため、下地集電体程は伸びない。その結果、この集電体の伸びの差によって塗布部と未塗布部との境界に残留応力が働き、電極に歪みや反りが生じる。   In the manufacture of the electrode, for example, the active material-containing slurry is applied to a current collector made of a metal foil, dried, and then the application portion is compressed by a roll press device or the like. The ground current collector of the compressed coated portion also expands due to plastic deformation, but the uncoated portion where the active material-containing slurry is not coated does not apply press pressure to the current collector, and therefore does not stretch as much as the ground current collector. As a result, the residual stress acts on the boundary between the coated portion and the uncoated portion due to the difference in elongation of the current collector, and the electrode is distorted and warped.

このような電極をセパレータに積層し、これらを捲回する場合、歪みや反りが原因で捲きズレを起こしたり、あるいは捲きズレを補正する際に電極に皺や亀裂が生じたり、ひいては電極破断を起こす等が生じる。また、電極の歪みや反りは、品質・歩留の低下、および生産ライン高速稼動の阻害要因にもなっている。電極の歪みや反りの原因は、圧縮後のスラリー塗布部と未塗布部との下地集電体の伸びの差である。解決策として、例えば、プレスロールに溝を形成して未塗布部集電体も塗布部と同時に圧縮して延ばす方法や、さらに引張応力によって集電体を塑性変形させて延ばす方法などが提案されている。   When laminating such electrodes on a separator and winding them, the electrodes may be damaged due to distortion or warpage, or the electrodes may be damaged or cracked when correcting the displacement. Waking up occurs. In addition, the distortion and warpage of the electrodes are a factor that deteriorates quality and yield and hinders high-speed production line operation. The cause of the distortion and warping of the electrode is the difference in elongation of the base current collector between the slurry-applied portion after compression and the uncoated portion. As a solution, for example, a method of forming a groove in a press roll and compressing and extending an uncoated portion current collector simultaneously with the coated portion, and a method of extending the current collector by plastic deformation by tensile stress are proposed. ing.

しかしながら、プレスロールに溝を形成する方法は、集電体をプレスすることによって削れてしまうロール表面を、比較的高い頻度で再研磨する必要があることが推察されるため、プレスロールの溝形状を管理するのは技術的にも経済的にも効率的でない。更に、例えば電極の蛇行などにより未塗布部集電体が形成した溝から外れたような場合には、電極の圧縮密度ムラや電極破断が生じるという問題がある。   However, since it is assumed that the method of forming grooves on the press roll requires that the roll surface, which is scraped by pressing the current collector, be re-polished at a relatively high frequency, the groove shape of the press roll Managing is not technically or economically efficient. Further, when the uncoated portion current collector is removed from the groove formed by, for example, meandering of the electrode, there is a problem that uneven compression density of the electrode or electrode breakage occurs.

一方、引張応力によって集電体を塑性変形させて延ばす方法としては、鉄鋼材の圧延や加工などで一般的に用いられるテンションアニール処理の応用などがある。被加工材に加熱しながら引張応力を与えることにより、弾性変形させるのに必要な応力を軽減させる効果がある。例えば集電体にアルミニウム箔を用いる場合、その厚みやアルミニウム純度にもよるが、塑性変形させるのに必要な応力の目安は100N/mm2以上になる。集電体を加熱することにより塑性変形に必要な応力を大幅に軽減させることが可能になる。ところが、電極の活物質含有層に高温で変質し電池性能を低下させる恐れのある材料・成分が含まれる場合等には加熱温度を制限せざるを得ない。結果的に、加熱温度の適用範囲内では引張応力の大幅な軽減は出来ず、本来電極を巻き取るのに必要な引張応力に比べて数倍の応力が必要となり、電極の破断や巻取り精度低下などが懸念される。 On the other hand, as a method of extending the current collector by plastic deformation by tensile stress, there is an application of tension annealing generally used in rolling and processing of steel materials. By applying a tensile stress to the workpiece while heating, there is an effect of reducing the stress required for elastic deformation. For example, when an aluminum foil is used for the current collector, the standard of stress required for plastic deformation is 100 N / mm 2 or more, although it depends on the thickness and purity of the aluminum. By heating the current collector, the stress required for plastic deformation can be greatly reduced. However, when the active material-containing layer of the electrode contains materials / components that may be deteriorated at a high temperature and deteriorate the battery performance, the heating temperature must be limited. As a result, the tensile stress cannot be significantly reduced within the application range of the heating temperature, and several times the stress necessary for winding up the electrode is required. There is concern about a decline.

特開2001−297753号公報JP 2001-297553 A 特開2009−104850号公報JP 2009-104850 A

本発明が解決しようとする課題は、歪み量の少ない電極の製造方法と、この方法を用いた電池の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for manufacturing an electrode with a small amount of distortion and a method for manufacturing a battery using this method.

実施形態によれば、圧縮成形工程と、張力付与工程とを含む電極の製造方法が提供される。圧縮成形工程は、帯状極板の活物質含有層に圧縮成形を施すものである。帯状極板は、帯状集電体と、帯状集電体の少なくとも一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部と、帯状集電体の集電体露出部以外の少なくとも一部に形成された活物質含有層とを含む。張力付与工程は、円周面から突出した段部と、段部に隣接する凹部とを有するローラ上に、帯状極板を、集電体露出部が段部に位置し、かつ活物質含有層が凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるものである。段部の段差が下記(1)式を満たす。   According to the embodiment, an electrode manufacturing method including a compression molding step and a tension applying step is provided. In the compression molding step, the active material-containing layer of the strip electrode plate is subjected to compression molding. The strip-shaped electrode plate is formed on at least one long side of the strip-shaped current collector and the strip-shaped current collector, and the current collector exposed portion where the active material-containing layer does not exist on both sides, and the current collector exposure of the strip-shaped current collector And an active material-containing layer formed on at least a part other than the part. In the tension applying step, the belt-like electrode plate is disposed on the roller having the step portion protruding from the circumferential surface and the concave portion adjacent to the step portion, the current collector exposed portion is located at the step portion, and the active material containing layer Are arranged so as to be positioned in the recesses, and tension is applied in the long side direction of the strip-shaped electrode plate. The step of the step satisfies the following formula (1).

750<H (1)
但し、Hは、電極の活物質含有層の帯状集電体片面当たりの厚さを100%とした際の段差の大きさ(%)である。
750 <H (1)
However, H is the size (%) of the step when the thickness of the active material-containing layer of the electrode per side of the belt-like current collector is 100%.

また、実施形態によれば、正極と、負極と、非水電解質とを備える電池の製造方法が提供される。正極及び負極のうち少なくとも一方の電極が、実施形態に係る電極の製造方法で製造される。   In addition, according to the embodiment, a method for manufacturing a battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte is provided. At least one of the positive electrode and the negative electrode is manufactured by the electrode manufacturing method according to the embodiment.

図1は、第1の実施形態に係る方法の一工程を示す模式図である。FIG. 1 is a schematic diagram showing one step of the method according to the first embodiment. 図2は、図1におけるガイドローラと帯状極板との位置関係を示す模式図である。FIG. 2 is a schematic diagram showing the positional relationship between the guide roller and the strip electrode plate in FIG. 図3は、第1の実施形態で用いられるガイドローラと帯状極板との位置関係を示す断面図である。FIG. 3 is a cross-sectional view showing the positional relationship between the guide roller and the strip electrode plate used in the first embodiment. 図4は、第1の実施形態で用いられるガイドローラと帯状極板との位置関係を示す断面図である。FIG. 4 is a cross-sectional view showing the positional relationship between the guide roller and the strip electrode plate used in the first embodiment. 図5は、第2の実施形態に係る方法で製造される電池の展開斜視図である。FIG. 5 is an exploded perspective view of a battery manufactured by the method according to the second embodiment. 図6は、図5に示す電池で用いられる電極群の部分展開斜視図である。6 is a partially developed perspective view of an electrode group used in the battery shown in FIG. 図7は、実施例の電極の歪み量の測定方法を示す模式図である。FIG. 7 is a schematic diagram illustrating a method of measuring the amount of strain of the electrode of the example.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(第1の実施形態)
図1は、電極の製造に用いるプレス装置、ガイドローラ装置、及び、巻取り装置を示す模式図である。図2は、湾曲矯正工程におけるガイドローラと帯状極板との位置関係を示す模式図である。図2の(a)は、ガイドローラ上を走行している帯状極板をガイドローラ側から見た平面図であり、図2の(b)はガイドローラを回転軸に平行に裁断することにより得られる断面図である。図3の(a)は、段部のコーナーにテーパーが形成されたガイドローラを回転軸に平行に切断した際に得られる断面図で、図3の(b)は、図3の(a)に示すガイドローラに帯状極板を配置した状態を示す断面図である。図4の(a)は、ガイドローラ上を走行している帯状極板をガイドローラ側から見た平面図であり、図4の(b)はガイドローラを回転軸に平行に裁断することにより得られる断面図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a press device, a guide roller device, and a winding device used for manufacturing an electrode. FIG. 2 is a schematic diagram showing the positional relationship between the guide roller and the strip electrode plate in the curvature correction process. FIG. 2A is a plan view of the strip electrode plate running on the guide roller as viewed from the guide roller side, and FIG. 2B is obtained by cutting the guide roller parallel to the rotation axis. It is sectional drawing obtained. 3A is a cross-sectional view obtained when a guide roller having a taper formed at the corner of the step portion is cut in parallel to the rotation axis. FIG. 3B is a cross-sectional view of FIG. It is sectional drawing which shows the state which has arrange | positioned the strip | belt-shaped electrode plate to the guide roller shown in FIG. 4A is a plan view of the strip electrode plate running on the guide roller as viewed from the guide roller side, and FIG. 4B is a view of cutting the guide roller parallel to the rotation axis. It is sectional drawing obtained.

図1に示すように、製造工程の前段側から後段に向かってプレス装置21、ガイドローラ装置22、巻取り装置23が配置されている。プレス装置21は、1対のプレスロール21a,21bを有する。プレスロール21a,21bは、駆動部(図示しない)によって図1に示す矢印の方向に回転することにより、プレスロール21a,21間に挿入された帯状極板25を圧縮成形する。巻取り装置23は、駆動部(図示しない)によって回転軸23aが図1に示す矢印の方向に回転することで、帯状極板25がフープ状に巻き取られるようになっている。ガイドローラ装置22は、プレス装置21から巻取り装置23に帯状極板25を搬送するためのもので、複数の金属製ガイドローラ241〜245(従動ローラ)を有する。プレスロール21a,21bから巻取り装置23に搬送される帯状極板25には、長手方向に張力(巻取り張力)が加わる。ガイドローラ241〜245は、帯状極板25に加わる張力が巻取りに適した所望の範囲となるように、帯状極板25の上下面に交互に配置されている。ガイドローラ243は、湾曲矯正装置を兼ねている。ガイドローラ243は、図2の(b)に示すように、回転軸方向の一方の端部に円周面から突出した段部26を有する。ガイドローラ243では、段部26に隣接する残りの部分が凹部27となっている。 As shown in FIG. 1, a pressing device 21, a guide roller device 22, and a winding device 23 are arranged from the front side to the rear side of the manufacturing process. The press device 21 has a pair of press rolls 21a and 21b. The press rolls 21a and 21b are compression-molded by rotating a belt-like electrode plate 25 inserted between the press rolls 21a and 21 by being rotated in the direction of the arrow shown in FIG. The winding device 23 is configured such that the belt-like electrode plate 25 is wound in a hoop shape by rotating a rotating shaft 23a in the direction of the arrow shown in FIG. 1 by a drive unit (not shown). The guide roller device 22 is for conveying the belt-like electrode plate 25 from the press device 21 to the winding device 23, and has a plurality of metal guide rollers 24 1 to 24 5 (driven rollers). Tension (winding tension) is applied in the longitudinal direction to the strip-shaped electrode plate 25 conveyed from the press rolls 21a and 21b to the winding device 23. The guide rollers 24 1 to 24 5 are alternately arranged on the upper and lower surfaces of the strip electrode plate 25 so that the tension applied to the strip electrode plate 25 falls within a desired range suitable for winding. Guide rollers 24 3 also serves as a bending straightening device. Guide roller 24 3, as shown in FIG. 2 (b), it has a stepped portion 26 protruding from the circumferential surface on one end of the rotation axis direction. In the guide roller 24 3 , the remaining portion adjacent to the step portion 26 is a recess 27.

以下、図1に示す装置を用いた電極の製造方法を説明する。まず、帯状極板25を作製する。帯状極板25は、図2の(a)及び図3の(b)に示すように、帯状集電体と、帯状集電体の一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部25aと、帯状集電体の集電体露出部25a以外の箇所に両面とも形成された活物質含有層25bとを含む。活物質含有層25bは、帯状集電体の長辺方向に連続的に形成されている。短辺方向の幅は、活物質含有層25bの方が集電体露出部25aよりも広くなっている。帯状極板25は、例えば、活物質含有スラリーを帯状集電体に一方の長辺を除いて両面に塗布し、乾燥することにより得られる。あるいは、活物質含有スラリーを集電体の両面に部分的に塗布し、乾燥した後、集電体露出部となる未塗布部が長辺に位置するように裁断することにより帯状極板25を得る。   Hereinafter, an electrode manufacturing method using the apparatus shown in FIG. 1 will be described. First, the strip electrode plate 25 is produced. As shown in FIG. 2A and FIG. 3B, the strip electrode plate 25 is formed on one long side of the strip current collector and the strip current collector. It includes a current collector exposed portion 25a that does not exist, and an active material-containing layer 25b that is formed on both sides of the strip-shaped current collector other than the current collector exposed portion 25a. The active material-containing layer 25b is continuously formed in the long side direction of the strip-shaped current collector. The width in the short side direction of the active material containing layer 25b is wider than that of the current collector exposed portion 25a. The strip electrode plate 25 is obtained, for example, by applying an active material-containing slurry to a strip collector on both sides except for one long side, and drying. Or after apply | coating an active material containing slurry partially on both surfaces of a collector, and drying, it cuts so that the uncoated part used as a collector exposed part may be located in a long side, and can form the strip | belt-shaped electrode plate 25. obtain.

活物質含有スラリーは、例えば、活物質に、必要に応じて導電剤及び結着剤を添加し、これらを溶媒の存在下で混練することにより調製される。活物質には、正極用、負極用のいずれを用いても良い。   The active material-containing slurry is prepared, for example, by adding a conductive agent and a binder to the active material as necessary, and kneading them in the presence of a solvent. As the active material, either a positive electrode or a negative electrode may be used.

正極の活物質は、特に限定されるものではなく、種々の酸化物、例えば、リチウム含有コバルト酸化物(例えば、LiCoO2)、二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)、リチウム含有ニッケル酸化物(例えば、LiNiO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタンや二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。 The active material of the positive electrode is not particularly limited, and various oxides such as lithium-containing cobalt oxide (for example, LiCoO 2 ), manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO) 2 ), lithium-containing nickel oxide (eg, LiNiO 2 ), lithium-containing nickel cobalt oxide (eg, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, lithium-containing vanadium oxide, titanium disulfide, Examples include chalcogen compounds such as molybdenum disulfide.

負極の活物質は、特に限定されるものではなく、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。   The active material of the negative electrode is not particularly limited, and for example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor carbonaceous material, resin fired body, etc.), chalcogen Compound (eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.), light metal (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.), lithium titanium oxide (eg, spinel type lithium titanate) And the like.

導電剤は、特に限定されるものではなく、例えば、黒鉛、炭素質物、アセチレンブラック、カーボンブラック等を挙げることができる。また、結着剤は、特に限定されるものではなく、例えば、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを用いることができる。   The conductive agent is not particularly limited, and examples thereof include graphite, carbonaceous material, acetylene black, and carbon black. The binder is not particularly limited, and for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or fluorine-based rubber can be used.

帯状集電体には、金属箔を使用することができる。金属箔は、例えば、アルミニウム箔、アルミニウム合金箔、銅箔等を挙げることができる。帯状集電体の厚さは50μm以下にすることができる。   A metal foil can be used for the strip-shaped current collector. Examples of the metal foil include an aluminum foil, an aluminum alloy foil, and a copper foil. The thickness of the strip-shaped current collector can be 50 μm or less.

次いで、得られた帯状極板25を、図1に示す矢印方向に回転しているプレスロール21a,21b間に挿入し、圧縮成形を施す。帯状極板25の挿入方向が帯状極板25の長手方向に平行であるため、プレス圧力は、活物質含有層25bに主に加わり、活物質含有層25bが圧縮成形され、密度が高められる。集電体露出部25aには、プレス圧力がほとんど加わらないため、活物質含有層25bの下地集電体に比して伸びが小さくなる。その結果、帯状極板25に歪みや反りが生じる。   Next, the obtained strip-shaped electrode plate 25 is inserted between press rolls 21a and 21b rotating in the direction of the arrow shown in FIG. 1 and subjected to compression molding. Since the insertion direction of the strip electrode plate 25 is parallel to the longitudinal direction of the strip electrode plate 25, the pressing pressure is mainly applied to the active material-containing layer 25b, and the active material-containing layer 25b is compression-molded to increase the density. Since almost no pressing pressure is applied to the current collector exposed portion 25a, the elongation is smaller than that of the base current collector of the active material-containing layer 25b. As a result, the belt-like electrode plate 25 is distorted or warped.

プレスロール21a,21b間を通過した帯状極板25は、ガイドローラ241〜245を経由して巻取り装置23まで搬送される。湾曲矯正装置を兼ねたガイドローラ243では、図2及び図3に示すように、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界が位置し、集電体露出部25aのみが段部26上に配置される。活物質含有層25bは、凹部27に配置される。これにより、帯状極板25の搬送方向(長手方向)に加わる巻取り張力を、集電体露出部25aに集中させることができる。その結果、集電体露出部25aを巻取り張力によって十分に伸ばすことができるため、帯状極板25に生じた歪み及び反りを矯正することができる。ガイドローラ243を通過した帯状極板25は、ガイドローラ244,245を経由して巻取り装置23に巻き取られる。次いで、フープ状の帯状極板25を必要に応じて所望のサイズに裁断することにより、電極が得られる。なお、帯状極板25をそのまま電極として用いることもできる。 The strip electrode plate 25 that has passed between the press rolls 21a and 21b is conveyed to the winding device 23 via the guide rollers 24 1 to 24 5 . In the guide roller 24 3, which also serves as a bending straightening device, as shown in FIGS. 2 and 3, the boundary X between the stepped portion 26 and the recess 27, the boundary between the current collector exposed portion 25a and the active material-containing layer 25b Only the current collector exposed portion 25 a is located on the stepped portion 26. The active material containing layer 25 b is disposed in the recess 27. Thereby, the winding tension applied in the conveying direction (longitudinal direction) of the strip electrode plate 25 can be concentrated on the current collector exposed portion 25a. As a result, the current collector exposed portion 25a can be sufficiently extended by the winding tension, so that the distortion and warpage generated in the strip electrode plate 25 can be corrected. The strip electrode plate 25 that has passed through the guide roller 24 3 is wound around the winding device 23 via the guide rollers 24 4 , 24 5 . Subsequently, the electrode is obtained by cutting the hoop-shaped strip electrode plate 25 into a desired size as necessary. The strip electrode plate 25 can be used as an electrode as it is.

圧縮成形前の帯状極板25では、帯状集電体全体が伸びていないため、圧縮成形前の帯状極板25をガイドローラ243と接触させると、段部26上の集電体露出部25aのみならず、活物質含有層25bにも巻取り張力(応力)が分散する。圧縮成形後は、活物質含有層25bの下地集電体が伸びて弛むため、巻取り張力(応力)が活物質含有層25bの下地集電体にほとんど加わらず、伸ばされていない集電体露出部25aに巻取り張力を集中させることができる。この時、電極の歪み量は、圧縮後の歪み量に対し、電極を圧縮時の巻き取り張力と同じ張力で巻取り装置23に巻き換えた後では約10%軽減させることができる。 In the strip-shaped electrode plate 25 before compression molding, the entire strip-shaped current collector is not stretched. Therefore, when the strip-shaped electrode plate 25 before compression molding is brought into contact with the guide roller 24 3 , the current collector exposed portion 25a on the step portion 26 is obtained. In addition, the winding tension (stress) is dispersed in the active material-containing layer 25b. After compression molding, the base current collector of the active material-containing layer 25b is stretched and loosened, so that the winding current (stress) is hardly applied to the base current collector of the active material-containing layer 25b and is not stretched. The winding tension can be concentrated on the exposed portion 25a. At this time, the amount of distortion of the electrode can be reduced by about 10% after the electrode is wound around the winding device 23 with the same tension as the winding tension at the time of compression.

但し、ガイドローラ243の段部26上に活物質含有層25bが配置されると、巻取り張力が活物質含有層25bにも分散するため、集電体露出部25aへの巻取り張力の集中は不十分になり、且つ、既に伸びている活物質含有層25bの下地集電体をさらに延ばしてしまう恐れがあり、電極の歪みと反りが矯正されない。 However, when the guide roller 24 third step section 26 the active material-containing layer 25b on are arranged, the winding tension is to distribute to the active material-containing layer 25b, the winding tension of the collector-exposed portion 25a Concentration becomes insufficient, and the base current collector of the active material-containing layer 25b that has already been stretched may be further extended, so that the distortion and warping of the electrode are not corrected.

ガイドローラ243に設ける段部26の段差H(%)は、活物質含有層の帯状集電体片面当たりの厚さを100%とした際に下記(1)式を満たす。ここで、活物質含有層の帯状集電体片面当たりの厚さは、製造後の電極における活物質含有層の帯状集電体片面当たりの厚さである。 Guide rollers 24 step H of the step portion 26 provided in the 3 (%) is below the thickness per one side strip collector of the active material-containing layer upon 100% (1) satisfies the formula. Here, the thickness per side of the strip-shaped current collector of the active material-containing layer is the thickness per side of the strip-shaped current collector of the active material-containing layer in the manufactured electrode.

750<H (1)
例えば段差Hが750%以下の場合であっても、電極の歪みや反りを矯正することは可能である。ただし、集電体を塑性変形させて十分に延ばし、十分な矯正効果を得るためには一定の時間が必要になるため、加工速度に制限がある。段差Hを750%より大きくすることで、極めて短い加工時間で十分な効果を得ることが可能になり,製造ラインの高速稼動を実現し,ひいては矯正工程における生産能力を向上させることが出来る。なお、帯状集電体の厚さが50μm以下の場合に、段差Hが2000%を超えると、亀裂や破断を生じる恐れがある。
750 <H (1)
For example, even when the step H is 750% or less, it is possible to correct the distortion and warping of the electrode. However, since the current collector is plastically deformed and sufficiently stretched to obtain a sufficient correction effect, a certain time is required, so that the processing speed is limited. By making the step H larger than 750%, it becomes possible to obtain a sufficient effect in an extremely short processing time, to realize a high-speed operation of the production line, and to improve the production capacity in the correction process. In addition, when the thickness of the belt-shaped current collector is 50 μm or less and the step H exceeds 2000%, there is a risk of causing cracks or breaks.

ガイドローラ243に設ける段部26のコーナーは、図2の(b)に例示されるように直角あるいは略直角でも良いが、テーパーを設けても良い。テーパーは、図3の(a),(b)に示すように、段部26と凹部27との境界Xと、段部26の上面とが交わる部分に形成することが望ましい。テーパーR(mm)は、R≦15であることが好ましい。テーパーRを15mm以下にすることによって、集電体露出部に応力を十分に集中させて伸ばすことができる。テーパーRが小さいほど、集電体露出部を伸ばす効果が大きくなるものの、電極が蛇行した場合に電極破断が生じる等の恐れがあるため、0.5≦R≦7の範囲がより好ましい。 Corner of the stepped portion 26 provided on the guide roller 24 3, it may be a right angle or substantially a right angle as illustrated in FIG. 2 (b), may be provided a taper. As shown in FIGS. 3A and 3B, the taper is desirably formed at a portion where the boundary X between the step portion 26 and the recess 27 intersects with the upper surface of the step portion 26. The taper R (mm) is preferably R ≦ 15. By setting the taper R to 15 mm or less, the stress can be sufficiently concentrated and extended on the current collector exposed portion. The smaller the taper R is, the larger the effect of extending the exposed portion of the current collector is. However, there is a possibility that the electrode breaks when the electrode meanders. Therefore, the range of 0.5 ≦ R ≦ 7 is more preferable.

テーパーRは、段部26のR部のR面の数点を三次元測定器にて座標プロットすることにより、算出される。三次元測定器には、例えば、カールツァイス(ZEISS)株式会社製の三次元測定機(型式:WMM550)を使用することができる。   The taper R is calculated by coordinate plotting several points on the R surface of the R portion of the step portion 26 with a three-dimensional measuring instrument. As the three-dimensional measuring instrument, for example, a three-dimensional measuring machine (model: WMM550) manufactured by Carl Zeiss Co., Ltd. can be used.

少なくとも湾曲矯正工程では、帯状極板25の短辺方向に平行な断面での引張応力F(N/mm2)を、20≦F≦100の範囲にすることが好ましい。引張応力Fを20(N/mm2)以上にすることによって、電極を精度よく巻き取るために必要な応力を満たしつつ、集電体露出部を十分に伸ばすことができる。引張応力Fを100(N/mm2)以下にすることによって、電極の破断及び巻取り精度低下の問題を生じさせることなく、集電体露出部を十分に伸ばすことができる。よって、引張応力F(N/mm2)を20≦F≦100の範囲にすることによって、電極を破断させることなく、かつ電極を精度よく巻き取りつつ、集電体露出部を十分に伸ばすことができる。前述した段差HやテーパーRの条件にも依るが、電極の破断及び巻取り精度低下を防止する効果を高めるためには20≦F≦40の範囲がより好ましい。 At least in the curvature correcting step, it is preferable that the tensile stress F (N / mm 2 ) in the cross section parallel to the short side direction of the strip-shaped electrode plate 25 is in the range of 20 ≦ F ≦ 100. By setting the tensile stress F to 20 (N / mm 2 ) or more, the current collector exposed portion can be sufficiently extended while satisfying the stress necessary for winding the electrode with high accuracy. By setting the tensile stress F to 100 (N / mm 2 ) or less, the current collector exposed portion can be sufficiently extended without causing problems of electrode breakage and winding accuracy reduction. Therefore, by setting the tensile stress F (N / mm 2 ) in the range of 20 ≦ F ≦ 100, the current collector exposed portion can be sufficiently extended without breaking the electrode and accurately winding the electrode. Can do. Although depending on the conditions of the step H and the taper R described above, the range of 20 ≦ F ≦ 40 is more preferable in order to enhance the effect of preventing the electrode from breaking and winding accuracy.

帯状極板には、60℃以上150℃以下の温度で加熱処理を施しつつ、湾曲矯正を行うことが望ましい。加熱処理温度Tを60℃以上にすることによって、塑性変形に必要となる応力を低減させる効果を高めることができる。また、帯状極板に掛ける応力が同じ場合には、加熱することによって電極の歪みや反りを矯正する効果を高めることができる。これらの効果は、加熱処理温度Tが高い方が得られやすいが、活物質含有層の熱による変質を避けるため、加熱処理温度Tは60℃以上150℃以下の範囲にすることが望ましい。   It is desirable to correct the curvature of the strip electrode while performing a heat treatment at a temperature of 60 ° C. or higher and 150 ° C. or lower. By setting the heat treatment temperature T to 60 ° C. or more, the effect of reducing the stress required for plastic deformation can be enhanced. Further, when the stress applied to the strip electrode plate is the same, the effect of correcting the distortion and warpage of the electrode can be enhanced by heating. These effects are more easily obtained when the heat treatment temperature T is higher, but the heat treatment temperature T is preferably in the range of 60 ° C. or higher and 150 ° C. or lower in order to avoid alteration of the active material-containing layer due to heat.

図1では、プレス装置21としてプレスロールを用いたが、活物質含有層を高密度化できるものであればプレスロールの代わりに使用することができる。例えば、プレスロールの代わりに平板プレスを用いることができる。また、プレス工程は、プレス圧力を多段階に変化させて行っても良い。   In FIG. 1, a press roll is used as the press device 21, but any press material that can increase the density of the active material-containing layer can be used instead of the press roll. For example, a flat plate press can be used instead of the press roll. The pressing process may be performed by changing the pressing pressure in multiple stages.

図1では、複数のガイドローラのうち一つのガイドローラを湾曲矯正装置として使用したが、湾曲矯正装置として使用するガイドローラの数は一つに限らず、全部または全部のうちの複数個にすることができる。また、湾曲矯正装置として使用するガイドローラの位置も前段側から3つ目のガイドローラ243に限られるものではなく、任意の位置のガイドローラを用いることができる。 In FIG. 1, one guide roller among the plurality of guide rollers is used as the curvature correcting device, but the number of guide rollers used as the curvature correcting device is not limited to one, and a plurality of all or all of the guide rollers are used. be able to. Further, the position of the guide roller used as the curvature correcting device is not limited to the third guide roller 243 from the front stage side, and a guide roller at an arbitrary position can be used.

図2では、ガイドローラ243の回転軸方向の一方の端部に円周面から突出した段部26を設けたが、段部の形成方法はこれに限定されず、集電体露出部を伸ばす効果が得られるものであれば良い。例えば図4に例示されるように、回転軸方向の中央付近に円周面から突出した環状の段部26を設け、段部26に隣接する両側の円周面を凹部27とすることができる。 In FIG. 2, the step portion 26 protruding from the circumferential surface is provided at one end portion in the rotation axis direction of the guide roller 24 3 , but the method of forming the step portion is not limited to this, and the current collector exposed portion is Any material can be used as long as the effect of stretching can be obtained. For example, as illustrated in FIG. 4, an annular step portion 26 protruding from the circumferential surface can be provided near the center in the rotation axis direction, and the circumferential surfaces on both sides adjacent to the step portion 26 can be formed as the recesses 27. .

図2〜図4では、帯状極板の片側の長辺にのみ集電体露出部を設けたが、帯状極板の両方の長辺に集電体露出部を設けても良い。帯状極板の両方の長辺に集電体露出部を設けると、電極の反りと歪を防止する効果をより高めることができる。一方、図2のように、帯状極板の片側の長辺にのみ集電体露出部を設けると、高い電池容量とエネルギー密度を得ることができる。   In FIGS. 2 to 4, the current collector exposed portion is provided only on one long side of the strip electrode plate, but the current collector exposed portion may be provided on both long sides of the strip electrode plate. Providing current collector exposed portions on both long sides of the strip electrode plate can further enhance the effect of preventing warping and distortion of the electrode. On the other hand, when the current collector exposed portion is provided only on the long side of one side of the strip electrode plate as shown in FIG. 2, a high battery capacity and energy density can be obtained.

図2〜図4では、帯状極板の両面に活物質含有層を設けたが、帯状極板の片面のみに活物質含有層を設けることもできる。   In FIGS. 2 to 4, the active material-containing layer is provided on both surfaces of the strip-shaped electrode plate.

図2〜図4では、帯状集電体の長辺方向に連続的に活物質含有層を形成したが、帯状集電体の長辺方向に間欠的に活物質含有層を形成し、活物質含有層の間に活物質含有層未形成部を設けても良い。   2 to 4, the active material-containing layer is continuously formed in the long-side direction of the strip-shaped current collector. However, the active material-containing layer is intermittently formed in the long-side direction of the strip-shaped current collector. You may provide an active material content layer non-formation part between content layers.

以上説明した第1の実施形態によれば、圧縮成形が施された帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。また、段部の段差Hを750%より大きくすることで、極めて短い加工時間で十分な効果を得ることが可能になり,製造ラインの高速稼動を実現し,ひいては生産能力を向上させることが出来る。よって、圧縮成形で電極に生じた歪みや反りを短時間で矯正することができる。また、電極群を作製する際の電極の破断を防止することができる。その結果、品質の優れた電極を高い生産効率で製造することが可能となる。   According to the first embodiment described above, the strip-shaped electrode plate subjected to compression molding is arranged such that the current collector exposed portion is located in the stepped portion of the roller and the active material-containing layer is located in the recessed portion of the roller. Since the tension is applied in the long side direction of the belt-like electrode plate, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently stretched by plastic deformation. In addition, by making the step H of the step portion larger than 750%, it becomes possible to obtain a sufficient effect in an extremely short processing time, to realize a high-speed operation of the production line, and thus to improve the production capacity. . Therefore, the distortion and the curvature which arose in the electrode by compression molding can be corrected in a short time. In addition, the electrode can be prevented from being broken when the electrode group is manufactured. As a result, an electrode with excellent quality can be manufactured with high production efficiency.

(第2の実施形態)
第2の実施形態によれば、正極と、負極と、非水電解質とを備える電池の製造方法が提供される。正極及び負極のうち少なくとも一方の電極は、第1の実施形態に係る方法で製造される。図5は、第2の実施形態に係る方法で製造される非水電解質電池の展開斜視図である。図6は、図5示す電池で用いられる電極群の部分展開斜視図である。
(Second Embodiment)
According to 2nd Embodiment, the manufacturing method of a battery provided with a positive electrode, a negative electrode, and a nonaqueous electrolyte is provided. At least one of the positive electrode and the negative electrode is manufactured by the method according to the first embodiment. FIG. 5 is an exploded perspective view of a nonaqueous electrolyte battery manufactured by the method according to the second embodiment. 6 is a partially developed perspective view of an electrode group used in the battery shown in FIG.

図5に示す電池は、密閉型の角型非水電解質二次電池である。非水電解質二次電池は、外装缶1と、蓋2と、正極出力端子3と、負極出力端子4と、電極群5とを備える。図5に示すように、外装缶1は、有底角筒形状をなし、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。   The battery shown in FIG. 5 is a sealed prismatic non-aqueous electrolyte secondary battery. The nonaqueous electrolyte secondary battery includes an outer can 1, a lid 2, a positive electrode output terminal 3, a negative electrode output terminal 4, and an electrode group 5. As shown in FIG. 5, the outer can 1 has a bottomed rectangular tube shape, and is formed of a metal such as aluminum, an aluminum alloy, iron, or stainless steel, for example.

図6に示すように、偏平型の電極群5は、正極6と負極7がその間にセパレータ8を介して偏平形状に捲回されたものである。正極6は、例えば金属箔からなる帯状の正極集電体と、正極集電体の集電体露出部からなる正極集電タブ6aと、少なくとも正極集電タブ6aの部分を除いて正極集電体に形成された正極活物質層6bとを含む。一方、負極7は、例えば金属箔からなる帯状の負極集電体と、負極集電体の集電体露出部からなる負極集電タブ7aと、少なくとも負極集電タブ7aの部分を除いて負極集電体に形成された負極活物質層7bとを含む。   As shown in FIG. 6, the flat electrode group 5 has a positive electrode 6 and a negative electrode 7 wound in a flat shape with a separator 8 therebetween. The positive electrode 6 is a positive electrode current collector except for a strip-shaped positive electrode current collector made of, for example, a metal foil, a positive electrode current collector tab 6a formed of a current collector exposed portion of the positive electrode current collector, and at least a portion of the positive electrode current collector tab 6a. A positive electrode active material layer 6b formed on the body. On the other hand, the negative electrode 7 is a negative electrode except for a strip-shaped negative electrode current collector made of, for example, a metal foil, a negative electrode current collector tab 7a formed of a current collector exposed portion of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 7a. And a negative electrode active material layer 7b formed on the current collector.

このような正極6、セパレータ8及び負極7は、正極集電タブ6aが電極群の捲回軸方向にセパレータ8から突出し、かつ負極集電タブ7aがこれとは反対方向にセパレータ8から突出するよう、正極6及び負極7の位置をずらして捲回されている。このような捲回により、電極群5は、図6に示すように、一方の端面から渦巻状に捲回された正極集電タブ6aが突出し、かつ他方の端面から渦巻状に捲回された負極集電タブ7aが突出している。   In the positive electrode 6, the separator 8, and the negative electrode 7, the positive electrode current collecting tab 6 a protrudes from the separator 8 in the winding axis direction of the electrode group, and the negative electrode current collecting tab 7 a protrudes from the separator 8 in the opposite direction. Thus, the positive electrode 6 and the negative electrode 7 are wound while being shifted in position. As a result of such winding, as shown in FIG. 6, the electrode group 5 has the positive electrode current collecting tab 6a wound spirally from one end face and is wound spirally from the other end face. The negative electrode current collection tab 7a protrudes.

電解液(図示しない)は、電極群5に含浸されている。矩形板状の蓋2は、外装缶1の開口部に例えばレーザでシーム溶接される。蓋2は、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。蓋2と外装缶1は、同じ種類の金属から形成されることが望ましい。   An electrolytic solution (not shown) is impregnated in the electrode group 5. The rectangular plate-like lid 2 is seam welded to the opening of the outer can 1 by, for example, a laser. The lid 2 is made of a metal such as aluminum, aluminum alloy, iron or stainless steel, for example. The lid 2 and the outer can 1 are preferably formed from the same type of metal.

図5に示すように、蓋2の外面の中央付近に安全弁9が設けられている。安全弁9は、蓋2の外面に設けられた矩形状の凹部9aと、凹部9a内に設けられたX字状の溝部9bとを有する。溝部9bは、例えば、蓋2を板厚方向にプレス成型することにより形成される。注液口10は、蓋2に開口され、電解液の注液後に封止される。   As shown in FIG. 5, a safety valve 9 is provided near the center of the outer surface of the lid 2. The safety valve 9 has a rectangular recess 9a provided on the outer surface of the lid 2 and an X-shaped groove 9b provided in the recess 9a. The groove 9b is formed, for example, by press-molding the lid 2 in the plate thickness direction. The liquid injection port 10 is opened in the lid 2 and sealed after the electrolytic solution is injected.

蓋2の外面には、安全弁9を間に挟んだ両側に正負極出力端子3,4が絶縁ガスケット(図示しない)を介してかしめ固定されている。負極活物質に炭素系材料を使用するリチウムイオン二次電池の場合、正極出力端子3には、例えば、アルミニウムあるいはアルミニウム合金が使用され、負極出力端子4には、例えば、銅、ニッケル、ニッケルメッキされた鉄などの金属が使用される。また、負極活物質にチタン酸リチウムを使用する場合は、上記に加え、負極出力端子4にアルミニウムあるいはアルミニウム合金を使用してもかまわない。   On the outer surface of the lid 2, positive and negative output terminals 3, 4 are fixed by caulking via insulating gaskets (not shown) on both sides of the safety valve 9. In the case of a lithium ion secondary battery using a carbon-based material for the negative electrode active material, for example, aluminum or an aluminum alloy is used for the positive electrode output terminal 3, and for example, copper, nickel, nickel plating is used for the negative electrode output terminal 4. Used metals such as iron are used. When lithium titanate is used as the negative electrode active material, in addition to the above, aluminum or an aluminum alloy may be used for the negative electrode output terminal 4.

正極リード11は、一端が、正極出力端子3にかしめ固定あるいは溶接によって電気的に接続され、かつ他端が正極集電タブ6aに電気的に接続されている。負極リード12は、一端が、負極出力端子4にかしめ固定あるいは溶接によって電気的に接続され、かつ他端が負極集電タブ7aに電気的に接続されている。正負極リード11,12を正負極集電タブ6a,7aに電気的に接続する方法は、特に限定されるものではないが、例えば超音波溶接やレーザ溶接等の溶接が挙げられる。   One end of the positive electrode lead 11 is electrically connected to the positive electrode output terminal 3 by caulking or welding, and the other end is electrically connected to the positive electrode current collecting tab 6a. One end of the negative electrode lead 12 is electrically connected to the negative electrode output terminal 4 by caulking or welding, and the other end is electrically connected to the negative electrode current collecting tab 7a. A method of electrically connecting the positive and negative electrode leads 11 and 12 to the positive and negative electrode current collecting tabs 6a and 7a is not particularly limited, and examples thereof include welding such as ultrasonic welding and laser welding.

このように、正極出力端子3と正極集電タブ6aとが正極リード11を介して電気的に接続され、負極出力端子4と負極集電タブ7aとが負極リード12を介して電気的に接続されることにより、正負極出力端子3,4から電流を取り出せるようになる。   In this way, the positive electrode output terminal 3 and the positive electrode current collecting tab 6 a are electrically connected via the positive electrode lead 11, and the negative electrode output terminal 4 and the negative electrode current collecting tab 7 a are electrically connected via the negative electrode lead 12. As a result, current can be taken out from the positive and negative output terminals 3 and 4.

正負極リード11,12の材質は、特に指定しないが、正負極出力端子3,4と同じ材質にすることが望ましい。例えば、出力端子の材質がアルミニウム又はアルミニウム合金の場合は、リードの材質をアルミニウム、アルミニウム合金にすることが好ましい。また、出力端子が銅の場合は、リードの材質を銅などにすることが望ましい。   The material of the positive and negative electrode leads 11 and 12 is not particularly specified, but is preferably the same material as that of the positive and negative electrode output terminals 3 and 4. For example, when the material of the output terminal is aluminum or an aluminum alloy, it is preferable that the material of the lead is aluminum or an aluminum alloy. Further, when the output terminal is copper, it is desirable that the material of the lead is copper.

ここで、セパレータ及び非水電解質について説明する。   Here, the separator and the non-aqueous electrolyte will be described.

セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー、セルロースなどをあげることができる。   The separator is not particularly limited, and for example, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.

非水電解質には、非水溶媒に電解質(例えば、リチウム塩)を溶解させた非水電解液を用いることができる。非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフランなどを挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質は、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)などのリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。電解質の濃度が低すぎると十分なイオン導電性を得ることができない場合がある。一方、高すぎると電解液に完全に溶解できない場合がある。 As the non-aqueous electrolyte, a non-aqueous electrolyte solution in which an electrolyte (for example, a lithium salt) is dissolved in a non-aqueous solvent can be used. Nonaqueous solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and trifluoromethanesulfonic acid. A lithium salt such as lithium (LiCF 3 SO 3 ) can be given. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L. If the electrolyte concentration is too low, sufficient ionic conductivity may not be obtained. On the other hand, if it is too high, it may not be completely dissolved in the electrolyte.

以上説明した第2の実施形態によれば、圧縮成形が施された帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて十分に伸ばすことができる。また、段部の段差Hを750%より大きくすることで、極めて短い加工時間で十分な効果を得ることが可能になり,製造ラインの高速稼動を実現し,ひいては矯正工程における生産能力を向上させることが出来る。よって、圧縮成形で電極に生じた歪みや反りを短時間で矯正することができる。また、捲回型電極群を作製する工程において生じていた電極の破断、巻きズレや皺・亀裂などの問題を解消することができるため、品質、生産効率に優れた電極の製造を実現することができる。   According to the second embodiment described above, the strip-shaped electrode plate that has been subjected to compression molding is arranged such that the current collector exposed portion is located at the stepped portion of the roller and the active material-containing layer is located at the recessed portion of the roller. Since the tension is applied in the long side direction of the belt-like electrode plate, the tension can be concentrated on the current collector exposed portion, and the current collector exposed portion can be sufficiently stretched by plastic deformation. Also, by making the step H of the step portion larger than 750%, it becomes possible to obtain a sufficient effect in an extremely short processing time, realizing a high-speed operation of the production line, and thus improving the production capacity in the correction process. I can do it. Therefore, the distortion and the curvature which arose in the electrode by compression molding can be corrected in a short time. In addition, it is possible to eliminate problems such as electrode breakage, winding misalignment, wrinkles, cracks, etc. that have occurred in the process of producing a wound electrode group, so that it is possible to manufacture electrodes with excellent quality and production efficiency. Can do.

以下に実施例を説明するが、実施形態の主旨を超えない限り、実施形態は以下に掲載される実施例に限定されるものでない。   Examples will be described below, but the embodiments are not limited to the examples listed below unless they exceed the gist of the embodiments.

(実施例1)
以下に、リチウムイオン二次電池用の正極および負極の実施例を示す。
Example 1
Examples of positive and negative electrodes for lithium ion secondary batteries are shown below.

正極活物質としてLiCoO2と、導電剤として黒鉛粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを混合し、これらを有機溶媒に分散させ、スラリーを調製した。得られたスラリーを集電体としての帯状アルミニウム箔に長辺一辺の両面を除いて塗布した後、乾燥することにより、帯状の正極板を作製した。 LiCoO 2 as a positive electrode active material, graphite powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder were mixed and dispersed in an organic solvent to prepare a slurry. The obtained slurry was applied to a strip-shaped aluminum foil as a current collector except for both sides of the long side, and then dried to prepare a strip-shaped positive electrode plate.

負極活物質としてLi4Ti512と、導電剤として炭素粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを混合し、これらを有機溶媒に分散させ、スラリーを調製した。得られたスラリーを集電体としての帯状アルミニウム箔に長辺一辺の両面を除いて塗布した後、乾燥することにより、帯状の負極板を作製した。 Li 4 Ti 5 O 12 as a negative electrode active material, carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder were mixed and dispersed in an organic solvent to prepare a slurry. The obtained slurry was applied to a strip-shaped aluminum foil as a current collector, excluding both sides of the long side, and then dried to prepare a strip-shaped negative electrode plate.

帯状の正極板、帯状の負極板それぞれについて、図1に示すプレス装置21で活物質含有層を圧縮した後、ガイドローラ装置22を経由して巻取り装置23によりフープ状に巻き取った。湾曲矯正装置を兼ねたガイドローラ243では、段部26と凹部27との境界Xに、集電体露出部25aと活物質含有層25bとの境界を位置させ、集電体露出部25aを段部26上に配置し、活物質含有層25bを凹部27に配置した。表1に、段部26の段差H、テーパーRを示す。また、プレス装置21による圧縮成形工程から巻取り装置23によりフープ状に巻き取られるまで、帯状の正極板、帯状の負極板それぞれの長手方向に引張張力(巻取り張力)が加わった。帯状の正極板、帯状の負極板それぞれの短辺方向に平行な断面での引張応力Fを下記表1に示す。帯状の正極板、帯状の負極板それぞれについて、湾曲矯正工程では加熱処理を行わず、室温(RT)雰囲気で湾曲矯正を行った。 Each of the belt-like positive electrode plate and the belt-like negative electrode plate was compressed into a hoop shape by the winding device 23 via the guide roller device 22 after compressing the active material-containing layer with the press device 21 shown in FIG. In the guide roller 24 3, which also serves as a bending straightening device, the boundary X between the stepped portion 26 and the recess 27, to position the boundary between the current collector exposed portion 25a and the active material-containing layer 25b, and collector-exposed portion 25a The active material-containing layer 25 b was disposed in the recess 27 on the stepped portion 26. Table 1 shows a step H and a taper R of the step portion 26. In addition, a tensile tension (winding tension) was applied in the longitudinal direction of each of the belt-like positive electrode plate and the belt-like negative electrode plate from the compression molding step by the press device 21 to the winding device 23 winding the hoop shape. Table 1 shows the tensile stress F in the cross section parallel to the short side direction of each of the belt-like positive electrode plate and the belt-like negative electrode plate. In each of the belt-like positive electrode plate and the belt-like negative electrode plate, the heat treatment was not performed in the curvature correction step, and the curvature correction was performed in a room temperature (RT) atmosphere.

巻取り装置23によりフープ状に巻き取った正極板及び負極板をそれぞれ、1mの長さに切り出し、歪み量を計測した。歪み量は、正極6の場合、図7に示すように、正極6の長さL(1m)と平行な地点と、正極6の最も湾曲した部分との最短距離Y1である。負極7の場合、負極7の長さL(1m)と平行な地点と、負極7の最も湾曲した部分との最短距離Y2を歪み量とする。歪み量の測定結果を表1に示す。 Each of the positive electrode plate and the negative electrode plate wound in a hoop shape by the winding device 23 was cut into a length of 1 m, and the amount of distortion was measured. In the case of the positive electrode 6, the amount of strain is the shortest distance Y 1 between a point parallel to the length L (1 m) of the positive electrode 6 and the most curved portion of the positive electrode 6, as shown in FIG. In the case of the negative electrode 7, the shortest distance Y 2 between a point parallel to the length L (1 m) of the negative electrode 7 and the most curved portion of the negative electrode 7 is defined as the strain amount. Table 1 shows the measurement results of the strain amount.

歪み量の測定後、正極と負極の間にセパレータを配置し、集電体露出部からなる正極集電タブを電極群の捲回軸方向にセパレータから突出させ、かつ集電体露出部からなる負極集電タブをこれとは反対方向にセパレータから突出させ、扁平形状に捲回することにより、図6に示す電極群を作製した。   After measuring the amount of strain, a separator is disposed between the positive electrode and the negative electrode, and a positive electrode current collecting tab made of a current collector exposed portion is protruded from the separator in the winding axis direction of the electrode group, and a current collector exposed portion is formed. The negative electrode current collection tab was protruded from the separator in the opposite direction, and wound into a flat shape to produce the electrode group shown in FIG.

(実施例2〜13および比較例1,2)
ガイドローラに設ける段部の段差H、テーパーR、帯状の正負極板の引張応力F、さらに電極の加熱温度Tの条件を表1に示した様にすること以外は、実施例1と同様にした。なお、比較例1では、ガイドローラに段部を設けず、電極の歪み、反りの矯正を一切行わなかった。また、加熱温度Tが「RT」と表示されているものは、室温(RT)雰囲気で湾曲矯正を行った。加熱温度Tに140℃と記載されている実施例13では、正負極板に140℃の加熱処理を施しながら湾曲矯正を行った。
(Examples 2 to 13 and Comparative Examples 1 and 2)
Similar to Example 1, except that the step H of the step provided on the guide roller, the taper R, the tensile stress F of the strip-like positive and negative plates, and the heating temperature T of the electrode are as shown in Table 1. did. In Comparative Example 1, the guide roller was not provided with a step portion, and no electrode distortion or warpage was corrected. In addition, when the heating temperature T is displayed as “RT”, the curvature was corrected in a room temperature (RT) atmosphere. In Example 13, in which the heating temperature T is 140 ° C., the straightening was performed while heating the positive and negative electrode plates at 140 ° C.

実施例及び比較例について、矯正加工の生産能力(加工に要するタクトタイム)を測定し、その結果を比較例2を1として表2に示す。また、電極群作製時の捲回工程における電極に起因して生じた不良(電極の捲きズレ)の発生率と、電極群作製時の捲回工程における生産能力(捲回工程に要するタクトタイム)とを測定し、これらの結果を比較例2を1として表2に示す。   About the Example and the comparative example, the production capacity (tact time required for the machining) of the straightening process was measured, and the result is shown in Table 2 as Comparative Example 2 being 1. Also, the rate of occurrence of defects (electrode misalignment) caused by electrodes in the winding process during electrode group production, and the production capacity (takt time required for the winding process) in the winding process during electrode group production These results are shown in Table 2 with Comparative Example 2 as 1.

さらに、電極群作製における捲回工程時の、皺、亀裂及び電極破断の有無を測定し、その結果を表2に示す。

Figure 2014035876
Furthermore, the presence or absence of wrinkles, cracks and electrode breaks during the winding process in electrode group production was measured, and the results are shown in Table 2.
Figure 2014035876

Figure 2014035876
Figure 2014035876

表1,2から明らかなように、実施例1〜13によると、正極歪み量及び負極歪み量の双方が、比較例1に比して小さくなることがわかる。また、実施例1〜13によると、電極作製時の電極破断、電極に生じる皺及び亀裂が皆無であり、電極に起因する電極群作製時の不良率が比較例1に比して小さい。一方、比較例2では、段部の段差が750%であるため、矯正加工及び捲回工程の双方の生産能力が実施例1に比して劣っていた。   As can be seen from Tables 1 and 2, according to Examples 1 to 13, both the positive electrode strain amount and the negative electrode strain amount are smaller than those of Comparative Example 1. Moreover, according to Examples 1-13, the electrode fracture at the time of electrode preparation, the wrinkles and crack which arise in an electrode are none, and the defect rate at the time of electrode group preparation resulting from an electrode is small compared with the comparative example 1. On the other hand, in Comparative Example 2, since the level difference of the step portion was 750%, the production capacity of both the straightening process and the winding process was inferior to that of Example 1.

実施例1〜4の比較から、段差Hが大きい方が、正負極の歪みが小さくなり、矯正加工及び捲回工程の双方の生産能力が高くなり、電極群作製時の不良率が小さくなる傾向を示すことがわかる。   From the comparison of Examples 1 to 4, the larger the difference in level H, the smaller the distortion of the positive and negative electrodes, the higher the production capacity of both the correction process and the winding process, and the lower the defect rate during electrode group production. It can be seen that

なお、前述した実施例では、捲回型の電極群に適用した例を説明したが、正極と負極をその間にセパレータを介在させながら交互に積層する、いわゆる積層型の電極群にも適用することができる。実施例によれば、圧縮成形で電極に生じた歪み及び反りを高い生産効率で矯正することができるため、正極と負極をその間にセパレータを介在させながら交互に積層することにより積層型の電極群を作製すると、正極及び負極に皺、亀裂及び破断が生じず、電極群作製における不良率を減少させることができる。   In addition, although the example applied to the wound electrode group has been described in the above-described embodiments, the present invention is also applicable to a so-called stacked electrode group in which the positive electrode and the negative electrode are alternately stacked with a separator interposed therebetween. Can do. According to the embodiment, the distortion and warpage generated in the electrode by compression molding can be corrected with high production efficiency. Therefore, the stacked electrode group is formed by alternately stacking the positive electrode and the negative electrode with a separator interposed therebetween. When the is manufactured, no flaws, cracks or breaks occur in the positive electrode and the negative electrode, and the defect rate in the electrode group manufacturing can be reduced.

以上述べた少なくとも一つの実施形態及び実施例によれば、段部の段差Hが750%を超えるローラを用い、圧縮成形が施された帯状極板を、集電体露出部がローラの段部に位置し、かつ活物質含有層がローラの凹部に位置するように配置し、帯状極板の長辺方向に張力を加えるため、張力を集電体露出部に集中させることができ、集電体露出部を塑性変形させて短時間のうちに十分に伸ばすことができる。これにより、帯状極板に加える張力を大幅に増加させることなく、圧縮成形で電極に生じた歪みや反りを高い生産効率で矯正することができる。また、電極群を作製する際の電極破断を防止することができる。   According to at least one embodiment and example described above, a belt-shaped electrode plate using a roller having a step H of more than 750% and a compression molding is used, and a current collector exposed portion is a step portion of the roller. And the active material containing layer is positioned so as to be located in the concave portion of the roller, and tension is applied in the long side direction of the strip electrode plate, so that the tension can be concentrated on the current collector exposed portion. The body-exposed portion can be plastically deformed and sufficiently extended in a short time. Thereby, the distortion and the curvature which arose in the electrode by compression molding can be corrected with high production efficiency, without increasing the tension | tensile_strength added to a strip | belt-shaped electrode plate significantly. In addition, it is possible to prevent electrode breakage during the production of the electrode group.

以上に実施形態及び実施例を説明したが、説明したものに限定されるものではない。例えば、活物質含有ペーストを塗布した厚さや重量、塗布部と未塗布部との比率、電極板の圧縮密度、または第二の工程の影響などに応じて、ガイドローラに設ける段部の段差や形状、引っ張り応力などを適宜変更することで同等の効果を得ることが出来る。さらに、活物質ペーストの塗布は連続であっても間欠であっても同等の効果が得ることが出来、電極の集電基材もアルミニウム箔に限定されるものではなく、その材質や厚み、引っ張り強度や硬度に応じて、前記した段差の高さや形状、引っ張り応力などを適宜変更することで、やはり同等の効果を得ることが出来る。   Although the embodiments and examples have been described above, the present invention is not limited to those described. For example, depending on the thickness and weight of the active material-containing paste applied, the ratio between the coated part and the uncoated part, the compression density of the electrode plate, or the influence of the second process, The same effect can be obtained by appropriately changing the shape, tensile stress, and the like. Furthermore, the active material paste can be applied continuously or intermittently, and the same effect can be obtained. The current collecting base material of the electrode is not limited to the aluminum foil, and its material, thickness, tension, etc. The same effect can also be obtained by appropriately changing the height and shape of the step, the tensile stress, etc. according to the strength and hardness.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…外装缶、2…蓋、3…正極出力端子、4…負極出力端子、5…電極群、6…正極、6a…正極集電タブ、6b…正極活物質含有層、7…負極、7a…負極集電タブ、7b…負極活物質含有層、8…セパレータ、9…安全弁、9a…凹部、9b…溝部、10…注液口、11…正極リード、12…負極リード、21…プレス装置、21a,21b…プレスロール、22…ガイドローラ装置、23…巻取り装置、241〜245…ガイドローラ、25…帯状極板、25a…集電体露出部、25b…活物質含有層、26…段部、27…凹部。 DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... Cover, 3 ... Positive electrode output terminal, 4 ... Negative electrode output terminal, 5 ... Electrode group, 6 ... Positive electrode, 6a ... Positive electrode current collection tab, 6b ... Positive electrode active material containing layer, 7 ... Negative electrode, 7a DESCRIPTION OF SYMBOLS ... Negative electrode current collection tab, 7b ... Negative electrode active material containing layer, 8 ... Separator, 9 ... Safety valve, 9a ... Recessed part, 9b ... Groove part, 10 ... Injection hole, 11 ... Positive electrode lead, 12 ... Negative electrode lead, 21 ... Press apparatus 21a, 21b ... press roll, 22 ... guide roller device, 23 ... winding device, 24 1 to 24 5 ... guide roller, 25 ... band electrode, 25a ... current collector exposed portion, 25b ... active material containing layer, 26: Stepped portion, 27: Recessed portion.

Claims (7)

帯状集電体と、前記帯状集電体の少なくとも一方の長辺に形成され、両面共に活物質含有層が存在しない集電体露出部と、前記帯状集電体の前記集電体露出部以外の少なくとも一部に形成された活物質含有層とを含む帯状極板の前記活物質含有層に、圧縮成形を施す工程と、
円周面から突出した段部と、前記段部に隣接する凹部とを有するローラ上に、前記帯状極板を、前記集電体露出部が前記段部に位置し、かつ前記活物質含有層が前記凹部に位置するように配置し、前記帯状極板の長辺方向に張力を加える工程と
を含み、
前記段部の段差が下記(1)式を満たすことを特徴とする電極の製造方法。
750<H (1)
但し、Hは、前記電極の前記活物質含有層の帯状集電体片面当たりの厚さを100%とした際の前記段差の大きさ(%)である。
Other than the current collector exposed portion of the belt-shaped current collector, the current collector exposed portion formed on at least one long side of the belt-shaped current collector and having no active material-containing layer on both sides, and the current collector exposed portion of the belt-shaped current collector A step of compression-molding the active material-containing layer of the strip electrode plate including an active material-containing layer formed on at least a part of
On the roller having a step protruding from the circumferential surface and a recess adjacent to the step, the strip electrode plate, the current collector exposed portion is located at the step, and the active material-containing layer Is disposed so as to be located in the concave portion, and includes a step of applying tension in the long side direction of the strip electrode plate,
The step of the step portion satisfies the following formula (1).
750 <H (1)
However, H is the size (%) of the step when the thickness of the active material-containing layer of the electrode per side of the strip-shaped current collector is 100%.
前記段部のテーパーR(mm)を、R≦15とすることを特徴とする請求項1記載の電極の製造方法。   2. The electrode manufacturing method according to claim 1, wherein a taper R (mm) of the stepped portion is set to R ≦ 15. 前記張力を加える工程での前記帯状極板の引張応力F(N/mm2)が、20≦F≦100を満たすことを特徴とする請求項2記載の電極の製造方法。 The electrode manufacturing method according to claim 2, wherein a tensile stress F (N / mm 2 ) of the strip electrode plate in the step of applying the tension satisfies 20 ≦ F ≦ 100. 前記張力を加える工程では、前記帯状極板に60℃以上150℃以下の温度で加熱処理が施されることを特徴とする請求項2記載の電極の製造方法。   3. The method for manufacturing an electrode according to claim 2, wherein in the step of applying the tension, the belt-shaped electrode plate is subjected to a heat treatment at a temperature of 60 ° C. or higher and 150 ° C. or lower. 前記活物質含有層は、前記帯状集電体の長手方向に連続的もしくは間欠的に形成されていることを特徴とする請求項3または4いずれか1項記載の電極の製造方法。   5. The electrode manufacturing method according to claim 3, wherein the active material-containing layer is formed continuously or intermittently in a longitudinal direction of the strip-shaped current collector. 前記帯状集電体は、アルミニウム箔、アルミニウム合金箔または銅箔であることを特徴とする請求項3または4いずれか1項記載の電極の製造方法。   5. The electrode manufacturing method according to claim 3, wherein the strip-shaped current collector is an aluminum foil, an aluminum alloy foil, or a copper foil. 6. 正極と、負極と、非水電解質とを備える電池の製造方法であって、
前記正極及び前記負極のうち少なくとも一方の電極が、請求項1〜6いずれか1項記載の方法で製造されることを特徴とする電池の製造方法。
A method for producing a battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
A battery manufacturing method, wherein at least one of the positive electrode and the negative electrode is manufactured by the method according to claim 1.
JP2012176339A 2012-08-08 2012-08-08 Electrode manufacturing method and battery manufacturing method Active JP6021508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176339A JP6021508B2 (en) 2012-08-08 2012-08-08 Electrode manufacturing method and battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176339A JP6021508B2 (en) 2012-08-08 2012-08-08 Electrode manufacturing method and battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2014035876A true JP2014035876A (en) 2014-02-24
JP6021508B2 JP6021508B2 (en) 2016-11-09

Family

ID=50284772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176339A Active JP6021508B2 (en) 2012-08-08 2012-08-08 Electrode manufacturing method and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6021508B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010684A (en) * 2015-06-18 2017-01-12 株式会社Gsユアサ Electric storage element
JP2017084697A (en) * 2015-10-30 2017-05-18 三洋電機株式会社 Method of manufacturing electrode plate and method of manufacturing secondary battery
JP2017142915A (en) * 2016-02-08 2017-08-17 トヨタ自動車株式会社 Method of manufacturing wound electrode body
KR20180009325A (en) * 2016-07-18 2018-01-26 주식회사 엘지화학 A method for manufacturing a current collector and an electrode for a electrochemical device
JP2018120772A (en) * 2017-01-26 2018-08-02 日立造船株式会社 Method for manufacturing all-solid type secondary battery
JP2020087613A (en) * 2018-11-20 2020-06-04 株式会社豊田自動織機 Manufacturing method of electrode
WO2020137436A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Method for manufacturing electrode
JP7413900B2 (en) 2020-04-02 2024-01-16 トヨタ自動車株式会社 Electrode plate manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113881A (en) * 1998-10-07 2000-04-21 Matsushita Electric Ind Co Ltd Electrode for battery, manufacture of the same, and manufacturing device for the same
JP2000251942A (en) * 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd Manufacture of nonaqueous electrolyte battery
JP2003100286A (en) * 2001-09-19 2003-04-04 Toyota Motor Corp Method and apparatus for manufacturing strip electrode
JP2005093236A (en) * 2003-09-17 2005-04-07 Toyota Motor Corp Manufacturing method of sheet electrode
JP2010225467A (en) * 2009-03-24 2010-10-07 Toyota Motor Corp Drying device of strip body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113881A (en) * 1998-10-07 2000-04-21 Matsushita Electric Ind Co Ltd Electrode for battery, manufacture of the same, and manufacturing device for the same
JP2000251942A (en) * 1999-03-01 2000-09-14 Matsushita Battery Industrial Co Ltd Manufacture of nonaqueous electrolyte battery
JP2003100286A (en) * 2001-09-19 2003-04-04 Toyota Motor Corp Method and apparatus for manufacturing strip electrode
JP2005093236A (en) * 2003-09-17 2005-04-07 Toyota Motor Corp Manufacturing method of sheet electrode
JP2010225467A (en) * 2009-03-24 2010-10-07 Toyota Motor Corp Drying device of strip body

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010684A (en) * 2015-06-18 2017-01-12 株式会社Gsユアサ Electric storage element
JP2017084697A (en) * 2015-10-30 2017-05-18 三洋電機株式会社 Method of manufacturing electrode plate and method of manufacturing secondary battery
US10553852B2 (en) 2015-10-30 2020-02-04 Sanyo Electric Co., Ltd. Method for manufacturing electrode and method for manufacturing secondary battery
JP2017142915A (en) * 2016-02-08 2017-08-17 トヨタ自動車株式会社 Method of manufacturing wound electrode body
KR20180009325A (en) * 2016-07-18 2018-01-26 주식회사 엘지화학 A method for manufacturing a current collector and an electrode for a electrochemical device
KR102094446B1 (en) * 2016-07-18 2020-05-27 주식회사 엘지화학 A method for manufacturing a current collector and an electrode for a electrochemical device
US10910629B2 (en) 2016-07-18 2021-02-02 Lg Chem, Ltd. Method for manufacturing electrode and current collector for electrochemical device
JP2018120772A (en) * 2017-01-26 2018-08-02 日立造船株式会社 Method for manufacturing all-solid type secondary battery
JP2020087613A (en) * 2018-11-20 2020-06-04 株式会社豊田自動織機 Manufacturing method of electrode
JP7151408B2 (en) 2018-11-20 2022-10-12 株式会社豊田自動織機 Electrode manufacturing method
WO2020137436A1 (en) * 2018-12-26 2020-07-02 パナソニックIpマネジメント株式会社 Method for manufacturing electrode
JP7413900B2 (en) 2020-04-02 2024-01-16 トヨタ自動車株式会社 Electrode plate manufacturing method

Also Published As

Publication number Publication date
JP6021508B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5596183B2 (en) Electrode manufacturing method and battery manufacturing method
JP6021508B2 (en) Electrode manufacturing method and battery manufacturing method
CN103891024B (en) Cell provided with spiral electrode, and method for manufacturing same
KR102079929B1 (en) Manufacturing Method for Electrodes Having Uniform Quality and Manufacturing Method for Electrode Assembly with the Same
US9455467B2 (en) Device for folding electrode assembly
JP5512057B2 (en) Cylindrical battery
JP6936670B2 (en) Separator for lithium-ion batteries
WO2013098970A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP2012174434A (en) Method for manufacturing battery
KR102198496B1 (en) Method for Preparation of Electrode Being Capable of Realizing Improved Welding Performance and Increased Electric Capacity Simultaneously
CN107210423B (en) Positive electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR102265741B1 (en) Manufacturing method for secondary battery and secondary battery manufactured by the same
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP2013030360A (en) Manufacturing method of electrode and manufacturing device of electrode
KR101879911B1 (en) Method for Production of Curved-Shaped Battery Cell
WO2019098056A1 (en) Lithium ion secondary battery
WO2019082575A1 (en) Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery
JP7116895B2 (en) Manufacturing method of wound electrode body
JP2005093186A (en) Cylindrical battery armoring can, nonaqueous electrolyte battery using it, and manufacturing method of nonaqueous electrolyte battery
JP2008226555A (en) Nonaqueous electrolyte battery
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP7035702B2 (en) Lithium ion secondary battery
JP5556252B2 (en) Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
JP2017010787A (en) Cylindrical battery
KR102164576B1 (en) Method Preparing Electrode Assembly And Electrode Assembly Prepared Using the Same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R151 Written notification of patent or utility model registration

Ref document number: 6021508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151