JP2014034493A5 - - Google Patents

Download PDF

Info

Publication number
JP2014034493A5
JP2014034493A5 JP2012176848A JP2012176848A JP2014034493A5 JP 2014034493 A5 JP2014034493 A5 JP 2014034493A5 JP 2012176848 A JP2012176848 A JP 2012176848A JP 2012176848 A JP2012176848 A JP 2012176848A JP 2014034493 A5 JP2014034493 A5 JP 2014034493A5
Authority
JP
Japan
Prior art keywords
hydrogen
argon gas
reaction
amount
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012176848A
Other languages
Japanese (ja)
Other versions
JP2014034493A (en
JP5896467B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012176848A priority Critical patent/JP5896467B2/en
Priority claimed from JP2012176848A external-priority patent/JP5896467B2/en
Priority to KR1020130053013A priority patent/KR102035870B1/en
Priority to CN201310183012.8A priority patent/CN103569979B/en
Priority to TW102117621A priority patent/TWI569864B/en
Publication of JP2014034493A publication Critical patent/JP2014034493A/en
Publication of JP2014034493A5 publication Critical patent/JP2014034493A5/ja
Application granted granted Critical
Publication of JP5896467B2 publication Critical patent/JP5896467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

水素添加装置4は、ガス抽出口3dと水素添加口3eを介して反応装置3に接続される。すなわち水素添加装置4は、例えば高圧水素ボンベにより構成される水素供給源4aと、アルゴンガスの酸素濃度を求める分析器4bと、分析器4bにより求めた酸素濃度に応じて水素供給源4aから供給される水素量を調整する水素量調整器4cを有する。分析器4bはガス抽出口3dに接続され、ガス抽出口3dから抽出された接続領域3Cにおけるアルゴンガスの酸素濃度を求める。水素供給源4aは水素量調整器4cを介して水素添加口3eに接続される。水素量調整器4cは、例えば水素供給源4aと水素添加口3eとを接続する配管の開度を流量制御バルブ等により調整することで、水素供給源4aから供給される水素量を分析器4bにより求められた酸素濃度に応じて調整する。この調により、アルゴンガスに水素添加口3eから添加される水素量が、第1反応領域3Aでの反応によりアルゴンガスに残留する酸素の全てと反応するのに必要な化学量論量未満とされる。これにより、第1反応工程の実行によりアルゴンガスに残留する酸素の全てと反応するのに必要な化学量論量未満の水素を、水素添加装置4によりアルゴンガスに添加する水素添加工程が実行される。本実施形態では、水素添加工程においてアルゴンガスに添加する水素量は、第1反応工程の実行によりアルゴンガスに残留する酸素の全てと反応するのに必要な化学量論量の95%以上100%未満とされる。すなわち、この水素添加によりアルゴンガスにおける水素モル濃度は酸素モル濃度の1.9倍以上、2倍未満とされる。 The hydrogen addition device 4 is connected to the reaction device 3 through a gas extraction port 3d and a hydrogen addition port 3e. That is, the hydrogen adding device 4 is supplied from a hydrogen supply source 4a configured by, for example, a high-pressure hydrogen cylinder, an analyzer 4b for determining the oxygen concentration of argon gas, and a hydrogen supply source 4a according to the oxygen concentration determined by the analyzer 4b. A hydrogen amount adjuster 4c for adjusting the amount of hydrogen produced. The analyzer 4b is connected to the gas extraction port 3d, and obtains the oxygen concentration of the argon gas in the connection region 3C extracted from the gas extraction port 3d. The hydrogen supply source 4a is connected to the hydrogen addition port 3e via the hydrogen amount regulator 4c. The hydrogen amount adjuster 4c adjusts the amount of hydrogen supplied from the hydrogen supply source 4a by, for example, adjusting the opening of a pipe connecting the hydrogen supply source 4a and the hydrogen addition port 3e with a flow control valve or the like. It adjusts according to the oxygen concentration calculated | required by. This adjustment, the amount of hydrogen added from hydrogenated port 3e in argon gas, with less than stoichiometric amount required to react with all of the oxygen remaining in the argon gas by the reaction in the first reaction zone 3A Is done. As a result, a hydrogen addition step of adding less than the stoichiometric amount of hydrogen necessary to react with all of the oxygen remaining in the argon gas by the execution of the first reaction step to the argon gas is executed. The In the present embodiment, the amount of hydrogen added to the argon gas in the hydrogen addition step is 95% or more and 100% of the stoichiometric amount necessary to react with all of the oxygen remaining in the argon gas by performing the first reaction step. Less than. That is, by this hydrogen addition, the hydrogen molar concentration in the argon gas is made 1.9 times or more and less than 2 times the oxygen molar concentration.

図3は、反応装置3の変形例を示す。上記実施形態との相違は、反応装置3は第1反応容器3′、第2反応容器3′、及び第1反応容器3′と第2反応容器3′を接続する配管3c′を有する。第1反応容器3′内が第1反応領域3Aとされ、第2反応容器3′内が第2反応領域3Bとされ、配管3c′内が接続領域3Cとされ、接続領域3Cには触媒が充填されない。水素添加口3eは接続領域3Cに通じるように配置される。他は上記実施形態と同様とされる。 FIG. 3 shows a modification of the reaction device 3. The difference from the above embodiment is that the reactor 3 includes a first reaction vessel 3 b ′, a second reaction vessel 3 a ′, and a pipe 3 c ′ connecting the first reaction vessel 3 b ′ and the second reaction vessel 3 a ′. Have The inside of the first reaction vessel 3 b ′ is the first reaction region 3A, the inside of the second reaction vessel 3 a ′ is the second reaction region 3B, the inside of the pipe 3c ′ is the connection region 3C, The catalyst is not filled. The hydrogen addition port 3e is disposed so as to communicate with the connection region 3C. The rest is the same as in the above embodiment.

図4は本発明の変形例に係る精製装置α′を示す。本変形例においては、加熱器2に接続される活性炭吸着塔22が設けられ、活性炭吸着塔22に、アルゴンガスに含まれる炭化水素の一部と油分を吸着する活性炭が収容されている。ガス送り手段7により、供給源1から供給されるアルゴンガスが回収され、除塵用フィルター21、活性炭吸着塔22を介して加熱器2に導入される。この変形例は、アルゴンガスが不純物として当初から含有する酸素、水素、一酸化炭素、窒素に加え、第1反応工程前に付加される炭化水素および油分を含有し、当初から含有する酸素の量が、当初から含有する水素、一酸化炭素、および付加された炭化水素の全てと反応するのに必要な化学量論量よりも多い場合に対応できる。
FIG. 4 shows a purification apparatus α ′ according to a modification of the present invention. In this modification, an activated carbon adsorption tower 22 connected to the heater 2 is provided, and activated carbon that adsorbs part of hydrocarbons and oil contained in argon gas is accommodated in the activated carbon adsorption tower 22 . Argon gas supplied from the supply source 1 is recovered by the gas feeding means 7 and introduced into the heater 2 via the dust removal filter 21 and the activated carbon adsorption tower 22. This modified example contains oxygen, hydrogen, carbon monoxide and nitrogen originally contained as an impurity in the argon gas as well as hydrocarbons and oils added before the first reaction step, and the amount of oxygen contained from the beginning. Is greater than the stoichiometric amount required to react with all of the initially contained hydrogen, carbon monoxide, and added hydrocarbons.

JP2012176848A 2012-08-09 2012-08-09 Argon gas purification method and purification apparatus Active JP5896467B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012176848A JP5896467B2 (en) 2012-08-09 2012-08-09 Argon gas purification method and purification apparatus
KR1020130053013A KR102035870B1 (en) 2012-08-09 2013-05-10 Purifying method and purifying apparatus for argon gas
CN201310183012.8A CN103569979B (en) 2012-08-09 2013-05-16 The purification process and purification devices of argon gas
TW102117621A TWI569864B (en) 2012-08-09 2013-05-17 Purifying method and purifying apparatus for argon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176848A JP5896467B2 (en) 2012-08-09 2012-08-09 Argon gas purification method and purification apparatus

Publications (3)

Publication Number Publication Date
JP2014034493A JP2014034493A (en) 2014-02-24
JP2014034493A5 true JP2014034493A5 (en) 2015-08-27
JP5896467B2 JP5896467B2 (en) 2016-03-30

Family

ID=50042791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176848A Active JP5896467B2 (en) 2012-08-09 2012-08-09 Argon gas purification method and purification apparatus

Country Status (4)

Country Link
JP (1) JP5896467B2 (en)
KR (1) KR102035870B1 (en)
CN (1) CN103569979B (en)
TW (1) TWI569864B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159094A (en) 2014-02-25 2015-09-03 矢崎総業株式会社 connection terminal
JP6304089B2 (en) * 2015-03-24 2018-04-04 信越半導体株式会社 Argon gas purification method and argon gas recovery and purification apparatus
KR101954809B1 (en) * 2018-04-30 2019-06-11 티이엠씨 주식회사 A method and an apparatus for recovering high purity Ne from gas mixture
CN108557787A (en) * 2018-06-29 2018-09-21 上海联风能源科技有限公司 A kind of recycling crude argon method of purification again
JP7453781B2 (en) * 2019-12-13 2024-03-21 三菱重工業株式会社 Gas supply equipment for manufacturing equipment, atomization equipment, 3D additive manufacturing equipment, and additive manufacturing systems
CN115432678B (en) * 2021-04-21 2023-12-29 上海联风能源科技有限公司 Preparation method of high-purity argon

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488893A (en) * 1977-12-26 1979-07-14 Nippon Oxygen Co Ltd Method of purifying inert gas
JPS61163106A (en) * 1985-01-11 1986-07-23 Hitachi Ltd Process and device for recovering inert gas
KR910001996B1 (en) * 1985-02-09 1991-03-30 가부시기가이샤 히다찌 세이사꾸쇼 Inert gas recovering method and apparatus
JP3496079B2 (en) * 1993-11-17 2004-02-09 日本酸素株式会社 Method and apparatus for purifying argon gas
JPH1183309A (en) * 1997-09-04 1999-03-26 Nippon Air Rikiide Kk Argon refining method and argon refining device
JP3737900B2 (en) * 1999-02-10 2006-01-25 エア・ウォーター株式会社 Purification method of exhaust gas argon from single crystal production furnace
US7645431B2 (en) * 2007-10-23 2010-01-12 Air Products And Chemicals, Inc. Purification of noble gases using online regeneration of getter beds
US7862645B2 (en) * 2008-02-01 2011-01-04 Air Products And Chemicals, Inc. Removal of gaseous contaminants from argon
JP2009234868A (en) * 2008-03-27 2009-10-15 Nippon Steel Corp Apparatus and method for purifying argon gas
TWI476038B (en) * 2010-02-10 2015-03-11 Sumitomo Seika Chemicals Purifying method and purifying apparatus for argon gas
TWI478761B (en) * 2010-02-25 2015-04-01 Sumitomo Seika Chemicals Purifying method and purifying apparatus for argon gas
JP2012106904A (en) * 2010-10-29 2012-06-07 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP5500650B2 (en) * 2010-11-10 2014-05-21 住友精化株式会社 Argon gas purification method and purification apparatus

Similar Documents

Publication Publication Date Title
JP2014034493A5 (en)
US9067169B2 (en) Methods of preparing an impurity-depleted hydrogen stream, methods of analyzing content of an impurity-depleted hydrogen stream, and pressure swing adsorption apparatuses
EP2679284A3 (en) Chemical oxygen generator with bimetal reaction control
PL2257372T3 (en) Method for regenerating a ruthenium- or ruthenium compound-containing catalyst which is contaminated with sulfur in the form of sulfur compounds
PH12014501550B1 (en) Process and system for generating synthesis gas
WO2013017664A3 (en) Method for oxidatively converting gaseous alkanes in a fluidized bed membrane reactor and a reactor for performing said method
TW201130189A (en) Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
PL2027063T3 (en) Method for producing chlorine by gas phase oxidation
MX2014013670A (en) Multi-stage synthesis method with synthesis gas.
IN2014KN01316A (en) Device and method for reforming natural gas
GB0611485D0 (en) Method
MY146536A (en) Removal of carbon dioxide from a gas stream
WO2010006386A3 (en) Catalytic co2 methanation process
MY158208A (en) Method and system for synthesizing liquid hydrocarbon compounds
EA201290112A1 (en) METHOD FOR OBTAINING A SUSPENSION, A DEVICE FOR OBTAINING A SUSPENSION, A REACTOR FOR THE SYNTHESIS OF HYDROCARBONS AND A REACTION SYSTEM FOR THE SYNTHESIS OF HYDROCARBONS
MX351388B (en) A method for upgrading a gas.
TN2015000230A1 (en) Integrated system and method for the flexible use of electricity
MX2014005911A (en) Direct-reduced iron production system.
PH12016502584A1 (en) Gas concentration method
Zhu et al. CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas
EA201400499A1 (en) METHOD FOR PROCESSING OF FISHER-TROPSHA OUTFLOW GAS SYNTHESIS
RU2018141224A (en) METHOD FOR IMPLEMENTING THE REACTION OF THE OXYGEN-CONTAINING REGENERATED CATALYST BEFORE ITS APPLICATION IN THE REACTOR WITH A PEDIODE-LIQUIDED LAYER
MY160494A (en) Method for separation of methane and nitrogen
MY183059A (en) Natural gas treatment method for minimizing ethane loss
SA518391293B1 (en) Method for Removing Pollution from Water by Adsorption on Activated Carbon