JP2014032730A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2014032730A
JP2014032730A JP2012174348A JP2012174348A JP2014032730A JP 2014032730 A JP2014032730 A JP 2014032730A JP 2012174348 A JP2012174348 A JP 2012174348A JP 2012174348 A JP2012174348 A JP 2012174348A JP 2014032730 A JP2014032730 A JP 2014032730A
Authority
JP
Japan
Prior art keywords
magnetic
wire
recording medium
thin
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012174348A
Other languages
Japanese (ja)
Other versions
JP5947657B2 (en
Inventor
Mitsunobu Okuda
光伸 奥田
Yasuyoshi Miyamoto
泰敬 宮本
Naoto Hayashi
直人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2012174348A priority Critical patent/JP5947657B2/en
Publication of JP2014032730A publication Critical patent/JP2014032730A/en
Application granted granted Critical
Publication of JP5947657B2 publication Critical patent/JP5947657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium in which a magnetic fine line is defined as a track as the recording region of data, and the supply of pulse currents allows the shift movement of a magnetic domain in a direction of a fine line in the track, and which is capable of increasing recording density regardless of working accuracy.SOLUTION: A magnetic fine line 1 of a magnetic recording medium is divided into two tracks Tr1 and Tr2 in a direction of fine line thickness by a groove part 1d extended in a direction of the fine line, and a plurality of magnetic domains are continuously generated in the direction of the fine line in each of the tracks Tr1 and Tr2. In the magnetic fine line 1, the adjacent magnetic domains generated in each of the tracks Tr1 and Tr2 are prevented from being moved to the adjacent track since a magnetic wall for partitioning those magnetic domains from each other is locked by the groove part 1d, and DC pulse currents to be supplied to the magnetic fine line 1 allows the shift movement of the magnetic domains only in a direction of the fine line.

Description

本発明は、トラックが細線状の磁性体で形成された磁気記録媒体に関する。   The present invention relates to a magnetic recording medium in which a track is formed of a thin linear magnetic material.

ハードディスクドライブ(HDD)等の記憶装置は、扱われる情報量の増大に伴い、高記録密度化ならびに記録や再生の高速化が進められている。高記録密度化に伴い、HDD等に使用される磁気ディスク等の記録媒体のトラックは狭ピッチ化し、さらにトラックにおける1データ(1ビット)分の長さは短くなり、このような微小な領域の磁気を検出するために、記録・再生方式はGMR(Giant MagnetoResistance:巨大磁気抵抗効果)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子のような磁気抵抗効果素子からなる磁気ヘッドによる磁気方式、あるいはレーザー光の照射による光磁気方式が適用されている。   In storage devices such as hard disk drives (HDD), with the increase in the amount of information to be handled, higher recording density and higher speed of recording and reproduction are being promoted. As the recording density is increased, the tracks of recording media such as magnetic disks used for HDDs are narrowed, and the length of one data (1 bit) in the track is shortened. In order to detect magnetism, a recording / reproducing method is a magnetic method using a magnetic head composed of a magnetoresistive effect element such as a GMR (Giant MagnetoResistance) element or a TMR (Tunnel MagnetoResistance) element, or A magneto-optical method using laser light irradiation is applied.

このような磁気ディスクにおける記録および再生は、ディスクをスピンドルモータで回転駆動させ、磁気ヘッドやレーザー光の照射スポットをディスクの径方向のみに移動させることで、トラックに沿って(ディスクの周方向に)所定方向に磁化する(記録する)、または磁気を検出する(再生する)。このようなディスクにおいて記録および再生を高速化するためには、ディスクの回転速度を速くすることが第一に挙げられる。しかし、記録においてはトラックの磁化に要する時間、再生においては磁気の検出に要する時間、さらにディスクの振動による誤動作等の問題から、回転速度の高速化には限界がある。   Recording and reproduction on such a magnetic disk are carried out along the track (in the circumferential direction of the disk) by rotating the disk with a spindle motor and moving the magnetic head or the laser beam irradiation spot only in the radial direction of the disk. ) Magnetize (record) in a predetermined direction, or detect (reproduce) magnetism. In order to increase the speed of recording and reproduction in such a disc, firstly, the rotational speed of the disc is increased. However, there is a limit to increasing the rotational speed due to problems such as the time required for track magnetization during recording, the time required for magnetic detection during reproduction, and malfunctions due to disk vibration.

そこで、記録媒体を駆動させずに記録されているデータを移動する方法として、特許文献1には、細線状の磁性体(以下、適宜磁性細線)をU字型等に形成してトラックとしたメモリデバイスが開示されている。これは、磁性体を細線状に形成すると、その長さ方向に磁区が生成し、さらに当該長さ方向に電流を供給すると磁区同士を区切るように生成している磁壁がすべて磁性細線の長さ方向に等距離移動する、シフト移動を行う特性を利用したものである(非特許文献1,2参照)。すなわち、特許文献1に記載されたメモリデバイスは、トラック(磁性細線)上の所定の一箇所(特許文献1ではU字型の頂部)に記録用および再生用の各磁気ヘッドを固定し、トラック両端から電流を可逆的に供給して磁壁に挟まれた所望の磁区を磁気ヘッドに対向する位置に移動させる。   Therefore, as a method of moving recorded data without driving the recording medium, Patent Document 1 discloses that a track is formed by forming a thin wire-like magnetic body (hereinafter appropriately magnetic thin wire) into a U-shape or the like. A memory device is disclosed. This is because when a magnetic material is formed in a thin wire shape, magnetic domains are generated in the length direction, and when a current is further supplied in the length direction, all the domain walls generated to separate the magnetic domains are the length of the magnetic wire. This utilizes the characteristic of shifting in the same distance in the direction (see Non-Patent Documents 1 and 2). That is, in the memory device described in Patent Document 1, each of the recording and reproducing magnetic heads is fixed at a predetermined position on the track (magnetic thin wire) (the U-shaped top portion in Patent Document 1). Current is reversibly supplied from both ends to move a desired magnetic domain sandwiched between the domain walls to a position facing the magnetic head.

また、特許文献2〜5には、現行の磁気ディスク等のトラックのように複数の磁性細線を同心円状に形成した磁気記録媒体が開示されている。これらの方法においては、磁性体の形状(線幅等)や供給する電流により異なるが、磁壁の移動速度は数十m/sから約250m/sと極めて高速であるので、現行のディスクの回転による再生速度を超えることが期待される。   Patent Documents 2 to 5 disclose magnetic recording media in which a plurality of magnetic thin wires are formed concentrically like a track such as a current magnetic disk. These methods vary depending on the shape of the magnetic material (line width, etc.) and the current to be supplied, but the moving speed of the domain wall is extremely high, from several tens m / s to about 250 m / s. It is expected to exceed the playback speed by.

米国特許第6834005号明細書US Pat. No. 6,834,005 特開2011−100517号公報JP 2011-1000051 A 特開2011−123943号公報JP 2011-123943 A 特開2012−84206号公報JP 2012-84206 A 特開2012−53957号公報JP 2012-53957 A

T. Koyama et al., “Control of Domain Wall Position by Electrical Current in Structured Co/Ni Wire with Perpendicular Magnetic Anisotropy”, Appl. Phys. Express, 2008, Volume 1, Issue 10, pp.101303T. Koyama et al., “Control of Domain Wall Position by Electrical Current in Structured Co / Ni Wire with Perpendicular Magnetic Anisotropy”, Appl. Phys. Express, 2008, Volume 1, Issue 10, pp.101303 Xin Jiang et al., “Enhanced stochasticity of domain wall motion in magnetic racetracks due to dynamic pinning”, Nature Communications, 2010, Volume 1, pp.1-5Xin Jiang et al., “Enhanced stochasticity of domain wall motion in magnetic racetracks due to dynamic pinning”, Nature Communications, 2010, Volume 1, pp.1-5

磁気記録媒体はさらなる高記録密度化が求められ、その1つとしてトラックの狭ピッチ化が挙げられる。しかしながら、特許文献2〜5のような磁区のシフト移動による高速再生を可能とする磁気記録媒体は、磁性細線を1本のトラックとして細線幅方向を単磁区とするために、また電流を供給されて駆動するので、磁性細線を1本ずつ離間して設けて間を絶縁する必要がある。したがって、磁気記録媒体のトラックピッチ、すなわちトラック(磁性細線)幅およびトラック間距離は、リソグラフィ技術やエッチング技術における加工精度により規制される。   Magnetic recording media are required to have a higher recording density, and one example is a narrower track pitch. However, the magnetic recording media that enable high-speed reproduction by magnetic domain shift movement as in Patent Documents 2 to 5 are supplied with current in order to make the magnetic wire a single track and the magnetic wire width direction as a single magnetic domain. Therefore, it is necessary to insulate the magnetic wires by providing them one by one apart. Accordingly, the track pitch of the magnetic recording medium, that is, the track (magnetic fine wire) width and the distance between the tracks is regulated by the processing accuracy in the lithography technique and the etching technique.

本発明は前記問題点に鑑み創案されたもので、磁性細線で形成したトラック内で磁区をシフト移動させる磁気記録媒体について、加工精度によらずに高記録密度化の可能なものを提供することが課題である。   The present invention was devised in view of the above problems, and provides a magnetic recording medium for shifting a magnetic domain within a track formed of magnetic thin wires, which can increase the recording density regardless of processing accuracy. Is an issue.

前記課題を解決するために、本発明者らは、磁性細線について、磁区のシフト移動における移動ズレを防止するために、括れ(ノッチ)等を形成したり、局所的に飽和磁化を高くすることで、電流停止時に定位置に磁壁を係止させていることに着目した(例えば、特許文献1,2,4参照)。これは、細線状等の簡素な形状の磁性体は、疵や屈曲等の微小な変形箇所や、飽和磁化等の磁気特性が局所的に異なる箇所があると、その部分に磁壁が生成し易く、また係止され易いことによる。このことから、本発明者らは、磁性細線を、細線方向に沿った溝等で細線幅方向に区切ることで、従来は1トラックを構成していた1本の磁性細線に2以上のトラックを設けることを見出した。   In order to solve the above-mentioned problems, the inventors of the present invention form a constriction (notch) or the like to locally increase the saturation magnetization in order to prevent a shift in the magnetic domain shift movement. Thus, attention is paid to the fact that the domain wall is locked at a fixed position when the current is stopped (for example, see Patent Documents 1, 2, and 4). This is because a magnetic material with a simple shape such as a thin wire has a domain wall easily generated in a part where there is a minute deformation part such as a wrinkle or a bend, or a part where magnetic characteristics such as saturation magnetization are locally different. Also, it is easy to be locked. From this, the present inventors divided two or more tracks into one magnetic thin wire that conventionally constituted one track by dividing the magnetic fine wire in the thin wire width direction by a groove or the like along the thin wire direction. I found it to be provided.

すなわち本発明に係る磁気記録媒体は、基板上に磁性体を細線状に形成してなる1以上の磁性細線を備えて、2値のデータをそれぞれ異なる磁化方向として前記磁性細線に記録されて磁区が生成されるものに関する。本発明に係る第1の磁気記録媒体は、前記磁性細線が、細線幅方向に区切る境界の1箇所以上に、上面および下面の少なくとも一方が細線方向に延びた溝状または畝状のいずれかに形成された連続記録領域区切部を設けられている。そして、磁気記録媒体は、前記磁性細線が、前記連続記録領域区切部を境界として細線幅方向に分割された領域のそれぞれにおいて、複数の前記磁区が細線方向に連続して生成し、電流が供給されることにより、すべての前記分割された領域において、前記磁区同士を区切る磁壁が細線方向に移動することを特徴とする。   That is, the magnetic recording medium according to the present invention comprises one or more magnetic wires formed by forming a magnetic material on a substrate in a thin line shape, and binary data is recorded on the magnetic wires as different magnetization directions, respectively. On what is generated. In the first magnetic recording medium according to the present invention, at least one of the upper surface and the lower surface of the magnetic fine wire extends in the fine line direction at one or more boundaries of the fine wire in the fine wire width direction. A formed continuous recording area delimiter is provided. In the magnetic recording medium, a plurality of the magnetic domains are continuously generated in the thin line direction in each of the regions where the magnetic thin line is divided in the thin line width direction with the continuous recording region delimiter as a boundary, and current is supplied. Thus, in all the divided regions, the domain walls separating the magnetic domains move in the thin line direction.

また、本発明に係る第2の磁気記録媒体は、前記磁性細線が、細線幅方向に区切る境界の1箇所以上に、他の領域と飽和磁化の高さが異なる連続記録領域区切部が細線方向に延設されている。そして、磁気記録媒体は、前記磁性細線が、前記連続記録領域区切部を境界として細線幅方向に分割された領域のそれぞれにおいて、複数の前記磁区が細線方向に連続して生成し、電流が供給されることにより、すべての前記分割された領域において、前記磁区同士を区切る磁壁が細線方向に移動することを特徴とする。   Further, in the second magnetic recording medium according to the present invention, a continuous recording area delimiter having a saturation magnetization height different from that of the other areas is provided in one or more positions where the magnetic thin line delimits in the thin line width direction. It is extended to. In the magnetic recording medium, a plurality of the magnetic domains are continuously generated in the thin line direction in each of the regions where the magnetic thin line is divided in the thin line width direction with the continuous recording region delimiter as a boundary, and current is supplied. Thus, in all the divided regions, the domain walls separating the magnetic domains move in the thin line direction.

かかる構成により、第1、第2の磁気記録媒体は、1本の磁性細線が細線幅方向に2以上の領域に分割され、それぞれの領域をいわゆるトラックとしてデータを連続して記録されることができ、磁性細線の微細加工によらずに、面積あたりのトラック数すなわち記録密度を向上させることができる。   With this configuration, in the first and second magnetic recording media, one magnetic wire is divided into two or more regions in the thin wire width direction, and data is continuously recorded using each region as a so-called track. In addition, the number of tracks per area, that is, the recording density can be improved without using fine processing of the magnetic wire.

さらに、本発明に係る第1、第2の磁気記録媒体は、前記磁性細線が、細線方向に区切る境界の1箇所以上に、前記電流の停止時に前記磁壁を係止するように、細線方向に垂直な断面の形状が他の領域と異なる変形部、または、飽和磁化の高さが他の領域と異なる飽和磁化変異部が設けられていてもよい。   Furthermore, in the first and second magnetic recording media according to the present invention, the magnetic fine wires are arranged in the fine line direction so that the magnetic walls are locked at one or more boundaries of the fine line direction when the current is stopped. There may be provided a deformed portion having a vertical cross-sectional shape different from that of another region, or a saturation magnetization variation portion having a saturation magnetization height different from that of the other region.

かかる構成により、パルス電流における電流停止時に、磁性細線に予め設けられた変形部または飽和磁化変異部に磁壁が到達して停止するので、パルス電流による磁区のシフト移動において、微小な移動ズレの累積によるエラー等を防止することができる。   With this configuration, when the current in the pulse current is stopped, the domain wall reaches the deformed portion or saturation magnetization mutated portion provided in advance on the magnetic wire and stops, so that a small amount of displacement is accumulated in the shift of the magnetic domain due to the pulse current. It is possible to prevent errors caused by

本発明に係る磁気記録媒体によれば、磁性細線の加工限界によらずに1本のトラックを幅狭にして搭載本数を増大させて、高記録密度化することができる。   According to the magnetic recording medium of the present invention, it is possible to increase the recording density by narrowing one track and increasing the number of mounted tracks regardless of the processing limit of the magnetic wire.

本発明に係る磁気記録媒体の模式図であり、(a)は平面図、(b)は第1実施形態に係る磁気記録媒体の部分段面図で、(a)のA−A線矢視断面図に相当する。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the magnetic recording medium which concerns on this invention, (a) is a top view, (b) is a partial step | plane view of the magnetic recording medium which concerns on 1st Embodiment, and is the AA line arrow of (a). It corresponds to a sectional view. 本発明に係る磁気記録媒体の構成を説明する磁性細線の斜視図である。It is a perspective view of a magnetic wire explaining the configuration of the magnetic recording medium according to the present invention. 本発明に係る磁気記録媒体の磁性細線におけるデータ書込および磁区の移動を説明するための模式図で、平面図である。It is a schematic diagram for demonstrating the data writing in the magnetic fine wire of the magnetic recording medium based on this invention, and the movement of a magnetic domain, and is a top view. 図1(a)のA−A線矢視断面図に相当する部分断面図であり、(a)は第1実施形態の変形例に係る磁気記録媒体の模式図、(b)は第2実施形態に係る磁気記録媒体の模式図である。It is a fragmentary sectional view equivalent to the AA line arrow sectional view of Drawing 1 (a), (a) is a mimetic diagram concerning a modification of a 1st embodiment, and (b) is a 2nd implementation. It is a schematic diagram of the magnetic recording medium which concerns on a form. 図1(a)のA−A線矢視断面図に相当する部分断面図であり、(a)は第3実施形態に係る磁気記録媒体の模式図、(b)は第3実施形態の変形例に係る磁気記録媒体の模式図、(c)は第3実施形態の別の変形例に係る磁気記録媒体の模式図である。It is a fragmentary sectional view equivalent to an AA line arrow sectional view of Drawing 1 (a), (a) is a mimetic diagram of a magnetic recording medium concerning a 3rd embodiment, and (b) is a modification of a 3rd embodiment. FIG. 6C is a schematic diagram of a magnetic recording medium according to another example of the third embodiment, and FIG. 実施例の磁性細線のサンプルの写真であり、(a)は原子間力顕微鏡像写真、(b)は磁気力顕微鏡像写真である。It is a photograph of the sample of the magnetic fine wire of an Example, (a) is an atomic force microscope image photograph, (b) is a magnetic force microscope image photograph. 実施例の磁性細線のサンプルの写真であり、(a)は原子間力顕微鏡像写真、(b)は磁気力顕微鏡像写真である。It is a photograph of the sample of the magnetic fine wire of an Example, (a) is an atomic force microscope image photograph, (b) is a magnetic force microscope image photograph. 点状の凹みを形成された磁性細線のサンプルの写真であり、(a)は原子間力顕微鏡像写真、(b)は磁気力顕微鏡像写真である。It is a photograph of the sample of the magnetic fine wire in which the dot-like dent was formed, (a) is an atomic force microscope image photograph, (b) is a magnetic force microscope image photograph.

以下、本発明に係る磁気記録媒体を実現するための形態について図面を参照して説明する。   Hereinafter, embodiments for realizing a magnetic recording medium according to the present invention will be described with reference to the drawings.

[第1実施形態]
本発明の第1実施形態に係る磁気記録媒体10は、図1(a)に示すように、円盤(円環)形状の基板2上に、磁性体を細線状に形成してなる磁性細線1をデータの記録(格納)領域として備える。この磁性細線1には、後記するように、2値のデータすなわち「0」または「1」のデータを異なる2方向の磁化のいずれかとして記録される。磁気記録媒体10において、磁性細線1,1,…は、平面視で互いに絶縁層6を挟んで離間して同心円状に基板2上に形成されている。詳しくは、1本の磁性細線1は、平面視で円環の一部を欠いたC字型に形成されている。なお、図1(a)においては、磁性細線1を6本に省略して、外周と内周の中間部を空白で示すが、実用的には磁性細線1は幅および間隔(ピッチ)が外形(基板2)に対して極めて小さく形成され、一定のピッチで設けられる。さらに、磁気記録媒体10は、磁性細線1の一端と他端に、正電極31と負電極32を接続して備える。このように、本実施形態において、磁気記録媒体10は、円盤形状の基板2をベースとしてその外形が現行の磁気ディスク等と同様に円盤形状であるので、適宜、磁気ディスク10と称する。そして、磁気記録媒体10は、現行の磁気ディスクと同様に、記録用、再生用の磁気ヘッド等を備えた記録再生装置(図示省略)を用いて、データの書込および再生(読出)が行われる。
[First Embodiment]
As shown in FIG. 1A, a magnetic recording medium 10 according to the first embodiment of the present invention includes a magnetic wire 1 formed by forming a magnetic material on a disk (annular) substrate 2 in a thin line shape. Is provided as a data recording (storage) area. As will be described later, binary data, that is, “0” or “1” data is recorded on the magnetic wire 1 as either of two different directions of magnetization. In the magnetic recording medium 10, the magnetic thin wires 1, 1,... Are concentrically formed on the substrate 2 with the insulating layer 6 interposed therebetween in plan view. Specifically, the single magnetic wire 1 is formed in a C shape lacking a part of the ring in plan view. In FIG. 1 (a), the number of magnetic thin wires 1 is omitted to six, and the intermediate portion between the outer periphery and the inner periphery is indicated by a blank, but the width and interval (pitch) of the magnetic thin wire 1 is practically the outer shape. It is formed extremely small with respect to (substrate 2) and is provided at a constant pitch. Further, the magnetic recording medium 10 is provided with a positive electrode 31 and a negative electrode 32 connected to one end and the other end of the magnetic wire 1. As described above, in the present embodiment, the magnetic recording medium 10 is referred to as a magnetic disk 10 as appropriate because the outer shape of the magnetic recording medium 10 is a disk shape based on the disk-shaped substrate 2 as in the current magnetic disk. The magnetic recording medium 10 writes and reproduces (reads) data using a recording / reproducing apparatus (not shown) provided with a magnetic head for recording and reproducing, as in the case of current magnetic disks. Is called.

図1(b)に示すように、磁性細線1は、上面に当該磁性細線1の長さ方向(以下、細線方向という)に沿った1本の溝(連続記録領域区切部、溝部1d)が形成され、この溝を境界として細線幅方向(磁気記録媒体10の径方向)に2つの領域Tr1,Tr2に分割される。   As shown in FIG. 1B, the magnetic thin wire 1 has a single groove (continuous recording area dividing portion, groove portion 1d) along the length direction of the magnetic thin wire 1 (hereinafter referred to as the thin wire direction) on the upper surface. It is formed and divided into two regions Tr1 and Tr2 in the fine line width direction (the radial direction of the magnetic recording medium 10) with this groove as a boundary.

ここで、磁性細線のサンプルを作製して、この磁性細線の形状により細線幅方向に磁区を分割して生成することができることを調査した。Ru(3nm)からなる下地および[Co(0.3nm)/Pd(1.2nm)]×21の多層膜(合計厚さ約40nm)を、細線幅方向に単磁区を形成する250nm幅の磁性細線に加工した。この磁性細線に、原子間力顕微鏡(AFM)のナノインデンテーション機能に使用されるダイヤモンドプローブを押し込んで、上面の幅方向中心辺りに、深さ約10nmの点状の凹みを複数個形成してサンプルを作製した。図8(a)に、サンプルのAFM像写真を示し、また、図中に矢印で凹みが形成された箇所を示す。サンプルに、初期化として1kGの磁界を上向きに印加して、全体の磁化を飽和させて上向きの磁化とした後、磁性細線(Co/Pd多層膜)の保磁力より少し小さい0.5kGの下向きの磁界を印加した。このサンプルの表面を磁気力顕微鏡(MFM)にて画像化して観察した。図8(b)に示すMFM像写真において、磁性細線は、磁化方向が上向きか下向きかによって磁区毎に白(上向き)/黒(下向き)のコントラストを示す。   Here, a sample of a magnetic thin wire was produced, and it was investigated that a magnetic domain could be divided and generated in the thin wire width direction according to the shape of the magnetic thin wire. A 250 nm width magnetism that forms a single magnetic domain in the direction of the fine line width of an underlayer made of Ru (3 nm) and a multilayer film (total thickness of about 40 nm) of [Co (0.3 nm) / Pd (1.2 nm)] × 21 Processed into fine wires. A diamond probe used for the nanoindentation function of the atomic force microscope (AFM) is pushed into the magnetic wire to form a plurality of dot-like recesses having a depth of about 10 nm around the center in the width direction of the upper surface. A sample was made. FIG. 8A shows an AFM image photograph of the sample, and shows a portion where a dent is formed by an arrow in the drawing. Initially, a magnetic field of 1 kG is applied upward as a sample to saturate the entire magnetization to make it upward, and then the downward direction is 0.5 kG, which is slightly smaller than the coercive force of the magnetic wire (Co / Pd multilayer film) The magnetic field was applied. The surface of this sample was imaged and observed with a magnetic force microscope (MFM). In the MFM image photograph shown in FIG. 8B, the magnetic thin wire shows white (upward) / black (downward) contrast for each magnetic domain depending on whether the magnetization direction is upward or downward.

図8(b)に示すように、サンプルについて、凹みを形成された箇所で磁区が細線幅方向に2分割されることが確認された。このように、幅方向に単磁区を生成する十分に幅の狭い磁性細線であっても、磁壁を係止する箇所を設けることで、この箇所を境界に細線幅方向に分割された磁区を生成することができる。このことから、磁性細線1に磁壁を係止する作用を有する溝部1dを形成することで、この溝部1dで細線幅方向に分割された2つの領域Tr1,Tr2のそれぞれが、従来の磁性細線のように細線方向に連続した複数の磁区を生成されることができる。   As shown in FIG. 8 (b), it was confirmed that the magnetic domain was divided into two in the fine line width direction in the portion where the dent was formed. In this way, even for a sufficiently narrow magnetic thin wire that generates a single magnetic domain in the width direction, a magnetic domain that is divided in the thin wire width direction is generated by providing a location for locking the domain wall by providing a location for locking the domain wall. can do. From this, by forming the groove portion 1d having the action of locking the magnetic domain wall on the magnetic wire 1, each of the two regions Tr1 and Tr2 divided in the thin wire width direction by this groove portion 1d is made of the conventional magnetic wire. Thus, a plurality of magnetic domains continuous in the thin line direction can be generated.

磁気記録媒体10においては、磁性細線1の、これら2つの領域Tr1,Tr2のそれぞれに、細線方向に連続してデータが記録され、図2に示すように、1つのデータを所定の単位長さ(ビット長Lb)の磁区とする。すなわち、領域Tr1,Tr2は、それぞれ、現行の磁気ディスクのデータの記録領域であるトラックに類似するため、適宜、第1トラックTr1、第2トラックTr2と称する。なお、図2および後記の図3においては、説明を簡潔にするために磁性細線1を直線状に表す。以下、磁気記録媒体10を構成する各要素について、詳細に説明する。   In the magnetic recording medium 10, data is continuously recorded in the thin line direction in each of these two regions Tr1 and Tr2 of the magnetic thin line 1, and one data is stored in a predetermined unit length as shown in FIG. The magnetic domain is (bit length Lb). That is, the areas Tr1 and Tr2 are respectively referred to as a first track Tr1 and a second track Tr2 as appropriate because they are similar to tracks that are data recording areas of the current magnetic disk. In FIG. 2 and FIG. 3 to be described later, the magnetic fine wire 1 is represented by a straight line for the sake of simplicity. Hereinafter, each element constituting the magnetic recording medium 10 will be described in detail.

(磁性細線)
磁性細線1は、磁性体(磁性材料)を厚さおよび幅に対して十分に長い細線状に形成してなり、細線形状(平面視形状)は、屈曲していない直線、または厚さおよび幅方向長に対して十分に緩やかな曲線とする。磁性細線1は、本実施形態のように外形が円盤形状である磁気記録媒体10においては、その外形と同心円の周に沿った形状とすることで、十分に長く緩やかな曲線となり、磁気記録媒体10の外形寸法に対しても長くすることができ、さらに磁気記録媒体10の上面全体に多数の磁性細線1を効率的に配置して記録密度を高くすることができる。したがって、磁性細線1は、磁気記録媒体10において細線長さを同一としなくてよく、外周寄りに設けられたものほど長くして、磁気記録媒体10の全体としてデータの記録可能な領域(容量)を大きくすればよい。また、磁気記録媒体は円盤形状に限らず、例えば平面視が矩形の板状でもよく、この場合、磁性細線は互いに平行な直線状に形成すればよい。
(Magnetic wire)
The magnetic wire 1 is formed by forming a magnetic body (magnetic material) into a thin wire shape that is sufficiently long with respect to the thickness and width, and the thin wire shape (plan view shape) is a straight line that is not bent, or the thickness and width. The curve should be sufficiently gentle with respect to the direction length. In the magnetic recording medium 10 whose outer shape is a disk shape as in the present embodiment, the magnetic fine wire 1 becomes a sufficiently long and gentle curve by forming a shape along the circumference of the concentric circle with the outer shape. The outer diameter of the magnetic recording medium 10 can be made longer, and the magnetic recording medium 10 can be efficiently arranged on the entire upper surface of the magnetic recording medium 10 to increase the recording density. Therefore, the magnetic wire 1 does not have to have the same wire length in the magnetic recording medium 10, and the magnetic wire 1 is made longer as it is provided closer to the outer periphery, so that the entire area of the magnetic recording medium 10 can record data (capacity). Should be increased. Further, the magnetic recording medium is not limited to a disk shape, and may be, for example, a plate having a rectangular shape in a plan view. In this case, the magnetic thin wires may be formed in straight lines parallel to each other.

磁性細線1は、現行の磁気ディスクの記録層等と同様に磁性材料で形成され、特に微細化に好適な垂直磁気異方性材料を適用することが好ましい。このような材料として、公知の強磁性材料を適用でき、具体的には、Co等の遷移金属とPd,Pt,Cuのいずれかとを交互に繰り返し積層したCo/Pd多層膜のような多層膜、またTb−Fe−Co,Gd−Fe等の希土類金属と遷移金属との合金(RE−TM合金)が挙げられる。これらの材料はスパッタリング法等の公知の方法により成膜され、フォトリソグラフィおよびエッチングまたはリフトオフにより、以下の細線形状に成形されて磁性細線1となる。本実施形態においては、磁性細線1は垂直磁気異方性材料であるので、図2に示すように上向きまたは下向きのいずれかの磁化方向を示す。   The magnetic fine wire 1 is formed of a magnetic material like the recording layer of the current magnetic disk, and a perpendicular magnetic anisotropic material suitable for miniaturization is preferably applied. As such a material, a known ferromagnetic material can be applied. Specifically, a multilayer film such as a Co / Pd multilayer film in which transition metals such as Co and any one of Pd, Pt, and Cu are alternately laminated. In addition, an alloy (RE-TM alloy) of a rare earth metal such as Tb—Fe—Co, Gd—Fe and a transition metal can be used. These materials are formed into a film by a known method such as a sputtering method, and are formed into the following fine wire shape by photolithography and etching or lift-off to form the magnetic wire 1. In the present embodiment, since the magnetic wire 1 is a perpendicular magnetic anisotropic material, it shows an upward or downward magnetization direction as shown in FIG.

磁性細線1は、厚さ(膜厚)70nm以下、幅300nm以下であれば、細線方向にのみ磁区が分割され易く、好ましい。また、磁性細線1は、ピッチが狭いすなわち幅が小さい(細い)ほど、磁気記録媒体10を高記録密度化することができる。なお、磁性細線1は、溝部1dにより幅方向に2つの領域Tr1,Tr2に分割されてそれぞれに磁区を生成させるが、幅方向に単磁区を形成し易い従来の磁性細線と同等またはそれよりも細い幅として、記録密度を倍増させることが好ましい。また、磁区(磁壁)の細線方向への移動は磁性細線1に電流を細線方向に供給することでなされ、その移動速度は断面積あたりの電流密度に比例して速くなるため、磁性細線1の厚さおよび幅(断面積)が小さいほど、小さい電流で磁区を高速で移動させることができる。一方、データの保存(磁化の保持)のために、磁性細線1はある程度の厚さおよび幅とすることが好ましく、具体的には厚さは5nm以上、幅はトラックTr1,Tr2の1あたり(溝部1dを含む)で10nm以上、すなわち20nm以上とすることが好ましい。なお、磁性細線1の厚さおよび幅とは、溝部1dのような変形箇所以外の、上下面や側面が平坦な部分における大きさを指す。   If the magnetic thin wire 1 has a thickness (film thickness) of 70 nm or less and a width of 300 nm or less, it is preferable because the magnetic domains are easily divided only in the thin wire direction. Further, the magnetic recording medium 10 can have a higher recording density as the pitch of the magnetic wire 1 is narrower, that is, the width is smaller (thin). The magnetic wire 1 is divided into two regions Tr1 and Tr2 in the width direction by the groove 1d to generate magnetic domains, respectively. However, the magnetic wire 1 is equal to or more than a conventional magnetic wire that easily forms a single magnetic domain in the width direction. It is preferable to double the recording density as a narrow width. In addition, the magnetic domain (domain wall) is moved in the direction of the fine wire by supplying current to the magnetic wire 1 in the direction of the fine wire, and the moving speed is increased in proportion to the current density per cross-sectional area. The smaller the thickness and width (cross-sectional area), the faster the magnetic domain can be moved with a smaller current. On the other hand, for data storage (magnetization retention), it is preferable that the magnetic wire 1 has a certain thickness and width. Specifically, the thickness is 5 nm or more and the width is one per track Tr1, Tr2 ( It is preferable that the thickness is 10 nm or more, that is, 20 nm or more. In addition, the thickness and width of the magnetic fine wire 1 indicate the size of the portion where the upper and lower surfaces and the side surfaces are flat, other than the deformed portion such as the groove 1d.

磁性細線1は、図1(b)に示すように、その細線方向全体にわたって、幅方向中心に、1本の溝(溝部1d)が上面に形成されている。前記した通り、幅300nm以下の細線状に形成された磁性体は、幅方向に単磁区を形成し易いが、このような局所的に断面積が小さい箇所には磁壁が生成され易く、また磁壁が係止され易いため、磁性細線1は溝部1dを形成した箇所で区切るように磁区が生成した状態になり易い。したがって、磁性細線1は、この溝部1dを境界として幅方向に二等分された2つの領域(トラック)Tr1,Tr2のそれぞれで磁区を生成させることができる。以下、磁性細線1の溝部1dのように、磁性細線を細線幅方向に区切る部分(境界近傍)を、適宜、トラック区切部と称する。磁性細線1における溝部1dの本数は特に規定されないが、1本であれば1つの磁性細線1に設けられるトラックは2となり、いずれのトラック(Tr1,Tr2)も磁性細線1の側端を含んで絶縁層6に面して設けられる。このような構成とすることで、後記するように磁気記録媒体10は、トラックTr1,Tr2のそれぞれの一方のみに対して、データの書込や再生のための磁気ヘッド(図2の記録ヘッド71,72)を対向させることが容易になる。   As shown in FIG. 1B, the magnetic fine wire 1 has one groove (groove portion 1d) formed on the upper surface at the center in the width direction over the whole thin wire direction. As described above, a magnetic body formed in a thin line shape having a width of 300 nm or less is likely to form a single magnetic domain in the width direction. However, a domain wall is easily generated in such a portion having a small cross-sectional area. Therefore, the magnetic fine wire 1 is likely to be in a state where a magnetic domain is generated so as to be separated at a position where the groove portion 1d is formed. Therefore, the magnetic wire 1 can generate a magnetic domain in each of the two regions (tracks) Tr1 and Tr2 that are equally divided in the width direction with the groove 1d as a boundary. Hereinafter, a portion (in the vicinity of the boundary) that divides the magnetic wire in the thin wire width direction as in the groove portion 1d of the magnetic wire 1 will be appropriately referred to as a track partition portion. The number of the groove portions 1d in the magnetic thin wire 1 is not particularly limited, but if there is one, the number of tracks provided in one magnetic thin wire 1 is 2, and any of the tracks (Tr1, Tr2) includes the side end of the magnetic thin wire 1. It is provided facing the insulating layer 6. With such a configuration, as will be described later, the magnetic recording medium 10 has a magnetic head (recording head 71 in FIG. 2) for writing and reproducing data on only one of the tracks Tr1 and Tr2. , 72) can be easily opposed.

溝部1dは、磁性細線1において、少なくともデータの書込および再生が行われる領域(書込領域1w、再生領域1r)を含む、データが記録される領域の全体にわたって連続して形成される。溝部1dは、磁性細線1において、トラックTr1,Tr2の各幅が均等になるように細線幅方向中心に設けることが好ましいが、少なくともトラックTr1,Tr2のそれぞれが書込や再生に対応した幅となる位置に、溝部1dが設けられていればよい。なお、トラックTr1,Tr2は、各幅に偏りがあっても、それぞれにおいて同じ速度で磁区がシフト移動する。   The groove 1d is formed continuously over the entire area where data is recorded, including at least areas where data is written and reproduced (writing area 1w, reproduction area 1r). The groove 1d is preferably provided in the center of the magnetic thin wire 1 so that the widths of the tracks Tr1 and Tr2 are uniform, but at least the tracks Tr1 and Tr2 have a width corresponding to writing and reproduction. It is only necessary that the groove 1d is provided at the position. Note that the magnetic domains of the tracks Tr1 and Tr2 shift and move at the same speed even if the widths are uneven.

本実施形態に係る磁気記録媒体10は、磁性細線1(トラックTr1,Tr2)において1データが記録される細線方向長さ(ビット長Lb)は特に規定されず、後記するデータ書込方法にて説明するように、パルス電流のパルス幅により設定されることができる。ただし、ビット長Lbは、データの保存のためにはトラックTr1,Tr2の幅と同じく10nm以上とすることが好ましく、さらに、後記の再生領域1rにおいて磁気が正確に検出される長さ以上とすることが好ましい。   In the magnetic recording medium 10 according to the present embodiment, the length (bit length Lb) in the thin line direction in which one data is recorded in the magnetic thin line 1 (tracks Tr1 and Tr2) is not particularly defined. As will be described, it can be set by the pulse width of the pulse current. However, the bit length Lb is preferably 10 nm or more in the same way as the widths of the tracks Tr1 and Tr2 in order to store data, and more than the length at which magnetism is accurately detected in the reproduction region 1r described later. It is preferable.

ここで、一般的に、磁壁の厚み(細線方向長さ)は磁区に対して極めて狭く(短く)、磁性細線1の厚さ、ならびに磁区の長さ、すなわちトラックTr1,Tr2の幅(ここでは磁性細線1の幅の1/2)および1データの細線方向長さ(ビット長Lb)にもよるが、5〜100nm程度である。このような磁壁を係止させるために、磁性細線1は、変形している領域の細線幅方向長さ、ここでは溝部1dの溝幅(溝部1dの開口部における細線幅方向長さ)を、磁壁の厚み以上とし、10倍以下とすることが好ましい。具体的には、溝部1dの溝幅は、10〜100nm程度の範囲で、トラックTr1,Tr2の幅の1/2以下(磁性細線1の幅の1/4以下)、ビット長Lbの1/10〜2倍程度が好ましい。また、溝部1dが幅広過ぎると、その深さによっては傾斜が緩やか過ぎて磁壁を係止する作用が小さくなる。   Here, in general, the thickness of the domain wall (length in the direction of the thin wire) is extremely narrow (short) with respect to the magnetic domain, and the thickness of the magnetic wire 1 and the length of the magnetic domain, that is, the width of the tracks Tr1 and Tr2 (here, Although it depends on the width of magnetic thin wire 1) and the length of one data in the thin wire direction (bit length Lb), it is about 5 to 100 nm. In order to lock such a domain wall, the magnetic thin wire 1 has a thin wire width direction length of a deformed region, here, the groove width of the groove portion 1d (the thin wire width direction length at the opening of the groove portion 1d), It is preferable that the thickness is not less than the thickness of the domain wall and not more than 10 times. Specifically, the groove width of the groove portion 1d is in the range of about 10 to 100 nm, and is 1/2 or less of the width of the tracks Tr1 and Tr2 (1/4 or less of the width of the magnetic wire 1), 1 / of the bit length Lb. About 10 to 2 times is preferable. On the other hand, if the groove 1d is too wide, depending on the depth, the inclination is too gentle and the action of locking the domain wall is reduced.

磁性細線1において、溝部1dのように変形させた箇所は、磁壁を好適に係止させておく(溝部1dの外へ移動させない)ためには、その変化量を2%以上とすることが好ましい。具体的には、磁性細線1の厚さが50nmであれば、溝部1dの深さは1nm以上(最薄部の厚さが49nm以下)とすることが好ましい。一方、溝部1dは、深さの上限は特に規定されず、磁壁を係止する十分な傾斜で前記の範囲の溝幅に形成されるような深さであればよい。また、溝部1dの断面(細線方向に垂直な断面)視形状は、特に規定されず、V字型(逆三角形)、U字型、矩形、逆台形型等が挙げられる。ただし、溝部1dは、磁性細線1において磁壁を係止する作用を均一にするために、断面視形状が磁性細線1の全長にわたって略一致していることが好ましい。このような溝部1dは、磁性細線1上に、溝部1dを形成する領域を薄くしたまたは空けたレジストマスクやナノインプリントによる樹脂マスクを形成して、エッチングして形成することができる。   In the magnetic wire 1, the amount of change is preferably 2% or more in order to keep the domain wall suitably locked (not moved out of the groove 1 d) at the deformed portion such as the groove 1 d. . Specifically, when the thickness of the magnetic wire 1 is 50 nm, the depth of the groove 1d is preferably 1 nm or more (the thickness of the thinnest part is 49 nm or less). On the other hand, the upper limit of the depth of the groove 1d is not particularly limited, and may be any depth as long as the groove width is formed within the above-described range with a sufficient inclination to lock the domain wall. Further, the cross-sectional shape (cross section perpendicular to the thin line direction) of the groove 1d is not particularly defined, and examples thereof include a V shape (inverted triangle), a U shape, a rectangle, and an inverted trapezoid shape. However, it is preferable that the cross-sectional shape of the groove 1d substantially coincides with the entire length of the magnetic wire 1 in order to make the action of locking the domain wall in the magnetic wire 1 uniform. Such a groove portion 1d can be formed by etching a resist mask or a resin mask by nanoimprint, in which a region for forming the groove portion 1d is thinned or vacated, on the magnetic wire 1.

書込領域1w1,1w2は、それぞれ磁性細線1のトラックTr1,Tr2にデータを記録するために当該磁性細線1の磁気をデータに対応する磁化方向にするための領域であり、細線方向長さをビット長Lb以上とし、またこの領域においては磁性細線1の構造を必要に応じて記録方式に対応したものとする。なお、図1(a)においては、書込領域1w1,1w2を内包する領域をまとめて書込領域1wとして表す。具体的には、例えば現行の磁気ディスクへの記録方法と同様に、図2に示すように、書込用の磁気ヘッドである第1記録ヘッド71、第2記録ヘッド72(主磁極の部分のみを図示する)を書込手段として外部磁界を印加する場合は、磁性細線1の下(記録ヘッド71,72に対向する側の反対側)の書込領域1w1,1w2を含む領域または磁性細線1全体を、非磁性層を介して軟磁性層が設けられた積層構造とする(図示省略)。軟磁性層により、記録ヘッド71,72からの外部磁界が磁性細線1で垂直な書込み磁束を形成するための磁路を形成する。このような構成とすることで、例えば図2では、初期状態(書込前)の磁化が下方向の磁性細線1を、書込領域1w1において第1記録ヘッド71が上向きの磁界を印加して磁化を上方向に反転させ、書込領域1w2において第2記録ヘッド72が下向きの磁界を印加して磁化を下方向としている。 The write regions 1w 1 and 1w 2 are regions for setting the magnetism of the magnetic wire 1 to the magnetization direction corresponding to the data in order to record data on the tracks Tr1 and Tr2 of the magnetic wire 1, respectively. The length is set to a bit length Lb or more, and in this region, the structure of the magnetic fine wire 1 is adapted to the recording method as required. In FIG. 1A, an area including the write areas 1w 1 and 1w 2 is collectively expressed as a write area 1w. Specifically, for example, as in the current recording method on a magnetic disk, as shown in FIG. 2, a first recording head 71 and a second recording head 72 (only the main magnetic pole portion) that are magnetic heads for writing are used. When the external magnetic field is applied using the writing means as the writing means, the area including the writing areas 1w 1 and 1w 2 below the magnetic wire 1 (the side opposite to the side facing the recording heads 71 and 72) or magnetic The entire thin wire 1 has a laminated structure in which a soft magnetic layer is provided via a nonmagnetic layer (not shown). The soft magnetic layer forms a magnetic path for the external magnetic field from the recording heads 71 and 72 to form a perpendicular write magnetic flux on the magnetic wire 1. By adopting such a configuration, for example, in FIG. 2, the magnetic thin line 1 whose magnetization is in the downward direction in the initial state (before writing) is applied, and the upward magnetic field is applied by the first recording head 71 in the writing area 1w 1 . Thus, the magnetization is reversed in the upward direction, and the second recording head 72 applies a downward magnetic field in the writing area 1w 2 to make the magnetization downward.

ここで、第1記録ヘッド71および第2記録ヘッド72は、それぞれが主磁極、副磁極、およびコイル等を備え、ある程度のスペースを要するため、1本の磁性細線1内に隣接したトラックTr1,Tr2の細線方向における同じ位置に主磁極を対向させることは困難であり、また、それぞれからの印加磁界が互いに影響し合うことになる。そのため、図2に示すように、記録ヘッド71,72を対向させる磁性細線1の領域すなわち書込領域1w1,1w2は細線方向にずらして距離を空けて設けられている。このように磁性細線1に書込領域1w1,1w2を細線方向にずらして設ける場合は、1データ分(ビット長Lb)の整数倍ずらすことが好ましい。ここでは、第2トラックTr2の書込領域1w2を、第1トラックTr1の書込領域1w1の、4データ分(4Lb)磁区移動方向における後方(図2における左側)に設けている(図3(a)参照)。このように、書込領域1w1,1w2の細線方向長さや磁性細線1(トラックTr1,Tr2)における位置は、記録方式や加工精度等に対応したものとすればよい。 Here, each of the first recording head 71 and the second recording head 72 includes a main magnetic pole, a sub magnetic pole, a coil, and the like, and requires a certain amount of space. Therefore, adjacent tracks Tr1, It is difficult to make the main pole face the same position in the direction of the thin line of Tr2, and the applied magnetic fields from each other will affect each other. Therefore, as shown in FIG. 2, the magnetic thin wire 1 region where the recording heads 71 and 72 are opposed, that is, the writing regions 1 w 1 and 1 w 2 are provided with a distance shifted in the thin wire direction. When the write areas 1w 1 and 1w 2 are shifted in the direction of the thin line in the magnetic thin line 1 as described above, it is preferable to shift by an integral multiple of one data (bit length Lb). Here, the write area 1w 2 of the second track Tr2 is provided behind the write area 1w 1 of the first track Tr1 in the direction of moving the magnetic data for 4 data (4Lb) (left side in FIG. 2) (FIG. 2). 3 (a)). As described above, the lengths of the write areas 1w 1 and 1w 2 in the thin line direction and the positions on the magnetic thin lines 1 (tracks Tr1 and Tr2) may correspond to the recording method, processing accuracy, and the like.

なお、磁気記録媒体10のすべての磁性細線1は、書込領域1w1,1w2が、それぞれ細線幅方向(磁気記録媒体10の径方向)の1本の線に沿った位置に設けられていることが好ましい(図1(a)参照)。このような磁気記録媒体10であれば、記録再生装置は、記録ヘッド71,72を支持するアーム(図示省略)を磁気記録媒体10の径方向のみに移動させることで、すべての磁性細線1の書込領域1w(1w1,1w2)にデータ書込をすることができる。 In addition, in all the magnetic thin wires 1 of the magnetic recording medium 10, the writing areas 1w 1 and 1w 2 are provided at positions along one line in the thin line width direction (the radial direction of the magnetic recording medium 10). It is preferable (refer Fig.1 (a)). With such a magnetic recording medium 10, the recording / reproducing apparatus moves all the magnetic wires 1 by moving an arm (not shown) supporting the recording heads 71 and 72 only in the radial direction of the magnetic recording medium 10. Data can be written to the write area 1w (1w 1 , 1w 2 ).

再生領域1rは、磁性細線1のトラックTr1,Tr2のデータ書込をされて生成した磁区の磁化方向を検出するために領域であり、図1(a)に示すように書込領域1w(1w1,1w2)と同様に、すべての磁性細線1において磁気記録媒体10の径に沿って一直線上に設けられていることが好ましい。また、再生領域1rは、図1(a)には一体に表されているが、図2に示す書込領域1w1,1w2と同様に、第1トラックTr1における再生領域1r1と第2トラックTr2における再生領域1r2とで、細線方向に4データ分(4Lb)ずらして設けられている(図3(a)参照)。磁性細線1の再生領域1r1,1r2にはそれぞれ、例えばGMR(Giant MagnetoResistance:巨大磁気抵抗効果)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子のような磁気抵抗効果素子からなる再生用の磁気ヘッドを対向させて、磁気を検出する。したがって、磁性細線1は、再生領域1r1,1r2を細線方向にずらして距離を空けて設けることで、磁気ヘッドを微小な再生領域1r1,1r2のそれぞれに対向させて正確に磁気を検出することができる。また、磁性細線1は、再生領域1r(1r1,1r2)に限定して、例えば特許文献5に記載されるような局所的に磁区が拡張する構成とする等、必要に応じて再生方式に対応した構造としてもよい。 The reproduction area 1r is an area for detecting the magnetization direction of the magnetic domain generated by writing data in the tracks Tr1 and Tr2 of the magnetic wire 1 and, as shown in FIG. 1A, the write area 1w (1w 1 , 1 w 2 ), it is preferable that all the magnetic wires 1 are provided on a straight line along the diameter of the magnetic recording medium 10. Although the reproduction area 1r is integrally shown in FIG. 1A, the reproduction area 1r 1 and the second area in the first track Tr1 are the same as the writing areas 1w 1 and 1w 2 shown in FIG. in the reproducing area 1r 2 in the track Tr2, is provided by shifting 4 data content (4Lb) fine line direction (see Figure 3 (a)). Each of the reproducing regions 1r 1 and 1r 2 of the magnetic thin wire 1 is for reproduction made of a magnetoresistive effect element such as a GMR (Giant MagnetoResistance) element or a TMR (Tunnel MagnetoResistance) element. The magnetic head is opposed to detect the magnetism. Accordingly, the magnetic thin wire 1 is provided with a distance by shifting the reproduction regions 1r 1 and 1r 2 in the direction of the fine line, so that the magnetic head is opposed to each of the minute reproduction regions 1r 1 and 1r 2 to accurately magnetize. Can be detected. Further, the magnetic wire 1 is limited to the reproduction region 1r (1r 1 , 1r 2 ), for example, a structure in which the magnetic domain is locally expanded as described in Patent Document 5, or the like, if necessary. It is good also as a structure corresponding to.

磁性細線1は、磁気記録媒体10の製造時におけるダメージから磁性細線1を保護するために、上面に保護膜(図示省略)を積層されていることが好ましい。保護膜は、Ta,Ru,Cuの単層、またはCu/Ta,Cu/Ruの2層等から構成され、2層構造とする場合は、いずれもCuを内側(下層)とする。さらに、磁性細線1は、基板2との密着性を得るために、金属薄膜からなる下地膜の上に形成されてもよい(図示省略)。このような下地膜は、Ta,Ru,Cu,Al,Au,Ag,Cr等の非磁性金属材料を適用することができる。保護膜および下地膜は、それぞれ厚さ1〜10nmとすることが好ましい。厚さが1nm未満であると連続した膜を形成し難く、一方、10nmを超えてもそれ以上に効果が向上しないためである。なお、この厚さは、保護膜については、磁気記録媒体10(完成後)におけるものであり、製造時(成膜時)においては、その後の工程による減肉分を加味する。   The magnetic fine wire 1 is preferably laminated with a protective film (not shown) on the upper surface in order to protect the magnetic fine wire 1 from damage during manufacture of the magnetic recording medium 10. The protective film is composed of a single layer of Ta, Ru, Cu, or two layers of Cu / Ta, Cu / Ru, etc., and in the case of a two-layer structure, all have Cu inside (lower layer). Further, the magnetic fine wire 1 may be formed on a base film made of a metal thin film in order to obtain adhesion with the substrate 2 (not shown). A nonmagnetic metal material such as Ta, Ru, Cu, Al, Au, Ag, or Cr can be applied to such a base film. Each of the protective film and the base film is preferably 1 to 10 nm in thickness. If the thickness is less than 1 nm, it is difficult to form a continuous film. On the other hand, if the thickness exceeds 10 nm, the effect is not further improved. Note that this thickness is that of the protective film in the magnetic recording medium 10 (after completion), and the thickness reduction due to the subsequent process is taken into account during manufacture (during film formation).

(基板)
基板2は、磁性細線1を形成するための磁気記録媒体10の土台であり、広義の基板である。このような基板2として、公知の基板材料が適用でき、具体的には、表面に熱酸化膜を形成されたSi(シリコン)基板、SiO2(酸化ケイ素、ガラス)、MgO(酸化マグネシウム)、サファイア、GGG(ガドリニウムガリウムガーネット)、SiC(シリコンカーバイド)、Ge(ゲルマニウム)単結晶基板等を適用することができる。また、基板2が、Si基板で表面に十分な厚さの酸化膜が形成されていない場合は、表面に絶縁膜を形成した上に磁性細線1を形成すればよい。すなわち基板2は、少なくとも表面(表層)が絶縁性であればよい。
(substrate)
The substrate 2 is a base of the magnetic recording medium 10 for forming the magnetic wire 1 and is a broad substrate. As such a substrate 2, a known substrate material can be applied. Specifically, a Si (silicon) substrate having a thermal oxide film formed on its surface, SiO 2 (silicon oxide, glass), MgO (magnesium oxide), Sapphire, GGG (gadolinium gallium garnet), SiC (silicon carbide), Ge (germanium) single crystal substrate, or the like can be applied. If the substrate 2 is a Si substrate and an oxide film having a sufficient thickness is not formed on the surface, an insulating film is formed on the surface and the magnetic wire 1 may be formed. That is, at least the surface (surface layer) of the substrate 2 may be insulative.

(絶縁層)
絶縁層6は、磁気記録媒体10における磁性細線1,1間、あるいはさらに正電極31,31間および負電極32,32間に配され、さらに基板2と磁性細線1との間や磁性細線1の上に配されてもよい。絶縁層6は、例えばSiO2,Si34,Al23等の公知の絶縁材料からなり、また磁気記録媒体10の全体で同じ材料を適用しなくてもよい。
(Insulating layer)
The insulating layer 6 is disposed between the magnetic wires 1 and 1 in the magnetic recording medium 10, or between the positive electrodes 31 and 31 and between the negative electrodes 32 and 32, and between the substrate 2 and the magnetic wire 1 or between the magnetic wires 1. It may be arranged on the top. The insulating layer 6 is made of a known insulating material such as SiO 2 , Si 3 N 4 , or Al 2 O 3 , and the same material may not be applied to the entire magnetic recording medium 10.

(電極)
正電極31および負電極32は、一対の電極として磁性細線1にその細線方向の一方向に電流を供給するための端子であり、図1(a)に示すように磁性細線1の両端に接続される。本実施形態では図2に一部(負電極32)を示すように、電極31,32は共に磁性細線1の下面に接続されているが、磁性細線1における接続面はこれに限られず、例えば上面に接続されてもよい。電極31,32は、Cu,Al,Ta,Cr,W,Ag,Au,Pt等の金属やその合金のような一般的な金属電極材料からなり、スパッタリング法等により成膜、フォトリソグラフィ等によりストライプ状に成形される。また、電極31,32の厚さ、幅および細線方向長さは、磁性細線1,1のピッチ(トラックピッチ)、材料や供給する電圧・電流等に基づいて設定される。
(electrode)
The positive electrode 31 and the negative electrode 32 are terminals for supplying a current to the magnetic wire 1 in one direction as a pair of electrodes, and are connected to both ends of the magnetic wire 1 as shown in FIG. Is done. In the present embodiment, as shown in part (negative electrode 32) in FIG. 2, the electrodes 31 and 32 are both connected to the lower surface of the magnetic wire 1. However, the connection surface of the magnetic wire 1 is not limited to this. It may be connected to the upper surface. The electrodes 31 and 32 are made of a general metal electrode material such as a metal such as Cu, Al, Ta, Cr, W, Ag, Au, or Pt, or an alloy thereof, and is formed by sputtering or the like, or formed by photolithography or the like. Molded into stripes. The thicknesses, widths, and lengths in the thin line direction of the electrodes 31 and 32 are set based on the pitch (track pitch) of the magnetic thin lines 1 and 1, the material, the supplied voltage / current, and the like.

[磁気記録媒体の製造方法]
本発明に係る磁気記録媒体は、公知の方法を用いて製造することができる。図1に示す磁気記録媒体10の製造方法の一例を以下に説明する。基板2上にSiO2やAl23等の絶縁膜を、スパッタリング法等の公知の方法により磁性細線1の厚さに成膜して、その上に、磁性細線1を設ける領域にレジストマスクを形成し、絶縁膜をエッチングする。次に、スパッタリング法等の公知の方法により磁性膜を成膜して、絶縁膜のエッチングされた領域を埋めて磁性細線を形成し、レジストマスクを除去する(リフトオフ)。これにより、基板2上に平坦な磁性細線が形成され、磁性細線同士の間を絶縁層6が磁性細線と同じ厚さに形成された状態となる。
[Method of manufacturing magnetic recording medium]
The magnetic recording medium according to the present invention can be manufactured using a known method. An example of a method for manufacturing the magnetic recording medium 10 shown in FIG. 1 will be described below. An insulating film such as SiO 2 or Al 2 O 3 is formed on the substrate 2 to a thickness of the magnetic wire 1 by a known method such as sputtering, and a resist mask is provided in the region where the magnetic wire 1 is provided. And the insulating film is etched. Next, a magnetic film is formed by a known method such as sputtering, the etched region of the insulating film is filled to form a magnetic thin wire, and the resist mask is removed (lift-off). As a result, flat magnetic wires are formed on the substrate 2, and the insulating layer 6 is formed in the same thickness as the magnetic wires between the magnetic wires.

磁性細線および絶縁層6上に、ナノインプリント法により、溝部1dを形成する領域に溝を設けた樹脂膜を形成する。樹脂膜の上からRIE法等のドライエッチングにより、異方性エッチングを行って、樹脂膜の溝部分を除去し、さらにその直下における磁性細線の部分を薄肉化することにより溝部1dを形成して磁性細線1とする。残存する樹脂膜を除去し、金属電極材料で磁性細線1の両端に接続する電極31,32を形成して、磁気記録媒体10を得る。ナノインプリント法を用いることで、微細で寸法精度の高い溝部1dを形成することができる。なお、基板2上に、まず磁性膜を成膜し、溝部1dを形成してから細線状に加工して磁性細線1を形成し、絶縁層6を埋め込んでもよい。あるいは、前記磁性膜上に磁性細線1の形状の樹脂マスクを形成してエッチングすることで、細線状への加工および溝部1dの形成を同時に行うこともできる。   On the magnetic wire and the insulating layer 6, a resin film having a groove in the region where the groove 1d is to be formed is formed by nanoimprinting. By performing anisotropic etching by dry etching such as RIE from the top of the resin film, the groove portion of the resin film is removed, and further, the portion of the magnetic wire just below is thinned to form the groove portion 1d. The magnetic wire 1 is used. The remaining resin film is removed, and electrodes 31 and 32 connected to both ends of the magnetic wire 1 are formed with a metal electrode material to obtain the magnetic recording medium 10. By using the nanoimprint method, it is possible to form the fine groove portion 1d with high dimensional accuracy. Alternatively, first, a magnetic film may be formed on the substrate 2, the groove 1 d may be formed, and then processed into a thin wire to form the magnetic thin wire 1, and the insulating layer 6 may be embedded. Alternatively, by forming and etching a resin mask having the shape of the magnetic fine wire 1 on the magnetic film, the fine wire can be processed and the groove 1d can be simultaneously formed.

[磁気記録媒体の動作方法]
(データ書込方法)
次に、本発明に係る磁気記録媒体の磁性細線に「0」、「1」の2値のデータを連続して書き込む(記録する)方法を、図2および図3を参照して説明する。図3は磁性細線1の書込領域1w1,1w2および再生領域1r1,1r2を含む両端近傍部分のみを示し、中間部分を破断線で省略する。また、図3は平面図であるが、矢印で示す磁化方向の上下は厚さ方向におけるものとする。磁気記録媒体10におけるデータ書込方法は、記録再生装置の記録ヘッド71,72で書込領域1w1,1w2へ書込をして磁区を生成させ、電極31,32に接続した記録再生装置の走査電流源8(図3(b)参照)から磁性細線1にパルス電流を供給して、磁区を断続的にシフト移動させるものである。
[Method of operating magnetic recording medium]
(Data writing method)
Next, a method of continuously writing (recording) binary data of “0” and “1” on the magnetic thin wire of the magnetic recording medium according to the present invention will be described with reference to FIGS. FIG. 3 shows only the vicinity of both ends including the writing regions 1w 1 and 1w 2 and the reproducing regions 1r 1 and 1r 2 of the magnetic thin wire 1, and the intermediate portion is omitted by a broken line. Moreover, although FIG. 3 is a top view, the upper and lower sides of the magnetization direction shown by the arrow shall be in the thickness direction. The data writing method in the magnetic recording medium 10 is a recording / reproducing apparatus in which the recording heads 71 and 72 of the recording / reproducing apparatus write to the write areas 1w 1 and 1w 2 to generate magnetic domains and are connected to the electrodes 31 and 32. The pulse current is supplied from the scanning current source 8 (see FIG. 3B) to the magnetic wire 1 to shift the magnetic domain intermittently.

図2に示す磁性細線1は、電流が供給されていない状態であり、第1トラックTr1に「0」を書き込むために第1記録ヘッド71が上向きの磁界を、第2トラックTr2に「1」を書き込むために第2記録ヘッド72が下向きの磁界を、それぞれ対向する領域1w1,1w2に印加してそれぞれの磁化方向とされている。そして図2において磁性細線1は、細線方向に区切るように幅全体にわたる磁壁DW1と、平面視でかぎ型に屈曲した磁壁DW2と、第2トラックTr2で平面視コの字型に屈曲した磁壁DW3と、が生成している。図2に示す磁性細線1を図3(a)に平面図で示す。なお、図3においては、書込領域1w1,1w2について、記録ヘッド71,72から磁界が印加される領域を破線枠で示す。 The magnetic thin wire 1 shown in FIG. 2 is in a state where no current is supplied, and the first recording head 71 applies an upward magnetic field to write “0” to the first track Tr1, and “1” to the second track Tr2. The second recording head 72 applies a downward magnetic field to the opposing regions 1w 1 and 1w 2 to set the respective magnetization directions. In FIG. 2, the magnetic wire 1 includes a domain wall DW1 extending over the entire width so as to divide in the thin line direction, a domain wall DW2 bent in a hook shape in plan view, and a domain wall DW3 bent in a U shape in plan view in the second track Tr2. And has generated. The magnetic wire 1 shown in FIG. 2 is shown in a plan view in FIG. In FIG. 3, areas where a magnetic field is applied from the recording heads 71 and 72 are indicated by broken line frames in the writing areas 1 w 1 and 1 w 2 .

ここで、十分に細い細線状の磁性体は、通常、磁区が細線方向にのみ区切られて生成し、細線幅方向においては単磁区となる。しかし、本発明に係る磁気記録媒体10の磁性細線1は、磁壁DW2や磁壁DW3の、トラックTr1,Tr2の境界に沿った部分が、溝部1dに係止されているため、隣接したトラックTr1,Tr2同士で異なる磁化方向の磁区が生成した状態が保持される。   Here, a sufficiently thin fine wire-like magnetic body is usually generated by dividing a magnetic domain only in the fine line direction, and becomes a single magnetic domain in the fine line width direction. However, the magnetic thin wire 1 of the magnetic recording medium 10 according to the present invention has adjacent portions of the track Tr1, because the portions of the domain wall DW2 and the domain wall DW3 along the boundary between the tracks Tr1, Tr2 are locked to the groove 1d. The state in which magnetic domains having different magnetization directions are generated between Tr2 is maintained.

記録ヘッド71,72の磁界印加を停止し、図3(b)に示すように、電極31,32に接続した走査電流源8から直流パルス電流を磁性細線1に供給する。磁性細線1においては、負電極32側(左側)から電子e-が注入されて、細線方向に区切る磁壁が右方向へ移動する。このとき、磁壁DW2,DW3のような平面視で屈曲して細線方向に沿った部分を有する磁壁は、細線方向に区切る部分が移動するのに伴って、全体が正電極31側へ、すなわち細線方向に移動する。ここで、磁壁DW2,DW3の細線方向に沿った部分は溝部1dに係止されて、この部分を挟んで磁化方向が異なる磁区のそれぞれの形状が保持されるため、結果、これらの磁壁で区画されたすべての磁区は、それぞれの形状を保持して右方向へ等距離移動する。なお、負電極32側の最端の磁区は、注入された電子e-により移動距離だけ伸長する。 The magnetic field application to the recording heads 71 and 72 is stopped, and a DC pulse current is supplied to the magnetic wire 1 from the scanning current source 8 connected to the electrodes 31 and 32 as shown in FIG. In the magnetic wire 1, electrons e are injected from the negative electrode 32 side (left side), and the domain wall partitioned in the direction of the thin wire moves to the right. At this time, the domain wall having a portion along the fine line direction bent in a plan view like the domain walls DW2 and DW3 is moved to the positive electrode 31 side as the part delimited in the fine line direction moves, that is, the fine line. Move in the direction. Here, the portions along the thin line direction of the domain walls DW2 and DW3 are locked by the groove 1d, and the respective shapes of the magnetic domains having different magnetization directions are held across this portion. All the magnetic domains thus moved move equidistant to the right while maintaining their respective shapes. Note that the outermost magnetic domain on the negative electrode 32 side is extended by the movement distance due to the injected electrons e .

細線方向に形状が一様に形成された磁性細線1は、一定の電流の供給により一定の速度で磁壁が移動し、その移動速度は電流密度に依存する。したがって、同じ磁性細線1におけるトラックTr1,Tr2は、幅(断面積)が不均一であっても、磁性細線1に供給された電流の電流密度は同一であるので、同一の距離だけ磁壁が移動する。そして、1回の移動距離がビット長Lbとなるように直流パルス電流のパルス幅を設定することで、走査電流源8をON状態としたまま、ビット長Lb刻みで断続的に磁区をシフト移動させることができる。   The magnetic thin wire 1 having a uniform shape in the direction of the thin wire moves the domain wall at a constant speed by supplying a constant current, and the moving speed depends on the current density. Accordingly, the tracks Tr1 and Tr2 in the same magnetic wire 1 have the same current density of the current supplied to the magnetic wire 1 even if the width (cross-sectional area) is non-uniform, so that the domain wall moves by the same distance. To do. By setting the pulse width of the direct current pulse current so that the movement distance of one time becomes the bit length Lb, the magnetic domain is shifted and shifted intermittently in increments of the bit length Lb while the scanning current source 8 is kept in the ON state. Can be made.

図3(b)に示す直流パルス電流の1パルス供給後の停止時において、図3(c)に示すように、再び記録ヘッド71,72で書込領域1w1,1w2へ書込をする。ここでは、第1トラックTr1の書込領域1w1に「1」を書き込んで磁化方向を下向きに、第2トラックTr2の書込領域1w2に「0」を書き込んで磁化方向を上向きにする。その結果、第2トラックTr2には、書込領域1w2の右隣に、ビット長Lbの長さの、磁化が下向きの磁区が生成する。また、第1トラックTr1には、書込領域1w1の右隣に、ビット長Lbの2倍の細線方向長さの磁化が上向きの磁区が生成する。このように、磁気記録媒体10は、磁性細線1にパルス電流を供給してビット長Lbの距離を磁壁移動させて次のデータを書き込むことで、磁界印加の領域が広くても、1データの長さをビット長Lbにして磁性細線1に格納することができるので、記録密度を高くすることができる。 When stopping after supplying one pulse of the DC pulse current shown in FIG. 3B, writing is again performed on the writing areas 1w 1 and 1w 2 by the recording heads 71 and 72 as shown in FIG. 3C. . Here, “1” is written in the writing area 1 w 1 of the first track Tr 1 to make the magnetization direction downward, and “0” is written in the writing area 1 w 2 of the second track Tr 2 to make the magnetization direction upward. As a result, the second track Tr2, on the right side of the write region 1 w 2, the length of the bit length Lb, magnetization downward magnetic domains are formed. Further, in the first track Tr1, the right of the write region 1 w 1, the magnetization of the double thin lines length of the bit length Lb upward magnetic domain is generated. As described above, the magnetic recording medium 10 supplies the pulse current to the magnetic wire 1 and moves the domain wall by the distance of the bit length Lb to write the next data. Since the length can be stored in the magnetic wire 1 with the bit length Lb, the recording density can be increased.

また、図3(c)においては、第2トラックTr2の書込領域1w2の磁界印加領域(図中の破線枠内)が第1トラックTr1の側へずれているが、磁界印加停止後に、磁壁が溝部1dに係止されるように微小移動するため、第2トラックTr2のみにデータが記録されることになる。このように、磁性細線1は溝部1dで区切ることにより、トラックTr1,Tr2のそれぞれに正確にデータを記録することができる。言い換えると、溝部1dが形成されていない磁性細線では、磁界印加等により一時的に、一方のトラックに他方と異なる磁化方向の磁区を生成し得るが、磁界印加が停止されると、あるいはその後の磁区のシフト移動の際に、細線幅方向に単磁区となるため、それぞれのトラックに個別にデータを記録することが困難である。なお、第2トラックTr2の書込領域1w2への磁界印加は、第1トラックTr1まで及んでもよい。第1トラックTr1は、書込領域1w2の前方の書込領域1w1で書き換えられるからである。 In FIG. 3C, the magnetic field application region (inside the broken line in the drawing) of the writing region 1w 2 of the second track Tr2 is shifted to the first track Tr1, but after the magnetic field application is stopped, Since the domain wall moves minutely so as to be locked to the groove 1d, data is recorded only on the second track Tr2. As described above, by dividing the magnetic wire 1 by the groove 1d, data can be accurately recorded on each of the tracks Tr1 and Tr2. In other words, in the magnetic thin wire in which the groove portion 1d is not formed, a magnetic domain having a magnetization direction different from that of the other can be temporarily generated in one track by applying a magnetic field or the like. When the magnetic domains are shifted, a single magnetic domain is formed in the thin line width direction, so that it is difficult to individually record data on each track. Incidentally, the magnetic field applied to the write area 1 w 2 of the second track Tr2 may extend to the first track Tr1. This is because the first track Tr1 is rewritten in the write area 1w 1 in front of the write area 1w 2 .

(データ再生方法)
磁性細線1のトラックTr1,Tr2に磁区として格納されたデータは、書込と同様に直流パルス電流を供給して磁区を再生領域1r1,1r2まで移動させることにより、再生領域1r1,1r2に対向させた記録再生装置の再生用の磁気ヘッドで再生することができる。例えば図3(a)においては、第1トラックTr1では再生領域1r1に下向きの磁区が到達しているのでデータ「1」が再生され、第2トラックTr2では再生領域1r2に上向きの磁区が到達しているのでデータ「0」が再生される。そして、直流パルス電流1パルス供給(図3(b)参照)後の図3(c)においては、第1トラックTr1ではデータ「0」が再生され、第2トラックTr2ではデータ「1」が再生される。なお、磁性細線1において、電流供給により正電極31側の端まで到達した磁区は消失する。そこで、再生領域1r1,1r2で再生したデータを先頭から、記録ヘッド71,72で並行して書き込むことで、磁気記録媒体10に記録されていたデータを保存してもよい(例えば特許文献3参照)。
(Data playback method)
Data stored as magnetic domains in the tracks Tr1 and Tr2 of the magnetic thin wire 1 is supplied to the reproduction regions 1r 1 and 1r 2 by supplying a direct current pulse current in the same manner as writing, thereby reproducing the regions 1r 1 and 1r. The data can be reproduced by a reproducing magnetic head of the recording / reproducing apparatus facing 2 . For example, in FIG. 3A, since the downward magnetic domain reaches the reproduction area 1r 1 in the first track Tr1, the data “1” is reproduced, and the upward magnetic domain exists in the reproduction area 1r 2 in the second track Tr2. Since it has reached, data “0” is reproduced. In FIG. 3C after supplying one pulse of the DC pulse current (see FIG. 3B), data “0” is reproduced on the first track Tr1, and data “1” is reproduced on the second track Tr2. Is done. In the magnetic wire 1, the magnetic domain that has reached the end on the positive electrode 31 side by current supply disappears. Therefore, the data recorded in the magnetic recording medium 10 may be saved by writing the data reproduced in the reproduction areas 1r 1 and 1r 2 from the top in parallel by the recording heads 71 and 72 (for example, Patent Documents). 3).

このように、本実施形態に係る磁気記録媒体10は、1つのトラックを構成する従来の磁性細線について、並設された2本を接続して一体の磁性細線1とし、共通の電流にて並行して動作させるものといえる。また、本実施形態においては、磁性細線1の書込領域1w1,1w2および再生領域1r1,1r2は、共に4Lbずれて設けられているため、トラックTr1,Tr2のそれぞれの先頭データを同時に書き込むことができる。一方、書込領域1w1,1w2および再生領域1r1,1r2のずれが互いに異なる場合は、再生領域1r1,1r2のずれに合わせて、トラックTr1,Tr2の各先頭データの書込のタイミングをずらす。例えば書込領域1w1,1w2が4Lb、再生領域1r1,1r2が8Lbずれている場合は、第1トラックTr1にのみ4データ書き込んで、次に、5番目のデータと第2トラックTr2の先頭データを同時に書き込む。このように、本発明に係る磁気記録媒体10は、同じ磁性細線1に設けられたトラックTr1,Tr2を個別に磁壁移動させることができないため、並列(同時)再生、同時書込となる。なお、直流パルス電流の1回の停止時に、書込や再生を、トラックTr1,Tr2について同時に行わずに、順次行ってもよい。例えば、書込においては、記録ヘッド71,72の両方から同時に磁界を印加しないことで、印加磁界が互いに影響し合うことを避けることができる。 As described above, in the magnetic recording medium 10 according to the present embodiment, two conventional magnetic wires constituting one track are connected to form an integrated magnetic wire 1 and are parallel with a common current. It can be said that it operates. In the present embodiment, the write areas 1w 1 and 1w 2 of the magnetic wire 1 and the reproduction areas 1r 1 and 1r 2 are both shifted by 4 Lb, so that the top data of each of the tracks Tr1 and Tr2 is used. You can write at the same time. On the other hand, when the deviations of the write areas 1w 1 and 1w 2 and the reproduction areas 1r 1 and 1r 2 are different from each other, the head data of the tracks Tr1 and Tr2 is written in accordance with the deviation of the reproduction areas 1r 1 and 1r 2. Shift the timing. For example, when the write areas 1w 1 and 1w 2 are shifted by 4Lb and the reproduction areas 1r 1 and 1r 2 are shifted by 8Lb, 4 data are written only in the first track Tr1, and then the fifth data and the second track Tr2 are written. Simultaneously write the first data. As described above, the magnetic recording medium 10 according to the present invention cannot perform domain wall movement individually on the tracks Tr1 and Tr2 provided on the same magnetic wire 1, and thus performs parallel (simultaneous) reproduction and simultaneous writing. Note that when the direct current pulse current is stopped once, writing and reproduction may be sequentially performed without simultaneously performing the tracks Tr1 and Tr2. For example, in writing, by not applying a magnetic field from both the recording heads 71 and 72 simultaneously, it is possible to avoid the applied magnetic fields from affecting each other.

書込方式について、記録ヘッド71,72による磁界印加の他に、スピン注入磁化反転が適用されてもよい。磁性細線1の書込領域1w1,1w2にスピン注入磁化反転素子構造を形成することで、これらの領域をスピン注入磁化反転にて所望の磁化方向にすることができる。詳しくは、磁性細線1が、書込領域1w1,1w2において磁化自由層となるように、中間層および磁化固定層を積層し、このスピン注入磁化反転素子構造へ電流を膜面垂直方向に流すための一対の電極を上下に接続する(図示省略)。また、磁性細線1は磁化自由層として好適に磁化反転するように、厚さを5〜30nmとすることが好ましい。このような構成とすることで、書込領域1w1,1w2が微細化されても正確な位置に書き込むことが容易で、また磁界印加よりも高速に書き込むことができる。なお、書込領域1w1,1w2における2つのスピン注入磁化反転素子構造は、磁化自由層を磁性細線1で共有しているので、少なくとも異なるデータを書き込む際には、書込(電流供給)を同時に行わないようにする。 As for the writing method, in addition to the magnetic field application by the recording heads 71 and 72, spin injection magnetization reversal may be applied. By forming the spin-injection magnetization reversal element structure in the write regions 1w 1 and 1w 2 of the magnetic wire 1, these regions can be brought into a desired magnetization direction by spin-injection magnetization reversal. Specifically, an intermediate layer and a magnetization fixed layer are laminated so that the magnetic wire 1 becomes a magnetization free layer in the write regions 1w 1 and 1w 2 , and current is supplied to the spin-injection magnetization switching element structure in the direction perpendicular to the film surface. A pair of electrodes for flowing is connected vertically (not shown). The magnetic wire 1 preferably has a thickness of 5 to 30 nm so that magnetization can be suitably reversed as a magnetization free layer. By adopting such a configuration, even if the writing areas 1w 1 and 1w 2 are miniaturized, it is easy to write at an accurate position, and writing can be performed at a speed higher than the magnetic field application. Since the two spin-injection magnetization reversal element structures in the write regions 1w 1 and 1w 2 share the magnetization free layer with the magnetic fine wire 1, at least when writing different data, write (current supply) is performed. Do not perform at the same time.

(変形例)
前記第1実施形態においては、磁性細線1は、上面に溝部1dを形成されて磁壁が細線幅方向において係止されるようにしたが、磁性細線をトラックTr1,Tr2に区切るトラック区切部はこれに限られない。図4(a)に示す第1実施形態の変形例に係る磁気記録媒体10Aは、表面に溝が形成された基板2A上に磁性細線1Aが形成されている。磁性細線1Aを形成するための磁性膜は膜厚が均一であるので、下地である基板2Aの表面形状に沿って、磁性細線1Aは、基板2Aの溝の直上に上面が凹んで溝状の溝部(連続記録領域区切部)1fが形成される。この磁性細線1Aは、溝部1fにおける下面が下方に突設した畝状となる。磁性細線1Aの形状は、溝部1dにより局所的に断面積が小さくなる磁性細線1とは異なるが、このように局所的に変形した溝部1fにおいても、磁壁が係止され易く、溝部1dと同様にトラック区切部としての効果が得られる。変形部1fの形状の変化量や細線方向長さは、溝部1dと同様である。なお、溝部1fの変化量は、上面または下面のいずれかが磁性細線1Aの厚さの2%以上であればよく、基板2A表面に形成する溝の形状を制御すればよい。また、基板2A表面に溝に代えて畝を形成して、その上に磁性細線1A(磁性膜)を形成してもよく、この場合は、磁性細線1Aは凹凸が反転した形状となる。
(Modification)
In the first embodiment, the magnetic thin wire 1 has a groove 1d formed on the upper surface so that the magnetic wall is locked in the thin wire width direction. However, the track delimiter for dividing the magnetic thin wire into the tracks Tr1 and Tr2 Not limited to. In a magnetic recording medium 10A according to a modification of the first embodiment shown in FIG. 4A, a magnetic fine wire 1A is formed on a substrate 2A having a groove formed on the surface. Since the magnetic film for forming the magnetic wire 1A has a uniform film thickness, the magnetic wire 1A has a groove-like shape in which the upper surface is recessed directly above the groove of the substrate 2A along the surface shape of the substrate 2A. A groove (continuous recording area delimiter) 1f is formed. The magnetic wire 1A has a hook shape in which the lower surface of the groove 1f projects downward. The shape of the magnetic wire 1A is different from that of the magnetic wire 1 whose cross-sectional area is locally reduced by the groove 1d. However, the magnetic wall is also easily locked in the locally deformed groove 1f, which is the same as the groove 1d. The effect as a track delimiter can be obtained. The amount of change in the shape of the deforming portion 1f and the length in the thin line direction are the same as those of the groove portion 1d. Note that the amount of change of the groove portion 1f may be 2% or more of the thickness of the magnetic wire 1A on either the upper surface or the lower surface, and the shape of the groove formed on the surface of the substrate 2A may be controlled. Further, a ridge may be formed on the surface of the substrate 2A in place of the groove, and the magnetic fine wire 1A (magnetic film) may be formed thereon. In this case, the magnetic fine wire 1A has a shape in which the unevenness is inverted.

以上のように、第1実施形態およびその変形例に係る磁気記録媒体によれば、磁性細線の幅やピッチを従来のままとして、記録密度を2倍にすることができる。   As described above, according to the magnetic recording medium according to the first embodiment and the modification thereof, the recording density can be doubled while keeping the width and pitch of the magnetic fine wires as is.

[第2実施形態]
前記第1実施形態およびその変形例においては、磁性細線の形状を変形させてトラックの境界(トラック区切部)としたが、磁性体において磁壁を係止する作用は、形状以外に、磁気特性が局所的な変化した部位にも有する。以下、本発明の第2実施形態に係る磁気記録媒体について、図4(b)を参照して説明する。第1実施形態(図1〜3参照)と同一の要素については同じ符号を付し、説明を省略する。
[Second Embodiment]
In the first embodiment and the modification thereof, the shape of the magnetic wire is deformed to form a track boundary (track delimiter). However, the action of locking the domain wall in the magnetic material has magnetic characteristics in addition to the shape. Also have locally altered sites. Hereinafter, a magnetic recording medium according to the second embodiment of the present invention will be described with reference to FIG. The same elements as those in the first embodiment (see FIGS. 1 to 3) are denoted by the same reference numerals, and description thereof is omitted.

図4(b)に示すように、第2実施形態に係る磁気記録媒体10Bは、基板2上に上下面が平坦な磁性細線1Bが形成されている。磁性細線1Bは、細線幅方向に区切るように、他の領域よりも飽和磁化の高い高Ms領域(連続記録領域区切部)1sが細線方向に沿って設けられ、高Ms領域1sによって、第1トラックTr1と第2トラックTr2とに二分割されている。   As shown in FIG. 4B, in the magnetic recording medium 10B according to the second embodiment, magnetic thin wires 1B having flat upper and lower surfaces are formed on the substrate 2. The magnetic thin wire 1B is provided with a high Ms region (continuous recording region dividing portion) 1s having a saturation magnetization higher than that of the other regions along the thin line direction so as to be divided in the thin line width direction. The track is divided into a track Tr1 and a second track Tr2.

飽和磁化の高低の勾配がある領域においては、磁壁は、飽和磁化の高い方へ移動する。磁性細線1Bは、高Ms領域1sにおいて、細線幅方向に飽和磁化が低〜高〜低という勾配を形成するため、第1実施形態と同様に、トラックTr1,Tr2それぞれで磁区を生成してこれが保持される。   In the region where the saturation magnetization has a high and low gradient, the domain wall moves toward the higher saturation magnetization. In the magnetic fine wire 1B, in the high Ms region 1s, since the saturation magnetization forms a gradient of low to high to low in the thin wire width direction, a magnetic domain is generated in each of the tracks Tr1 and Tr2 as in the first embodiment. Retained.

高Ms領域1sの幅(細線幅方向長さ)は、溝部1d,1fと同様である。なお、磁性細線1Bにおいて、飽和磁化が一様である他の領域に対して、飽和磁化が漸増する領域も含めて高Ms領域1sとする。高Ms領域1sの飽和磁化は特に限定しないが、磁壁が好適に係止されるようにするために、最も高い部分で、高Ms領域1s外の領域に対して1.2倍以上とすることが好ましい。一方、高Ms領域1s外の領域すなわちトラックTr1,Tr2の飽和磁化が低くなり過ぎないように、高Ms領域1sの飽和磁化は10倍程度以下とすることが好ましい。このような飽和磁化の変化は、磁性細線(または加工前の磁性膜)にイオンを照射することで得られ、照射量が多いほど飽和磁化が低下する。したがって、第1実施形態に係る磁気記録媒体10の磁性細線1への溝部1dの形成と同様に、レジストマスクやナノインプリントによる樹脂マスクを形成して、イオンを照射すればよい。なお、マスクは、高Ms領域1sを形成する領域を厚く形成する。イオンの照射は、例えば半導体装置の製造に適用されるイオン注入装置を使用することができる。また、イオン種や注入する条件によっても飽和磁化の変化(低下)量は変化する。イオン種としては、Ga,N,O,Ar,Kr,Xe等が挙げられる。   The width (length in the thin line width direction) of the high Ms region 1s is the same as that of the groove portions 1d and 1f. In addition, in the magnetic thin wire 1B, the high Ms region 1s including the region where the saturation magnetization gradually increases with respect to another region where the saturation magnetization is uniform is set. The saturation magnetization of the high Ms region 1s is not particularly limited, but it should be 1.2 times or more at the highest portion with respect to the region outside the high Ms region 1s so that the domain wall is suitably locked. Is preferred. On the other hand, the saturation magnetization of the high Ms region 1s is preferably about 10 times or less so that the saturation magnetization of the region outside the high Ms region 1s, that is, the tracks Tr1 and Tr2 does not become too low. Such a change in saturation magnetization is obtained by irradiating the magnetic thin wire (or magnetic film before processing) with ions, and the saturation magnetization decreases as the irradiation amount increases. Therefore, similarly to the formation of the groove 1d in the magnetic wire 1 of the magnetic recording medium 10 according to the first embodiment, a resist mask or a resin mask by nanoimprinting may be formed and irradiated with ions. Note that the mask forms a thick region for forming the high Ms region 1s. For the ion irradiation, for example, an ion implantation apparatus applied to the manufacture of a semiconductor device can be used. Also, the amount of change (decrease) in saturation magnetization varies depending on the ion species and implantation conditions. Examples of the ion species include Ga, N, O, Ar, Kr, and Xe.

(変形例)
磁性細線1Bは、トラック区切部を相対的に飽和磁化の高い領域(高Ms領域1s)としたが、反対に飽和磁化の低い領域としても同様の効果が得られる。この場合は、飽和磁化が最も低い部分で、当該領域(トラック区切部)外に対して1/1.2倍以下とすることが好ましい。あるいはさらに飽和磁化を低下させて、トラック区切部を非磁性体としてもよい。イオン照射により飽和磁化は低下するため、このような磁性細線1Bは、トラック区切部以外の主な記録領域とする部分にはイオン照射をせずに強磁性体として、データの保存や再生(磁気の検出)等を容易にすることができる。
(Modification)
In the magnetic thin wire 1B, the track delimiter is a region having a relatively high saturation magnetization (high Ms region 1s), but the same effect can be obtained even in a region having a low saturation magnetization. In this case, it is preferable that the portion having the lowest saturation magnetization is 1 / 1.2 times or less the outside of the region (track delimiter). Alternatively, the saturation magnetization may be further reduced, and the track delimiter may be a nonmagnetic material. Since the saturation magnetization is reduced by the ion irradiation, the magnetic thin wire 1B can store and reproduce data as a ferromagnetic material without irradiating the main recording area other than the track delimiter (magnetic field). Detection) and the like.

[第3実施形態]
本発明に係る磁気記録媒体は、磁性細線が、1本で1トラックを構成する従来の磁性細線(例えば、特許文献2,4参照)と同様に、細線方向に区切る境界にも形状や飽和磁化を変化させた領域を設けられることで、細線方向への磁壁の移動(磁区のシフト移動)における移動ズレを防止することができる。以下、本発明の第3実施形態に係る磁気記録媒体について、図5を参照して説明する。第1、第2実施形態(図1〜4参照)と同一の要素については同じ符号を付し、説明を省略する。
[Third Embodiment]
The magnetic recording medium according to the present invention has a shape and saturation magnetization at the boundary demarcated in the direction of the thin line, similarly to the conventional magnetic thin line (see, for example, Patent Documents 2 and 4) in which one magnetic thin line constitutes one track. By providing a region in which is changed, it is possible to prevent displacement in the domain wall movement (magnetic domain shift movement) in the thin line direction. Hereinafter, a magnetic recording medium according to a third embodiment of the present invention will be described with reference to FIG. The same elements as those in the first and second embodiments (see FIGS. 1 to 4) are denoted by the same reference numerals, and the description thereof is omitted.

図5(a)に示すように、第3実施形態に係る磁気記録媒体10Cは、基板2上に、第1実施形態に係る磁気記録媒体10の磁性細線1(図1(b)参照)と同様に、細線幅方向に二分割する1本の溝部1dが上面に形成された磁性細線1Cが設けられている。磁性細線1Cは、さらに、細線方向(磁気記録媒体10Cの外形の周方向)に区切るように、当該磁性細線1Cの幅全体にわたる溝状の凹部(変形部)1cが一定の間隔(ピッチ)で、ここではビット長Lbのピッチで上面に形成されている。すなわち、磁性細線1Cは、上面に、溝部1dと、この溝部1dに直交する複数の凹部1cとが形成されている。   As shown in FIG. 5A, a magnetic recording medium 10C according to the third embodiment is formed on a substrate 2 with a magnetic wire 1 (see FIG. 1B) of the magnetic recording medium 10 according to the first embodiment. Similarly, a magnetic fine wire 1C is provided in which one groove 1d that is divided into two in the fine wire width direction is formed on the upper surface. The magnetic thin wire 1C is further divided in the thin wire direction (circumferential direction of the outer shape of the magnetic recording medium 10C), and groove-like recesses (deformed portions) 1c extending over the entire width of the magnetic thin wire 1C are spaced at a constant interval (pitch). Here, they are formed on the upper surface at a pitch of the bit length Lb. That is, the magnetic thin wire 1C has a groove 1d and a plurality of recesses 1c perpendicular to the groove 1d formed on the upper surface.

磁性細線1Cにおいて、凹部1cのように当該磁性細線1Cの細線方向に区切って変形させた箇所は、溝部1dと同様に、溝幅(凹部1cの開口部における細線方向長さ)を、磁壁の厚み以上とし、10倍以下とすることが好ましい。具体的には、凹部1cの溝幅は、10〜100nm程度の範囲で、ビット長Lbの1/2以下、トラックTr1,Tr2の幅(磁性細線1Cの幅の1/2)の1/10〜2倍程度が好ましい。また、凹部1cのように変形させた箇所は、磁性細線1Cへのパルス電流の停止時(ベース期間)に磁壁を好適に係止させておくためには、溝部1dと同様にその変化量を2%以上とすることが好ましい。一方、凹部1cは、溝部1d等のトラック区切部と異なり、係止させた磁壁を当該凹部1cの外へ再び移動させる必要があり、変化量が大き過ぎると、この移動のために高い電流密度を要し、さらに本実施形態のように、凹部1cとして断面積が減少している場合、断面積が小さくなると、磁性細線1Cにパルス電流を供給する際の抵抗が増大する。したがって、磁性細線1Cにおいて、凹部1cのように変形させた箇所は、変化量を40%以下(断面積が凹部1c外の60%以上)にすることが好ましい。また、凹部1cは、傾斜が緩やか過ぎると磁壁を係止する作用が小さく動作の安定性を欠き、反対に急峻過ぎると係止させた磁壁を再び移動させるために高い電流密度を要するため、磁壁移動が好適に行われるように溝幅等も併せて設計する。   In the magnetic thin wire 1C, the portion of the magnetic thin wire 1C that is deformed by being divided in the thin wire direction like the concave portion 1c has a groove width (length in the thin wire direction in the opening portion of the concave portion 1c), similar to the groove portion 1d. It is preferable that the thickness is not less than 10 times. Specifically, the groove width of the recess 1c is in the range of about 10 to 100 nm, less than 1/2 of the bit length Lb, and 1/10 of the width of the tracks Tr1 and Tr2 (1/2 of the width of the magnetic wire 1C). About 2 times is preferable. Further, in order to keep the domain wall suitably locked when the pulse current to the magnetic wire 1C is stopped (base period), the amount of change in the deformed portion such as the recess 1c is the same as the groove 1d. It is preferable to set it to 2% or more. On the other hand, unlike the track delimiter such as the groove 1d, the recess 1c needs to move the locked domain wall to the outside of the recess 1c again. If the amount of change is too large, the current density is increased due to this movement. Further, as in this embodiment, when the cross-sectional area is reduced as the recess 1c, if the cross-sectional area is reduced, the resistance when supplying the pulse current to the magnetic wire 1C increases. Therefore, in the magnetic thin wire 1C, it is preferable that the amount of change in the deformed portion such as the recess 1c is 40% or less (the cross-sectional area is 60% or more outside the recess 1c). Further, the concave portion 1c has a small action of locking the domain wall if the inclination is too gentle, and lacks stability of operation. On the other hand, if it is too steep, a high current density is required to move the locked domain wall again. The groove width and the like are also designed so that the movement is suitably performed.

さらに、磁性細線1Cにおいて、凹部1cのように変形させた箇所は、磁区のシフト移動において一時的に(パルス電流の停止時に)磁壁を係止させるものであるので、磁壁を係止する作用が溝部1dよりも小さいことが好ましい。すなわち、磁性細線1Cにおいては、凹部1cは、溝部1dよりも溝が浅いことが好ましく、さらに傾斜が溝部1dと同程度またはより緩やかであることが好ましい。以下、磁性細線1Cの凹部1cのように、磁性細線を細線方向に区切る境界に設けられて、磁区のシフト移動において磁壁を一時的に係止させる部分を、適宜、磁壁係止部と称する。   Further, in the magnetic thin wire 1C, the deformed portion such as the concave portion 1c temporarily locks the domain wall (when the pulse current is stopped) in the shift movement of the magnetic domain. It is preferably smaller than the groove 1d. That is, in the magnetic thin wire 1C, the recess 1c is preferably shallower than the groove 1d, and the inclination is preferably the same as or slower than the groove 1d. Hereinafter, a portion that is provided at a boundary that divides the magnetic fine wire in the thin wire direction and temporarily locks the magnetic domain wall in the shift movement of the magnetic domain, such as the concave portion 1c of the magnetic fine wire 1C, is appropriately referred to as a domain wall locking portion.

図5(a)においては、磁気記録媒体10Cは、隣り合う2以上の磁性細線1C同士(図5(a)においては2本)にわたって、当該磁気記録媒体10Cの外形の径方向に沿った直線状に凹部1cを設けている。円盤形状の磁気記録媒体10Cにおいては、磁性細線1Cのそれぞれの細線長さが磁気記録媒体10Cの外周側と内周側とで異なり、さらには1本の磁性細線1CにおけるトラックTr1,Tr2同士でも厳密には長さが異なる。しかし、ある程度の本数までの隣り合う磁性細線1Cは、その差異が微小であるので、このような本数でまとめて径に沿った直線上に凹部1cを設けることで、それぞれの磁性細線1Cについて凹部1cで磁壁が係止される。そして、磁区の移動ズレがないので、図1(a)に示すように、磁気記録媒体10Cの平面視における径に沿って、すべての磁性細線1Cに書込領域1wや再生領域1rを設けることができる。したがって、磁気記録媒体10Cは、隣り合う複数の磁性細線1Cにわたって、凹部1c,1c,…が平面視で放射状に設けられる。なお、磁気記録媒体が例えば平面視矩形で、磁性細線が互いに平行な直線状に形成されている場合は、凹部1cは細線方向に直交する直線に沿って設けられればよい(図示省略)。   In FIG. 5A, the magnetic recording medium 10C is a straight line along the radial direction of the outer shape of the magnetic recording medium 10C across two or more adjacent magnetic thin wires 1C (two in FIG. 5A). A recess 1c is provided in the shape. In the disk-shaped magnetic recording medium 10C, the lengths of the magnetic thin wires 1C are different between the outer peripheral side and the inner peripheral side of the magnetic recording medium 10C, and even between the tracks Tr1 and Tr2 in one magnetic thin wire 1C. Strictly speaking, the length is different. However, since the difference between the adjacent fine magnetic wires 1C up to a certain number is very small, by providing the concave portions 1c on a straight line along the diameter in such a number, the concave portions of the respective magnetic thin wires 1C are provided. The domain wall is locked at 1c. Since there is no displacement of the magnetic domains, as shown in FIG. 1A, the write area 1w and the reproduction area 1r are provided in all the magnetic wires 1C along the diameter in plan view of the magnetic recording medium 10C. Can do. Therefore, in the magnetic recording medium 10C, the concave portions 1c, 1c,... Are provided radially across the plurality of adjacent magnetic thin wires 1C in a plan view. When the magnetic recording medium is rectangular in plan view and the magnetic thin wires are formed in straight lines parallel to each other, the recess 1c may be provided along a straight line perpendicular to the thin line direction (not shown).

図5(a)においては、磁性細線1Cは、ビット長Lb毎に、すなわち1データの格納領域を区切るように凹部1cを設けているが、これに限られず、ビット長Lbの2以上の整数倍毎に凹部1cを設けてもよい。あるいは、書込領域1wや再生領域1rの近傍等、磁性細線1Cにおける特定の部位にのみ凹部1cを設けてもよい。   In FIG. 5A, the magnetic thin wire 1C is provided with a recess 1c for each bit length Lb, that is, to divide one data storage area. However, the present invention is not limited to this, and an integer of 2 or more of the bit length Lb is provided. You may provide the recessed part 1c for every double. Or you may provide the recessed part 1c only in the specific site | part in the magnetic fine wire 1C, such as the vicinity of the writing area | region 1w and the reproduction | regeneration area | region 1r.

凹部1cの断面(細線幅方向に垂直な断面)視形状は、特に規定されず、V字型(逆三角形)、U字型、矩形、逆台形型等が挙げられる。さらに、凹部1cは、トラックTr1,Tr2のそれぞれに形成されていれば、磁性細線1Cの幅全体にわたって形成されていなくてもよく、例えばトラックTr1,Tr2のそれぞれの幅方向中心に形成された平面視で点状の(円錐状等の)凹みであってもよい(図示省略)。すなわち、トラックTr1,Tr2において、磁壁が通過する領域の一部でも変形していれば、磁壁を係止することができる。ただし、凹部1cは、磁壁を係止する作用を同等にするために、形状が磁気記録媒体10Cにおいてすべてが略一致するように、高い寸法精度で形成されることが好ましい。このような凹部1cは、溝部1dと同様に磁性細線1C(磁性膜)をエッチングして形成することができる。例えば、図5(a)においては、磁性細線1C,1Cを細線状に形成し、さらにその間の絶縁層6を形成した後、磁性細線1C,1Cおよび絶縁層6に、磁気記録媒体10Cの径に沿った直線状の溝を形成して、凹部1cとしている。磁性細線1Cに、凹部1cと同時に溝部1fを形成してもよいし、別の工程に分けて形成してもよい。また、凹部1cが点状の凹みであれば、磁性細線1C(磁性膜)の上面に突起状の工具を押し込んで凹ませて形成することもできる。   The cross-sectional shape (cross section perpendicular to the thin line width direction) of the recess 1c is not particularly defined, and examples thereof include a V shape (inverted triangle), a U shape, a rectangle, and an inverted trapezoid shape. Furthermore, as long as the recess 1c is formed in each of the tracks Tr1 and Tr2, it may not be formed over the entire width of the magnetic wire 1C. For example, a plane formed at the center in the width direction of each of the tracks Tr1 and Tr2. It may be a dent (such as a cone) in view (not shown). That is, in the tracks Tr1 and Tr2, if a part of the region through which the domain wall passes is also deformed, the domain wall can be locked. However, the concave portion 1c is preferably formed with high dimensional accuracy so that the shape of the concave portion 1c is substantially the same in the magnetic recording medium 10C in order to equalize the action of locking the domain wall. Such a recess 1c can be formed by etching the magnetic wire 1C (magnetic film) in the same manner as the groove 1d. For example, in FIG. 5A, after forming the magnetic wires 1C and 1C into a thin wire shape and further forming the insulating layer 6 therebetween, the diameter of the magnetic recording medium 10C is formed on the magnetic wires 1C and 1C and the insulating layer 6. A rectilinear groove is formed to form a recess 1c. The groove 1f may be formed in the magnetic wire 1C simultaneously with the recess 1c, or may be formed separately in another process. Moreover, if the recessed part 1c is a dotted | punctate dent, it can also be formed by pushing and protruding a projection-like tool into the upper surface of the magnetic wire 1C (magnetic film).

(変形例)
前記第3実施形態においては、磁性細線1Cは、上面に凹部1cを形成されて磁壁係止部としたが、溝部1d等のトラック区切部と同様、これに限られない。図5(b)に示す第3実施形態の変形例に係る磁気記録媒体10Dは、表面に、当該磁気記録媒体10Dの径方向に沿って溝が形成された基板2B上に、磁性細線1Dが形成され、磁性細線1Dは基板2Bの表面形状に沿って凹部(変形部)1bが形成される。すなわち、凹部1bは、図4(a)に示す第1実施形態の変形例に係る磁気記録媒体10Aの磁性細線1Aの溝部1fと同様の方法で形成されたものである。なお、磁性細線1Dにおいては、トラック区切部として、上面に溝部1dが形成されている。すなわち、磁気記録媒体10Dは、基板2Bの表面に、凹部1bを形成するための径方向に沿った溝のみを形成し、その上に磁性細線1D(磁性膜)を形成した後、磁性細線1Dの表面に溝部1dが形成されたものである。凹部1bの磁性細線1Dにおける位置や形状の変化量等は、凹部1cと同様である。
(Modification)
In the third embodiment, the magnetic thin wire 1C is formed with the concave portion 1c on the upper surface to form the domain wall locking portion. However, like the track partitioning portion such as the groove 1d, the magnetic fine wire 1C is not limited thereto. A magnetic recording medium 10D according to a modification of the third embodiment shown in FIG. 5B has a magnetic thin wire 1D formed on a substrate 2B on the surface of which a groove is formed along the radial direction of the magnetic recording medium 10D. The magnetic fine wire 1D is formed with a concave portion (deformed portion) 1b along the surface shape of the substrate 2B. That is, the recess 1b is formed by the same method as the groove 1f of the magnetic wire 1A of the magnetic recording medium 10A according to the modification of the first embodiment shown in FIG. In the magnetic wire 1D, a groove 1d is formed on the upper surface as a track delimiter. That is, in the magnetic recording medium 10D, only the grooves along the radial direction for forming the recesses 1b are formed on the surface of the substrate 2B, and after forming the magnetic wire 1D (magnetic film) thereon, the magnetic wire 1D is formed. A groove 1d is formed on the surface. The position of the recess 1b in the magnetic wire 1D, the amount of change in shape, and the like are the same as those of the recess 1c.

なお、トラック区切部として、溝部1dに代えて溝部1fを設けてもよく、この場合は、基板2Bに、細線方向(外形の周方向)、径方向にそれぞれ沿った溝を形成し、その上に磁性細線1D(磁性膜)を形成すればよい。あるいは、溝部1fと凹部1cを組み合わせてもよい(図示省略)。   Note that a groove 1f may be provided as a track delimiter instead of the groove 1d. In this case, grooves along the fine line direction (circumferential direction of the outer shape) and the radial direction are formed on the substrate 2B, The magnetic wire 1D (magnetic film) may be formed on the substrate. Or you may combine the groove part 1f and the recessed part 1c (illustration omitted).

また、前記したように、トラックTr1,Tr2において、磁壁が通過する領域の一部でも変形していればよいので、図5(c)に示すように磁性細線1Eの側面を局所的に凹ませてもよい。第3実施形態の変形例に係る磁気記録媒体10Eは、平面視で両側が括れた形状の磁性細線1Eが設けられている。このような磁性細線1Eの括れ部(変形部)1k1,1k2は、凹部1cや凹部1bと同様に、磁性細線1E全体に対する変化量の割合、すなわちトラックTr1,Tr2の幅(磁性細線1の幅の1/2)に対する括れの深さ(細線幅方向における最大切欠き長さ)を2%以上40%以下とすることが好ましい。このような磁気記録媒体10Eは、例えば、表面に溝を形成した基板2A上に磁性膜を成膜し、マスクを用いて括れ部1k1,1k2を有する細線状に加工して磁性細線1Eを形成して得られる。なお、磁性細線1Eにおいては、トラック区切部として溝部1fが設けられているが、溝部1dを適用してもよい(図示省略)。 Further, as described above, in the tracks Tr1 and Tr2, it is only necessary to deform even a part of the region through which the domain wall passes, so that the side surface of the magnetic wire 1E is locally recessed as shown in FIG. May be. A magnetic recording medium 10E according to a modification of the third embodiment is provided with magnetic thin wires 1E that are constricted on both sides in plan view. Such constricted portions (deformed portions) 1k 1 and 1k 2 of the magnetic wire 1E are, like the recesses 1c and 1b, the ratio of the amount of change with respect to the entire magnetic wire 1E, that is, the widths of the tracks Tr1 and Tr2 (magnetic wires 1). It is preferable that the confinement depth (maximum notch length in the width direction of the thin wire) with respect to ½ of the width of the width is 2% or more and 40% or less. In such a magnetic recording medium 10E, for example, a magnetic film is formed on a substrate 2A having a groove formed on the surface, and processed into a thin line shape having constricted portions 1k 1 and 1k 2 using a mask, thereby forming the magnetic thin line 1E. Is obtained. In the magnetic wire 1E, the groove 1f is provided as a track delimiter, but the groove 1d may be applied (not shown).

本実施形態に係る磁気記録媒体は、磁壁係止部として、飽和磁化の高さを局所的に変化させた領域(飽和磁化変異部)を、細線方向に区切る境界に設けてもよい(図示省略)。このような磁壁係止部における飽和磁化は、第2実施形態に係る磁気記録媒体10B(図4(b)参照)の磁性細線1Bの高Ms領域1sと同様に、高くする場合には当該磁壁係止部外に対して1.2倍以上10倍以下、低くする場合には1/10倍以上1/1.2倍以下とすることが好ましい。さらに、トラック区切部として高Ms領域1sのような飽和磁化を変化させた領域を適用する場合は、磁壁係止部は、磁壁を係止する作用をトラック区切部よりも小さくするために、高Ms領域1sの変化量よりも小さくすることが好ましく、すなわち磁性細線全体で3段階の高さの飽和磁化の領域が設けられる。また、磁性細線において、トラック区切部を飽和磁化の高い高Ms領域1sとした場合に、磁壁係止部を他の領域よりも飽和磁化の低い領域としてもよく、あるいはその逆としてもよい。   In the magnetic recording medium according to the present embodiment, as a domain wall locking portion, a region in which the saturation magnetization height is locally changed (saturation magnetization variation portion) may be provided at the boundary demarcated in the thin line direction (not shown). ). When the saturation magnetization in such a domain wall locking portion is increased, as in the high Ms region 1s of the magnetic wire 1B of the magnetic recording medium 10B (see FIG. 4B) according to the second embodiment, the domain wall is increased. In the case of lowering 1.2 times or more and 10 times or less with respect to the outside of the engaging portion, it is preferable to set 1/10 times or more and 1 / 1.2 times or less. Furthermore, when a region where saturation magnetization is changed, such as the high Ms region 1s, is used as the track partitioning portion, the domain wall locking portion has a high height in order to make the action of locking the domain wall smaller than the track partitioning portion. The amount of change is preferably smaller than the amount of change in the Ms region 1s, that is, a saturation magnetization region having three levels of height is provided in the entire magnetic wire. Further, in the magnetic thin wire, when the track delimiter is a high Ms region 1s having a high saturation magnetization, the domain wall locking portion may be a region having a lower saturation magnetization than the other regions, or vice versa.

磁壁係止部に飽和磁化の高さを変化させた領域を設けた磁性細線においては、トラック区切部として溝部1dや溝部1fを組み合わせてもよい。あるいは、トラック区切部として高Ms領域1sのような飽和磁化の高さを変化させた領域を設けた磁性細線に、磁壁係止部として凹部1c、凹部1b、括れ部1k1,1k2のいずれかを形成してもよい。このように、形状の変化と飽和磁化の変化とを組み合わせる場合も、磁壁係止部の方がトラック区切部よりも磁壁を係止する作用が小さくなるように、溝の深さ等の形状および飽和磁化の変化量を設定することが好ましい。 In the magnetic thin wire in which the domain wall engaging portion is provided with a region in which the saturation magnetization height is changed, the groove portion 1d or the groove portion 1f may be combined as a track partitioning portion. Alternatively, any one of the concave portion 1c, the concave portion 1b, and the constricted portions 1k 1 and 1k 2 as magnetic domain wall engaging portions is provided on a magnetic thin wire provided with a region in which the saturation magnetization height is changed as the high Ms region 1s as the track delimiter portion. You may form. As described above, when combining the change in shape and the change in saturation magnetization, the shape and the like of the depth of the groove and the like so that the action of locking the domain wall is smaller in the domain wall locking part than in the track partitioning part. It is preferable to set the amount of change in saturation magnetization.

(実施例1)
本発明の効果を確認するために、第1実施形態に係る磁気記録媒体の磁性細線(図1、図2参照)を模擬するサンプルを作製し、形成される磁区を観察した。表面を熱酸化したSi基板上に、下地としてRu(3nm)、および[Co(0.3nm)/Pd(1.2nm)]×21の多層膜を成膜し(合計厚さ約40nm)、約250nm幅の磁性細線に加工した。この磁性細線に、原子間力顕微鏡(AFM)のナノインデンテーション機能に使用されるダイヤモンドプローブを押し込んで細線方向に摺動させること(スクラッチ)により、幅方向中心辺りに細線方向に沿って深さ約14nmの1本の溝を形成してサンプルを作製した。図6(a)に、サンプルのAFMで観察した表面形状およびAFM像写真を示す。作製したサンプルの磁性細線は、上面にダイヤモンドプローブを押し込んで変形させることにより溝を形成したため、図6(a)に示すように溝の両側が盛り上がり、成膜時よりも厚くなった。
Example 1
In order to confirm the effect of the present invention, a sample simulating the magnetic thin wire (see FIGS. 1 and 2) of the magnetic recording medium according to the first embodiment was produced, and the formed magnetic domains were observed. On the Si substrate whose surface was thermally oxidized, a multilayer film of Ru (3 nm) and [Co (0.3 nm) / Pd (1.2 nm)] × 21 was formed as a base (total thickness about 40 nm), It was processed into a magnetic thin wire having a width of about 250 nm. By inserting a diamond probe used for the nanoindentation function of the atomic force microscope (AFM) into this magnetic wire and sliding it in the direction of the thin wire (scratch), the depth along the direction of the thin wire is about the center in the width direction. A sample was prepared by forming one groove of about 14 nm. FIG. 6A shows a surface shape and an AFM image photograph of the sample observed with the AFM. Since the magnetic thin wire of the produced sample was deformed by pushing a diamond probe into the upper surface and deformed, both sides of the groove were raised as shown in FIG.

作製したサンプルに、初期化として1kGの磁界を上向きに印加して、全体の磁化を飽和させて上向きの磁化とした後、磁性細線(Co/Pd多層膜)の保磁力より少し小さい0.5kGの下向きの磁界を印加して、複数の磁区を生成させた。このサンプルの表面を磁気力顕微鏡(MFM)にて画像化して観察した。図6(b)に示すMFM像写真において、磁性細線は、磁化方向が上向きか下向きかによって磁区毎に白(上向き)/黒(下向き)のコントラストを示す。   As a initialization, a magnetic field of 1 kG is applied upward to the prepared sample to saturate the entire magnetization to make it upward, and then 0.5 kG, which is slightly smaller than the coercive force of the magnetic wire (Co / Pd multilayer film). A downward magnetic field was applied to generate a plurality of magnetic domains. The surface of this sample was imaged and observed with a magnetic force microscope (MFM). In the MFM image photograph shown in FIG. 6B, the magnetic thin line shows white (upward) / black (downward) contrast for each magnetic domain depending on whether the magnetization direction is upward or downward.

図6(a)、(b)に示すように、磁性細線は、細線方向にのみでなく、溝に沿って細線幅方向にも磁区が分割されることが確認され、2本のトラックを構成することができるといえる。   As shown in FIGS. 6 (a) and 6 (b), it is confirmed that the magnetic fine wires are divided not only in the fine wire direction but also in the fine wire width direction along the groove, thereby forming two tracks. I can say that.

(実施例2)
前記実施例1と同じCo/Pd多層膜を約300nm幅の磁性細線に加工し、この磁性細線に、幅方向に略3等分するように細線方向に沿って深さ15〜20nmの2本の溝を実施例1と同様の方法で形成してサンプルを作製した。図7(a)に、サンプルのAFMで観察した表面形状およびAFM像写真を示す。さらに実施例1と同様に2段階の磁界の印加により、磁性細線に複数の磁区を生成させた。このサンプルの表面のMFM像写真を図7(b)に示す。
(Example 2)
The same Co / Pd multilayer film as in Example 1 was processed into a magnetic thin wire having a width of about 300 nm, and two of this magnetic thin wire having a depth of 15 to 20 nm along the thin wire direction so as to be divided into approximately three equal parts in the width direction. A groove was formed in the same manner as in Example 1 to prepare a sample. FIG. 7A shows a surface shape and an AFM image photograph of the sample observed with the AFM. Further, as in Example 1, a plurality of magnetic domains were generated on the magnetic wire by applying a two-step magnetic field. An MFM image photograph of the surface of this sample is shown in FIG.

図7(a)、(b)に示すように、磁性細線は、2本の溝が形成された場合も、それぞれの溝に沿って細線幅方向に磁区が分割されることが確認され、2本以上の任意の本数のトラックを構成し得るといえる。   As shown in FIGS. 7A and 7B, even when two grooves are formed in the magnetic thin wire, it is confirmed that the magnetic domains are divided along the respective grooves in the thin wire width direction. It can be said that an arbitrary number of tracks equal to or more than one can be configured.

以上の結果から、幅方向に単磁区を生成する十分に幅の狭い磁性細線であっても、細線方向に沿って溝のような磁壁を係止する箇所を設けることで、1本あたりに2以上のトラックとなる記録領域を設けて、記録密度を高くすることができる。   From the above results, even if the magnetic thin wire is narrow enough to generate a single magnetic domain in the width direction, it is possible to provide 2 portions per one by providing a portion for locking a magnetic wall such as a groove along the thin wire direction. The recording density can be increased by providing the recording area to be the above track.

以上、本発明に係る磁気記録媒体を実施するための形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although the form for implementing the magnetic recording medium based on this invention has been described, this invention is not limited to these embodiment, A various change is possible in the range shown to the claim. .

10,10A,10B,10C,10D,10E 磁気記録媒体
1,1A,1B,1C,1D,1E 磁性細線
1d 溝部(連続記録領域区切部)
1f 溝部(連続記録領域区切部)
1s 高Ms領域(連続記録領域区切部)
1b 凹部(変形部)
1c 凹部(変形部)
1k1,1k2 括れ部(変形部)
2,2A,2B 基板
31 正電極
32 負電極
6 絶縁層
10, 10A, 10B, 10C, 10D, 10E Magnetic recording medium 1, 1A, 1B, 1C, 1D, 1E Magnetic wire 1d Groove (continuous recording area delimiter)
1f Groove (continuous recording area delimiter)
1s High Ms area (continuous recording area delimiter)
1b Concave part (deformed part)
1c Concave part (deformation part)
1k 1 , 1k 2 constricted part (deformed part)
2, 2A, 2B Substrate 31 Positive electrode 32 Negative electrode 6 Insulating layer

Claims (4)

基板上に磁性体を細線状に形成してなる1以上の磁性細線を備えて、2値のデータをそれぞれ異なる磁化方向として前記磁性細線に記録されて磁区が生成される磁気記録媒体であって、
前記磁性細線は、細線幅方向に区切る境界の1箇所以上に、上面および下面の少なくとも一方が細線方向に延びた溝状または畝状のいずれかに形成された連続記録領域区切部が設けられ、
前記磁性細線は、前記連続記録領域区切部を境界として細線幅方向に分割された領域のそれぞれにおいて、複数の前記磁区が細線方向に連続して生成し、電流が供給されることにより、すべての前記分割された領域において、前記磁区同士を区切る磁壁が細線方向に移動することを特徴とする磁気記録媒体。
A magnetic recording medium comprising one or more magnetic wires formed by forming a magnetic material on a substrate in a thin line shape, wherein binary data is recorded on the magnetic wires as different magnetization directions and magnetic domains are generated. ,
The magnetic fine wire is provided with a continuous recording area delimiter formed in either a groove shape or a bowl shape in which at least one of the upper surface and the lower surface extends in the fine line direction at one or more positions of the boundary demarcated in the thin line width direction,
The magnetic fine lines are generated by continuously generating a plurality of the magnetic domains in the thin line direction in each of the areas divided in the fine line width direction with the continuous recording area delimiter as a boundary. 2. A magnetic recording medium according to claim 1, wherein in the divided area, a domain wall separating the magnetic domains moves in a thin line direction.
基板上に磁性体を細線状に形成してなる1以上の磁性細線を備えて、2値のデータをそれぞれ異なる磁化方向として前記磁性細線に記録されて磁区が生成される磁気記録媒体であって、
前記磁性細線は、細線幅方向に区切る境界の1箇所以上に、他の領域と飽和磁化の高さが異なる連続記録領域区切部が細線方向に延設され、
前記磁性細線は、前記連続記録領域区切部を境界として細線幅方向に分割された領域のそれぞれにおいて、複数の前記磁区が細線方向に連続して生成し、電流が供給されることにより、すべての前記分割された領域において、前記磁区同士を区切る磁壁が細線方向に移動することを特徴とする磁気記録媒体。
A magnetic recording medium comprising one or more magnetic wires formed by forming a magnetic material on a substrate in a thin line shape, wherein binary data is recorded on the magnetic wires as different magnetization directions and magnetic domains are generated. ,
The magnetic thin wire has a continuous recording region delimiter extending in the direction of the thin line at one or more boundaries demarcated in the thin line width direction and having different saturation magnetization heights from other regions,
The magnetic fine lines are generated by continuously generating a plurality of the magnetic domains in the thin line direction in each of the areas divided in the fine line width direction with the continuous recording area delimiter as a boundary. 2. A magnetic recording medium according to claim 1, wherein in the divided area, a domain wall separating the magnetic domains moves in a thin line direction.
前記磁性細線は、細線方向に区切る境界の1箇所以上に、細線方向に垂直な断面の形状が他の領域と異なって、前記電流の停止時に前記磁壁を係止する変形部が設けられていることを特徴とする請求項1または請求項2に記載の磁気記録媒体。   The magnetic fine wire is provided with a deforming portion that locks the magnetic domain wall when the current is stopped, at one or more of the boundaries demarcated in the fine wire direction, the shape of the cross section perpendicular to the fine wire direction is different from other regions. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is a magnetic recording medium. 前記磁性細線は、細線方向に区切る境界の1箇所以上に、飽和磁化の高さが他の領域と異なって、前記電流の停止時に前記磁壁を係止する飽和磁化変異部が設けられていることを特徴とする請求項1または請求項2に記載の磁気記録媒体。   The magnetic thin wire is provided with a saturation magnetization variation portion that locks the domain wall when the current is stopped at one or more of the boundaries demarcated in the thin wire direction, unlike the other regions. The magnetic recording medium according to claim 1, wherein:
JP2012174348A 2012-08-06 2012-08-06 Magnetic recording medium Expired - Fee Related JP5947657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174348A JP5947657B2 (en) 2012-08-06 2012-08-06 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174348A JP5947657B2 (en) 2012-08-06 2012-08-06 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2014032730A true JP2014032730A (en) 2014-02-20
JP5947657B2 JP5947657B2 (en) 2016-07-06

Family

ID=50282431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174348A Expired - Fee Related JP5947657B2 (en) 2012-08-06 2012-08-06 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5947657B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114813A (en) * 2014-12-16 2016-06-23 日本放送協会 Magnetic thin line device, and manufacturing method of magnetic thin line mounting substrate
JP2016201154A (en) * 2015-04-07 2016-12-01 日本放送協会 Magnetic thin wire device
JP2017097928A (en) * 2015-11-18 2017-06-01 日本放送協会 Magnetic wall mobile type recording medium
JP2017102992A (en) * 2015-12-04 2017-06-08 日本放送協会 Magnetic recording medium and magnetic recording device
JP2017529643A (en) * 2014-07-17 2017-10-05 華為技術有限公司Huawei Technologies Co.,Ltd. Magnetic storage device and information storage method using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846229A (en) * 1971-10-05 1973-07-02
JP2006237183A (en) * 2005-02-24 2006-09-07 Internatl Business Mach Corp <Ibm> Method of manufacturing data track to be used in magnetic shift register memory device
JP2007324269A (en) * 2006-05-31 2007-12-13 Fujitsu Ltd Magnetic memory, and its manufacturing method
JP2008090957A (en) * 2006-10-03 2008-04-17 Toshiba Corp Magnetic storage device and its read/write method
US20080138659A1 (en) * 2006-12-06 2008-06-12 Samsung Electronics Co., Ltd. Magnetic domain data storage devices and methods of operating the same
JP2010010605A (en) * 2008-06-30 2010-01-14 Fujitsu Ltd Magnetic memory element, magnetic memory device, and memory element manufacturing method
JP2010516043A (en) * 2007-01-05 2010-05-13 インターナショナル・ビジネス・マシーンズ・コーポレーション Memory device comprising different ferromagnetic material layers and methods of making and using the same
JP2011123943A (en) * 2009-12-10 2011-06-23 Nippon Hoso Kyokai <Nhk> Magnetic recording medium reproducing device, magnetic recording medium, and magnetic recording medium reproducing method
JP2012084206A (en) * 2010-10-13 2012-04-26 Nippon Hoso Kyokai <Nhk> Magnetic recording medium, magnetic reproducing device, magnetic reproducing method, and light modulation element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846229A (en) * 1971-10-05 1973-07-02
JP2006237183A (en) * 2005-02-24 2006-09-07 Internatl Business Mach Corp <Ibm> Method of manufacturing data track to be used in magnetic shift register memory device
JP2007324269A (en) * 2006-05-31 2007-12-13 Fujitsu Ltd Magnetic memory, and its manufacturing method
JP2008090957A (en) * 2006-10-03 2008-04-17 Toshiba Corp Magnetic storage device and its read/write method
US20080138659A1 (en) * 2006-12-06 2008-06-12 Samsung Electronics Co., Ltd. Magnetic domain data storage devices and methods of operating the same
JP2010516043A (en) * 2007-01-05 2010-05-13 インターナショナル・ビジネス・マシーンズ・コーポレーション Memory device comprising different ferromagnetic material layers and methods of making and using the same
JP2010010605A (en) * 2008-06-30 2010-01-14 Fujitsu Ltd Magnetic memory element, magnetic memory device, and memory element manufacturing method
JP2011123943A (en) * 2009-12-10 2011-06-23 Nippon Hoso Kyokai <Nhk> Magnetic recording medium reproducing device, magnetic recording medium, and magnetic recording medium reproducing method
JP2012084206A (en) * 2010-10-13 2012-04-26 Nippon Hoso Kyokai <Nhk> Magnetic recording medium, magnetic reproducing device, magnetic reproducing method, and light modulation element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016016336; 宮本泰敬: '磁性細線の研究動向' NHK技研 R&D No.132, 201203, pp.12-23 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529643A (en) * 2014-07-17 2017-10-05 華為技術有限公司Huawei Technologies Co.,Ltd. Magnetic storage device and information storage method using the same
JP2016114813A (en) * 2014-12-16 2016-06-23 日本放送協会 Magnetic thin line device, and manufacturing method of magnetic thin line mounting substrate
JP2016201154A (en) * 2015-04-07 2016-12-01 日本放送協会 Magnetic thin wire device
JP2017097928A (en) * 2015-11-18 2017-06-01 日本放送協会 Magnetic wall mobile type recording medium
JP2017102992A (en) * 2015-12-04 2017-06-08 日本放送協会 Magnetic recording medium and magnetic recording device

Also Published As

Publication number Publication date
JP5947657B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5165345B2 (en) Information storage device using magnetic domain wall movement and manufacturing method thereof
KR20050053496A (en) Patterned multilevel perpendicular magnetic recording media
JP5947657B2 (en) Magnetic recording medium
JP2005166239A (en) Magnetic recording system with patterned multilevel perpendicular magnetic recording
JP4840041B2 (en) Electric field applied magnetic recording system and recording / reproducing apparatus
JP2007265503A (en) Information recording and reproducing system
US9922674B2 (en) Magnetic recording and reproducing device and magnetic recording and reproducing method
JP2011044693A (en) Track provided with magnetic layer and magnetic element provided with the track
JP2015011753A (en) Scissor magnetic sensor having back edge soft magnetic bias structure
JP4317503B2 (en) Magnetization information recording method and magnetic recording / reproducing apparatus
JP2006059498A (en) Magnetic recording medium, and magnetic recording and reproducing device
JP5311786B2 (en) Information recording method and information reading method of information storage device using movement of magnetic domain wall
JP4185230B2 (en) Magnetic recording medium
JP2007116003A (en) Magnetoresistance effect element and magnetic head, and magnetic recording and reproducing device using the same
JP4113041B2 (en) Magnetization control method and information recording apparatus
JP2008146809A (en) Magnetic recording medium and its manufacturing method
US8036070B2 (en) Magnetic recording device, especially for a hard disk and its manufacturing process
JP2013214353A (en) Magnetic recording device
JP2006172634A (en) Magnetic recording/reproducing device, magnetic recording medium, and magnetic head
JP2011123943A (en) Magnetic recording medium reproducing device, magnetic recording medium, and magnetic recording medium reproducing method
JP2012084206A (en) Magnetic recording medium, magnetic reproducing device, magnetic reproducing method, and light modulation element
Thomson et al. Magnetic data storage: past present and future
JP6523934B2 (en) Magnetic recording medium and magnetic recording medium device
JP5400731B2 (en) Magnetic recording medium, magnetic reproducing apparatus, and magnetic reproducing method
JP6663817B2 (en) Magnetic recording medium, magnetic reproducing apparatus, and magnetic reproducing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160603

R150 Certificate of patent or registration of utility model

Ref document number: 5947657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees