JP2014031248A - Rubber composition for conveyor belt, conveyor belt and belt conveyor - Google Patents

Rubber composition for conveyor belt, conveyor belt and belt conveyor Download PDF

Info

Publication number
JP2014031248A
JP2014031248A JP2012172821A JP2012172821A JP2014031248A JP 2014031248 A JP2014031248 A JP 2014031248A JP 2012172821 A JP2012172821 A JP 2012172821A JP 2012172821 A JP2012172821 A JP 2012172821A JP 2014031248 A JP2014031248 A JP 2014031248A
Authority
JP
Japan
Prior art keywords
mass
rubber
group
component
conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012172821A
Other languages
Japanese (ja)
Other versions
JP5961476B2 (en
Inventor
Hironori Nakano
宏規 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2012172821A priority Critical patent/JP5961476B2/en
Priority to AU2012353554A priority patent/AU2012353554B2/en
Priority to US14/364,345 priority patent/US9296880B2/en
Priority to CN201280069424.2A priority patent/CN104114631B/en
Priority to PCT/JP2012/081955 priority patent/WO2013089069A1/en
Priority to EP12858665.8A priority patent/EP2792709B1/en
Publication of JP2014031248A publication Critical patent/JP2014031248A/en
Application granted granted Critical
Publication of JP5961476B2 publication Critical patent/JP5961476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Belt Conveyors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rubber composition for a conveyor belt capable of achieving both energy-saving effect and extremely high durability, a conveyor belt having both energy-saving effect and extremely high durability, and a belt conveyor on which the conveyor belt is mounted.SOLUTION: There are provided a rubber composition for a conveyor belt which comprises: (A) 100 pts.mass of a diene-based polymer; (B) 25 to 55 pts.mass of carbon black containing carbon black (b-1) having a nitrogen absorption specific surface area of 60 to 100 m/g and a dibutyl phthalate oil absorption of less than 110 ml/100 g and carbon black (b-2) having a nitrogen absorption specific surface area of less than 60 m/g and a dibutyl phthalate oil absorption of 110 ml/100 g or more; (C) 1 to 15 pts.mass of silica; and (D) 0.1 to 1.5 pts.mass of a silane coupling agent, a conveyor belt obtained using the rubber composition for a conveyor belt and a belt conveyor on which the conveyor belt is mounted.

Description

本発明は、コンベアベルト用ゴム組成物、該コンベアベルト用ゴム組成物を用いて得られるコンベアベルト、及び該コンベアベルトを装着したベルトコンベアに関する。   The present invention relates to a rubber composition for a conveyor belt, a conveyor belt obtained using the rubber composition for a conveyor belt, and a belt conveyor equipped with the conveyor belt.

ベルトコンベアは、資材、食品などの種々の荷物を搬送する手段として利用されている。近年は、輸送量の増加及び輸送効率の向上のために大型化されたものが用いられるようになってきており、全長が数kmに及ぶものも登場してきている。このため、より高い耐久性が求められると共に、消費電力の低減化が求められている。
該ベルトコンベアに装着するベルト(コンベアベルト)は、通常、中に補強材としての芯体を有し、該芯体の上側(コンベアベルトに使用した場合に外周となる面。)のカバーゴム[以下、外周カバーゴムと称する。]と内周(コンベアベルトに使用した場合の裏面。下側。)のカバーゴム[以下、内周カバーゴムと称する。]で挟んでいる。かかる外周カバーゴムとその裏面に位置する内周カバーゴムでは要求される物性が異なり、内周カバーゴムは、耐引裂き性のみならず、コンベアベルトと多数のローラとの接触によるエネルギーの損失を減らす、すなわち低ロス化して電力消費量を低減する必要がある。
これまでに、耐引裂き性に優れたコンベアベルト用ゴム組成物として、天然ゴム(NR)にブタジエンゴム(BR)やスチレンブタジエンゴム(SBR)を種々の組み合わせで含有させたゴム組成物などが知られている(特許文献1及び2参照)。しかし、特許文献1及び2に記載されたゴム組成物にはスチレンブタジエンゴム(SBR)が含有されており、そのため耐引裂き性が良好となっているが、内部損失は大きいため、省エネルギー性には乏しかった。
そこで、本発明者は、(A)ジエン系重合体100質量部、及び(B)窒素吸着比表面積60〜100m2/g及びジブチルフタレート(DBP)吸油量110ml/100g未満のカーボンブラック(b−1)と、窒素吸着比表面積60m2/g未満及びDBP吸油量110ml/100g以上のカーボンブラック(b−2)とを含有するカーボンブラック25〜55質量部とを含有するコンベアベルト用ゴム組成物を開発し、当該ゴム組成物であれば、省エネルギー性と耐久性とを両立させられることを見出し、先に特許出願(特願2011−271378号)した。
The belt conveyor is used as a means for conveying various kinds of luggage such as materials and foods. In recent years, large-sized ones have been used in order to increase the transportation amount and improve transportation efficiency, and those having a total length of several kilometers have also appeared. For this reason, higher durability is required and reduction in power consumption is required.
The belt (conveyor belt) to be mounted on the belt conveyor usually has a core body as a reinforcing material therein, and a cover rubber on the upper side of the core body (a surface that becomes an outer periphery when used as a conveyor belt). Hereinafter, the outer peripheral cover rubber is referred to. ] And cover rubber of the inner periphery (back surface when used for a conveyor belt, lower side) [hereinafter referred to as inner cover rubber. ]. The required physical properties are different between the outer peripheral cover rubber and the inner peripheral cover rubber located on the back surface thereof, and the inner peripheral cover rubber reduces not only tear resistance but also energy loss due to contact between the conveyor belt and a large number of rollers. That is, it is necessary to reduce power consumption by reducing the loss.
To date, rubber compositions for conveyor belts having excellent tear resistance include rubber compositions containing natural rubber (NR) and butadiene rubber (BR) or styrene butadiene rubber (SBR) in various combinations. (See Patent Documents 1 and 2). However, the rubber compositions described in Patent Documents 1 and 2 contain styrene butadiene rubber (SBR), so that the tear resistance is good, but the internal loss is large, so the energy saving performance is It was scarce.
Therefore, the present inventor has (A) 100 parts by mass of a diene polymer, and (B) a carbon black (b-) having a nitrogen adsorption specific surface area of 60 to 100 m 2 / g and a dibutyl phthalate (DBP) oil absorption of less than 110 ml / 100 g. 1) and a rubber composition for conveyor belts containing 25 to 55 parts by mass of carbon black (b-2) containing a nitrogen adsorption specific surface area of less than 60 m 2 / g and a DBP oil absorption of 110 ml / 100 g or more. Was developed, and it was found that the rubber composition can achieve both energy saving and durability, and a patent application (Japanese Patent Application No. 2011-271378) was filed first.

特開平11−139523号公報JP-A-11-139523 特開2004−346220号公報JP 2004-346220 A

ところが、特願2011−271378号に記載のコンベアベルト用ゴム組成物は、確かに従来のコンベアベルト用ゴム組成物に比べて省エネルギー性と耐久性とを高い水準でバランス良く両立しているが、耐久性については必ずしも高い水準を保てない場合があることが判明した。そのため、省エネルギー性に優れながら、耐久性を安定的に高い水準に有するコンベアベルト用ゴム組成物の開発が望まれている。
そこで、本発明の課題は、省エネルギー性と極めて高い耐久性とを両立させ得るコンベアベルト用ゴム組成物を提供すること、そして省エネルギー性と極めて高い耐久性とを併せ持つコンベアベルトを提供すること、さらには、該コンベアベルトを装着したベルトコンベアを提供することにある。
However, the rubber composition for conveyor belts described in Japanese Patent Application No. 2011-271378 certainly has a high level of balance between energy saving and durability compared to conventional rubber compositions for conveyor belts. It has been found that durability may not always be high. Therefore, development of the rubber composition for conveyor belts which is excellent in energy saving property and has durability stably at a high level is desired.
Therefore, the object of the present invention is to provide a rubber composition for a conveyor belt that can achieve both energy saving and extremely high durability, and to provide a conveyor belt that has both energy saving and extremely high durability. Is to provide a belt conveyor equipped with the conveyor belt.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、ジエン系重合体と特定のカーボンブラック2種とを特定比率で含有するゴム組成物であれば上記課題を解決し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to solve the above problems, the present inventors can solve the above problems as long as the rubber composition contains a diene polymer and two specific carbon blacks in a specific ratio. I found out. The present invention has been completed based on such findings.

すなわち、本発明は、下記[1]〜[6]に関する。
[1](A)ジエン系重合体100質量部、
(B)窒素吸着比表面積60〜100m2/g及びジブチルフタレート吸油量110ml/100g未満のカーボンブラック(b−1)と、窒素吸着比表面積60m2/g未満及びジブチルフタレート吸油量110ml/100g以上のカーボンブラック(b−2)とを含有するカーボンブラック25〜55質量部、
(C)シリカ1〜15質量部、及び
(D)シランカップリング剤0.1〜1.5質量部
を含有するコンベアベルト用ゴム組成物。
[2](A)成分が、天然ゴム及びイソプレンゴムから選択される少なくとも1種15〜65質量%及びブタジエンゴム85〜35質量%からなる、上記[1]に記載のコンベアベルト用ゴム組成物。
[3]前記ブタジエンゴムのシス−1,4結合含有量が90%以上である、上記[2]に記載のコンベアベルト用ゴム組成物。
[4]さらに老化防止剤0.1〜10質量部を含有する、上記[1]〜[3]のいずれかに記載のコンベアベルト用ゴム組成物。
[5]上記[1]に記載のゴム組成物を用いて得られるコンベアベルト。
[6]上記[5]に記載のコンベアベルトを装着したベルトコンベア。
That is, the present invention relates to the following [1] to [6].
[1] (A) 100 parts by mass of a diene polymer,
(B) the nitrogen adsorption specific surface area 60~100m 2 / g and dibutyl phthalate oil absorption of 110 ml / 100 g than the carbon black (b-1) and a nitrogen adsorption specific than surface area 60 m 2 / g and dibutyl phthalate oil absorption of 110 ml / 100 g or more Carbon black (b-2) containing 25 to 55 parts by mass of carbon black,
(C) The rubber composition for conveyor belts containing 1-15 mass parts of silicas, and (D) 0.1-1.5 mass parts of silane coupling agents.
[2] The rubber composition for a conveyor belt according to the above [1], wherein the component (A) comprises at least one 15-65% by mass selected from natural rubber and isoprene rubber and 85-35% by mass of butadiene rubber. .
[3] The rubber composition for a conveyor belt according to the above [2], wherein the cis-1,4 bond content of the butadiene rubber is 90% or more.
[4] The rubber composition for conveyor belts according to any one of the above [1] to [3], further comprising 0.1 to 10 parts by mass of an antioxidant.
[5] A conveyor belt obtained using the rubber composition according to [1].
[6] A belt conveyor equipped with the conveyor belt according to [5].

本発明によれば、省エネルギー性と極めて高い耐久性とを両立するコンベアベルト用ゴム組成物、省エネルギー性と極めて高い耐久性とを併せ持つコンベアベルト、及び該コンベアベルトを装着したベルトコンベアを提供することができる。特に、本発明のコンベアベルト用ゴム組成物は、微妙な製造条件及び混練条件の相違によらず、安定的に極めて高い耐久性を有する点に大きなメリットを有する。   According to the present invention, there are provided a rubber composition for a conveyor belt that achieves both energy saving and extremely high durability, a conveyor belt having both energy saving and extremely high durability, and a belt conveyor equipped with the conveyor belt. Can do. In particular, the rubber composition for conveyor belts of the present invention has a great merit in that it has extremely high durability stably regardless of subtle differences in production conditions and kneading conditions.

[コンベアベルト用ゴム組成物]
本発明のコンベアベルト用ゴム組成物は、
(A)ジエン系重合体100質量部、
(B)窒素吸着比表面積60〜100m2/g及びジブチルフタレート(DBP)吸油量110ml/100g未満のカーボンブラック(b−1)と、窒素吸着比表面積60m2/g未満及びDBP吸油量110ml/100g以上のカーボンブラック(b−2)とを含有するカーボンブラック25〜55質量部、
(C)シリカ1〜15質量部、及び
(D)シランカップリング剤0.1〜1.5質量部
を含有するものであり、該ゴム組成物を用いて得られるコンベアベルトは、省エネルギー性と極めて高い耐久性とを併せ持つ。
以下、本発明のコンベアベルト用ゴム組成物の成分について説明する。
[Rubber composition for conveyor belt]
The rubber composition for conveyor belts of the present invention,
(A) 100 parts by mass of a diene polymer,
(B) Carbon black (b-1) having a nitrogen adsorption specific surface area of 60 to 100 m 2 / g and dibutyl phthalate (DBP) oil absorption of less than 110 ml / 100 g; a nitrogen adsorption specific surface area of less than 60 m 2 / g and a DBP oil absorption of 110 ml / 25 to 55 parts by mass of carbon black containing 100 g or more of carbon black (b-2),
(C) 1 to 15 parts by mass of silica, and (D) 0.1 to 1.5 parts by mass of a silane coupling agent, and a conveyor belt obtained using the rubber composition is energy-saving. Combined with extremely high durability.
Hereinafter, the component of the rubber composition for conveyor belts of this invention is demonstrated.

((A)ジエン系重合体)
(A)成分であるジエン系重合体としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、エチレン−プロピレンゴム(EPR)、エチレン−プロピレン−ジエンゴム(EPDM)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、クロロプレンゴムなどが挙げられる。これらは1種を単独で使用してもよいし、2種以上を併用してもよい。本発明では、省エネルギー性と耐久性とを両立させる観点から、2種以上を併用することが好ましく、天然ゴム、イソプレンゴム及びブタジエンゴムから選択される少なくとも2種を併用することがより好ましく、天然ゴム及びイソプレンゴムから選択される少なくとも1種と、ブタジエンゴムとを併用することがさらに好ましく、天然ゴム又はイソプレンゴムと、ブタジエンゴムとを併用することが特に好ましい。
また、(A)成分は、省エネルギー性と耐久性とを両立させる観点から、天然ゴム及びイソプレンゴムから選択される少なくとも1種15〜65質量%及びブタジエンゴム85〜35質量%からなることが好ましく、天然ゴム及びイソプレンゴムから選択される少なくとも1種20〜60質量%及びブタジエンゴム80〜40質量%からなることがより好ましい。
なお、ブタジエンゴムとしては、省エネルギー性と耐久性とを両立させる観点から、ハイシスブタジエンゴムが好ましい。ハイシスブタジエンゴムとは、FT−IRによる測定において、1,3−ブタジエン単位中のシス−1,4結合含有量が90%以上98%未満のハイシスブタジエンゴムのことである。ハイシスブタジエンゴムの1,3−ブタジエン単位中のシス−1,4結合含有量は、好ましくは95%以上98%未満である。ハイシスブタジエンゴムの製造方法に特に制限は無く、公知の方法によって製造することができる。例えば、ネオジウム系触媒を用いてブタジエンを重合することによって製造できる。ハイシスブタジエンゴムは市販されており、例えばJSR株式会社製の「BR01」、「T700」などを使用することもできる。
((A) Diene polymer)
Examples of the diene polymer as the component (A) include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPR), and ethylene. -Propylene-diene rubber (EPDM), butyl rubber (IIR), halogenated butyl rubber, chloroprene rubber and the like. These may be used individually by 1 type and may use 2 or more types together. In the present invention, from the viewpoint of achieving both energy saving and durability, it is preferable to use two or more types together, more preferably at least two types selected from natural rubber, isoprene rubber and butadiene rubber are used in combination. It is more preferable to use butadiene rubber in combination with at least one selected from rubber and isoprene rubber, and it is particularly preferable to use butadiene rubber in combination with natural rubber or isoprene rubber.
In addition, the component (A) is preferably composed of at least one type selected from natural rubber and isoprene rubber, 15 to 65% by mass and butadiene rubber 85 to 35% by mass from the viewpoint of achieving both energy saving and durability. More preferably, it consists of 20 to 60% by mass of at least one selected from natural rubber and isoprene rubber and 80 to 40% by mass of butadiene rubber.
The butadiene rubber is preferably a high-cis butadiene rubber from the viewpoint of achieving both energy saving and durability. The high cis butadiene rubber is a high cis butadiene rubber having a cis-1,4 bond content in a 1,3-butadiene unit of 90% or more and less than 98% as measured by FT-IR. The cis-1,4 bond content in the 1,3-butadiene unit of the high cis-butadiene rubber is preferably 95% or more and less than 98%. There is no restriction | limiting in particular in the manufacturing method of high cis-butadiene rubber, It can manufacture by a well-known method. For example, it can be produced by polymerizing butadiene using a neodymium catalyst. High-cis butadiene rubber is commercially available, and for example, “BR01” and “T700” manufactured by JSR Corporation can also be used.

((B)カーボンブラック)
(B)成分であるカーボンブラックとしては、省エネルギー性と耐久性とを両立させる観点から、窒素吸着比表面積60〜100m2/g及びDBP吸油量110ml/100g未満のカーボンブラック(b−1)と、窒素吸着比表面積60m2/g未満及びDBP吸油量110ml/100g以上のカーボンブラック(b−2)とを併用する。
(b−1)成分のカーボンブラックとしては、耐久性の観点から、窒素吸着比表面積70〜90m2/g及びDBP吸油量60〜108ml/100gであることが好ましく、窒素吸着比表面積70〜90m2/g及びDBP吸油量65〜108ml/100gであることがより好ましい。なお、当該(b−1)成分のみでは、耐久性を高める効果があるが、省エネルギー性が低くなる傾向にある。(b−1)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(b−2)成分のカーボンブラックとしては、省エネルギー性の観点から、窒素吸着比表面積30〜55m2/g及びDBP吸油量110〜140ml/100gであることが好ましく、窒素吸着比表面積35〜50m2/g及びDBP吸油量115〜130ml/100gであることがより好ましい。なお、当該(b−2)成分のみでは、省エネルギー性を向上させる効果があるが、耐久性が低くなる傾向にある。(b−2)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
なお、本明細書において、カーボンブラックの窒素吸着比表面積及びDBP吸油量は、JIS K 6217(1997)に準じて測定した値である。
(b−1)成分と(b−2)成分の含有比率[(b−1):(b−2)]は、質量比で、好ましくは10:90〜90:10、より好ましくは15:85〜90:10、より好ましくは20:80〜80:20、さらに好ましくは40:60〜80:20、特に好ましくは50:50〜70:30である。上記の含有比率であれば、省エネルギー性と耐久性とを共に向上させることができる。
カーボンブラックとしては、ファーネス法、チャンネル法、アセチレン法、サーマル法などのいずれの方法で製造されたものであってもよく、特にファーネス法により製造されたものが好ましい。カーボンブラックとしては、具体的には、標準品種であるSAF、ISAF、HAF、FEF、GPF、SRF(以上、ゴム用ファーネス)、MTカーボンブラック(熱分解カーボン)などが挙げられる。これらの中から、上記規定に合うカーボンブラックを適宜選択して用いればよい。これらの中でも前記ゴム用ファーネスが好ましく、HAF、FEFがより好ましい。
((B) Carbon black)
The carbon black (B) is a carbon black (b-1) having a nitrogen adsorption specific surface area of 60 to 100 m 2 / g and a DBP oil absorption of less than 110 ml / 100 g from the viewpoint of achieving both energy saving and durability. Carbon black (b-2) having a nitrogen adsorption specific surface area of less than 60 m 2 / g and a DBP oil absorption of 110 ml / 100 g or more is used in combination.
The carbon black as the component (b-1) is preferably a nitrogen adsorption specific surface area of 70 to 90 m 2 / g and a DBP oil absorption of 60 to 108 ml / 100 g from the viewpoint of durability, and a nitrogen adsorption specific surface area of 70 to 90 m. 2 / g and DBP oil absorption of 65 to 108 ml / 100 g are more preferable. In addition, although only the said (b-1) component has an effect which improves durability, it exists in the tendency for energy saving property to become low. (B-1) A component may be used individually by 1 type and may use 2 or more types together.
The carbon black (b-2) is preferably a nitrogen adsorption specific surface area of 30 to 55 m 2 / g and a DBP oil absorption of 110 to 140 ml / 100 g from the viewpoint of energy saving, and a nitrogen adsorption specific surface area of 35 to 50 m. 2 / g and DBP oil absorption of 115 to 130 ml / 100 g are more preferable. In addition, although only the said (b-2) component has an effect which improves energy saving property, it exists in the tendency for durability to become low. (B-2) A component may be used individually by 1 type and may use 2 or more types together.
In the present specification, the nitrogen adsorption specific surface area and the DBP oil absorption of carbon black are values measured according to JIS K 6217 (1997).
The content ratio [(b-1) :( b-2)] of the component (b-1) and the component (b-2) is a mass ratio, preferably 10:90 to 90:10, more preferably 15: It is 85-90: 10, More preferably, it is 20: 80-80: 20, More preferably, it is 40: 60-80: 20, Most preferably, it is 50: 50-70: 30. If it is said content ratio, both energy-saving property and durability can be improved.
Carbon black may be produced by any method such as the furnace method, channel method, acetylene method, thermal method, etc., and those produced by the furnace method are particularly preferred. Specific examples of carbon black include standard varieties such as SAF, ISAF, HAF, FEF, GPF, SRF (hereinafter, rubber furnace), MT carbon black (pyrolytic carbon), and the like. Among these, carbon black that meets the above-mentioned regulations may be appropriately selected and used. Among these, the furnace for rubber is preferable, and HAF and FEF are more preferable.

本発明のコンベアベルト用ゴム組成物において、(B)成分[(b−1)成分と(b−2)成分以外のカーボンブラック(以下、カーボンブラック(b−3)と称する。)も含む。]の含有量は、(A)成分100質量部に対して25〜55質量部である。25質量部未満であると、耐久性に乏しい。一方、55質量部を超えると、省エネルギー性が不十分となる。同様の観点から、(B)成分の含有量は、(A)成分100質量部に対して、好ましくは25〜50質量部、より好ましくは30〜50質量部、さらに好ましくは35〜50質量部である。
(B)成分中、(b−1)成分と(b−2)成分の合計含有比率は、好ましくは85質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは実質的に100質量%である。
本発明のコンベアベルト用ゴム組成物は、本発明の効果を著しく損なわない範囲で、上記(b−1)成分及び(b−2)成分に該当しないカーボンブラック(b−3)を含有していてもよい。該カーボンブラック(b−3)を含有する場合、その含有量は、(B)成分中の(b−1)成分と(b−2)成分の合計含有比率が上記範囲内になることが好ましい。
The rubber composition for conveyor belts of the present invention also includes a component (B) [carbon black other than the components (b-1) and (b-2) (hereinafter referred to as carbon black (b-3)). ] Is 25-55 mass parts with respect to 100 mass parts of (A) component. If it is less than 25 parts by mass, the durability is poor. On the other hand, when it exceeds 55 parts by mass, the energy saving property becomes insufficient. From the same viewpoint, the content of the component (B) is preferably 25 to 50 parts by mass, more preferably 30 to 50 parts by mass, and further preferably 35 to 50 parts by mass with respect to 100 parts by mass of the component (A). It is.
In the component (B), the total content ratio of the component (b-1) and the component (b-2) is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably. Is substantially 100% by mass.
The rubber composition for conveyor belts of the present invention contains carbon black (b-3) not corresponding to the above components (b-1) and (b-2) as long as the effects of the present invention are not significantly impaired. May be. When the carbon black (b-3) is contained, the content is preferably such that the total content ratio of the components (b-1) and (b-2) in the component (B) is within the above range. .

((C)シリカ)
本発明では、ゴム組成物に(C)成分としてシリカを含有させることにより、前記(A)成分と(B)成分とを特定配合比で含有したゴム組成物が有する省エネルギー性を保持しつつ、良好な耐久性をより一層向上させる効果が得られる。該(C)成分の配合により、配合順序、配合方法及び混練条件等によらず、安定的に極めて高い耐久性を有するゴム組成物が得られる。このような効果が発現する正確な理由は不明ではあるが、次のように推測する。つまり、シリカが、コンベアベルトに必要な小変形の歪によって生じるエネルギーを熱に変換する能力は持たないために省エネルギー性は維持するか又はあまり低減しないが、大変形の歪によって生じるエネルギーを熱に変換して散逸させる能力を持っており、それ故に耐久性が大幅に高まるものと推測する。
該シリカとしては、市販のあらゆるものが使用できる。中でも、湿式シリカ、乾式シリカ、コロイダルシリカを用いるのが好ましく、湿式シリカを用いるのが特に好ましい。
シリカのBET比表面積(ISO 5794/1に準拠して測定)は、40〜350m2/gであるのが好ましい。BET表面積がこの範囲であるシリカは、ゴム成分中への分散性が良好であり、良好な省エネルギー性を保持しつつ、ゴム組成物の耐久性向上効果が優れる。この観点から、シリカのBET表面積は、より好ましくは80〜350m2/g、さらに好ましくは120〜350m2/g、特に好ましくは150〜300m2/gである。
このようなシリカとしては、東ソー・シリカ株式会社製、商品名「ニプシルAQ」(BET比表面積=220m2/g)、「ニプシルKQ」、デグッサ社製、商品名「ウルトラジルVN3」(BET比表面積=175m2/g)等の市販品があり、これらを用いることができる。
シリカは、1種を単独で使用してもよいし、2種以上を併用してもよい。
本発明のコンベアベルト用ゴム組成物において、(C)成分であるシリカの含有量は、(A)成分100質量部に対して1〜15質量部である。1質量部未満であると、耐久性の向上効果に乏しく、一方、15質量部を超えると、組成物がごわごわした状態となり、シート状にし難い、つまり成形性が低下する。この観点から、(A)成分100質量部に対して、好ましくは1〜10質量部、より好ましくは2〜8質量部、さらに好ましくは2〜6質量部である。
また、(B)成分及び(C)成分の合計含有量は、(A)成分100質量部に対して26〜70質量部となるが、省エネルギー性と極めて高い耐久性とを両立する観点から、好ましくは30〜60質量部、より好ましくは35〜55質量部、さらに好ましくは40〜50質量部である。
((C) Silica)
In the present invention, by containing silica as the component (C) in the rubber composition, while maintaining the energy saving property of the rubber composition containing the component (A) and the component (B) at a specific blending ratio, The effect of further improving the good durability can be obtained. By blending the component (C), a rubber composition having a very high durability can be obtained stably regardless of the blending order, blending method, kneading conditions and the like. Although the exact reason why such an effect appears is unknown, it is presumed as follows. In other words, silica does not have the ability to convert the energy generated by the small deformation strain necessary for the conveyor belt into heat, so that energy saving is maintained or not significantly reduced, but the energy generated by the large deformation strain is converted into heat. It has the ability to convert and dissipate, so it is speculated that durability will be greatly increased.
Any commercially available silica can be used. Of these, wet silica, dry silica, and colloidal silica are preferably used, and wet silica is particularly preferably used.
The BET specific surface area (measured according to ISO 5794/1) of silica is preferably 40 to 350 m 2 / g. Silica having a BET surface area in this range has good dispersibility in the rubber component, and is excellent in durability improvement effect of the rubber composition while maintaining good energy saving. From this viewpoint, the BET surface area of silica is more preferably 80 to 350 m 2 / g, further preferably 120 to 350 m 2 / g, and particularly preferably 150 to 300 m 2 / g.
Examples of such silica include Tosoh Silica Co., Ltd., trade name “Nipsil AQ” (BET specific surface area = 220 m 2 / g), “Nipsil KQ”, Degussa Corporation, trade name “Ultra Gil VN3” (BET ratio). There are commercially available products such as surface area = 175 m 2 / g), which can be used.
Silica may be used alone or in combination of two or more.
In the rubber composition for conveyor belts of the present invention, the content of silica as component (C) is 1 to 15 parts by mass with respect to 100 parts by mass of component (A). If the amount is less than 1 part by mass, the effect of improving the durability is poor. On the other hand, if the amount exceeds 15 parts by mass, the composition becomes stiff and difficult to form into a sheet, that is, the moldability is lowered. From this viewpoint, the amount is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass, and further preferably 2 to 6 parts by mass with respect to 100 parts by mass of the component (A).
Moreover, although the total content of (B) component and (C) component will be 26-70 mass parts with respect to 100 mass parts of (A) component, from a viewpoint of making energy saving and extremely high durability compatible, Preferably it is 30-60 mass parts, More preferably, it is 35-55 mass parts, More preferably, it is 40-50 mass parts.

((D)シランカップリング剤)
本発明のゴム組成物には、(C)成分により低下しがちである省エネルギー性を高い水準に維持するため、(D)成分としてシランカップリング剤を含有させる。
シランカップリング剤としては、下記一般式(I)〜(IV)で表わされる化合物からなる群から選択される少なくとも1種であることが好ましい。本発明のゴム組成物は、このようなシランカップリング剤を用いることにより、ゴム加工時の作業性に更に優れると共に、耐久性の一層の向上効果が得られる。
以下、下記一般式(I)〜(IV)を順に説明する。
((D) Silane coupling agent)
In the rubber composition of the present invention, a silane coupling agent is contained as the component (D) in order to maintain the energy saving property that tends to be lowered by the component (C) at a high level.
The silane coupling agent is preferably at least one selected from the group consisting of compounds represented by the following general formulas (I) to (IV). By using such a silane coupling agent, the rubber composition of the present invention is further excellent in workability at the time of rubber processing and further improves the durability.
Hereinafter, the following general formulas (I) to (IV) will be described in order.

Figure 2014031248
式中、複数のR1は同一でも異なっていてもよく、各々炭素数1〜8の直鎖、環状もしくは分枝のアルキル基又は炭素数2〜8の直鎖もしくは分枝のアルコキシアルキル基を表す。複数のR2は同一でも異なっていてもよく、各々炭素数1〜8の直鎖、環状もしくは分枝のアルキル基を表す。複数のR3は同一でも異なっていてもよく、各々炭素数1〜8の直鎖もしくは分枝のアルキレン基を表す。aは平均値として2〜6であり、p及びrは同一でも異なっていてもよく、各々平均値として0〜3である。但し、p及びrの双方が3であることはない。
Figure 2014031248
In the formula, a plurality of R 1 s may be the same or different, and each represents a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms or a linear or branched alkoxyalkyl group having 2 to 8 carbon atoms. Represent. A plurality of R 2 may be the same or different and each represents a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms. Several R < 3 > may be same or different and each represents a C1-C8 linear or branched alkylene group. a is an average value of 2 to 6, and p and r may be the same or different, and are each an average value of 0 to 3. However, both p and r are not 3.

上記一般式(I)で表わされるシランカップリング剤の具体例として、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(3−メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(3−トリメトキシシリルプロピル)ジスルフィド、ビス(3−メチルジメトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)ジスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリメトキシシリルプロピル)トリスルフィド、ビス(3−メチルジメトキシシリルプロピル)トリスルフィド、ビス(2−トリエトキシシリルエチル)トリスルフィド、ビス(3−モノエトキシジメチルシリルプロピル)テトラスルフィド、ビス(3−モノエトキシジメチルシリルプロピル)トリスルフィド、ビス(3−モノエトキシジメチルシリルプロピル)ジスルフィド、ビス(3−モノメトキシジメチルシリルプロピル)テトラスルフィド、ビス(3−モノメトキシジメチルシリルプロピル)トリスルフィド、ビス(3−モノメトキシジメチルシリルプロピル)ジスルフィド、ビス(2−モノエトキシジメチルシリルエチル)テトラスルフィド、ビス(2−モノエトキシジメチルシリルエチル)トリスルフィド、ビス(2−モノエトキシジメチルシリルエチル)ジスルフィド等が挙げられる。   Specific examples of the silane coupling agent represented by the general formula (I) include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (3-methyldimethoxysilylpropyl). ) Tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide, (2-triethoxysilylethyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) tetrasulfide, bis (3-monoethoxydimethylsilylpropyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) disulfide, Bis (3-monomethoxydimethylsilylpropyl) tetrasulfide, bis (3-monomethoxydimethylsilylpropyl) trisulfide, bis (3-monomethoxydimethylsilylpropyl) disulfide, bis (2-monoethoxydimethylsilylethyl) tetrasulfide Bis (2-monoethoxydimethylsilylethyl) trisulfide, bis (2-monoethoxydimethylsilylethyl) disulfide, and the like.

Figure 2014031248
式中、R4は、−Cl、−Br、R9O−、R9C(=O)O−、R910C=NO−、R910CNO−、R910N−及び−(OSiR910h(OSiR91011)から選択される一価の基(R9、R10及びR11は、それぞれ独立して、水素原子又は炭素数1〜18の一価の炭化水素基であり、それぞれ同一でもよいし、異なっていてもよい。また、hは、平均値として1〜4である。)であり、R5はR4、水素原子又は炭素数1〜18の一価の炭化水素基であり、R6は、R4、R5、水素原子又は−[O(R12O)j]0.5 −基(R12は炭素数1〜18のアルキレン基である。jは、1〜4の整数である。)であり、R7は、炭素数1〜18の二価の炭化水素基であり、R8は、炭素数1〜18の一価の炭化水素基である。また、x、y及びzは、x+y+2z=3、0≦x≦3、0≦y≦2、0≦z≦1の関係を満たす数である。
Figure 2014031248
Wherein, R 4 is, -Cl, -Br, R 9 O- , R 9 C (= O) O-, R 9 R 10 C = NO-, R 9 R 10 CNO-, R 9 R 10 N- And-(OSiR 9 R 10 ) h (OSiR 9 R 10 R 11 ) each independently represents a monovalent group (R 9 , R 10, or R 11) is independently a hydrogen atom or a C 1-18 carbon atom. A monovalent hydrocarbon group, which may be the same or different, and h is 1 to 4 on average, and R 5 is R 4 , a hydrogen atom or a carbon number. 1 to 18 monovalent hydrocarbon groups, R 6 is R 4 , R 5 , a hydrogen atom or — [O (R 12 O) j ] 0.5 — group (R 12 is an alkylene having 1 to 18 carbon atoms). J is an integer of 1 to 4), R 7 is a divalent hydrocarbon group having 1 to 18 carbon atoms, and R 8 is a monovalent group having 1 to 18 carbon atoms. It is a hydrocarbon group. X, y, and z are numbers satisfying the relationship of x + y + 2z = 3, 0 ≦ x ≦ 3, 0 ≦ y ≦ 2, and 0 ≦ z ≦ 1.

上記一般式(II)において、R8〜R11はそれぞれ同一でも異なっていてもよく、各々炭素数1〜18の直鎖、環状もしくは分枝のアルキル基、アルケニル基、アリール基及びアラルキル基からなる群から選択される基であることが好ましい。
また、R5が炭素数1〜18の一価の炭化水素基である場合は、直鎖、環状もしくは分枝のアルキル基、アルケニル基、アリール基及びアラルキル基からなる群から選択される基であることが好ましい。R12は直鎖、環状又は分枝のアルキレン基であることが好ましく、特に直鎖状のものが好ましい。R7の炭素数1〜18の二価の炭化水素基としては、例えば炭素数1〜18のアルキレン基、炭素数2〜18のアルケニレン基、炭素数5〜18のシクロアルキレン基、炭素数6〜18のシクロアルキルアルキレン基、炭素数6〜18のアリーレン基、炭素数7〜18のアラルキレン基を挙げることができる。前記アルキレン基及びアルケニレン基は、直鎖状、枝分かれ状のいずれであってもよく、前記シクロアルキレン基、シクロアルキルアルキレン基、アリーレン基及びアラルキレン基は、環上に低級アルキル基等の置換基を有していてもよい。このR7としては、炭素数1〜6のアルキレン基が好ましく、特に直鎖状アルキレン基、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基を好ましく挙げることができる。
In the general formula (II), R 8 to R 11 may be the same or different from each other, and are each a straight-chain, cyclic or branched alkyl group, alkenyl group, aryl group and aralkyl group having 1 to 18 carbon atoms. A group selected from the group consisting of
When R 5 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, it is a group selected from the group consisting of a linear, cyclic or branched alkyl group, alkenyl group, aryl group and aralkyl group. Preferably there is. R 12 is preferably a linear, cyclic or branched alkylene group, particularly preferably a linear one. Examples of the divalent hydrocarbon group having 1 to 18 carbon atoms represented by R 7 include an alkylene group having 1 to 18 carbon atoms, an alkenylene group having 2 to 18 carbon atoms, a cycloalkylene group having 5 to 18 carbon atoms, and 6 carbon atoms. A cycloalkylalkylene group having 18 to 18 carbon atoms, an arylene group having 6 to 18 carbon atoms, and an aralkylene group having 7 to 18 carbon atoms. The alkylene group and alkenylene group may be linear or branched, and the cycloalkylene group, cycloalkylalkylene group, arylene group, and aralkylene group have a substituent such as a lower alkyl group on the ring. You may have. R 7 is preferably an alkylene group having 1 to 6 carbon atoms, particularly preferably a linear alkylene group such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, or a hexamethylene group. it can.

上記一般式(II)におけるR5、R8〜R11の炭素数1〜18の一価の炭化水素基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、シクロペンチル基、シクロヘキシル基、ビニル基、プロペニル基、アリル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基、フェニル基、トリル基、キシリル基、ナフチル基、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
上記一般式(II)におけるR12の例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基等が挙げられる。
Specific examples of the monovalent hydrocarbon group having 1 to 18 carbon atoms of R 5 and R 8 to R 11 in the general formula (II) include methyl group, ethyl group, n-propyl group, isopropyl group, n- Butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, decyl, dodecyl, cyclopentyl, cyclohexyl, vinyl, propenyl, allyl, hexenyl, octenyl Group, cyclopentenyl group, cyclohexenyl group, phenyl group, tolyl group, xylyl group, naphthyl group, benzyl group, phenethyl group, naphthylmethyl group and the like.
Examples of R 12 in the general formula (II) include methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group, decamethylene group, dodecamethylene group and the like.

前記一般式(II)で表されるシランカップリング剤の具体例としては、3−ヘキサノイルチオプロピルトリエトキシシラン、3−オクタノイルチオプロピルトリエトキシシラン、3−デカノイルチオプロピルトリエトキシシラン、3−ラウロイルチオプロピルトリエトキシシラン、2−ヘキサノイルチオエチルトリエトキシシラン、2−オクタノイルチオエチルトリエトキシシラン、2−デカノイルチオエチルトリエトキシシラン、2−ラウロイルチオエチルトリエトキシシラン、3−ヘキサノイルチオプロピルトリメトキシシラン、3−オクタノイルチオプロピルトリメトキシシラン、3−デカノイルチオプロピルトリメトキシシラン、3−ラウロイルチオプロピルトリメトキシシラン、2−ヘキサノイルチオエチルトリメトキシシラン、2−オクタノイルチオエチルトリメトキシシラン、2−デカノイルチオエチルトリメトキシシラン、2−ラウロイルチオエチルトリメトキシシラン等を挙げることができる。中でも、3−オクタノイルチオプロピルトリエトキシシラン(General Electric Silicones社製、「NXTシラン」)が特に好ましい。   Specific examples of the silane coupling agent represented by the general formula (II) include 3-hexanoylthiopropyltriethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltriethoxysilane, 3-lauroylthiopropyltriethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltriethoxysilane, 2-lauroylthioethyltriethoxysilane, 3- Hexanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-lauroylthiopropyltrimethoxysilane, 2-hexanoylthioethyltrimethoxysilane, - it can be exemplified octanoylthiopropyl ethyltrimethoxysilane, 2- deca Neu thio ethyltrimethoxysilane, 2-lauroyl thio ethyl trimethoxysilane. Among these, 3-octanoylthiopropyltriethoxysilane (manufactured by General Electric Silicones, “NXT silane”) is particularly preferable.

Figure 2014031248
式中、R13は、炭素数1〜8の直鎖、環状もしくは分枝のアルキル基又は炭素数2〜8の直鎖もしくは分枝のアルコキシアルキル基であり、複数のR13は、同一でも異なっていてもよい。R14は、炭素数1〜8の直鎖、環状もしくは分枝のアルキル基であり、複数のR14は、同一でも異なっていてもよい。R15は、炭素数1〜8の直鎖もしくは分枝のアルキレン基であり、複数のR15は、同一でも異なっていてもよい。R16は、一般式(−S−R17−S−)、(−R18−Sm1−R19−)及び(−R20−Sm2−R21−Sm3−R22−)のいずれかの二価の基(R17〜R22は同一でも異なっていてもよく、各々炭素数1〜20の二価の炭化水素基、二価の芳香族基又は硫黄及び酸素以外のヘテロ元素を含む二価の有機基であり、m1、m2、m3は同一でも異なっていてもよく、各々平均値として1以上4未満である。)である。
また、kは、平均値として1〜6であり、s及びtは、それぞれ独立して、平均値として0〜3であり、それぞれ同一でも異なっていてもよい。但し、s及びtの双方が3であることはない。
Figure 2014031248
In the formula, R 13 is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms or a linear or branched alkoxyalkyl group having 2 to 8 carbon atoms, and a plurality of R 13 may be the same. May be different. R 14 is a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, and a plurality of R 14 may be the same or different. R 15 is a linear or branched alkylene group having 1 to 8 carbon atoms, and a plurality of R 15 may be the same or different. R 16 is any one of the general formulas (—S—R 17 —S—), (—R 18 —S m1 —R 19 —) and (—R 20 —S m2 —R 21 —S m3 —R 22 —). These divalent groups (R 17 to R 22 may be the same or different and each represents a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent aromatic group, or a hetero element other than sulfur and oxygen. And m1, m2, and m3 may be the same or different, and each has an average value of 1 or more and less than 4.
Further, k is 1 to 6 as an average value, and s and t are independently 0 to 3 as an average value, and may be the same or different. However, both s and t are not 3.

上記一般式(III)で表わされるシランカップリング剤の具体例として、
平均組成式 (CH3CH2O)3Si−(CH23−S2−(CH26−S2−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S2−(CH210−S2−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S3−(CH26−S3−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S4−(CH26−S4−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S−(CH26−S2−(CH26−S−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S−(CH26−S2.5−(CH26−S−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S−(CH26−S3−(CH26−S−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S−(CH26−S4−(CH26−S−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S−(CH210−S2−(CH210−S−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S4−(CH26−S4−(CH26−S4−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S2−(CH26−S2−(CH26−S2−(CH23−Si(OCH2CH33
平均組成式 (CH3CH2O)3Si−(CH23−S−(CH26−S2−(CH26−S2−(CH26−S−(CH23−Si(OCH2CH33
で表される化合物等が好ましく挙げられる。
As a specific example of the silane coupling agent represented by the general formula (III),
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S 2 - (CH 2) 6 -S 2 - (CH 2) 3 -Si (OCH 2 CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S 2 - (CH 2) 10 -S 2 - (CH 2) 3 -Si (OCH 2 CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S 3 - (CH 2) 6 -S 3 - (CH 2) 3 -Si (OCH 2 CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S 4 - (CH 2) 6 -S 4 - (CH 2) 3 -Si (OCH 2 CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S- (CH 2) 6 -S 2 - (CH 2) 6 -S- (CH 2) 3 -Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S- (CH 2) 6 -S 2.5 - (CH 2) 6 -S- (CH 2) 3 -Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S- (CH 2) 6 -S 3 - (CH 2) 6 -S- (CH 2) 3 -Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S- (CH 2) 6 -S 4 - (CH 2) 6 -S- (CH 2) 3 -Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S- (CH 2) 10 -S 2 - (CH 2) 10 -S- (CH 2) 3 -Si (OCH 2 CH 3 3
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S 4 - (CH 2) 6 -S 4 - (CH 2) 6 -S 4 - (CH 2) 3 -Si (OCH 2 CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S 2 - (CH 2) 6 -S 2 - (CH 2) 6 -S 2 - (CH 2) 3 -Si (OCH 2 CH 3) 3,
Average composition formula (CH 3 CH 2 O) 3 Si- (CH 2) 3 -S- (CH 2) 6 -S 2 - (CH 2) 6 -S 2 - (CH 2) 6 -S- (CH 2 ) 3 -Si (OCH 2 CH 3 ) 3
The compound etc. which are represented by these are mentioned preferably.

Figure 2014031248
式中、R23は、炭素数1〜20の直鎖、分岐又は環状のアルキル基である。Gは、炭素数1〜9のアルカンジイル基又はアルケンジイル基である。
aは、二つの珪素原子と結合することのできる基で、且つ [−0−]0.5、[−0−G−]0.5又は[−O−G−O−] 0.5から選ばれる基であり、複数のZaは、同一でも異なっていてもよい。Zbは、二つの珪素原子と結合することのできる基で、且つ [−O−G−O−] 0.5で表される官能基であり、複数のZbは、同一でも異なっていてもよい。Zcは、−Cl、−Br、−ORa、RaC(=O)O−、RabC=NO−、RabN−、Ra−、HO−G−O−(Gは上記表記と一致する。)で表される官能基であり、複数のZcは、同一でも異なっていてもよい。
また、RaとRbはそれぞれ独立して、炭素数1〜20の直鎖、分岐又は環状のアルキル基であり、それぞれ同一でも異なっていてもよい。
m、n、u、v、wは、1≦m≦20、0≦n≦20、0≦u≦3、0≦v≦2、0≦w≦1であり、且つ(u/2)+v+2w=2又は3である。m、n、u、v、wは、それぞれ同一でも異なっていてもよい。A部が複数である場合、複数のA部におけるZa u、Zb v及びZc wそれぞれは、同一でも異なっていてもよく、B部が複数である場合、複数のB部におけるZa u、Zb v及びZc wそれぞれにおいは、同一でも異なってもよい。
Figure 2014031248
In the formula, R 23 is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms. G is an alkanediyl group or alkenediyl group having 1 to 9 carbon atoms.
Z a is a group capable of bonding to two silicon atoms, and is a group selected from [−0−] 0.5 , [−0−G−] 0.5 or [−O—G—O—] 0.5 . , a plurality of Z a may be the same or different. Z b is a group capable of bonding to two silicon atoms and is a functional group represented by [—O—G—O—] 0.5 , and a plurality of Z b may be the same or different. . Z c is —Cl, —Br, —OR a , R a C (═O) O—, R a R b C═NO—, R a R b N—, R a —, HO—G—O—. (G is the same as the above notation), and the plurality of Z c may be the same or different.
R a and R b are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may be the same or different.
m, n, u, v, and w are 1 ≦ m ≦ 20, 0 ≦ n ≦ 20, 0 ≦ u ≦ 3, 0 ≦ v ≦ 2, 0 ≦ w ≦ 1, and (u / 2) + v + 2w. = 2 or 3. m, n, u, v, and w may be the same or different. When there are a plurality of A parts, Z a u , Z b v and Z c w in the plurality of A parts may be the same or different, and when there are a plurality of B parts, Z a in the plurality of B parts Each of u , Z b v and Z c w may be the same or different.

上記一般式(IV)で表わされるシランカップリング剤としては、式(V)、式(VI)、式(VII)で表されるシランカップリング剤が挙げられる。

Figure 2014031248
式中、Lはそれぞれ独立して炭素数1〜9のアルカンジイル基又はアルケンジイル基であり、x=m、y=nである。 Examples of the silane coupling agent represented by the general formula (IV) include silane coupling agents represented by the formula (V), the formula (VI), and the formula (VII).
Figure 2014031248
In the formula, each L is independently an alkanediyl group or alkenediyl group having 1 to 9 carbon atoms, and x = m and y = n.

式(V)で表されるシランカップリング剤としては、Momentive Performance Materials社製の「NXT Low−V Silane」を市販品として入手できる。
また、式(VI)で表されるシランカップリング剤としては、Momentive Performance Materials社製の「NXT Ultra Low−V Silane」を市販品として入手できる。
さらに、式(VII)で表されるシランカップリング剤としては、Momentive Performance Materials社製の「NXT−Z」を市販品として入手できる。
上記一般式(II)、式(V)又は式(VI)で得られるシランカップリング剤は、いずれも保護されたメルカプト基を有するため、加硫工程以前の工程での加工中に初期加硫(スコーチ)の発生を防止することができ、それゆえに加工性が良好となる。
また、式(V)、式(VI)又は式(VII)で得られるシランカップリング剤は、アルコキシシランの炭素数が多いため、アルコール等の揮発性有機化合物(VOC)の発生が少なく、作業環境上好ましい。また、式(VII)のシランカップリング剤は省エネルギー性の観点から好ましい。
As the silane coupling agent represented by the formula (V), “NXT Low-V Silane” manufactured by Momentive Performance Materials can be obtained as a commercial product.
Moreover, as a silane coupling agent represented by the formula (VI), “NXT Ultra Low-V Silane” manufactured by Momentive Performance Materials can be obtained as a commercial product.
Furthermore, as a silane coupling agent represented by the formula (VII), “NXT-Z” manufactured by Momentive Performance Materials can be obtained as a commercial product.
Since the silane coupling agent obtained by the general formula (II), formula (V) or formula (VI) has a protected mercapto group, the initial vulcanization is performed during the processing in the process before the vulcanization process. The occurrence of (scorch) can be prevented, and therefore the workability is improved.
Moreover, since the silane coupling agent obtained by Formula (V), Formula (VI), or Formula (VII) has a large number of carbon atoms in alkoxysilane, the generation of volatile organic compounds (VOC) such as alcohol is small, Environmentally preferable. Moreover, the silane coupling agent of the formula (VII) is preferable from the viewpoint of energy saving.

シランカップリング剤としては、上記一般式(I)〜(IV)で表わされる化合物の中でも、一般式(I)で表わされる化合物が好ましい。これは、適宜添加する加硫促進剤により、(A)成分であるジエン系重合体と反応するポリスルフィド結合部位を活性化し易いからである。
本発明においては、シランカップリング剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
本発明のコンベアベルト用ゴム組成物にシランカップリング剤を含有させる場合、その含有量は、(A)成分に対して0.1〜1.5質量部であり、当該値は、(C)成分に対して10質量%という基準から求められたものである。この範囲であれば、耐久性を高く維持したまま、(C)成分により低下しがちである省エネルギー性を高い水準に維持することができる。この観点から、(A)成分100質量部に対して、好ましくは0.1〜1質量部、より好ましくは0.2〜0.8質量部、さらに好ましくは0.2〜0.6質量部である。
As the silane coupling agent, among the compounds represented by the general formulas (I) to (IV), the compound represented by the general formula (I) is preferable. This is because a polysulfide bond site that reacts with the diene polymer as the component (A) can be easily activated by a vulcanization accelerator to be added as appropriate.
In this invention, a silane coupling agent may be used individually by 1 type, and may use 2 or more types together.
When the rubber composition for conveyor belts of the present invention contains a silane coupling agent, the content is 0.1 to 1.5 parts by mass with respect to the component (A), and the value is (C) It is calculated | required from the standard of 10 mass% with respect to a component. If it is this range, the energy-saving property which tends to fall with (C) component can be maintained at a high level, maintaining durability high. From this viewpoint, the amount is preferably 0.1 to 1 part by weight, more preferably 0.2 to 0.8 part by weight, and still more preferably 0.2 to 0.6 part by weight with respect to 100 parts by weight of the component (A). It is.

(その他の成分)
本発明のコンベアベルト用ゴム組成物には、本発明の効果が著しく損なわれない範囲で、さらにその他の添加剤を加えてもよい。かかる添加剤としては、通常、コンベアベルトのカバーゴムに含有されるものであれば特に制限は無い。該添加剤としては、例えば、ステアリン酸等の脂肪酸、酸化亜鉛(亜鉛華)、老化防止剤、硫黄、加硫促進剤、加硫遅延剤(スコーチ防止剤)、オイル、樹脂、ワックス、しゃく解剤、オゾン亀裂防止剤、抗酸化剤、クレー、炭酸カルシウムなどが挙げられる。これらは、市販品を使用できる。
脂肪酸を使用する場合、その使用量は、(A)成分100質量部に対して、0.1〜10質量部が好ましく、1〜5質量部がより好ましい。
酸化亜鉛を使用する場合、その使用量は、(A)成分100質量部に対して、0.5〜10質量部が好ましく、1〜5質量部がより好ましい。
老化防止剤としては、公知の老化防止剤を選択し用いることができる。例えば、N−フェニル−N'−(1,3−ジメチルブチル)−p−フェニレンジアミン(6C)やN−フェニル−N'−イソプロピル−p−フェニレンジアミン(3C)、2,2,4−トリメチル−1,2−ジヒドロキノリン重合物(RD)などが挙げられる。老化防止剤を使用する場合、その使用量は、(A)成分100質量部に対して、0.1〜10質量部が好ましく、0.5〜5質量部がより好ましく、1〜5質量部がさらに好ましい。
(Other ingredients)
To the rubber composition for conveyor belts of the present invention, other additives may be added as long as the effects of the present invention are not significantly impaired. The additive is not particularly limited as long as it is usually contained in the cover rubber of the conveyor belt. Such additives include, for example, fatty acids such as stearic acid, zinc oxide (zinc white), anti-aging agents, sulfur, vulcanization accelerators, vulcanization retarders (scorch prevention agents), oils, resins, waxes, and cracking. Agents, ozone cracking inhibitors, antioxidants, clays, calcium carbonate and the like. A commercial item can be used for these.
When using a fatty acid, the usage-amount is preferable 0.1-10 mass parts with respect to 100 mass parts of (A) component, and 1-5 mass parts is more preferable.
When using zinc oxide, the usage-amount is preferable 0.5-10 mass parts with respect to 100 mass parts of (A) component, and 1-5 mass parts is more preferable.
As the anti-aging agent, a known anti-aging agent can be selected and used. For example, N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine (6C), N-phenyl-N′-isopropyl-p-phenylenediamine (3C), 2,2,4-trimethyl -1,2-dihydroquinoline polymer (RD) and the like. When using an anti-aging agent, the amount used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, and 1 to 5 parts by weight with respect to 100 parts by weight of component (A). Is more preferable.

硫黄を使用する場合、その使用量は、(A)成分100質量部に対して、硫黄分として0.5〜10質量部が好ましく、0.5〜4質量部がより好ましい。
加硫促進剤としては、特に限定されるものではないが、例えば、M(2−メルカプトベンゾチアゾール)、DM(ジベンゾチアジルジスルフィド)、CZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)等のチアゾール系、あるいはDPG(ジフェニルグアニジン)等のグアニジン系の加硫促進剤等を挙げることができる。加硫促進剤を使用する場合、その使用量は、(A)成分100質量部に対して、0.1〜5質量部が好ましく、さらに好ましくは0.1〜2質量部である。
その他の添加剤の添加量も、本発明の目的が損なわれない範囲で当業者が適宜選択できる。
When using sulfur, the usage-amount is 0.5-10 mass parts as a sulfur content with respect to 100 mass parts of (A) component, and 0.5-4 mass parts is more preferable.
The vulcanization accelerator is not particularly limited. For example, M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide) And guanidine vulcanization accelerators such as DPG (diphenylguanidine). When using a vulcanization accelerator, its use amount is preferably 0.1 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of component (A).
The addition amount of other additives can be appropriately selected by those skilled in the art as long as the object of the present invention is not impaired.

(コンベアベルト用ゴム組成物の製造方法)
(A)成分へ、(B)成分、(C)成分、必要に応じて(D)成分、そしてさらに適宜必要な添加剤を配合して混練することにより、本発明のコンベアベルト用ゴム組成物が得られる。
混練方法は、当業者が通常実施する方法に従えばよい。例えば、硫黄、加硫促進剤以外の全成分を、バンバリーミキサー、ブラベンダー、ニーダー、高剪断型ミキサーなどの混合機を用いて、好ましくは80〜200℃、より好ましくは100〜180℃、さらに好ましくは120〜180℃、特に好ましくは130〜170℃で混練(A練り)した後、硫黄、加硫促進剤を添加して混練ロール機などで好ましくは0〜50℃、より好ましくは0〜40℃、さらに好ましくは0〜30℃で混練(B練り)する方法が好ましく挙げられる。なお、A練りの際の混練温度は、低過ぎると反応率が低くなり、一方、高過ぎると反応が行き過ぎてゴムが硬くなる。
こうして得られるゴム組成物を加熱金型によって、好ましくは80〜200℃、より好ましくは100〜180℃、さらに好ましくは140〜180℃(いずれも金型温度)にて加硫することにより、本発明のコンベアベルト(外周カバーゴム又は内周カバーゴム)を得ることができる。通常、外周カバーゴムと内周カバーゴムとが、補強材である芯体を挟んで一つのコンベアベルトとなり、ベルトコンベアに装着される。本発明のコンベアベルト用ゴム組成物は、省エネルギー性と極めて高い耐久性とを併せ持つため、コンベアベルトの、特に内周カバーゴムとして有用である。
(Method for producing rubber composition for conveyor belt)
The rubber composition for conveyor belts of the present invention is prepared by blending (A) component with (B) component, (C) component, (D) component as required, and further kneading the necessary additives as appropriate. Is obtained.
The kneading method may be in accordance with a method usually carried out by those skilled in the art. For example, using a mixer such as a Banbury mixer, Brabender, kneader, or high shear mixer, all components other than sulfur and a vulcanization accelerator are preferably 80 to 200 ° C., more preferably 100 to 180 ° C. Preferably, after kneading (A kneading) at 120 to 180 ° C., particularly preferably 130 to 170 ° C., sulfur and a vulcanization accelerator are added, and preferably 0 to 50 ° C., more preferably 0 to 0 ° C. in a kneading roll machine. A method of kneading (B kneading) at 40 ° C., more preferably 0 to 30 ° C. is preferred. If the kneading temperature during kneading A is too low, the reaction rate becomes low, while if too high, the reaction goes too far and the rubber becomes hard.
By vulcanizing the rubber composition thus obtained with a heating mold, preferably at 80 to 200 ° C., more preferably at 100 to 180 ° C., and even more preferably at 140 to 180 ° C. (both are mold temperatures), The inventive conveyor belt (outer peripheral cover rubber or inner peripheral cover rubber) can be obtained. Usually, the outer peripheral cover rubber and the inner peripheral cover rubber form a single conveyor belt with a core as a reinforcing material interposed therebetween and are attached to the belt conveyor. Since the rubber composition for conveyor belts of the present invention has both energy saving and extremely high durability, it is useful as a conveyor belt, particularly as an inner peripheral cover rubber.

次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
なお、各例で得られたコンベアベルト用ゴム組成物を用い、以下に示す方法に従って耐久性及び省エネルギー性を評価した。
(耐久性−耐引裂き性)
JIS K6252に従い、トラウザ形試験片を用いて引裂力(N/mm)を測定し、耐久性の指標とした。なお、表1では、参考例1における引裂力を基準(100)としたときの相対値で表した。値が大きいほど、耐久性に優れることを示す。
(省エネルギー性−低ロス性)
各例で得られたコンベアベルト用ゴム組成物から、縦40mm、横5mm、厚さ2mmのシートを作成した。かかるシートを用い、粘弾性スペクトロメーター(株式会社東洋精機製作所製)により、チャック間距離10mm、動的歪2%、周波数10Hzの測定条件にて、動的粘弾性測定を行ない、20℃における損失正接(tanδ)を測定した。動的弾性率をE’(N/mm)としたとき、tanδ/E’0.32を求めることにより、低ロス性の指標とした。なお、表1では、参考例1における値を基準(100)としたときの相対値で表した。値が小さいほど、省エネルギー性に優れることを示す。
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
In addition, durability and energy saving property were evaluated according to the method shown below using the rubber composition for conveyor belts obtained in each example.
(Durability-Tear resistance)
According to JIS K6252, the tearing force (N / mm) was measured using a trouser-shaped test piece, and used as an index of durability. In Table 1, it was expressed as a relative value when the tear force in Reference Example 1 was used as a reference (100). It shows that it is excellent in durability, so that a value is large.
(Energy saving-low loss)
From the rubber composition for conveyor belts obtained in each example, a sheet having a length of 40 mm, a width of 5 mm, and a thickness of 2 mm was prepared. Using such a sheet, a dynamic viscoelasticity measurement was performed with a viscoelasticity spectrometer (manufactured by Toyo Seiki Seisakusho Co., Ltd.) under the measurement conditions of a distance between chucks of 10 mm, a dynamic strain of 2%, and a frequency of 10 Hz. Tangent (tan δ) was measured. When the dynamic elastic modulus was E ′ (N / mm), tan δ / E ′ 0.32 was obtained to obtain a low loss index. In Table 1, the values in Reference Example 1 are expressed as relative values when the reference (100) is used. It shows that it is excellent in energy saving property, so that a value is small.

参考例1、実施例1〜6及び比較例1〜10
表1に示した配合量(単位:質量部)で硫黄及び加硫促進剤を除く各成分をバンバリーミキサーにて150℃で混練(A練り)し、引き続き硫黄及び加硫促進剤を添加して混合(B練り)することによりコンベアベルト用ゴム組成物を得、該ゴム組成物を金型温度160℃で15分加硫することにより、コンベアベルトに用いるカバーゴムを得た。得られたカバーゴムの耐久性及び省エネルギー性を評価した。結果を表1に示す。
Reference Example 1, Examples 1-6 and Comparative Examples 1-10
Each component excluding sulfur and vulcanization accelerator in the blending amount (unit: part by mass) shown in Table 1 is kneaded (A kneaded) at 150 ° C. with a Banbury mixer, and subsequently sulfur and vulcanization accelerator are added. A rubber composition for a conveyor belt was obtained by mixing (kneading with B), and the rubber composition was vulcanized at a mold temperature of 160 ° C. for 15 minutes to obtain a cover rubber used for the conveyor belt. The durability and energy saving property of the obtained cover rubber were evaluated. The results are shown in Table 1.

Figure 2014031248
Figure 2014031248

以下に、表1中の各成分について詳細に説明する。
1)天然ゴム、グレード;RSS−3号
2)T0700(商品名)、ハイシスブタジエンゴム、JSR株式会社製
3)ショウブラック N330(HAF)、窒素吸着比表面積82m2/g及びDBP吸油量102ml/100g、キャボットジャパン株式会社製、(b−1)成分
4)シースト300(HAF−LS)、窒素吸着比表面積84m2/g及びDBP吸油量72ml/100g、東海カーボン株式会社製、(b−1)成分
5)旭#65(FEF)、窒素吸着比表面積42m2/g及びDBP吸油量121ml/100g、旭カーボン株式会社製、(b−2)成分
6)シースト6、窒素吸着比表面積119m2/g及びDBP吸油量114ml/100g、東海カーボン株式会社製、(b−3)成分
7)旭#55−HP、窒素吸着比表面積30m2/g及びDBP吸油量90ml/100g、旭カーボン株式会社製、(b−3)成分
8)ニップシールAQ(商品名)、BET表面積220m2/g、東ソーシリカ株式会社製
9)Si69(商品名)、ビス(3−トリエトシキシリルプロピル)テトラスルフィド、エボニックデグサジャパン株式会社製
10)ステアリン酸300(商品名)、新日本理化株式会社製
11)亜鉛華、東邦亜鉛株式会社製
12)ノクラック6C(商品名)、大内新興化学工業株式会社製
13)普通硫黄、Sulfax Z、鶴見化学工業株式会社製
14)ノクセラーNS−F、大内新興化学工業株式会社製
Below, each component in Table 1 is demonstrated in detail.
1) Natural rubber, grade: RSS-3 No. 2) T0700 (trade name), high cis butadiene rubber, manufactured by JSR Corporation 3) Show black N330 (HAF), nitrogen adsorption specific surface area 82 m 2 / g and DBP oil absorption 102 ml / 100 g, manufactured by Cabot Japan Co., Ltd., (b-1) component 4) seast 300 (HAF-LS), nitrogen adsorption specific surface area 84 m 2 / g and DBP oil absorption 72 ml / 100 g, manufactured by Tokai Carbon Co., Ltd. (b- 1) Component 5) Asahi # 65 (FEF), nitrogen adsorption specific surface area 42 m 2 / g and DBP oil absorption 121 ml / 100 g, manufactured by Asahi Carbon Co., Ltd., (b-2) component 6) seast 6, nitrogen adsorption specific surface area 119 m 2 / g and DBP oil absorption 114 ml / 100 g, manufactured by Tokai Carbon Co., Ltd., (b-3) component 7) Asahi # 55-HP, nitrogen adsorption ratio Surface area 30 m 2 / g and DBP oil absorption 90 ml / 100 g, manufactured by Asahi Carbon Co., Ltd. (b-3) component 8) Nip seal AQ (trade name), BET surface area 220 m 2 / g, manufactured by Tosoh Silica Co., Ltd. 9) Si69 ( Product name), bis (3-triethoxysilylpropyl) tetrasulfide, manufactured by Evonik Degussa Japan Co., Ltd. 10) stearic acid 300 (trade name), manufactured by Shin Nippon Rika Co., Ltd. 11) zinc white, manufactured by Toho Zinc Co., Ltd. 12) NOCRACK 6C (trade name), manufactured by Ouchi Shinsei Chemical Co., Ltd. 13) Ordinary sulfur, Sulfax Z, manufactured by Tsurumi Chemical Co., Ltd. 14) Noxeller NS-F, manufactured by Ouchi Shinsei Chemical Co., Ltd.

表1より、本発明のベルトコンベア用ゴム組成物の場合には、省エネルギー性と極めて高い耐久性が両立していることがわかる。
一方、比較例1のように、(B)成分として(b−1)成分のみしか含有せず、且つ(C)成分のシリカを含有していない場合には、省エネルギー性に乏しかった。比較例2のように、(B)成分として(b−2)成分のみしか含有せず、且つ(C)成分のシリカを含有していない場合には、耐久性が大幅に低下した。
また、比較例3のように、シリカの含有量が多すぎると、耐久性のみが大幅に改善され、省エネルギー性が大幅に低下した。
比較例4のように、シリカを含有させただけで(D)成分であるシランカップリング剤を含有させなかった場合、耐久性は高いものの、省エネルギー性に乏しくなってしまった。(C)成分のシリカと共に、(C)成分のシランカップリング剤を含有させることが重要であることが分かる。
比較例5のように、(B)成分として、(b−1)成分及び(b−2)成分をいずれも用いず、(b−3)成分であるカーボンブラック4とカーボンブラック5を用いた場合、耐久性が大幅に低下し、省エネルギー性にも乏しかった。比較例6のように、(b−2)成分の代わりに(b−3)成分であるカーボンブラック4を用いた場合、省エネルギー性が大幅に低下し、また、比較例7のように、(b−2)成分の代わりに(b−3)成分であるカーボンブラック5を用いた場合、耐久性が大幅に低下した。さらに、比較例8のように、(b−1)成分の代わりに(b−3)成分であるカーボンブラック4を用いた場合、省エネルギー性が大幅に低下した。
比較例9のように、(B)成分の含有量が少ない場合、耐久性が大幅に低下した。比較例10のように、(B)成分の合計含有量が多い場合、耐久性に乏しくなると共に、省エネルギー性まで低下した。
From Table 1, in the case of the rubber composition for belt conveyors of this invention, it turns out that energy saving property and very high durability are compatible.
On the other hand, when only the component (b-1) was contained as the component (B) and the silica of the component (C) was not contained as in the comparative example 1, the energy saving property was poor. As in Comparative Example 2, when only the component (b-2) was contained as the component (B) and the silica of the component (C) was not contained, the durability was greatly reduced.
Moreover, like Comparative Example 3, when there was too much content of silica, only durability was improved significantly and energy-saving property fell significantly.
As in Comparative Example 4, when silica was only included and the silane coupling agent (D) component was not included, the durability was high but the energy saving property was poor. It turns out that it is important to contain the silane coupling agent of (C) component with the silica of (C) component.
As in Comparative Example 5, as component (B), neither component (b-1) nor component (b-2) was used, and component (b-3), carbon black 4 and carbon black 5, were used. In this case, the durability was greatly lowered and the energy saving property was poor. When the carbon black 4 which is the component (b-3) is used instead of the component (b-2) as in the comparative example 6, the energy saving performance is greatly reduced. When carbon black 5 as the component (b-3) was used instead of the component b-2), the durability was greatly reduced. Further, as in Comparative Example 8, when the carbon black 4 as the component (b-3) was used instead of the component (b-1), the energy saving performance was greatly reduced.
As in Comparative Example 9, when the content of the component (B) was small, the durability was greatly reduced. When the total content of the component (B) was large as in Comparative Example 10, the durability was poor and the energy saving performance was reduced.

本発明のゴム組成物は、省エネルギー性に優れ、且つ耐久性が極めて高いため、コンベアベルト、特にコンベアベルトの内周カバーゴムとして有用である。   Since the rubber composition of the present invention is excellent in energy saving and has extremely high durability, it is useful as a conveyor belt, particularly as an inner peripheral cover rubber of the conveyor belt.

Claims (6)

(A)ジエン系重合体100質量部、
(B)窒素吸着比表面積60〜100m2/g及びジブチルフタレート吸油量110ml/100g未満のカーボンブラック(b−1)と、窒素吸着比表面積60m2/g未満及びジブチルフタレート吸油量110ml/100g以上のカーボンブラック(b−2)とを含有するカーボンブラック25〜55質量部、
(C)シリカ1〜15質量部、及び
(D)シランカップリング剤0.1〜1.5質量部
を含有するコンベアベルト用ゴム組成物。
(A) 100 parts by mass of a diene polymer,
(B) the nitrogen adsorption specific surface area 60~100m 2 / g and dibutyl phthalate oil absorption of 110 ml / 100 g than the carbon black (b-1) and a nitrogen adsorption specific than surface area 60 m 2 / g and dibutyl phthalate oil absorption of 110 ml / 100 g or more Carbon black (b-2) containing 25 to 55 parts by mass of carbon black,
(C) The rubber composition for conveyor belts containing 1-15 mass parts of silicas, and (D) 0.1-1.5 mass parts of silane coupling agents.
(A)成分が、天然ゴム及びイソプレンゴムから選択される少なくとも1種15〜65質量%及びブタジエンゴム85〜35質量%からなる、請求項1に記載のコンベアベルト用ゴム組成物。   The rubber composition for a conveyor belt according to claim 1, wherein the component (A) comprises at least one 15-65% by mass selected from natural rubber and isoprene rubber and 85-35% by mass of butadiene rubber. 前記ブタジエンゴムのシス−1,4結合含有量が90%以上である、請求項2に記載のコンベアベルト用ゴム組成物。   The rubber composition for conveyor belts according to claim 2, wherein the cis-1,4 bond content of the butadiene rubber is 90% or more. さらに老化防止剤0.1〜10質量部を含有する、請求項1〜3のいずれかに記載のコンベアベルト用ゴム組成物。   Furthermore, the rubber composition for conveyor belts in any one of Claims 1-3 containing 0.1-10 mass parts of anti-aging agent. 請求項1に記載のゴム組成物を用いて得られるコンベアベルト。   A conveyor belt obtained using the rubber composition according to claim 1. 請求項5に記載のコンベアベルトを装着したベルトコンベア。   A belt conveyor equipped with the conveyor belt according to claim 5.
JP2012172821A 2011-12-12 2012-08-03 Rubber composition for conveyor belt, conveyor belt and belt conveyor Expired - Fee Related JP5961476B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012172821A JP5961476B2 (en) 2012-08-03 2012-08-03 Rubber composition for conveyor belt, conveyor belt and belt conveyor
AU2012353554A AU2012353554B2 (en) 2011-12-12 2012-12-10 Rubber composition for conveyor belts, conveyor belt, and belt conveyor
US14/364,345 US9296880B2 (en) 2011-12-12 2012-12-10 Rubber composition for conveyor belts, conveyor belt, and belt conveyor
CN201280069424.2A CN104114631B (en) 2011-12-12 2012-12-10 Rubber composition used for conveyer belt, conveyer belt and ribbon conveyer
PCT/JP2012/081955 WO2013089069A1 (en) 2011-12-12 2012-12-10 Rubber composition for conveyor belts, conveyor belt, and belt conveyor
EP12858665.8A EP2792709B1 (en) 2011-12-12 2012-12-10 Rubber composition for conveyor belts, conveyor belt, and belt conveyor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012172821A JP5961476B2 (en) 2012-08-03 2012-08-03 Rubber composition for conveyor belt, conveyor belt and belt conveyor

Publications (2)

Publication Number Publication Date
JP2014031248A true JP2014031248A (en) 2014-02-20
JP5961476B2 JP5961476B2 (en) 2016-08-02

Family

ID=50281404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012172821A Expired - Fee Related JP5961476B2 (en) 2011-12-12 2012-08-03 Rubber composition for conveyor belt, conveyor belt and belt conveyor

Country Status (1)

Country Link
JP (1) JP5961476B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182499A1 (en) * 2014-05-26 2015-12-03 横浜ゴム株式会社 Rubber composition and conveyor belt using same
WO2016056219A1 (en) * 2014-10-07 2016-04-14 株式会社ブリヂストン Rubber composition for conveyor belts, and conveyor belt
JP2017155178A (en) * 2016-03-04 2017-09-07 株式会社ブリヂストン Rubber composition, laminate, and conveyor belt
JP2017171806A (en) * 2016-03-24 2017-09-28 株式会社ブリヂストン Rubber composition, crosslinked rubber composition, and rubber product
WO2018012325A1 (en) * 2016-07-11 2018-01-18 株式会社ブリヂストン Rubber composition, conveyor belt, and belt conveyor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169630A (en) * 2001-09-25 2003-06-17 Nisshin Pharma Inc Nutritional composition containing coenzyme q10
JP2008038133A (en) * 2006-07-14 2008-02-21 Yokohama Rubber Co Ltd:The Rubber composition for conveyor belt and conveyor belt
JP2010006859A (en) * 2008-06-24 2010-01-14 Yokohama Rubber Co Ltd:The Rubber composition for conveyor belt and conveyor belt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169630A (en) * 2001-09-25 2003-06-17 Nisshin Pharma Inc Nutritional composition containing coenzyme q10
JP2008038133A (en) * 2006-07-14 2008-02-21 Yokohama Rubber Co Ltd:The Rubber composition for conveyor belt and conveyor belt
JP2010006859A (en) * 2008-06-24 2010-01-14 Yokohama Rubber Co Ltd:The Rubber composition for conveyor belt and conveyor belt

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850069B2 (en) 2014-05-26 2017-12-26 The Yokohama Rubber Co., Ltd. Rubber composition and conveyor belt using same
JP2015224259A (en) * 2014-05-26 2015-12-14 横浜ゴム株式会社 Rubber composition and conveyer belt using the same
CN106414582A (en) * 2014-05-26 2017-02-15 横滨橡胶株式会社 Rubber composition and conveyor belt using same
WO2015182499A1 (en) * 2014-05-26 2015-12-03 横浜ゴム株式会社 Rubber composition and conveyor belt using same
CN106414582B (en) * 2014-05-26 2018-09-11 横滨橡胶株式会社 Rubber composition and use its conveyer belt
WO2016056219A1 (en) * 2014-10-07 2016-04-14 株式会社ブリヂストン Rubber composition for conveyor belts, and conveyor belt
JPWO2016056219A1 (en) * 2014-10-07 2017-07-27 株式会社ブリヂストン Rubber composition for conveyor belt and conveyor belt
US10442915B2 (en) 2014-10-07 2019-10-15 Bridgestone Corporation Rubber composition for conveyor belt, and conveyor belt
WO2017149973A1 (en) * 2016-03-04 2017-09-08 株式会社ブリヂストン Rubber composition, laminate, and conveyor belt
JP2017155178A (en) * 2016-03-04 2017-09-07 株式会社ブリヂストン Rubber composition, laminate, and conveyor belt
AU2017225952B2 (en) * 2016-03-04 2019-12-12 Bridgestone Corporation Rubber composition, laminate, and conveyor belt
JP2017171806A (en) * 2016-03-24 2017-09-28 株式会社ブリヂストン Rubber composition, crosslinked rubber composition, and rubber product
WO2018012325A1 (en) * 2016-07-11 2018-01-18 株式会社ブリヂストン Rubber composition, conveyor belt, and belt conveyor
JPWO2018012325A1 (en) * 2016-07-11 2019-04-25 株式会社ブリヂストン Rubber composition, conveyor belt, and belt conveyor

Also Published As

Publication number Publication date
JP5961476B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
WO2013089069A1 (en) Rubber composition for conveyor belts, conveyor belt, and belt conveyor
JP6147585B2 (en) Rubber composition and pneumatic tire
JP5961476B2 (en) Rubber composition for conveyor belt, conveyor belt and belt conveyor
JP2015040245A (en) Method for producing rubber composition
JP2011089031A (en) Rubber composition
JP2007284482A (en) Rubber composition
WO2012070626A1 (en) Rubber composition and tire using the same
JP2006045471A (en) Rubber composition for tire tread
US20190315944A1 (en) Tire rubber composition and pneumatic tire
JP5902935B2 (en) Rubber composition for conveyor belt, conveyor belt and belt conveyor
JP2012180386A (en) Rubber composition for bead apex or clinch, and pneumatic tire
JP5614372B2 (en) Rubber composition for tire
WO2012070625A1 (en) Rubber composition and tire using the same
JP5809020B2 (en) Rubber composition and method for producing rubber composition
JP4090114B2 (en) Rubber composition, method for producing the same, and tire
JP5932291B2 (en) Rubber composition and method for producing the same
JP2011132400A (en) Pneumatic tire
JP2016183265A (en) Rubber composition for tire
JP2015007185A (en) Rubber composition and pneumatic tire
JP2013245265A (en) Rubber composition for tire
JP6015945B2 (en) Organosilicon compound, method for producing the same, and rubber composition
JP2013108018A (en) Method for manufacturing rubber composition
JP5926922B2 (en) Rubber composition and method for producing rubber composition
JP5764036B2 (en) Rubber composition and method for producing the same
JP2018193315A (en) Organosilicon compound, and rubber composition prepared therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5961476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees