JP2014026748A - Interference effect suppression induction heating coil - Google Patents

Interference effect suppression induction heating coil Download PDF

Info

Publication number
JP2014026748A
JP2014026748A JP2012164225A JP2012164225A JP2014026748A JP 2014026748 A JP2014026748 A JP 2014026748A JP 2012164225 A JP2012164225 A JP 2012164225A JP 2012164225 A JP2012164225 A JP 2012164225A JP 2014026748 A JP2014026748 A JP 2014026748A
Authority
JP
Japan
Prior art keywords
coil
interference
induction heating
coils
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012164225A
Other languages
Japanese (ja)
Inventor
Tetsuo Matsunaga
哲夫 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012164225A priority Critical patent/JP2014026748A/en
Publication of JP2014026748A publication Critical patent/JP2014026748A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an induction heating coil capable of suppressing failure due to magnetic flux interference so that a wide area of large circle can be induction heated uniformly, or a pipeline of extended length can be induction heated uniformly at equal interval, by using a plurality of commercially available induction heating inverters of relatively small capacity having different oscillation frequencies.SOLUTION: Interference failure is suppressed by splitting one induction heating coil into two, and combining two split coils so that a current flows through each coil in a direction for creating an induction heating flux properly, and electromotive forces generated by magnetic interference can be cancelled in the same coil. Since induction of a high voltage due to interference flux induction can be suppressed by using the interference effect suppression induction heating coil, even if the interval to other adjoining coil is shortened, uniform heating can be ensured.

Description

この発明は20kHz以上の高周波電流によって誘導加熱するための高周波電流発生用インバータ(IHインバータと称す)とそれに接続される誘導加熱用ワークコイル(コイルと称す)に関するもので20kHz以上の高周波帯で誘導加熱する際に、被加熱金属に鎖交する磁束は誘導加熱しながら他の金属やコイルにも誘導作用して数々の悪影響を及ぼす。他のコイルに障害をもたらす一つに隣接して設置した別IHインバータに接続されたコイルと鎖交して別IHインバータのコイルに高電圧を誘導しコイルの端子電圧を上昇させ、別IHインバータのスイッチング素子であるIGBTに高電圧を印加して破壊に至らしめる作用がある。この干渉磁束の影響を無くするよう干渉磁束とベクトル的に完全逆位相の磁束が影響を受けたコイル自身によって発生できるような巻き方をするコイルに関する。   The present invention relates to a high-frequency current generating inverter (referred to as an IH inverter) for induction heating by a high-frequency current of 20 kHz or higher and an induction heating work coil (referred to as a coil) connected to the inverter. When heating, the magnetic flux interlinked with the metal to be heated induces other metals and coils while induction heating, and has a number of adverse effects. Another IH inverter is connected to a coil connected to another IH inverter that is installed adjacent to the other coil that causes trouble to other coils, and induces a high voltage in the coil of another IH inverter to increase the terminal voltage of the coil. There is an effect of applying a high voltage to the IGBT, which is a switching element, to cause destruction. The present invention relates to a coil that is wound so that a magnetic flux having a completely opposite phase to that of the interference magnetic flux can be generated by the coil itself so as to eliminate the influence of the interference magnetic flux.

高周波誘導加熱とは、コイルに高周波電流を流して磁界を発生させコイル表面に近接配置した磁性金属内に磁界の磁束を鎖交させることによってその磁性金属内に誘導渦電流を流し、この渦電流によって磁性金属内にジュール熱を発生させることを言う。   High-frequency induction heating is a method in which a high-frequency current is passed through a coil to generate a magnetic field, and a magnetic flux is interlinked in a magnetic metal placed close to the coil surface to cause an induced eddy current to flow in the magnetic metal. To generate Joule heat in the magnetic metal.

このような誘導渦電流による発熱作用を用いる誘導加熱用途は、世の中に数多くあり被加熱金属である鉄板・棒鋼・容器・パイプなどの形状物を効率よく加熱することができ電気エネルギーを高効率で熱に変えることのできる最適手段である。 There are many induction heating applications that use the heat generated by induced eddy currents in the world, and it is possible to efficiently heat shaped objects such as iron plates, steel bars, containers, and pipes that are to be heated. It is an optimal means that can be converted into heat.

しかし高周波誘導加熱を実行するためには高周波電流を流すための電源とその高周波電流を磁束に変えて被加熱体である金属に鎖交させ、金属内部に誘導渦電流を流し、上記0002に説明したジュール熱を発生させるコイルが必要であるが電源の周波数は個々の電源に固有のものであり複数台の電源を使用すればその台数分の異なる周波数で高周波電流が流れることになる。そのため複数台の電源を使用すると必ずその異なる周波数によりコイル部分で磁束の干渉が起こるという問題があった。 However, in order to perform high-frequency induction heating, a power source for supplying high-frequency current and the high-frequency current are converted into magnetic flux and linked to the metal to be heated, and induced eddy current is caused to flow inside the metal. Although a coil for generating Joule heat is required, the frequency of the power source is unique to each power source. If a plurality of power sources are used, high-frequency current flows at different frequencies corresponding to the number of power sources. For this reason, when a plurality of power supplies are used, there is a problem that magnetic flux interference occurs in the coil portion due to the different frequencies.

この改善策として、複数台の電源から出力される高周波電流の周波数が同期するように制御しながら更に逆極性に巻いたリアクトルで相互誘導によって干渉する磁束を強制的に逆移相補正するような負荷回路を構成する方法等があるがこれに使われる特殊な補助リアクトルや冷却装置の構成などに膨大な費用と緻密な調整が必要であり装置自体が大掛かりなると同時にリアクトルなどの補助機器による電力損失も多大でエネルギー効率低下が非常に大きなものとなっている。   As an improvement measure, the magnetic flux that interferes by mutual induction is forcibly corrected by reverse phase shift in a reactor wound in reverse polarity while controlling the frequency of the high-frequency current output from multiple power sources to be synchronized. There is a method of configuring a load circuit, etc., however, the special auxiliary reactor used for this and the configuration of the cooling device require enormous costs and fine adjustment, and the device itself becomes large and at the same time power loss due to auxiliary equipment such as the reactor However, the energy efficiency is greatly reduced.

特開2006−49332号公報JP 2006-49332 A 特開2004−259665号公報JP 2004-259665 A

内田 直喜 他2名著 「150kWゾーンコントロール誘導加熱用高周波インバータ」平成18年電気学会産業応用部門大会Naoki Uchida and two other authors "150kW Zone Control High Frequency Inverter for Induction Heating" 2006 IEEJ Industrial Application Conference

解決しようとする課題は、複数台の電源から出力される高周波電流周波数の違いによる磁束干渉影響をコイル自身で抑制できるようにすることによって低価格で良質の均等加熱モードを得ることである。   The problem to be solved is to obtain a good quality uniform heating mode at a low price by enabling the coil itself to suppress the influence of magnetic flux interference due to the difference in the high-frequency current frequency output from a plurality of power supplies.

誘導加熱式大円形容器又は誘導加熱式長尺パイプなどは一個のコイルまたは一台のIHインバータでは容器または長尺パイプの全体を均一に加熱することが出来ない。そのため複数台のコイルと複数台のIHインバータを並べて使用することによって必要な加熱分布と加熱力を得て最適な加熱をすることができるが大円形または長尺パイプなどで複数台のIHインバータとコイルを必要とする被加熱物は夫々のIHインバータの発信周波数の違いとコイルからの誘導磁界の干渉影響によってIHインバータの破損や不快な高音の干渉音が発生するため隣接するコイル同士はある程度離して使用することが必要最低限の運転条件になっていた。そのため被加熱物の加熱温度に極端な差が発生して加熱の均一性が得られないことや必要とする充分な加熱力が得られないなどの欠点があった。 An induction heating type large circular container or induction heating type long pipe cannot be heated uniformly by a single coil or a single IH inverter. Therefore, by using multiple coils and multiple IH inverters side by side, the required heating distribution and heating power can be obtained for optimal heating, but multiple IH inverters such as large circles or long pipes can be used. Heated objects that require coils cause damage to the IH inverter and unpleasant high-frequency interference due to the difference in the transmission frequency of each IH inverter and the influence of the induction magnetic field from the coil. It was the minimum necessary operating condition. For this reason, there has been a drawback that an extreme difference occurs in the heating temperature of the object to be heated, so that the heating uniformity cannot be obtained and the necessary heating power cannot be obtained.

当然被加熱体の温度が不均一になることによる熱歪みも極端に大きくなり容器の底が凸凹になったりパイプの変形曲がりが起こっていた。
深刻な問題は加熱運転中に被加熱体が変形して加熱定数が変化し隣接する異コイル間の干渉磁束が増加してコイルに高電圧が誘導され突然IHインバータが破壊することであった。
Naturally, the thermal distortion due to the non-uniform temperature of the object to be heated became extremely large, and the bottom of the container became uneven and the pipe was deformed and bent.
The serious problem was that the object to be heated deformed during heating operation, the heating constant changed, the interference magnetic flux between adjacent coils increased, high voltage was induced in the coil, and the IH inverter was suddenly destroyed.

複数台のIHインバータとコイルを共通する被加熱体に配置して同時に加熱運転をしても異コイル同士の磁束干渉が起こらないことにより不快な干渉音が無いことは勿論であるが異コイル同士の近接配置を容易にできることで加熱の均一性を可能ならしめ、コイルに誘導される干渉高電圧をコイル自身で消滅させることができIHインバータが破壊することなく加熱運転できる干渉影響抑制型コイルを提供することを目的とする。 Even if multiple IH inverters and coils are arranged on a common heated object and heated at the same time, there is no unpleasant interference sound due to no magnetic flux interference between different coils, but different coils The coil can be placed close to each other easily to make the heating uniform, and the interference high voltage induced in the coil can be extinguished by the coil itself. The purpose is to provide.

本発明は、請求項1の内容による如く巻き中心を共通にして複数個のコイルを渦巻き状に巻く際に夫々のコイルを二分割にして個々のコイルを渦巻き状に巻いたことを特徴とする。この二分割にした個々のコイルは夫々半月状に渦巻き、円周上で互いに逆方向の電流が流れるように接続して使用する。その際仮に他のコイルからの干渉磁束の影響を受けた場合、自身のコイル内でその起電圧を打ち消せるようにした。即ち円周上で発生した干渉磁束によって誘導された起電圧を2分割されたコイル夫々に逆方向で同じ起電圧が発生するようにして干渉磁束によって誘導された起電圧を消滅せしめる回路を形成したことを最も主要な特徴とする。   The present invention is characterized in that, when winding a plurality of coils in a spiral shape with a common winding center as in the contents of claim 1, each coil is divided into two and each coil is wound in a spiral shape. . Each of the two divided coils spirals in a half-moon shape and is connected and used so that currents in opposite directions flow on the circumference. At that time, if it was affected by the interference magnetic flux from another coil, the electromotive voltage can be canceled in its own coil. That is, a circuit was formed that extinguishes the electromotive voltage induced by the interference magnetic flux so that the electromotive voltage induced by the interference magnetic flux generated on the circumference is generated in the opposite direction in each of the two divided coils. This is the main feature.

0012と同様に請求項2の内容による如く長尺パイプを均等に加熱する際に複数個の円筒コイルを並べて配置した場合、この円筒コイルを形成するにあたり巻き方向が同じの長方形型平板コイル2個を作り表面側から見たとき同じ方向に巻かれた長方形型平板コイルとして裏側に向かって夫々湾曲状に滑らかに曲げて2個のコルを突き合わせることで円筒を形成するようにしたことを特徴とする。この二分割にした円筒コイルは円筒周上で互いに逆方向の電流が流れるように組み合わせて使用する。仮に他のコイルからの干渉磁束の影響を受けた場合、自身のコイル内でその起電圧を打ち消せるようにした。即ち円筒周上で発生した干渉磁束によって誘導された起電圧を2分割されたコイル夫々に逆方向の同じ起電圧が発生するようにして干渉磁束によって誘導された起電圧を消滅せしめる回路を形成したことを特徴とする。 As in the case of 0012, when a plurality of cylindrical coils are arranged side by side when heating a long pipe equally according to the contents of claim 2, two rectangular plate coils having the same winding direction are formed in forming this cylindrical coil. As a rectangular plate coil wound in the same direction when viewed from the front side, it was smoothly bent toward the back side to form a cylinder by abutting two colls. And These two divided cylindrical coils are used in combination so that currents in opposite directions flow on the circumference of the cylinder. If it was affected by the interference magnetic flux from another coil, the electromotive voltage could be canceled in its own coil. In other words, a circuit was formed to extinguish the electromotive voltage induced by the interference magnetic flux so that the electromotive voltage induced by the interference magnetic flux generated on the circumference of the cylinder was generated in the opposite direction in each of the two divided coils. It is characterized by that.

本発明の干渉影響抑制型誘導加熱コイルによれば、〜φ1000クラスの大円形タンクの中に入れた流体を均等に加熱し流体の対流方向を制御したい場合などに複数台のIHインバータの加熱力を夫々自由に制御できることから容易に行うことができる利点がある。   According to the induction heating coil of the interference influence suppression type of the present invention, the heating power of a plurality of IH inverters is used when it is desired to control the convection direction of the fluid evenly by heating the fluid placed in a large circular tank of ~ φ1000 class. Since each can be freely controlled, there is an advantage that can be easily performed.

更に長距離のパイプラインなどで全長を百数十℃に維持しながら通流運搬させなければ固まってパイプが詰まるような油などの流体運搬用パイプの誘導加熱にこの干渉影響抑制型誘導加熱コイルを用いたパイプラインであれば高精度の温度制御が可能であることも優位に働きIHインバータの複数台使用が可能で無制限に延長したパイプの均等加熱も可能になる。 In addition, this interference-induction induction heating coil is used for induction heating of pipes for transporting fluids such as oil that will solidify and clog the pipe if it is not transported and transported while maintaining the overall length at a few tens of degrees Celsius in a long-distance pipeline etc. Pipelines using, which has the advantage of being able to control the temperature with high accuracy, can use multiple IH inverters and can evenly heat pipes that are extended indefinitely.

図1は平板コイルの巻き中心を共通にして2個以上の複数コイル配置した従来の方法図FIG. 1 is a diagram of a conventional method in which two or more coils are arranged with a common winding center of a flat coil. 図2は図1を改善する目的でコイル間磁路にフェライトコアを挿入した図Fig. 2 shows a ferrite core inserted in the magnetic path between coils for the purpose of improving Fig. 1. 図3は干渉影響抑制型誘導加熱コイルを配置した図Fig. 3 is a diagram showing an interference heating suppression induction heating coil. 図4は干渉影響抑制型誘導加熱コイルの巻き中心とコイル間の磁路にフェライトコアを挿入した図FIG. 4 is a diagram in which a ferrite core is inserted in the winding center of the interference heating type induction heating coil and the magnetic path between the coils. 図5は干渉影響抑制型誘導加熱コイルの効果を説明した図FIG. 5 is a diagram for explaining the effect of the interference influence suppressing induction heating coil. 図6は干渉影響抑制型誘導加熱コイルと平板コイルを組合せした図FIG. 6 shows a combination of an interference heating suppression induction heating coil and a flat plate coil. 図7は干渉影響抑制型誘導加熱コイルの円筒コイルでの効果を説明した図FIG. 7 is a diagram illustrating the effect of the interference heating suppression induction heating coil in the cylindrical coil. 図8は干渉影響抑制型誘導加熱コイルと一般円筒コイルを組合せした図FIG. 8 shows a combination of an interference heating suppression induction heating coil and a general cylindrical coil.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、従来のままの形状をした平板コイルでありこれによれば二個のコイルと二台のIHインバータによって構成された誘導加熱装置であり1のコイルと2のコイルは夫々別々の周波数を持つIHインバータ4と5によって運転されている。その結果1と2の間で磁束干渉が起こり4と5にその干渉誘起電圧による高電圧が印加されインバータが破損する可能性があるがそうならないように干渉影響が許容値以下になるまで1と3の間を8のように大きく離して運転しなければならない。その距離は150mm以上であるがこの上に被加熱体を置いて加熱した時被加熱体の加熱分布は150mm以上の誘導効果緩衝帯のために不均一な状態になる。   FIG. 1 shows a flat plate coil having a conventional shape, which is an induction heating device composed of two coils and two IH inverters. The first coil and the second coil have different frequencies. Is driven by IH inverters 4 and 5. As a result, magnetic flux interference occurs between 1 and 2, and a high voltage due to the interference induced voltage may be applied to 4 and 5, which may damage the inverter. You must drive with a large separation between 3 and 8. Although the distance is 150 mm or more, when the object to be heated is heated on the distance, the heating distribution of the object to be heated becomes inhomogeneous due to the inductive effect buffering band of 150 mm or more.

図2は図1を改良したもので各渦巻状コイルとコイルの間にフェライトコア9・10・11を挿入したものである。この方法によれば1と2のコイルに更に追加して3のコイルを配置しても前項で言うコイル同士の間隔である8を150mmから50mm程度まで縮小できることから仕上り最外径を図1と同程度にすることができ同じ被加熱体に対して加熱力の増加が可能になる。   FIG. 2 is an improvement of FIG. 1 in which ferrite cores 9, 10, and 11 are inserted between the spiral coils. According to this method, even if 3 coils are arranged in addition to 1 and 2 coils, the distance 8 between the coils mentioned in the previous section can be reduced from about 150 mm to about 50 mm. The heating power can be increased with respect to the same object to be heated.

第3図は今回発明の二分割コイルとその結合により干渉影響抑制型誘導加熱コイルとして平板コイル12〜15を前項の図1・図2に示す2・3の代替コイルとして配置した基本形の例である。請求項1に示す如くコイル1からの干渉磁束がコイル2に影響した場合コイル2の二分割中の一個のコイルに発生する干渉磁束による起電圧はもう一方のコイル2によって完全に逆起電圧になりお互いに相殺されて干渉磁束起電圧は消滅する。この間の原理は図5によって説明する。   FIG. 3 shows an example of a basic type in which flat coils 12 to 15 are arranged as alternative coils of 2 and 3 shown in FIG. 1 and FIG. is there. When the interference magnetic flux from the coil 1 affects the coil 2 as shown in claim 1, the electromotive voltage caused by the interference magnetic flux generated in one of the coils 2 is completely counter-electromotive force generated by the other coil 2. As a result, they cancel each other, and the interference magnetic flux electromotive voltage disappears. The principle during this time will be described with reference to FIG.

第4図は第3図の効果を強力にしたもので図2で施されたフェライトコアの効果をそのまま応用した。図2との違いは干渉影響抑制型誘導加熱コイル12〜15の巻き始めの隙間にフェライトコア19〜22を挿入してコイルの発生磁束が回帰できるように磁束通過用の磁路を形成して夫々のコイルからの干渉磁束が発生しないようにすると同時に逆起電圧の発生を適正にして他コイルからの干渉磁束の影響を確実に消滅できるようにした。   FIG. 4 is a powerful version of the effect of FIG. 3, and the effect of the ferrite core applied in FIG. 2 is applied as it is. The difference from Fig. 2 is that a magnetic path for passing magnetic flux is formed so that the magnetic flux generated by the coil can be returned by inserting the ferrite cores 19 to 22 in the gap at the beginning of winding of the interference heating suppression induction heating coils 12 to 15 The interference magnetic flux from each coil is prevented from being generated, and at the same time, the back electromotive voltage is appropriately generated so that the influence of the interference magnetic flux from the other coil can be surely eliminated.

第5図及び第6図は第4図で構成した干渉影響抑制型誘導加熱コイル12〜15の内14・15を省略し一般の渦巻きコイル3にしたものでありこれによっても干渉影響抑制型誘導加熱コイル機能が果たせることを説明したものである。即ち各コイル端子16〜18から高周波の電流が流入して夫々のコイルに磁界が形成されるのであるが中心の平板コイル1の高周波電流29・29aによる干渉磁束30・30aが干渉影響抑制型誘導加熱コイル12・13に鎖交した際にコイル電流方向23と25に見るようにコイル12側で高電圧を誘起するように働いたとしてもコイル13側では低電圧になるような誘起電圧になり同じ干渉影響抑制型誘導加熱コイルの中ではお互いに相殺する方向になり干渉磁束の影響は消滅する。逆に干渉影響抑制型誘導加熱コイル12・13から平板コイル1側にはコイル12と13によって常に互いに逆方向の干渉磁束が影響するため平板コイル1側には干渉影響抑制型誘導加熱コイル12・13からの影響は無いことになる。   FIGS. 5 and 6 show the interference effect suppression type induction by omitting 14 and 15 of the interference effect suppression type induction heating coils 12 to 15 configured in FIG. 4 and forming a general spiral coil 3. This explains that the heating coil function can be performed. That is, a high-frequency current flows from each coil terminal 16 to 18 and a magnetic field is formed in each coil, but interference magnetic fluxes 30 and 30a due to the high-frequency currents 29 and 29a of the central flat coil 1 are induced to suppress interference effects. Even if it works to induce a high voltage on the coil 12 side as seen in the coil current directions 23 and 25 when linked to the heating coils 12 and 13, the induced voltage becomes a low voltage on the coil 13 side. In the same interference influence suppression type induction heating coil, they are in a direction to cancel each other, and the influence of the interference magnetic flux disappears. On the other hand, since the interference magnetic fluxes in the opposite directions are always influenced by the coils 12 and 13 from the interference influence suppressing induction heating coils 12 and 13 to the flat coil 1 side, the interference influence suppressing induction heating coils 12 and 13 are applied to the flat coil 1 side. There will be no influence from 13.

同様に各コイル端子16〜18から高周波の電流が流入して夫々のコイルに磁界が形成された際、外径側の平板コイル3の高周波電流28・28aによる干渉磁束27・27aが干渉影響抑制型誘導加熱コイル12・13に鎖交した際にコイル電流方向24と26に見るようにコイル12側で高電圧を誘起するように働いたとしてもコイル13側では低電圧になるような誘起電圧になり同じ干渉影響抑制型誘導加熱コイルの中ではお互いに相殺する方向になり干渉磁束の影響は消滅する。上記に説明した如く逆に干渉影響抑制型誘導加熱コイル12・13から平板コイル3側への影響は無いことになる。   Similarly, when a high-frequency current flows from each coil terminal 16 to 18 and a magnetic field is formed in each coil, the interference magnetic flux 27 / 27a due to the high-frequency current 28 / 28a of the outer-diameter plate coil 3 is suppressed. Inductive voltage that causes low voltage on the coil 13 side even if it works to induce a high voltage on the coil 12 side as seen in the coil current directions 24 and 26 when interlinking with the type induction heating coils 12 and 13 In the same interference effect suppressing induction heating coil, the directions cancel each other and the influence of the interference magnetic flux disappears. As described above, there is no influence on the flat coil 3 side from the interference influence suppressing induction heating coils 12 and 13.

第6図は第5図で説明した内容の原理をより強固に実行せしめるために干渉影響抑制型誘導加熱コイル12・13の巻き始めと3種類の各コイル相互の間にフェライトコア9〜11・19・20を挿入した例   FIG. 6 shows the ferrite cores 9 to 11 between the three windings and the beginning of winding of the interference effect suppressing induction heating coils 12 and 13 in order to more firmly execute the principle described in FIG. Example with 19 and 20 inserted

第7図は請求項2で述べる円筒コイルによる干渉影響抑制型誘導加熱コイル31の形成例でありこのコイルを一般の円筒コイル32と共に交互に使用した例である。
干渉影響抑制型誘導加熱コイル31は同一方向に巻いた四角形状の平板コイルを二枚用意して両方のコイルとも巻き方向が同じになるように見て表側とした場合裏側に向かって半円形に曲げこれを組み合わせると図のようになる。この二個の同じコイルの巻き終わり側を図中配線31aのように接続し、両コイルの巻き始め側にIHインバータ36を接続して給電する。
FIG. 7 shows an example of formation of the interference heating suppression type induction heating coil 31 by the cylindrical coil described in claim 2, and this coil is used alternately with the general cylindrical coil 32.
The interference influence suppression type induction heating coil 31 has two rectangular plate coils wound in the same direction, and both coils are semicircular when viewed from the front side so that the winding direction is the same. Combining this with bending produces a figure. The winding end sides of the two same coils are connected as shown by a wiring 31a in the drawing, and the IH inverter 36 is connected to the winding start sides of both coils to supply power.

溶解アルミニューム湯などの運搬用パイプなどは数百℃に保温しておかなければならないが水冷式の干渉影響抑制型誘導加熱コイルを用いたパイプラインであれば高精度の温度制御が可能であることも優位に働きIHインバータの複数台使用が可能になるためアルミニュームの溶湯炉からダイキャスト型までが遠距離であっても運搬可能になる。更にビレットヒーターなどのように長い円柱の金属ビレットを全体的に部分制御しながら加熱することも可能になる。   Pipes for transportation such as molten aluminum hot water must be kept at several hundred degrees Celsius, but high-precision temperature control is possible with a pipeline using a water-cooled interference effect suppression induction heating coil. This also has the advantage that multiple IH inverters can be used, so it can be transported from a molten aluminum furnace to a die-cast type even at long distances. Further, it becomes possible to heat a long cylindrical metal billet such as a billet heater while partially controlling the whole.

1 平板コイル(中心配置)
2 平板コイル(中間配置)
3 平板コイル(外周配置)
4 中心配置コイル用IHインバータ
5 外周配置コイル用IHインバータ
6 中間配置コイル用IHインバータ
7 コイル固定ベース
8 平板コイルと平板コイルの間隔
9 コイル中心用磁路形成フェライトコア
10 異コイル同士中間配置用磁路形成フェライトコア
11 同上
12 中間干渉影響抑制型誘導加熱コイル二分割中の一個
13 中間干渉影響抑制型誘導加熱コイル二分割中の一個
14 外周干渉影響抑制型誘導加熱コイル二分割中の一個
15 外周干渉影響抑制型誘導加熱コイル二分割中の一個
16 中心コイル引き出し端子
17 中間コイル引き出し端子
18 外周コイル引き出し端子
19 中間干渉影響抑制型誘導加熱コイル巻き芯用フェライトコア
20 同上
21 外周干渉影響抑制型誘導加熱コイル巻き芯用フェライトコア
22 同上
23 中間干渉影響抑制型誘導加熱コイル電流方向
24 同上
25 同上
26 同上
27・27a 外周平板コイル発生干渉磁束
28・28a 外周平板コイル電流方向
29・29a 中心平板コイル電流方向
30・30a 中心平板コイル発生干渉磁束
31 干渉影響抑制型誘導加熱円筒コイル
32 円筒コイル
33 円筒コイル電流方向
33a 円筒コイル漏れ磁束
34 円筒コイル電流方向
34a 円筒コイル漏れ磁束
35 円筒コイル用IHインバータ
36 干渉影響抑制型誘導加熱円筒コイル用IHインバータ
1 Flat coil (center arrangement)
2 Flat coil (intermediate arrangement)
3 Flat coil (peripheral arrangement)
4 IH inverter for centrally arranged coil 5 IH inverter for outer circumferentially arranged coil 6 IH inverter for intermediately arranged coil 7 Coil fixing base 8 Distance between flat coil and flat coil 9 Magnetic path forming ferrite core for coil center 10 Magnetic for intermediate arrangement between different coils Path forming ferrite core 11 Same as above 12 One piece of induction heating coil divided into two intermediate interference influence suppression 13 One piece of induction heating coil divided into two intermediate interference influences 14 One piece of induction heating coil divided into two outer circumference interference influence suppression pieces 15 Interference-inhibition-type induction heating coil divided into two pieces 16 Central coil lead-out terminal 17 Intermediate coil lead-out terminal 18 Peripheral coil lead-out terminal 19 Ferrite core for intermediate interference effect-suppression type induction heating coil winding core 20 Same as above 21 Ferrite core for heating coil core 22 Same as above 23 Interference effect suppression type induction heating coil current direction 24 Same as above 25 Same as above 26 Same as above 27 and 27a Interference magnetic flux generated by outer peripheral plate coil 28 and 28a Current direction of outer peripheral plate coil 29 and 29a Current direction of central plate coil 30 and 30a Interference magnetic flux generated by central plate coil 31 Cylindrical coil current direction 33a Cylindrical coil leakage magnetic flux 34 Cylindrical coil current flux 34a Cylindrical coil leakage magnetic flux 35 IH inverter for cylindrical coil 36 IH inverter for induction heating cylindrical coil

Claims (6)

電磁誘導加熱用渦巻き状ワークコイル(以下平板コイルと称す)を平坦な水平面に巻き中心位置を一致させ、同心円状に複数個並べて配置し、夫々のコイルに数十kHz以上の高周波誘導電流発生用スイッチング電源(以下IHインバータと称す)を個別に接続して加熱運転することに関し、隣接したコイル夫々に接続したインバータの発信周波数の違いによってコイル間に磁束干渉現象が起こるがこの干渉影響分磁束が常に逆位相に磁束交差して無誘導状態になるように一個のコイルを二分割し夫々のコイルを半月状に巻き、二個のコイルを合わせた時、真円形状になるように形成し、この真円の内外径側に当たる夫々のコイルの外周電流が互いに向き合うように接続したことを特徴とする。 A spiral work coil for electromagnetic induction heating (hereinafter referred to as a flat plate coil) is placed on a flat horizontal surface with its winding center aligned and arranged in a concentric circle, and each coil is used to generate a high-frequency induction current of several tens of kHz or more. Regarding the heating operation by individually connecting switching power supplies (hereinafter referred to as IH inverters), the magnetic flux interference phenomenon occurs between the coils due to the difference in the transmission frequency of the inverter connected to each adjacent coil. One coil is divided into two so that it always crosses the magnetic flux in the opposite phase and becomes non-inductive, each coil is wound in a half-moon shape, and when the two coils are combined, it is formed to be a perfect circle, It is characterized in that the outer peripheral currents of the respective coils that hit the inner and outer diameter sides of the perfect circle are connected so as to face each other. 上記と同様に同軸円筒面上に円筒コイルを複数個並べて配置する場合、円筒コイル形状として二分割した平板コイルを夫々湾曲半円筒状に曲げてこの二個のコイルを突き合わせることで円筒になるように形成し円筒の長手方向端面部コイルの外周電流が互いに向き合うように接続したことを特徴とする。 When a plurality of cylindrical coils are arranged side by side on the coaxial cylindrical surface in the same manner as described above, a flat plate coil divided into two as a cylindrical coil shape is bent into a curved semi-cylindrical shape, and the two coils are abutted to form a cylinder. The outer circumferential currents of the cylindrical end face coil formed in such a manner are connected so as to face each other. 請求項1及び請求項2に成るコイルの巻き始め中心部を長円にしてその中心部分にフェライトコアを配置し、磁束がコイル巻き中心に集中するようにしたことを特徴とするが、隣接するコイルとの間にもフェライトコアを配置しコイル外周に流れるベクトル的に互いに逆方向の電流によって干渉防止の効果が発揮できる磁束が有効に発生できるようにしたことを特徴とする。 The winding start center of the coil according to claim 1 and claim 2 is formed into an ellipse, and a ferrite core is arranged at the center thereof so that the magnetic flux is concentrated at the coil winding center. A ferrite core is also disposed between the coil and a magnetic flux capable of exhibiting the effect of preventing interference can be effectively generated by currents flowing in the opposite directions of the vector flowing on the outer periphery of the coil. 請求項1及び請求項2に成るコイルと隣接するコイルを従来の一般平板コイル又は円筒コイルを交互に配置してその組合せにより干渉磁束の発生を打ち消せるようにしたことを特徴とする。
この二個分割のコイルと従来の一般平板コイル又は円筒コイルの組み合わせを交互に繰り返して配置し何個でも無制限に干渉影響抑制型誘導加熱コイル列が完成することを特徴とする。
The coil according to claim 1 and claim 2 is characterized in that the conventional general flat plate coil or cylindrical coil are alternately arranged in the adjacent coil so that the generation of the interference magnetic flux can be canceled by the combination thereof.
A combination of this two-divided coil and a conventional general flat plate coil or cylindrical coil is alternately and repeatedly arranged to complete an unlimited number of interference effect induction heating coil arrays.
請求項4に成るコイルの組合せを平板から円筒に連続して組み合わせることにより大型ドラム形状のタンクを平面底から円筒立ち上がりまで均等な加熱力で加熱でき干渉影響抑制型誘導加熱コイル効果によりコイル個別に別々のインバータが接続できることで部分的に加熱の強弱が自由に調整できるようにしたことを特徴とする。 By continuously combining the coil combination according to claim 4 from a flat plate to a cylinder, a large drum-shaped tank can be heated with a uniform heating force from the flat bottom to the cylinder rise, and the coil is individually controlled by an interference heating suppression induction heating coil effect. It is characterized in that the intensity of heating can be freely adjusted partially by being able to connect separate inverters. 請求項1及び請求項2に成るコイルを連続して配置した場合に夫々二分割の突合せ部分が角度90°変位して組み合わさることで確実に干渉磁束の発生を打ち消せるようにしたことを特徴とするが説明図に示すようにこの変位角度は任意に変えることもでき、当然その場合の組合せも請求内容に含まれる。 When the coils according to claim 1 and claim 2 are continuously arranged, the generation of the interference magnetic flux can be surely canceled by combining the butt portions divided into two at 90 ° angles. However, as shown in the explanatory diagram, this displacement angle can be arbitrarily changed, and naturally, the combination in that case is also included in the content of the claim.
JP2012164225A 2012-07-24 2012-07-24 Interference effect suppression induction heating coil Pending JP2014026748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012164225A JP2014026748A (en) 2012-07-24 2012-07-24 Interference effect suppression induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012164225A JP2014026748A (en) 2012-07-24 2012-07-24 Interference effect suppression induction heating coil

Publications (1)

Publication Number Publication Date
JP2014026748A true JP2014026748A (en) 2014-02-06

Family

ID=50200241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012164225A Pending JP2014026748A (en) 2012-07-24 2012-07-24 Interference effect suppression induction heating coil

Country Status (1)

Country Link
JP (1) JP2014026748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155962A1 (en) * 2017-02-24 2018-08-30 엘지전자 주식회사 Induction heating cooker
CN113654676A (en) * 2020-05-12 2021-11-16 佛山市顺德区美的电热电器制造有限公司 Heating temperature measurement circuit, temperature measurement circuit and cooking device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155962A1 (en) * 2017-02-24 2018-08-30 엘지전자 주식회사 Induction heating cooker
CN113654676A (en) * 2020-05-12 2021-11-16 佛山市顺德区美的电热电器制造有限公司 Heating temperature measurement circuit, temperature measurement circuit and cooking device

Similar Documents

Publication Publication Date Title
JP6431717B2 (en) Fluid heating device
Lupi et al. Induction heating
JP2009259588A (en) Induction heating device and induction heating method of metal plate
JP2014026748A (en) Interference effect suppression induction heating coil
US20210321495A1 (en) Heating coil and heating method
JP5842183B2 (en) Induction heating device
JP6097784B2 (en) ERW pipe welding equipment
WO2017186963A1 (en) Heating device for metal products
JP2015056224A (en) Induction heating apparatus
JP2007200813A (en) Induction heating device
JP2018141582A (en) Method for producing superheated steam generating apparatus and conductor pipe used for the apparatus
JP6872764B2 (en) Induction heating device
JP2003068443A (en) Induction heating unit for fluid heating
JP4987678B2 (en) Induction heating apparatus and induction heating method
JP7290858B2 (en) induction heating coil
JP2012256537A (en) Continuous induction heating device
JP6106381B2 (en) Transformers and devices equipped with transformers
JP2007294207A (en) High-frequency induction heating apparatus and its heating method
JP2020013635A (en) Induction heating apparatus
JP6760636B2 (en) Fluid heating device
JP2019184104A (en) Overheating steam generation device
JP6143696B2 (en) High frequency induction heating device
JP7065509B2 (en) Superheated steam generator and conductor tube
JP6317244B2 (en) Coil unit for induction heating and induction heating device
US2320692A (en) Induction furnace