JP2019184104A - Overheating steam generation device - Google Patents
Overheating steam generation device Download PDFInfo
- Publication number
- JP2019184104A JP2019184104A JP2018072893A JP2018072893A JP2019184104A JP 2019184104 A JP2019184104 A JP 2019184104A JP 2018072893 A JP2018072893 A JP 2018072893A JP 2018072893 A JP2018072893 A JP 2018072893A JP 2019184104 A JP2019184104 A JP 2019184104A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- conductor
- superheated steam
- pipe
- transfer member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Resistance Heating (AREA)
- General Induction Heating (AREA)
Abstract
Description
本発明は、螺旋状に巻回した導体管を誘導加熱又は通電加熱することによって、導体管内を流れる水蒸気を加熱して過熱水蒸気を生成する過熱水蒸気生成装置に関するものである。 The present invention relates to a superheated steam generating device that generates superheated steam by heating steam flowing in a conductor pipe by induction-heating or energizing heating of a spirally wound conductor pipe.
この種の過熱水蒸気生成装置において、特許文献1に示すように、二次コイルを形成する螺旋状に巻回した導体管の複数重を、螺旋の軸方向に延びる電気接続部材で溶接等により電気接続し、短絡回路を構成して電気的リアクタンスを低減させて加熱効率を向上させたものが知られている。 In this type of superheated steam generator, as shown in Patent Document 1, a plurality of conductor tubes wound in a spiral form forming a secondary coil are electrically connected by welding or the like with an electrical connection member extending in the axial direction of the spiral. It is known to connect and configure a short circuit to reduce electrical reactance and improve heating efficiency.
この過熱水蒸気生成装置は、例えば120℃の水蒸気を螺旋導体管に導入して加熱し、例えば700〜1200℃の過熱水蒸気を生成するものである。このように高温の水蒸気を扱う装置であるため、螺旋導体管の周りには断熱材が設けられている。 This superheated steam generator, for example, introduces steam at 120 ° C. into a spiral conductor tube and heats it to generate superheated steam at 700 to 1200 ° C., for example. Since the apparatus handles high-temperature water vapor in this way, a heat insulating material is provided around the spiral conductor tube.
しかしながら、従来は、螺旋導体管の高温(例えば700〜1200℃)となる出口部分の温度に合わせて断熱材の使用量が決定されており、螺旋導体管の比較的低温(例えば120℃)となる入口部分では断熱材が過剰量となってしまう。なお、螺旋導体管の温度分布に合わせて断熱材の厚みなどを異ならせることが考えられるが、その設計及び組み立てが複雑になってしまう。 However, conventionally, the amount of heat insulating material used is determined in accordance with the temperature of the outlet portion that is a high temperature (eg, 700 to 1200 ° C.) of the spiral conductor tube, and the relatively low temperature (eg, 120 ° C.) of the spiral conductor tube. At the entrance portion, there will be an excessive amount of heat insulating material. In addition, although it is possible to vary the thickness of a heat insulating material etc. according to the temperature distribution of a helical conductor tube, the design and assembly will become complicated.
そこで本発明は、上記問題点を解決するためになされたものであり、導体管の加熱温度により生じる装置の温度分布(温度勾配)を小さくして断熱材の使用量を削減することをその主たる課題としたものである。 Accordingly, the present invention has been made to solve the above-described problems, and its main purpose is to reduce the amount of heat insulating material used by reducing the temperature distribution (temperature gradient) of the device caused by the heating temperature of the conductor tube. It is a problem.
すなわち、本発明に係る過熱水蒸気生成装置は、螺旋状に巻回した導体管を誘導加熱又は通電加熱することによって前記導体管内を流れる水蒸気を加熱して過熱水蒸気を生成する過熱水蒸気生成装置であって、前記導体管の径方向内側又は径方向外側の少なくとも一方において前記導体管の巻回軸方向に沿って設けられた伝熱部材と、前記導体管及び前記伝熱部材を覆うように設けられた断熱材とを備えることを特徴とする。 That is, the superheated steam generator according to the present invention is a superheated steam generator that generates superheated steam by heating the steam flowing in the conductor tube by induction heating or current heating of the spirally wound conductor tube. A heat transfer member provided along a winding axis direction of the conductor tube on at least one of the radially inner side and the radially outer side of the conductor tube, and the conductor tube and the heat transfer member. And a heat insulating material.
この過熱水蒸気生成装置によれば、導体管の径方向内側又は径方向外側の少なくとも一方において導体管の巻回軸方向に沿って伝熱部材を設けているので、導体管の周辺部材における温度分布(温度勾配)を小さくすることができる。その結果、導体管の過熱水蒸気の出口付近における周辺部分の温度を下げることができるので、断熱材の使用量を削減することができる。また、断熱材の使用量を削減することにより、装置を小型化することができるとともに、材料コストを低減することができる。 According to this superheated steam generator, since the heat transfer member is provided along the winding axis direction of the conductor tube on at least one of the radially inner side and the radially outer side of the conductor tube, the temperature distribution in the peripheral member of the conductor tube (Temperature gradient) can be reduced. As a result, the temperature of the peripheral portion of the conductor tube in the vicinity of the superheated steam outlet can be lowered, so that the amount of heat insulating material used can be reduced. In addition, by reducing the amount of heat insulating material used, the apparatus can be miniaturized and the material cost can be reduced.
周方向における温度分布を小さくするためには、前記伝熱部材は、周方向に亘って設けられていることが望ましい。 In order to reduce the temperature distribution in the circumferential direction, it is desirable that the heat transfer member is provided over the circumferential direction.
前記伝熱部材は、前記導体管の径方向外側において前記導体管を取り囲むように設けられていることが望ましい。
この構成であれば、伝熱部材の体積を無理なく大きくすることができ、伝熱効果を高めることができる。また、伝熱部材が熱源である導体管を取り囲む構成であるので、導体管から外部に漏れ出る熱を内部に閉じ込めることができる。
It is desirable that the heat transfer member is provided so as to surround the conductor tube on a radially outer side of the conductor tube.
With this configuration, the volume of the heat transfer member can be increased without difficulty, and the heat transfer effect can be enhanced. Further, since the heat transfer member surrounds the conductor tube that is a heat source, heat leaking from the conductor tube to the outside can be confined inside.
流体加熱装置の具体的な実施の態様としては、前記導体管の内側に設けられた内側鉄心と、前記導体管の外側に設けられるとともに、前記鉄心とともに閉磁路を形成する磁路形成部と、前記鉄心及び前記磁路形成部の間に設けられ、前記鉄心の内部に磁束を発生させる誘導コイルと、前記鉄心及び前記磁路形成部の間に設けられ、前記水蒸気が流れる予熱管と備え、前記予熱管は前記導体管に接続されており、前記水蒸気は、前記予熱管を流れた後に、前記導体管に流れるように構成されている。
この構成であれば、導体管から外部に漏れ出た熱を利用して水蒸気を予熱することができる。つまり、導体管からの放熱による損失を低減して水蒸気を効率良く加熱することができる。
Specific embodiments of the fluid heating device include an inner iron core provided inside the conductor tube, a magnetic path forming unit that is provided outside the conductor tube and forms a closed magnetic circuit with the iron core, An induction coil that is provided between the iron core and the magnetic path forming portion and generates a magnetic flux inside the iron core; and a preheating tube that is provided between the iron core and the magnetic path forming portion and through which the water vapor flows, The preheating tube is connected to the conductor tube, and the water vapor is configured to flow through the conductor tube after flowing through the preheating tube.
If it is this structure, water vapor | steam can be preheated using the heat | fever leaked outside from the conductor pipe | tube. That is, water vapor can be efficiently heated by reducing loss due to heat radiation from the conductor tube.
前記予熱管は、前記導体管及び前記磁路形成部の間に設けられた外側予熱管と、前記導体管及び前記鉄心の間に設けられた内側予熱管とを含むことが望ましい。
この構成であれば、導体管の径方向両側を外側予熱管及び内側予熱管で挟む構成とすることができ、導体管から径方向両側に漏れ出た熱を遮断する機能を発揮するため、断熱材の使用量を削減することができる。
The preheating tube preferably includes an outer preheating tube provided between the conductor tube and the magnetic path forming portion, and an inner preheating tube provided between the conductor tube and the iron core.
If it is this structure, it can be set as the structure which sandwiches the radial direction both sides of a conductor pipe with an outer side preheating pipe and an inner side preheating pipe, and in order to demonstrate the function which intercepts the heat leaked from the conductor pipe to both sides in the radial direction, The amount of material used can be reduced.
前記伝熱部材は、前記導体管と前記外側予熱管との間に設けられた外側伝熱部材と、前記導体管と内側予熱管との間に設けられた内側伝熱部材とを含むことが望ましい。
この構成であれば、導体管に近い部分で温度分布を小さくするとともに、伝熱部材により均一化された温度により外側予熱管及び内側予熱管を流れる水蒸気を加熱することができる。
The heat transfer member may include an outer heat transfer member provided between the conductor tube and the outer preheat tube, and an inner heat transfer member provided between the conductor tube and the inner preheat tube. desirable.
If it is this structure, while making temperature distribution small in the part close | similar to a conductor pipe | tube, the water vapor | steam which flows through an outer side preheating pipe and an inner side preheating pipe | tube can be heated with the temperature equalized by the heat-transfer member.
上述したように過熱水蒸気生成装置の導体管は、例えば120℃の水蒸気が導入されて、例えば700〜1200℃の過熱水蒸気を導出することから、導体管の材質としては、例えば700℃以上の耐熱温度を有する材質(例えばインコネル)を用いる必要がある。ところが、導体管の材質としてインコネルを用いた場合には、材料コストが高くなってしまう。
そこで、前記導体管は、上流側部分と下流側部分とで異なる金属により形成されていることが望ましい。
この構成であれば、導体管の上流側部分の温度及び下流側部分の温度に合わせた材料選択を行うことができ、導体管の合理的な設計が可能となり、導体管の材料コストを低減することができる。
As described above, the conductor tube of the superheated steam generation device introduces, for example, 120 ° C. water vapor and derives, for example, 700 to 1200 ° C. superheated water vapor. It is necessary to use a material having a temperature (for example, Inconel). However, when Inconel is used as the material of the conductor tube, the material cost becomes high.
Therefore, it is desirable that the conductor tube is made of different metals for the upstream portion and the downstream portion.
If it is this structure, the material selection according to the temperature of the upstream part of a conductor pipe and the temperature of a downstream part can be performed, a rational design of a conductor pipe is attained, and the material cost of a conductor pipe is reduced. be able to.
具体的には、前記上流側部分を形成する金属の耐熱温度は、前記下流側部分を形成する金属の耐熱温度よりも低いことが望ましい。 Specifically, it is desirable that the heat resistance temperature of the metal forming the upstream portion is lower than the heat resistance temperature of the metal forming the downstream portion.
導体管の構成を簡略化するとともに、その製造コストを削減するためには、前記上流側部分と前記下流側部分とは溶接により接続されていることが望ましい。 In order to simplify the configuration of the conductor tube and reduce its manufacturing cost, it is desirable that the upstream portion and the downstream portion are connected by welding.
具体的には、前記上流側部分は、汎用合金鋼であるステンレス鋼(例えばSUS304、SUS316等)から形成されており、前記下流側部分は、超耐熱鋼であるインコネルから形成されていることが望ましい。 Specifically, the upstream portion is made of stainless steel (for example, SUS304, SUS316, etc.) that is a general-purpose alloy steel, and the downstream portion is made of Inconel, which is a super heat resistant steel. desirable.
このように構成した本発明によれば、導体管の径方向内側又は径方向外側の少なくとも一方において導体管の巻回軸方向に沿って伝熱部材を設けているので、導体管の加熱温度により生じる装置の温度分布を均一化して断熱材の使用量を削減することができる。 According to the present invention configured as described above, the heat transfer member is provided along the winding axis direction of the conductor tube on at least one of the radially inner side or the radially outer side of the conductor tube. The temperature distribution of the resulting device can be made uniform to reduce the amount of heat insulating material used.
<1.装置構成>
本実施形態に係る過熱水蒸気生成装置100は、外部で生成された例えば120℃の水蒸気を加熱して、例えば700〜1200℃の過熱水蒸気を生成するものである。その他、過熱水蒸気生成装置100としては、水を加熱して例えば120℃の水蒸気を生成する飽和水蒸気生成部を有するものであっても良い。
<1. Device configuration>
The superheated steam generator 100 according to the present embodiment heats, for example, 120 ° C. steam generated outside to generate superheated steam of, for example, 700 to 1200 ° C. In addition, the superheated steam generator 100 may have a saturated steam generator that heats water and generates, for example, 120 ° C. steam.
具体的に過熱水蒸気生成装置100は、導体管2を誘導加熱することによって導体管2内を流れる水蒸気を加熱して過熱水蒸気を生成するものであり、図1及び図2に示すように、螺旋状に巻回した導体管2と、導体管2の内側に設けられた内側鉄心3と、導体管2の外側に設けられるとともに、内側鉄心3とともに閉磁路を形成する磁路形成部4と、内側鉄心3及び磁路形成部4の間に設けられ、内側鉄心3の内部に磁束を発生させる誘導コイル5と、内側鉄心3及び磁路形成部4の間に設けられ、水蒸気が流れる予熱管6と備えている。 Specifically, the superheated steam generation apparatus 100 generates superheated steam by heating the steam flowing in the conductor tube 2 by induction heating the conductor tube 2, and as shown in FIG. 1 and FIG. A conductor tube 2 wound in a shape, an inner iron core 3 provided inside the conductor tube 2, a magnetic path forming portion 4 provided outside the conductor tube 2 and forming a closed magnetic circuit with the inner iron core 3, An induction coil 5 provided between the inner iron core 3 and the magnetic path forming portion 4 and generating magnetic flux inside the inner iron core 3, and a preheat tube provided between the inner iron core 3 and the magnetic path forming portion 4 through which water vapor flows. 6 and so on.
導体管2は、所定の中心軸線上に沿って螺旋状(コイル状)に巻回されたものである。具体的に導体管2は、図3及び図4に示すように、螺旋状に巻回した内側管要素21と、当該内側管要素21の外側に設けられ、螺旋状に巻回した外側管要素22と、内側管要素21及び外側管要素22を流体的に接続するとともにそれらを短絡接続する接続管要素23a、23bとを備えている。なお、導体管2の材質としては、汎用合金鋼であるステンレス鋼(SUS304やSUS316等)や超耐熱鋼であるインコネル等である。 The conductor tube 2 is wound spirally (coiled) along a predetermined center axis. Specifically, as shown in FIGS. 3 and 4, the conductor tube 2 includes an inner tube element 21 spirally wound, and an outer tube element provided outside the inner tube element 21 and spirally wound. 22 and connecting pipe elements 23a and 23b for fluidly connecting the inner pipe element 21 and the outer pipe element 22 and short-circuiting them. In addition, as a material of the conductor tube 2, it is stainless steel (SUS304, SUS316 etc.) which is general purpose alloy steel, Inconel which is super heat resistant steel, etc.
内側管要素21及び外側管要素22の巻回方向は互いに逆向きとしてある(図3参照)。そして、内側管要素21の軸方向一端部と外側管要素22の軸方向一端部とが接続管要素23aにより接続されている。また、内側管要素21の軸方向他端部と外側管要素22の軸方向他端部とが接続管要素23bにより接続されている。 The winding directions of the inner tube element 21 and the outer tube element 22 are opposite to each other (see FIG. 3). And the axial direction one end part of the inner side pipe element 21 and the axial direction one end part of the outer side pipe element 22 are connected by the connection pipe element 23a. The other axial end of the inner tube element 21 and the other axial end of the outer tube element 22 are connected by a connecting tube element 23b.
接続管要素23aには水蒸気の導入ポート2p1が設けられており、接続管要素23bには過熱水蒸気の導出ポート2p2が設けられている。この構成により、接続管要素23aの導入ポート2p1から流入した水蒸気は、接続管要素23aにより内側管要素21及び外側管要素22に分岐して流れ、内側管要素21及び外側管要素22を流れた水蒸気(過熱水蒸気)は、接続管要素23bで合流して導出ポート2p2から流出する。 The connecting pipe element 23a is provided with a steam introduction port 2p1, and the connecting pipe element 23b is provided with a superheated steam outlet port 2p2. With this configuration, the water vapor flowing in from the introduction port 2p1 of the connection pipe element 23a branches and flows into the inner pipe element 21 and the outer pipe element 22 through the connection pipe element 23a, and flows through the inner pipe element 21 and the outer pipe element 22. The steam (superheated steam) joins at the connecting pipe element 23b and flows out from the outlet port 2p2.
また、このように接続した導体管2は、内側管要素21及び外側管要素22が接続管要素23により電気的に並列接続される構成である。そして、誘導コイル5により生じる磁束によって、内側管要素21及び外側管要素22に図5に示すように短絡電流が流れる。つまり、内側管要素21には、軸方向一端部21aから軸方向他端部21bに向かって短絡電流が流れ、外側管要素22には、軸方向他端部22bから軸方向一端部22aに向かって短絡電流が流れる。この構成により、導体管2とは別に電気接続部材を設ける必要が無く、導体管2自体の構成により短絡回路を形成することができる。 Further, the conductor tube 2 connected in this way is configured such that the inner tube element 21 and the outer tube element 22 are electrically connected in parallel by the connecting tube element 23. Then, a short-circuit current flows through the inner tube element 21 and the outer tube element 22 by the magnetic flux generated by the induction coil 5 as shown in FIG. That is, a short-circuit current flows through the inner tube element 21 from the one axial end portion 21a toward the other axial end portion 21b, and the outer tube element 22 proceeds from the other axial end portion 22b toward the one axial end portion 22a. Short circuit current flows. With this configuration, it is not necessary to provide an electrical connection member separately from the conductor tube 2, and a short circuit can be formed by the configuration of the conductor tube 2 itself.
内側鉄心3は、図1及び図2に示すように、導体管2の内側において導体管2の内側管要素21と同軸上に配置されている。本実施形態の内側鉄心3は、図6(A)に示すように、いわゆるインボリュート鉄心であり、幅方向断面がインボリュート曲線状に湾曲した湾曲部を有する複数の珪素鋼板を円周方向に放射状に積み重ねて円筒状に形成したものである。なお、内側鉄心3は、図6(B)に示すように、平板状の珪素鋼板を積み重ねて円筒状に形成したものであっても良い。 As shown in FIGS. 1 and 2, the inner iron core 3 is disposed coaxially with the inner tube element 21 of the conductor tube 2 inside the conductor tube 2. As shown in FIG. 6 (A), the inner iron core 3 of the present embodiment is a so-called involute iron core, and a plurality of silicon steel plates having a curved portion whose cross section in the width direction is curved in an involute curve shape radially in the circumferential direction. They are stacked and formed into a cylindrical shape. As shown in FIG. 6B, the inner iron core 3 may be formed by stacking flat silicon steel plates into a cylindrical shape.
磁路形成部4は、図1に示すように、内側鉄心3とともに閉磁路を形成するものであり、導体管2の外側において周方向に例えば等間隔に配置された複数の外側鉄心41と、内側鉄心3及び複数の外側鉄心41の上端同士及び下端同士を接続する上下の継鉄心42とを有する。なお、外側鉄心41は、周方向に等間隔でなくても良い。 As shown in FIG. 1, the magnetic path forming unit 4 forms a closed magnetic path together with the inner iron core 3, and a plurality of outer iron cores 41 arranged at equal intervals in the circumferential direction on the outside of the conductor tube 2, It has the upper and lower yoke cores 42 that connect the upper ends and the lower ends of the inner iron core 3 and the plurality of outer iron cores 41. The outer iron core 41 may not be equally spaced in the circumferential direction.
外側鉄心41は、図2に示すように、導体管2の外側において導体管2と同軸上に配置されている。本実施形態では、3つの外側鉄心41が、導体管2の外側において周方向に等間隔に配置されている。本実施形態の各外側鉄心41は、後述する継鉄心42との関係で、並列配置された2つの外側鉄心要素411、412から構成されている。また、各外側鉄心要素411、412は、図7に示すように、平板状の珪素鋼板を積み重ねて半円柱状又は半円筒状に形成したものである。これにより、過熱水蒸気生成装置100を径方向に小型化している。なお、外側鉄心41は、1つの外側鉄心要素からなるものであっても良い。 As shown in FIG. 2, the outer iron core 41 is disposed coaxially with the conductor tube 2 on the outer side of the conductor tube 2. In the present embodiment, the three outer iron cores 41 are arranged at equal intervals in the circumferential direction on the outer side of the conductor tube 2. Each outer iron core 41 of the present embodiment is composed of two outer iron core elements 411 and 412 arranged in parallel in relation to a yoke core 42 described later. Further, as shown in FIG. 7, each of the outer core elements 411 and 412 is formed by stacking flat silicon steel plates into a semi-columnar shape or a semi-cylindrical shape. Thereby, the superheated steam generator 100 is downsized in the radial direction. The outer iron core 41 may be composed of one outer iron core element.
上下の継鉄心42はそれぞれ、図8に示すように、3つの継鉄心要素421、422、423から構成されており、各継鉄心要素421、422、423は環状巻鉄心を変形させることにより構成されている。具体的に各継鉄心要素421、422、423は、環状巻鉄心を中央で屈曲するくの字状に変形させることにより構成されている。これら3つの継鉄心要素421、422、423を、それらの屈曲部が中心側に位置するように組み合わせることによりY字状の継鉄心42が構成される。各継鉄心要素421、422、423の両端部には、前記各外側鉄心要素411、412が接続される。また、継鉄心42の中央部には、内側鉄心3が接続される。つまり、3つの外側鉄心41は正三角形の頂点に位置し、内側鉄心3は正三角形の重心に位置する。これら各部は、内側鉄心3、外側鉄心41及び継鉄心42を挟む挟持部材7を介して、締結ボルト等の締結機構8により軸方向から締結して行われる。 Each of the upper and lower yoke cores 42 is composed of three yoke core elements 421, 422, and 423 as shown in FIG. 8, and each of the yoke core elements 421, 422, and 423 is constituted by deforming the annular wound core. Has been. Specifically, each of the yoke core elements 421, 422, and 423 is configured by deforming an annular wound core into a dogleg shape that is bent at the center. A Y-shaped yoke core 42 is configured by combining these three yoke core elements 421, 422, and 423 so that their bent portions are located on the center side. The outer core elements 411 and 412 are connected to both ends of the yoke elements 421, 422 and 423, respectively. Further, the inner core 3 is connected to the central portion of the yoke core 42. That is, the three outer iron cores 41 are located at the vertices of the equilateral triangle, and the inner iron core 3 is located at the center of gravity of the equilateral triangle. Each of these parts is fastened from the axial direction by a fastening mechanism 8 such as a fastening bolt via a clamping member 7 that sandwiches the inner iron core 3, the outer iron core 41, and the yoke core 42.
誘導コイル5は、図1及び図2に示すように、内側鉄心3の外側に巻回された内側誘導コイル51と、外側鉄心の内側に巻回された外側誘導コイル52とを有している。これら誘導コイル51、52は、内側鉄心3と同軸上に配置されている。誘導コイル51、52には、50Hz又は60Hzの単相電源(図示なし)が接続される。なお、内側誘導コイル51と外側誘導コイル52とは互いに直列又は並列に接続されている。 As shown in FIGS. 1 and 2, the induction coil 5 includes an inner induction coil 51 wound around the inner iron core 3 and an outer induction coil 52 wound inside the outer iron core. . These induction coils 51 and 52 are arranged coaxially with the inner iron core 3. A single-phase power supply (not shown) of 50 Hz or 60 Hz is connected to the induction coils 51 and 52. The inner induction coil 51 and the outer induction coil 52 are connected to each other in series or in parallel.
予熱管6は、導体管2の巻回軸Cと同軸上に螺旋状(コイル状)に巻回されたものである。具体的に予熱管6は、図1及び図2に示すように、導体管2の内側に設けられ、螺旋状に巻回した内側予熱管61と、導体管2の外側に設けられ、螺旋状に巻回した外側予熱管62とを備えている。 The preheating tube 6 is wound in a spiral shape (coil shape) coaxially with the winding axis C of the conductor tube 2. Specifically, as shown in FIGS. 1 and 2, the preheating tube 6 is provided inside the conductor tube 2, and is provided inside the conductor tube 2 and the inner preheating tube 61 wound spirally, and is provided in a spiral shape. And an outer preheating tube 62 wound around.
内側予熱管61は、導体管2と内側鉄心3との間、より具体的には導体管2と内側誘導コイル51との間に設けられている。また、外側予熱管62は、導体管2と外側鉄心41との間、より具体的には、導体管2と外側誘導コイル52との間に設けられている。 The inner preheating tube 61 is provided between the conductor tube 2 and the inner iron core 3, more specifically, between the conductor tube 2 and the inner induction coil 51. The outer preheating tube 62 is provided between the conductor tube 2 and the outer iron core 41, more specifically, between the conductor tube 2 and the outer induction coil 52.
内側予熱管61の一端部には、外部で生成された水蒸気が導入される導入ポート61pが設けられている。また、内側予熱管61の他端部は、外側予熱管62の他端部に接続されている。さらに、外側予熱管62の一端部は、導体管2の導入ポート2p1に接続されている。つまり、内側予熱管61の導入ポート61pから導入された水蒸気は、内側予熱管61及び外側予熱管62を流れた後に、導体管2に流入する。 One end of the inner preheating tube 61 is provided with an introduction port 61p through which water vapor generated outside is introduced. The other end of the inner preheating pipe 61 is connected to the other end of the outer preheating pipe 62. Furthermore, one end of the outer preheating pipe 62 is connected to the introduction port 2p1 of the conductor pipe 2. That is, the water vapor introduced from the introduction port 61 p of the inner preheating pipe 61 flows into the conductor pipe 2 after flowing through the inner preheating pipe 61 and the outer preheating pipe 62.
ここで、内側予熱管61の巻回方向と外側予熱管62の巻回方向とは互いに逆向きとなるように構成されている。これにより、内側予熱管61で誘起される誘起電圧の位相と外側予熱管62で誘起される誘起電圧の位相とが逆となり、内側予熱管61及び外側予熱管62に発生する短絡電流を打ち消し合うことができる。 Here, the winding direction of the inner preheating tube 61 and the winding direction of the outer preheating tube 62 are configured to be opposite to each other. As a result, the phase of the induced voltage induced in the inner preheating tube 61 and the phase of the induced voltage induced in the outer preheating tube 62 are reversed, and the short-circuit currents generated in the inner preheating tube 61 and the outer preheating tube 62 cancel each other. be able to.
このように構成した過熱水蒸気生成装置100において、誘導コイル5に単相電源により交流電圧を印加することで、内側誘導コイル51及び外側誘導コイル52に電流が流れて内側鉄心3及び磁路形成部4に磁束が流れる。当該磁束によって導体管2の内側管要素21、外側管要素22及び接続管要素23a、23bに短絡電流が流れて、導体管2がジュール発熱する。これにより、導体管2を流れる水蒸気が加熱されて過熱水蒸気が生成される。 In the superheated steam generator 100 configured as described above, by applying an AC voltage to the induction coil 5 from a single-phase power source, a current flows through the inner induction coil 51 and the outer induction coil 52, and the inner iron core 3 and the magnetic path forming unit. Magnetic flux flows through 4. The magnetic flux causes a short-circuit current to flow through the inner tube element 21, the outer tube element 22, and the connecting tube elements 23a and 23b of the conductor tube 2, and the conductor tube 2 generates Joule heat. Thereby, the water vapor | steam which flows through the conductor pipe | tube 2 is heated, and superheated water vapor | steam is produced | generated.
然して、本実施形態の過熱水蒸気生成装置100は、図1及び図2に示すように、導体管2の加熱温度により生じる巻回軸方向における温度勾配(温度分布)を小さくする伝熱部材9が設けられている。 However, as shown in FIGS. 1 and 2, the superheated steam generator 100 of the present embodiment includes a heat transfer member 9 that reduces a temperature gradient (temperature distribution) in the winding axis direction caused by the heating temperature of the conductor tube 2. Is provided.
本実施形態の伝熱部材9は、導体管2の径方向内側に導体管2の巻回軸Cに沿って内側伝熱部材91と、導体管2の径方向外側に導体管2の巻回軸Cに沿って外側伝熱部材92とである。 The heat transfer member 9 of the present embodiment includes an inner heat transfer member 91 along the winding axis C of the conductor tube 2 on the radially inner side of the conductor tube 2 and a winding of the conductor tube 2 on the radially outer side of the conductor tube 2. It is the outer heat transfer member 92 along the axis C.
内側伝熱部材91は、導体管2と内側予熱管61との間に設けられている。この内側伝熱部材91は、周方向に亘って略全体に設けられている。具体的に内側伝熱部材91は、内側予熱管61を取り囲むように設けられており、軸方向に沿って一部にスリットが形成された例えばC形状等の部分円筒形状をなすものである。この内側伝熱部材91としては、アルミニウムや銅等の熱伝導性に優れた材料からなる湾曲板である。 The inner heat transfer member 91 is provided between the conductor tube 2 and the inner preheating tube 61. The inner heat transfer member 91 is provided substantially over the entire circumferential direction. Specifically, the inner heat transfer member 91 is provided so as to surround the inner preheating tube 61, and has a partial cylindrical shape such as a C shape in which a slit is partially formed along the axial direction. The inner heat transfer member 91 is a curved plate made of a material having excellent heat conductivity such as aluminum or copper.
外側伝熱部材92は、導体管2と外側予熱管62との間に設けられている。この外側伝熱部材92は、周方向に亘って周方向に亘って略全体に設けられている。具体的に外側伝熱部材92は、導体管2を取り囲むように設けられており、軸方向に沿って一部にスリットが形成された例えばC形状等の部分円筒形状をなすものである。この外側伝熱部材92としては、アルミニウムや銅等の熱伝導性に優れた材料からなる湾曲板である。 The outer heat transfer member 92 is provided between the conductor tube 2 and the outer preheating tube 62. The outer heat transfer member 92 is provided substantially over the entire circumferential direction. Specifically, the outer heat transfer member 92 is provided so as to surround the conductor tube 2, and has a partial cylindrical shape such as a C shape in which a slit is partially formed along the axial direction. The outer heat transfer member 92 is a curved plate made of a material having excellent heat conductivity such as aluminum or copper.
そして、図1に示すように、過熱水蒸気生成装置100において導体管2、予熱管6及び伝熱部材9を覆うように断熱材10が設けられている。なお、図2では断熱材は図示していない。 As shown in FIG. 1, a heat insulating material 10 is provided so as to cover the conductor tube 2, the preheating tube 6, and the heat transfer member 9 in the superheated steam generator 100. In addition, the heat insulating material is not illustrated in FIG.
この断熱材10は、挟持部材7の間において外側鉄心41の内側の空間を埋めるように設けられている。具体的には、内側誘導コイル51と内側予熱管61との間、内側予熱管61と内側伝熱部材91との間、内側伝熱部材91と内側管要素21との間、内側管要素21と外側管要素22との間、外側管要素22と外側伝熱部材92との間、外側伝熱部材92と外側予熱管62との間、外側予熱管62と外側誘導コイル52との間、その他各部の空間を埋めるように設けられている。 The heat insulating material 10 is provided so as to fill the space inside the outer iron core 41 between the holding members 7. Specifically, between the inner induction coil 51 and the inner preheating pipe 61, between the inner preheating pipe 61 and the inner heat transfer member 91, between the inner heat transfer member 91 and the inner pipe element 21, and the inner pipe element 21. Between the outer tube element 22, between the outer tube element 22 and the outer heat transfer member 92, between the outer heat transfer member 92 and the outer preheat tube 62, between the outer preheat tube 62 and the outer induction coil 52, In addition, it is provided to fill the space of each part.
<2.本実施形態の効果>
このように構成した過熱水蒸気生成装置100によれば、導体管2の径方向内側又は径方向外側の少なくとも一方において導体管2の巻回軸方向に沿って伝熱部材9を設けているので、導体管2の周辺部材(内側伝熱部材91及び外側伝熱部材92)の軸方向における温度分布を小さくすることができる。その結果、導体管2の過熱水蒸気の出口付近において内側伝熱部材91及び外側伝熱部材92の温度を下げることができるので、断熱材10の使用量を削減することができる。また、断熱材10の使用量を削減することにより、装置100を小型化することができるとともに、材料コストを低減することができる。
<2. Effects of this embodiment>
According to the superheated steam generator 100 configured as described above, the heat transfer member 9 is provided along the winding axis direction of the conductor tube 2 in at least one of the radially inner side or the radially outer side of the conductor tube 2. The temperature distribution in the axial direction of the peripheral members (the inner heat transfer member 91 and the outer heat transfer member 92) of the conductor tube 2 can be reduced. As a result, the temperature of the inner heat transfer member 91 and the outer heat transfer member 92 can be lowered in the vicinity of the superheated steam outlet of the conductor tube 2, so that the amount of heat insulating material 10 used can be reduced. Further, by reducing the amount of the heat insulating material 10 used, the device 100 can be reduced in size and the material cost can be reduced.
内側伝熱部材91及び外側伝熱部材92が周方向に亘って略全体に設けられているので、周方向における温度分布を小さくすることができる。また、外側伝熱部材92が導体管2を取り囲むように設けられているので、外側伝熱部材92の体積を無理なく大きくすることができ、伝熱効果を高めることができる。また、外側伝熱部材92が熱源である導体管2を取り囲む構成であるので、導体管2から外部に漏れ出る熱を内部に閉じ込めることができる。 Since the inner heat transfer member 91 and the outer heat transfer member 92 are provided substantially over the circumferential direction, the temperature distribution in the circumferential direction can be reduced. Moreover, since the outer heat transfer member 92 is provided so as to surround the conductor tube 2, the volume of the outer heat transfer member 92 can be increased without difficulty, and the heat transfer effect can be enhanced. Further, since the outer heat transfer member 92 surrounds the conductor tube 2 that is a heat source, heat leaking from the conductor tube 2 to the outside can be confined inside.
また、導体管2の径方向両側に内側予熱管61及び外側予熱管62を設けているので、導体管2から外部に漏れ出た熱を利用して水蒸気を予熱することができる。つまり、導体管2からの放熱による損失を低減して水蒸気を効率良く加熱することができる。また、導体管2から径方向両側に漏れ出た熱を遮断する機能を発揮するため、断熱材10の使用量を削減することができる。また、導体管2に近い部分で温度分布を小さくできるとともに、伝熱部材9により均一化された温度により内側予熱管61及び外側予熱管62を流れる水蒸気を加熱することができる。 Moreover, since the inner side preheating pipe 61 and the outer side preheating pipe 62 are provided on both sides in the radial direction of the conductor tube 2, the steam can be preheated using the heat leaked to the outside from the conductor tube 2. That is, water vapor can be efficiently heated by reducing loss due to heat radiation from the conductor tube 2. Moreover, since the function which interrupts | blocks the heat | fever leaked to the radial direction both sides from the conductor pipe 2 is exhibited, the usage-amount of the heat insulating material 10 can be reduced. Further, the temperature distribution can be reduced near the conductor tube 2, and the water vapor flowing through the inner preheating tube 61 and the outer preheating tube 62 can be heated by the temperature made uniform by the heat transfer member 9.
<3.本発明の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態の導体管2は、2重管構造をなすものであったが、4重管又はそれ以上の偶数重の管要素を有するものであっても良い。この場合、2つの管要素毎にそれぞれ接続管要素で接続する。例えば、前記実施形態の導体管2を同心円状に複数配置した構成とすることが考えられる。
<3. Modified Embodiment of the Present Invention>
The present invention is not limited to the above embodiment.
For example, although the conductor tube 2 of the above embodiment has a double tube structure, it may have a quadruple tube or an even-numbered tube element of even more. In this case, each two pipe elements are connected by connecting pipe elements. For example, it can be considered that a plurality of concentric circular conductor tubes 2 according to the above embodiment are arranged.
前記実施形態の伝熱部材は、C形状の湾曲板であったが、その他、ヒートパイプであっても良いし、内部に気液二相の熱媒体が封入されたジャケット室を有するヒートプレートであっても良い。その他、熱伝導性に優れた金属からなる複数の金属板を周方向に配置した構成としても良い。 The heat transfer member of the above embodiment is a C-shaped curved plate, but may be a heat pipe or a heat plate having a jacket chamber in which a gas-liquid two-phase heat medium is enclosed. There may be. In addition, it is good also as a structure which has arrange | positioned the several metal plate which consists of a metal excellent in thermal conductivity in the circumferential direction.
前記実施形態の導体管2は、単一の材質からなるものであったが、複数の材質から構成しても良い。例えば図9に示すように、導体管2を、上流側部分2xと下流側部分2yとで異なる金属により形成しても良い。ここで、導体管2を巻回軸方向に2分割して上流側部分2xと下流側部分2yに分けることが考えられる。この構成であれば、導体管2の上流側部分2xの温度及び下流側部分2yの温度に合わせた材料選択を行うことができ、導体管2の合理的な設計が可能となり、導体管2の材料コストを低減することができる。なお、図9では、内側管要素21及び外側管要素22の両方において、上流側部分2xと下流側部分2yとで異なる金属により形成した例を示している。 The conductor tube 2 of the above embodiment is made of a single material, but may be made of a plurality of materials. For example, as shown in FIG. 9, the conductor tube 2 may be formed of different metals in the upstream portion 2x and the downstream portion 2y. Here, it is conceivable that the conductor tube 2 is divided into two in the winding axis direction and divided into an upstream portion 2x and a downstream portion 2y. If it is this structure, the material selection according to the temperature of the upstream part 2x of the conductor pipe 2 and the temperature of the downstream part 2y can be performed, the rational design of the conductor pipe 2 is attained, and the conductor pipe 2 of Material costs can be reduced. FIG. 9 shows an example in which both the inner tube element 21 and the outer tube element 22 are formed of different metals in the upstream portion 2x and the downstream portion 2y.
具体的には、上流側部分2xを形成する金属の耐熱温度を、下流側部分2yを形成する金属の耐熱温度よりも低くすることが考えられ、上流側部分2xを、汎用合金鋼であるステンレス鋼(例えばSUS304、SUS316等)から形成し、下流側部分2yを、超耐熱鋼であるインコネルから形成することが考えられる。 Specifically, it is conceivable that the heat-resistant temperature of the metal forming the upstream portion 2x is made lower than the heat-resistant temperature of the metal forming the downstream portion 2y, and the upstream portion 2x is made of general-purpose alloy steel. It is possible to form from the steel (for example, SUS304, SUS316 etc.), and to form the downstream part 2y from Inconel which is super heat resistant steel.
このとき、上流側部分2xと下流側部分2yとを溶接により接続することが考えられる。これにより、導体管2の構成を簡略化するとともにその製造コストを削減することができる。ここで、溶接箇所2zの高温による損傷や劣化を避けるために低温側に溶接箇所2zを設けることもできる。つまり、上流側部分2xを短くして下流側部分2yを長くする構成となる。 At this time, it is conceivable to connect the upstream portion 2x and the downstream portion 2y by welding. Thereby, while simplifying the structure of the conductor pipe | tube 2, the manufacturing cost can be reduced. Here, in order to avoid the damage and deterioration by the high temperature of the welding location 2z, the welding location 2z can also be provided in the low temperature side. That is, the upstream portion 2x is shortened and the downstream portion 2y is lengthened.
前記実施形態では、3つの外側鉄心41を有する構成であったが、図10に示すように2つの外側鉄心41を有する構成としても良い。この場合、2つの外側鉄心41は、内側鉄心3を挟むように両側に対向して設けられる。この場合、継鉄心42は、例えば環状巻鉄心を直線状に変形させることにより構成することが考えられる。 In the said embodiment, although it was the structure which has the three outer side iron cores 41, it is good also as a structure which has the two outer side iron cores 41, as shown in FIG. In this case, the two outer iron cores 41 are provided facing both sides so as to sandwich the inner iron core 3. In this case, it is conceivable that the yoke core 42 is configured by, for example, deforming an annular wound core in a straight line.
前記実施形態の過熱水蒸気生成装置100を複数用いて、それらの導体管2を直列接続したものであっても良い。この場合、外部から導入された水蒸気は、全ての過熱水蒸気生成装置100の予熱管6を通過した後に各過熱水蒸気生成装置100の導体管2に流入するように配管接続することが考えられる。 A plurality of the superheated steam generators 100 according to the embodiment may be used and the conductor tubes 2 may be connected in series. In this case, it is conceivable that the steam introduced from the outside is connected by piping so as to flow into the conductor pipes 2 of the respective superheated steam generators 100 after passing through the preheating pipes 6 of all the superheated steam generators 100.
過熱水蒸気生成装置は、前記実施形態の構成に限られず、スコット変圧器を構成する脚鉄心に導体管を装着して、当該導体管を誘導加熱して水蒸気を加熱する構成であっても良い。この場合、スコット変圧器を構成する脚鉄心は3脚鉄心であり、その両側に位置する脚鉄心それぞれに導体管を装着する構成とすることが考えられる。 The superheated steam generator is not limited to the configuration of the above-described embodiment, and may be a configuration in which a conductor pipe is attached to a leg iron core constituting a Scott transformer, and the conductor pipe is heated by induction heating. In this case, the leg iron cores constituting the Scott transformer are three-legged iron cores, and it is conceivable that a conductor tube is attached to each of the leg iron cores located on both sides thereof.
さらに、過熱水蒸気生成装置の加熱方式としては、前記実施形態のように誘導加熱方式の他、螺旋状に巻廻した導体管に直接電流を流すことによりジュール発熱させる通電加熱方式のものであっても良い。 Furthermore, as a heating method of the superheated steam generator, in addition to the induction heating method as in the above-described embodiment, an electric heating method of generating Joule heat by flowing a current directly through a spirally wound conductor tube is used. Also good.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
100・・・過熱水蒸気生成装置
2 ・・・導体管
21 ・・・内側管要素
22 ・・・外側管要素
3 ・・・内側鉄心
4 ・・・磁路形成部
41 ・・・外側鉄心
42 ・・・継鉄心
5 ・・・誘導コイル
6 ・・・予熱管
61 ・・・内側予熱管
62 ・・・外側予熱管
9 ・・・伝熱部材
91 ・・・内側伝熱部材
92 ・・・外側伝熱部材
2x ・・・上流側部分
2y ・・・下流側部分
DESCRIPTION OF SYMBOLS 100 ... Superheated steam generator 2 ... Conductor tube 21 ... Inner tube element 22 ... Outer tube element 3 ... Inner iron core 4 ... Magnetic path formation part 41 ... Outer iron core 42 .. yoke core 5 ... induction coil 6 ... preheating pipe 61 ... inner preheating pipe 62 ... outer preheating pipe 9 ... heat transfer member 91 ... inner heat transfer member 92 ... outer side Heat transfer member 2x ... Upstream part 2y ... Downstream part
Claims (10)
前記導体管の径方向内側又は径方向外側の少なくとも一方において前記導体管の巻回軸に沿って設けられた伝熱部材と、
前記導体管及び前記伝熱部材を覆うように設けられた断熱材とを備える、過熱水蒸気生成装置。 A superheated steam generator that generates superheated steam by heating steam flowing in the conductor pipe by induction heating or energizing heating of a spirally wound conductor pipe,
A heat transfer member provided along the winding axis of the conductor tube in at least one of the radially inner side or the radially outer side of the conductor tube;
A superheated steam generator, comprising: a heat insulating material provided to cover the conductor tube and the heat transfer member.
前記導体管の外側に設けられるとともに、前記内側鉄心とともに閉磁路を形成する磁路形成部と、
前記内側鉄心及び前記磁路形成部の間に設けられ、前記内側鉄心の内部に磁束を発生させる誘導コイルと、
前記内側鉄心及び前記磁路形成部の間に設けられ、前記水蒸気が流れる予熱管と備え、
前記予熱管は前記導体管に接続されており、
前記水蒸気は、前記予熱管を流れた後に、前記導体管に流れるように構成されている、請求項1乃至3の何れか一項に記載の過熱水蒸気生成装置。 An inner iron core provided inside the conductor tube;
A magnetic path forming portion that is provided outside the conductor tube and forms a closed magnetic path with the inner iron core;
An induction coil provided between the inner iron core and the magnetic path forming portion, and generating magnetic flux inside the inner iron core;
Provided between the inner iron core and the magnetic path forming part, provided with a preheating tube through which the water vapor flows,
The preheating tube is connected to the conductor tube;
The superheated steam generation device according to any one of claims 1 to 3, wherein the steam is configured to flow in the conductor pipe after flowing through the preheating pipe.
前記下流側部分は、インコネルから形成されている、請求項7乃至9の何れか一項に記載の過熱水蒸気生成装置。 The upstream portion is formed of stainless steel;
The superheated steam generator according to any one of claims 7 to 9, wherein the downstream portion is formed of Inconel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018072893A JP7065506B2 (en) | 2018-04-05 | 2018-04-05 | Superheated steam generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018072893A JP7065506B2 (en) | 2018-04-05 | 2018-04-05 | Superheated steam generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019184104A true JP2019184104A (en) | 2019-10-24 |
JP7065506B2 JP7065506B2 (en) | 2022-05-12 |
Family
ID=68340543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018072893A Active JP7065506B2 (en) | 2018-04-05 | 2018-04-05 | Superheated steam generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7065506B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112195442A (en) * | 2020-09-16 | 2021-01-08 | 苏州方昇光电股份有限公司 | Beam source structure of heat-collecting cover |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010177069A (en) * | 2009-01-30 | 2010-08-12 | Dai Ichi High Frequency Co Ltd | High-temperature fluid heating device |
JP2012052707A (en) * | 2010-08-31 | 2012-03-15 | Yasutane Takato | Fluid heating device |
JP2012163230A (en) * | 2011-02-04 | 2012-08-30 | Tokuden Co Ltd | Superheated water vapor generator |
JP2017191680A (en) * | 2016-04-12 | 2017-10-19 | トクデン株式会社 | Fluid heating device |
-
2018
- 2018-04-05 JP JP2018072893A patent/JP7065506B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010177069A (en) * | 2009-01-30 | 2010-08-12 | Dai Ichi High Frequency Co Ltd | High-temperature fluid heating device |
JP2012052707A (en) * | 2010-08-31 | 2012-03-15 | Yasutane Takato | Fluid heating device |
JP2012163230A (en) * | 2011-02-04 | 2012-08-30 | Tokuden Co Ltd | Superheated water vapor generator |
JP2017191680A (en) * | 2016-04-12 | 2017-10-19 | トクデン株式会社 | Fluid heating device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112195442A (en) * | 2020-09-16 | 2021-01-08 | 苏州方昇光电股份有限公司 | Beam source structure of heat-collecting cover |
CN112195442B (en) * | 2020-09-16 | 2022-08-19 | 苏州方昇光电股份有限公司 | Beam source structure of heat-collecting cover |
Also Published As
Publication number | Publication date |
---|---|
JP7065506B2 (en) | 2022-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5748202B2 (en) | Superheated steam generator | |
JP5630829B2 (en) | Superheated steam generator | |
CN210921360U (en) | Superheated steam generator | |
JP6760637B2 (en) | Fluid heating device | |
JP2010071624A (en) | Fluid heating device | |
JP5317284B2 (en) | Fluid heating device | |
JP6431717B2 (en) | Fluid heating device | |
JP2013057482A (en) | Induction heating type liquid heater and induction heating type liquid heating apparatus | |
JP6494100B2 (en) | Fluid heating device | |
JP7065506B2 (en) | Superheated steam generator | |
JP2018085226A (en) | Electromagnetic induction heating device | |
EP3675598A1 (en) | Electric steam generator | |
JP7065509B2 (en) | Superheated steam generator and conductor tube | |
JP7256539B2 (en) | Superheated steam generator | |
JP6760636B2 (en) | Fluid heating device | |
RU2736270C1 (en) | Electric vapor superheater | |
JP6290067B2 (en) | Fluid heating device | |
JP7407438B2 (en) | fluid heating device | |
JP2016219376A (en) | Fluid heating device | |
JP2023067382A (en) | Superheated steam generator | |
JP7270976B2 (en) | Superheated steam generator | |
JP2023067383A (en) | Superheated steam generator | |
RU2407248C1 (en) | Electric heating device of transformer type | |
JP6746136B2 (en) | Fluid heating device | |
JP2023162578A (en) | Superheated steam generation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7065506 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |