JP2015056224A - Induction heating apparatus - Google Patents

Induction heating apparatus Download PDF

Info

Publication number
JP2015056224A
JP2015056224A JP2013187500A JP2013187500A JP2015056224A JP 2015056224 A JP2015056224 A JP 2015056224A JP 2013187500 A JP2013187500 A JP 2013187500A JP 2013187500 A JP2013187500 A JP 2013187500A JP 2015056224 A JP2015056224 A JP 2015056224A
Authority
JP
Japan
Prior art keywords
induction heating
coil
heated
coil unit
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013187500A
Other languages
Japanese (ja)
Other versions
JP6161479B2 (en
Inventor
満 藤田
Mitsuru Fujita
満 藤田
淳弥 中野
Junya Nakano
淳弥 中野
基裕 鈴木
Motohiro Suzuki
基裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Chubu Electric Power Co Inc filed Critical Fuji Electric Co Ltd
Priority to JP2013187500A priority Critical patent/JP6161479B2/en
Publication of JP2015056224A publication Critical patent/JP2015056224A/en
Application granted granted Critical
Publication of JP6161479B2 publication Critical patent/JP6161479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating apparatus of a novel system that allows for uniform and efficient heating treatment of the surface area of a large-sized metal plate material or block material by utilizing the magnetic flux passing on the outside of a solenoid coil skillfully, and by using a small and compact induction heating coil unit.SOLUTION: A flatwise coil peripheral surface of an induction heating coil unit 1 whose cross-sectional shape is a flat profile, constituted by inserting a magnetic core 12 of a magnetic material into a solenoid coil 11 formed by winding a coil conductor in a solenoid shape, is arranged to face the surface of a heated body 3 in parallel therewith. Subsequently, while applying an AC power to the solenoid coil 11, the coil unit 1 is mounted on a scanning drive unit, e.g., an industrial robot, and moved for scanning along the heating surface area of the heated body 3, thus induction heating a wide area thereof without uneven heating.

Description

本発明は、例えば配電盤の筐体表面,自動車の車体表面に塗装した塗装面の加熱乾燥、あるいはアルミなどの成形用金型の予熱などのために、金属板材ないし金属ブロック材の被加熱体を誘導加熱する誘導加熱装置に関する。   The present invention provides a metal plate material or a metal block material to be heated, for example, for heating and drying a painted surface of a switchboard casing or a car body surface, or for preheating a molding die such as aluminum. The present invention relates to an induction heating apparatus that performs induction heating.

昨今では誘導加熱が各種産業分野で広く利用されており、その適用例として自動車の車体塗装面の加熱乾燥、アルミなどの成形用金型の予熱に誘導加熱が検討されている。この種の誘導加熱装置として特許文献1、特許文献2等に示すものが知られている。   Nowadays, induction heating is widely used in various industrial fields, and as its application examples, induction heating is being studied for heating and drying the painted surfaces of automobile bodies and preheating molds such as aluminum. As this type of induction heating apparatus, those shown in Patent Document 1, Patent Document 2, and the like are known.

一方、周知のように誘導加熱方式には、コイル導体を筒状に巻回形成したソレノイド形誘導加熱コイルの内方に金属板材などの被加熱体を通過させ、誘導加熱コイルに発生させた交番磁束を金属板材の表面に沿わせて誘導加熱するソレノイドコイル方式、およびコイル導体を渦巻き状に巻回した誘導加熱コイルを被加熱体の表面に対向配置し、誘導加熱コイルに発生させた交番磁束を金属板材の板厚方向に作用させて加熱するトランスバース方式がある。   On the other hand, as is well known, in the induction heating method, a heated object such as a metal plate is passed through the inside of a solenoid type induction heating coil in which a coil conductor is wound into a cylindrical shape, and an alternating generated in the induction heating coil. Solenoid coil system in which magnetic flux is induction-heated along the surface of the metal plate material, and alternating magnetic flux generated in the induction heating coil by placing an induction heating coil in which the coil conductor is wound spirally facing the surface of the heated object There is a transverse system that heats by acting in the thickness direction of the metal plate material.

前記した特許文献1,2の誘導加熱装置は、いずれもコイル導体を渦巻き状に巻回した誘導加熱コイルを用いたトランスバース方式を採用したものである。   The above-described induction heating devices of Patent Documents 1 and 2 employ a transverse method using an induction heating coil in which a coil conductor is wound in a spiral shape.

特開2011−69500号公報JP 2011-69500 A 特開2010−284714号公報JP 2010-284714 A

ところで、前記の特許文献1,2に開示されているトランスバース方式の誘導加熱装置は、均一加熱性の面で次記のような課題がある。   By the way, the transverse induction heating apparatus disclosed in Patent Documents 1 and 2 have the following problems in terms of uniform heating.

すなわち、コイル導体を渦巻き状に巻回した誘導加熱コイルは、そのコイル形状、コイル導体の巻回ピッチなどの影響によりコイルに発生する磁界強度、磁束分布が不均一となり、特に渦巻き状コイルの中心部の磁界強度が低く、このために誘導加熱コイルに対向する被加熱体の加熱エリアはドーナツ形状となって加熱面域に加熱むらが生じ、被加熱体の表面を均一に加熱することが難しい。そのほか、誘導加熱コイル外周側が被加熱体(板材)のエッジ部にかかると、被加熱体に誘起された誘導電流が板材のエッジ部に集中して流れるため、この部位が局部的に過熱される問題もある。   That is, an induction heating coil in which a coil conductor is wound in a spiral shape has a non-uniform magnetic field strength and magnetic flux distribution generated by the coil due to the influence of the coil shape, the winding pitch of the coil conductor, and the like. Therefore, the heating area of the object to be heated facing the induction heating coil has a donut shape, causing uneven heating in the heating surface area, and it is difficult to uniformly heat the surface of the object to be heated. . In addition, when the outer periphery side of the induction heating coil is applied to the edge portion of the heated body (plate material), the induction current induced in the heated body is concentrated and flows on the edge portion of the plate material, and this portion is locally overheated. There is also a problem.

かかる問題に対して、前述の特許文献2では渦巻き状の誘導加熱コイルを被加熱体の面上に移動させて被加熱体に作用する磁界の死角部(加熱コイルの中心部に対応)の発生を防ぐようにする方式が開示されているものの、この方式を採用しても被加熱体の加熱温度むらを解消することはできない。   In order to deal with such a problem, in Patent Document 2 described above, a spiral induction heating coil is moved on the surface of the heated body to generate a blind spot (corresponding to the center of the heating coil) of the magnetic field acting on the heated body. However, even if this method is employed, the uneven heating temperature of the heated object cannot be eliminated.

一方、ソレノイド状の誘導加熱コイルは、ソレノイド状コイルの内方の磁界強度,磁束分布が略均一となるため、前記した渦巻き状コイルのような加熱むらの問題は生じないが、配電盤,自動車の車体のような大形構造の被加熱体に適用するには、この大形な被加熱体を包囲する巨大なソレノイド状コイルが必要となるので実用的ではない。   On the other hand, the solenoidal induction heating coil has a substantially uniform magnetic field strength and magnetic flux distribution inside the solenoidal coil, so that the problem of uneven heating does not occur like the spiral coil described above. In order to be applied to a heated body having a large structure such as a vehicle body, a huge solenoid coil surrounding the large heated body is required, which is not practical.

本発明は上記の点に鑑みなされたものであり、ソレノイドコイルの外側を通る磁束を巧みに利用することにより、小形の誘導加熱コイルユニットを使って大面積の金属板材,ないし金属ブロック材の表面域を均一、かつ効率よく加熱処理できるようにした誘導加熱装置を提供することを目的とする。   The present invention has been made in view of the above points. By skillfully utilizing the magnetic flux passing outside the solenoid coil, the surface of a large area metal plate or metal block material using a small induction heating coil unit is provided. It is an object of the present invention to provide an induction heating apparatus that can heat a region uniformly and efficiently.

前記の目的を達成するために、本発明の誘導加熱装置によれば、その誘導加熱コイルがコイル導体を筒状に巻回したソレノイドコイルの内側に磁性体の磁芯を内挿して誘導加熱コイルユニットを構成し、この誘導加熱コイルユニットの周面を被加熱体の表面と平行に対向配置し、この状態で前記ソレノイドコイルに交流電力を印加しつつ、コイルユニットを被加熱体の加熱面域に沿い走査移動して被加熱体を誘導加熱するものとする(請求項1)。   In order to achieve the above object, according to the induction heating apparatus of the present invention, the induction heating coil has an induction heating coil in which a magnetic core is inserted inside a solenoid coil in which a coil conductor is wound in a cylindrical shape. A unit is formed, and the peripheral surface of the induction heating coil unit is arranged in parallel to the surface of the heated body, and in this state, the AC power is applied to the solenoid coil, and the coil unit is heated on the heating surface area of the heated body. It is assumed that the object to be heated is inductively heated by scanning along the line (Claim 1).

また、前記の誘導加熱コイルユニットについては、具体的に次記のような態様で構成することができる。
(1)誘導加熱コイルユニットは、その断面形状を楕円形,ないし長方形のような偏平な形状に構成してそのフラットワイズ面を被加熱体に対向させる(請求項2)。
(2)誘導加熱コイルユニットの磁芯両端部に、該磁芯を通過する磁束を被加熱体に向けて集中的に導く磁極片を設ける(請求項3)。
(3)前項(2)において、磁極片がソレノイドコイルのコイル端部に近接してそのコイルターンの側方に張り出すフランジ形状になる(請求項4)。
(4)誘導加熱コイルユニットに備えた磁芯および極片の磁性体がフェライト焼結体,もしくはケイ素鋼板の積層体である(請求項5)。
(5)誘導加熱コイルユニットの磁芯外周側に巻装したソレノイドコイルは、そのコイル両端部におけるコイル導体の巻回ピッチを密に、コイル中央部におけるコイル導体の巻回ピッチを粗に設定して巻回する(請求項6)。
(6)誘導加熱コイルユニットの走査移動手段として、前記コイルユニットを産業用ロボットなどの走査駆動装置に搭載して被加熱体の表面を走査移動するようにする(請求項7)。
The induction heating coil unit can be specifically configured in the following manner.
(1) The induction heating coil unit is configured to have an elliptical shape or a flat shape such as a rectangular shape, and the flatwise surface of the induction heating coil unit is opposed to an object to be heated.
(2) Magnetic pole pieces for guiding the magnetic flux passing through the magnetic core intensively toward the heated body are provided at both ends of the magnetic core of the induction heating coil unit.
(3) In the preceding item (2), the magnetic pole piece has a flange shape that protrudes to the side of the coil turn adjacent to the coil end of the solenoid coil.
(4) The magnetic core and pole piece magnetic body provided in the induction heating coil unit is a ferrite sintered body or a laminated body of silicon steel sheets.
(5) For the solenoid coil wound around the outer periphery of the magnetic core of the induction heating coil unit, the winding pitch of the coil conductor at both ends of the coil is set densely, and the winding pitch of the coil conductor at the center of the coil is set roughly. (Claim 6).
(6) As the scanning moving means of the induction heating coil unit, the coil unit is mounted on a scanning drive device such as an industrial robot so as to scan and move the surface of the heated object.

このような構成の本発明の誘導加熱装置によれば、次のような効果を奏することができる。
(1)走査移動のハンドリングが楽に行える小形のソレノイドコイルユニットを使用して大形面積を有する板材,ブロック材などの被加熱体の広い面域を加熱むら無く、均一に加熱することか可能である。
According to the induction heating device of the present invention having such a configuration, the following effects can be obtained.
(1) Using a small solenoid coil unit that can easily handle scanning movements, it is possible to uniformly heat a large surface area of a heated object such as a plate or block having a large area without uneven heating. is there.

すなわち、被加熱体の表面に平行して前記のソレノイド状の誘導加熱コイルユニットを対向配置してそのソレノイドコイルに外部電源から高周波の交番電力を供給すると、その発生磁界(交番磁界)によりコイルユニット両端からコイルの外周側を通る磁束が被加熱体の面方向に沿って貫通する。この場合に、ソレノイドコイルの内方に磁芯を内挿しておくことで、空芯コイルと比べてコイルユニットに発生する磁束密度を高めることができ、かつ磁束の大半は磁気抵抗が小さい磁芯を通過して被加熱体を面方向に貫通する閉ループ状の経路を辿る。   That is, when the above-mentioned solenoidal induction heating coil unit is arranged opposite to the surface of the heated object and high frequency alternating power is supplied to the solenoid coil from an external power source, the coil unit is generated by the generated magnetic field (alternating magnetic field). Magnetic flux passing from the both ends to the outer peripheral side of the coil penetrates along the surface direction of the object to be heated. In this case, by inserting the magnetic core inside the solenoid coil, the magnetic flux density generated in the coil unit can be increased compared to the air-core coil, and most of the magnetic flux has a low magnetic resistance. Is followed by a closed loop path passing through the object to be heated in the plane direction.

これにより、コイルユニットからの磁束貫通によって被加熱体には誘導電流(渦電流)が誘起してその誘導電流が被加熱体の表面側に集中して流れ(誘導電流の浸透深さは交番電源の周波数,被加熱体の金属固有抵抗,比透磁率により決まる)、その誘導電流のジュール発熱により、コイルユニットと対向する被加熱体の面域(コイルユニットの磁束が貫通する略長方形な面域)が均一に加熱される。そして、この誘導加熱コイルユニットを産業用ロボットなどの走査駆動装置に搭載し、被加熱体の加熱処理面域に沿って順次走査移動制御することで、被加熱体の広い面域を均一に誘導加熱することが可能となる。
(2)ここで、前記の誘導加熱コイルユニットは、その断面形状が楕円形,ないし長方形の偏平な形状をなし、そのフラットワイズな外周面を被加熱体に対向させることで、該コイルユニットの周面(幅広なフラットワイズ面)に対応して被加熱体に誘導電流が誘起する面域の面積が拡大して、大面積の被加熱体でも作業効率よく加熱処理できる。
(3)また、前記誘導加熱コイルユニットの磁芯両端部に、該磁芯を通過する交番磁束を被加熱体に向けて集中的に導く磁極片を設けることにより、被加熱体の加熱効率を高めることができ、かつその磁極片については、磁極片がソレノイドコイルのコイル端部に近接して磁心からコイルの外周側へ張り出す形状とすることにより、ソレノイドコイル端部における漏れ磁束の発生、およびこの漏れ磁束の干渉に起因するコイル端部の電流分布の偏りを抑えて、コイル導体の過渡な温度上昇,コイル損失(銅損)を効果的に低減できる。
(4)また、誘導加熱コイルユニットの磁芯およびその両端に配した磁極片については、その磁性体をフェライト焼結体(ソフトフェライト),もしくはケイ素鋼板の積層体とすることで、鉄損を低く抑えることができる。
(5)さらに、コイル導体を均一に巻回したソレノイドコイルにおける発生磁界強度はコイル中央部に比べて両端部が低下する傾向があるが、かかる点、前記した磁芯の磁極片と併せて、誘導加熱コイルユニットのソレノイドコイル両端部におけるコイル導体の巻回ピッチを密に、コイル中央部におけるコイル導体の巻回ピッチを粗に設定して巻回することにより、コイルユニットから被加熱体に向かう磁束のコイルの軸方向の分布の均一性を高めて被加熱体を効率よく均一に加熱することかできるようになる。
As a result, an induced current (eddy current) is induced in the heated object due to the magnetic flux penetrating from the coil unit, and the induced current is concentrated and flows on the surface side of the heated object (the penetration depth of the induced current is an alternating power source). The surface area of the heated object facing the coil unit (substantially rectangular area through which the magnetic flux of the coil unit penetrates) due to the Joule heating of the induced current ) Is heated uniformly. The induction heating coil unit is mounted on a scanning drive device such as an industrial robot, and the moving area of the object to be heated is sequentially scanned and controlled to uniformly guide the wide area of the object to be heated. It becomes possible to heat.
(2) Here, the induction heating coil unit has an elliptical or rectangular flat cross-sectional shape, and the flat-wise outer peripheral surface of the induction heating coil unit faces the object to be heated. Corresponding to the peripheral surface (wide flat-wise surface), the area of the surface area in which the induced current is induced in the heated object is expanded, and even a heated object with a large area can be heat-treated with high work efficiency.
(3) Further, by providing magnetic pole pieces intensively guiding the alternating magnetic flux passing through the magnetic core toward the heated body at both ends of the induction heating coil unit, the heating efficiency of the heated body is increased. The magnetic pole piece can be increased, and the magnetic pole piece has a shape that protrudes from the magnetic core to the outer peripheral side of the coil close to the coil end of the solenoid coil, thereby generating leakage magnetic flux at the solenoid coil end, Further, it is possible to effectively reduce the transient temperature rise of the coil conductor and the coil loss (copper loss) by suppressing the bias of the current distribution at the coil end due to the interference of the leakage magnetic flux.
(4) For the magnetic core of the induction heating coil unit and the pole pieces arranged at both ends thereof, the magnetic body is made of a ferrite sintered body (soft ferrite) or a laminate of silicon steel plates, thereby reducing iron loss. It can be kept low.
(5) Furthermore, the magnetic field intensity generated in the solenoid coil in which the coil conductor is uniformly wound tends to decrease at both ends as compared with the coil central part. In this respect, in addition to the magnetic pole piece described above, Winding the coil conductor from the coil unit toward the object to be heated by winding the coil conductor at the both ends of the solenoid coil of the induction heating coil unit densely and winding the coil conductor at the center of the coil coarsely. The uniformity of the distribution of the magnetic flux in the axial direction of the coil can be improved, and the heated object can be efficiently and uniformly heated.

本発明の実施例1による誘導加熱装置の構成を示す模式構成図であって、(a)は断面形状が楕円形になる誘導加熱コイルユニットを被加熱体に対向配置した状態の斜視図、(b)は(a)に対応する磁束分布を表す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the structure of the induction heating apparatus by Example 1 of this invention, Comprising: (a) is a perspective view of the state which has arrange | positioned the to-be-heated body the induction heating coil unit whose cross-sectional shape is elliptical, (b) is a figure showing magnetic flux distribution corresponding to (a). 断面形状を扁平な長方形した誘導加熱コイルユニットを用いた本発明の実施例2による誘導加熱装置の構成を示す模式構成図である。It is a schematic block diagram which shows the structure of the induction heating apparatus by Example 2 of this invention using the induction heating coil unit which made the cross-sectional shape flat rectangular. 被加熱体の全面域を誘導加熱処理する際の誘導加熱コイルユニットの走査移動経路を表す図である。It is a figure showing the scanning movement path | route of the induction heating coil unit at the time of carrying out the induction heating process of the whole surface area of a to-be-heated body. 誘導加熱コイルユニットを産業用ロボットに搭載して被加熱体に走査移動する使用状態を表す図である。It is a figure showing the use condition which mounts an induction heating coil unit in an industrial robot, and carries out scanning movement to a to-be-heated body. 誘導加熱コイルユニットの設計モデルIに対応する被加熱体の貫通磁束分布を表す説明図であって、(a)はコイルユニットと被加熱体の配置断面図、(b)は磁束分布図である。It is explanatory drawing showing the penetration magnetic flux distribution of the to-be-heated body corresponding to the design model I of an induction heating coil unit, Comprising: (a) is arrangement | positioning sectional drawing of a coil unit and a to-be-heated body, (b) is a magnetic flux distribution figure. . 磁芯の両端に磁極片を配した誘導加熱コイルユニットの設計モデルIIに対応する被加熱体の貫通磁束分布を表す説明図であって、(a)はコイルユニットと被加熱体の配置断面図、(b)は磁束分布図である。It is explanatory drawing showing the penetration magnetic flux distribution of the to-be-heated body corresponding to the design model II of the induction heating coil unit which has arrange | positioned the pole piece to the both ends of a magnetic core, Comprising: (a) is arrangement | positioning sectional drawing of a coil unit and a to-be-heated body (B) is a magnetic flux distribution diagram. ソレノイドコイルの両端部に近接して磁極片を配した誘導加熱コイルユニットの設計モデルIIIに対応する被加熱体の貫通磁束分布を表す説明図であって、(a)はコイルユニットと被加熱体の配置断面図、(b)は磁束分布図である。It is explanatory drawing showing the penetration magnetic flux distribution of the to-be-heated body corresponding to the design model III of the induction heating coil unit which arranged the magnetic pole piece adjacent to the both ends of a solenoid coil, Comprising: (a) is a coil unit and to-be-heated body (B) is a magnetic flux distribution diagram. 応用実施例としてソレノイドコイルを疎,密巻きした誘導加熱コイルユニットの模式断面図である。FIG. 5 is a schematic cross-sectional view of an induction heating coil unit in which a solenoid coil is sparsely and closely wound as an application example.

以下、本発明による誘導加熱装置の実施の形態を図1〜図8に示す実施例に基づいて説明する。   Embodiments of the induction heating apparatus according to the present invention will be described below based on the examples shown in FIGS.

先ず、本発明の実施例1として、断面形状を楕円形にして偏平な形状にした誘導加熱コイルユニットの構造,およびその誘導加熱機能を図1で説明する。   First, as Embodiment 1 of the present invention, the structure of an induction heating coil unit having an elliptical cross-sectional shape and a flat shape, and its induction heating function will be described with reference to FIG.

図1(a)、(b)において、1はソレノイド形の誘導加熱コイルユニット、2は高周波電源、3は被加熱体(導電性金属板材)である。ここで、ソレノイド型の誘導加熱コイルユニット1は、コイル導体を楕円形状に巻回した偏平形のソレノイドコイル11と、該ソレノイドコイル11に内挿したフェライト焼結体(ソフトフェライト)、もしくはケイ素鋼板の積層体になる磁芯12とから構成されている。   In FIGS. 1A and 1B, 1 is a solenoid induction heating coil unit, 2 is a high-frequency power source, and 3 is an object to be heated (conductive metal plate material). Here, the solenoid induction heating coil unit 1 includes a flat solenoid coil 11 in which a coil conductor is wound in an elliptical shape, and a ferrite sintered body (soft ferrite) inserted into the solenoid coil 11 or a silicon steel plate. It is comprised from the magnetic core 12 used as the laminated body of this.

そして、この誘導加熱コイルユニット1を使って被加熱体3の面域を誘導加熱するには、図示のようにコイルユニット1のフラットワイズ面を被加熱体3の表面と平行に対向配置し、ソレノイドコイル11を高周波電源2に接続して励磁する。これにより、ソレノイドコイル11に交番磁界が発生して磁束φが生じることは周知の通りである。この磁束φは図1(b)に示すように磁芯12を通過してソレノイドコイル11の外周側を通る閉ループとなるが、そのループ経路の途上で磁束φの一部は被加熱体3をその表面方向に貫通する。   And in order to induction-heat the surface area of the to-be-heated body 3 using this induction heating coil unit 1, arrange | position the flatwise surface of the coil unit 1 in parallel with the surface of the to-be-heated body 3 like illustration, The solenoid coil 11 is connected to the high frequency power source 2 and excited. As is well known, an alternating magnetic field is generated in the solenoid coil 11 to generate a magnetic flux φ. As shown in FIG. 1B, the magnetic flux φ forms a closed loop that passes through the magnetic core 12 and passes through the outer peripheral side of the solenoid coil 11. However, a part of the magnetic flux φ passes through the object to be heated 3 along the loop path. It penetrates in the surface direction.

これにより、被加熱体3には誘導電流(渦電流)が誘起し、その誘導電流が被加熱体の表面側に沿って集中し(誘導電流の浸透深さは交番電源の周波数,被加熱体の金属固有抵抗,比透磁率により決まる)、この誘導電流のジュール発熱によりコイルユニット1のフラットワイズな外周面と対向する被加熱体3の面域(コイルユニットの磁束が貫通する略長方形な面域)が均一に加熱される。そして、この誘導加熱コイルユニット1を被加熱体3の面に沿って図示矢印の方向(コイルユニット1の軸方向と直角の向き)に走査移動すれば、これにつれて被加熱体3の加熱面域も矢印方向に移るのでコイルユニット1の軸方向長さに対応する幅の面域が加熱むらの発生無しに均一に加熱されることになる。   As a result, an induced current (eddy current) is induced in the heated body 3 and the induced current is concentrated along the surface side of the heated body (the penetration depth of the induced current is the frequency of the alternating power source, the heated body) The surface area of the object to be heated 3 that faces the flat-wise outer peripheral surface of the coil unit 1 by the Joule heating of this induced current (substantially rectangular surface through which the magnetic flux of the coil unit penetrates) Area) is heated uniformly. Then, if this induction heating coil unit 1 is scanned and moved along the surface of the body to be heated 3 in the direction of the arrow shown (direction perpendicular to the axial direction of the coil unit 1), the heating surface area of the body to be heated 3 is increased accordingly. Since it also moves in the direction of the arrow, the surface area having a width corresponding to the axial length of the coil unit 1 is uniformly heated without occurrence of uneven heating.

次に、誘導加熱コイルユニット1の断面形状を長方形としてそのフラットワイズ面を被加熱体3に対向させた実施例2の構成を図2に示す。なお、この実施例2のコイルユニット1に発生する交番磁束の分布、およびコイルユニット1の走査移動による被加熱体3の誘導加熱面域の経緯は図1で述べた実施例1と同様である。   Next, FIG. 2 shows a configuration of Example 2 in which the cross-sectional shape of the induction heating coil unit 1 is rectangular and the flatwise surface thereof is opposed to the heated body 3. The distribution of the alternating magnetic flux generated in the coil unit 1 of the second embodiment and the background of the induction heating surface area of the heated body 3 due to the scanning movement of the coil unit 1 are the same as those of the first embodiment described in FIG. .

ここで、大面積の被加熱体3に対し、実施例1実施例2の誘導加熱コイルユニット1を走査移動して被加熱体3の板面全面域を誘導加熱する場合におけるコイルユニット1の走査移動経路を図3に示す。すなわち、図示のように被加熱体3の板面の一角に対向配置しコイルユニット1を、被加熱体1の面上に仮定した座標軸X−Yに沿って図示矢印のようにジグザグに順次走査移動することで、被加熱体3の全面を誘導加熱することができる。また、コイルユニット1を所望の走査経路に沿って移動する走査駆動手段としては、図4に示すように誘導加熱コイルユニット1を産業用ロボット4のロボットアームに搭載し、座標軸X−Yに沿って加熱体3の板面上を移動制御することにより容易に実現できる。   Here, the scanning of the coil unit 1 in the case where the induction heating coil unit 1 of Example 1 and Example 2 is scanned and moved over the entire surface area of the plate surface of the heating target 3 with respect to the heating target 3 having a large area. The movement path is shown in FIG. That is, as shown in the figure, the coil unit 1 is arranged so as to be opposed to one corner of the plate surface of the heated body 3 and is sequentially scanned in a zigzag manner as indicated by the arrow along the coordinate axis XY on the surface of the heated body 1. By moving, the entire surface of the heated body 3 can be induction heated. As a scanning driving means for moving the coil unit 1 along a desired scanning path, the induction heating coil unit 1 is mounted on the robot arm of the industrial robot 4 as shown in FIG. This can be easily realized by controlling movement on the plate surface of the heating element 3.

次に、前記したソレノイド形の誘導加熱コイルユニット1について、発明者等が設計した各種設計モデルにおける磁束分布,コイル損失等を考察した結果を以下に述べる。   Next, the results of considering the magnetic flux distribution, coil loss, etc. in various design models designed by the inventors etc. for the above-described solenoid type induction heating coil unit 1 will be described below.

まず、図5(a)に示す基本的な設計モデル(I)の誘導加熱コイルユニット1は、ソレノイドコイル11の内側に内挿した磁芯12の両端をソレノイドコイル11の端部より軸方向に多少突き出した構造で、被加熱体3(ブロック状体)の表面に接近して平行配置している。   First, in the induction heating coil unit 1 of the basic design model (I) shown in FIG. 5A, both ends of the magnetic core 12 inserted in the inside of the solenoid coil 11 are arranged in the axial direction from the end of the solenoid coil 11. The structure protrudes somewhat, and is arranged close to the surface of the heated body 3 (block-shaped body) in parallel.

この設計モデル(I)のコイルユニットについて、ソレノイドコイル11に高周波の交番電流を流して被加熱体3を誘導加熱したところ、短時間の通電で被加熱体3の表面温度が目標温度まで昇温する以前にソレノイドコイル11の両端部におけるコイル導体が異常発熱して赤熱するため誘導加熱が困難となる。そこで、コイルユニット1の磁束分布について、シミュレーション手法により検証したところ、図5(b)に示すように磁芯12の中を通る磁束φが磁芯の端部からソレノイドコイル11の端部域を通るように湾曲して分散通過していることが判った。このために、ソレノイドコイル11のコイル端部におけるコイル導体の電流分布に局部的な偏りが生じ、これが基でコイル端部の損失(抵抗損)が増加してコイル導体に異常発熱(ジュール発熱)が生じたものと推察される。   With respect to the coil unit of this design model (I), when the object to be heated 3 is induction-heated by passing a high-frequency alternating current through the solenoid coil 11, the surface temperature of the object to be heated 3 rises to the target temperature with a short time energization. Before the heating, the coil conductors at both ends of the solenoid coil 11 abnormally generate heat and become red hot, so that induction heating becomes difficult. Therefore, when the magnetic flux distribution of the coil unit 1 is verified by a simulation method, the magnetic flux φ passing through the magnetic core 12 moves from the end portion of the magnetic core to the end region of the solenoid coil 11 as shown in FIG. It turned out that it was curved to pass and dispersed. For this reason, a local bias occurs in the current distribution of the coil conductor at the coil end of the solenoid coil 11, and this causes an increase in loss (resistance loss) at the coil end, resulting in abnormal heat generation (Joule heating) in the coil conductor. It is inferred that this occurred.

一方、発明者等は磁芯12を通過した磁束φを被加熱体3に向けて集中的に導く手段として、図6,図7に示すように磁芯12の端部に磁極片13を追加した設計モデル(II)、設計モデル(III)について、前記と同様に検証したところ、前記の設計モデル(I)で問題になっていたコイル端部の異常発熱を抑えて損失を低減できることが検証できた。   On the other hand, the inventors added a magnetic pole piece 13 at the end of the magnetic core 12 as shown in FIGS. 6 and 7 as means for intensively guiding the magnetic flux φ having passed through the magnetic core 12 toward the heated body 3. When the design model (II) and design model (III) were verified in the same manner as described above, it was verified that the abnormal heat generation at the coil end, which was a problem in the design model (I), could be suppressed and the loss reduced. did it.

すなわち、図6(a)、(b)に示す設計モデル(II)の誘導加熱コイルユニットでは、磁芯12の両端に磁心12といくらかの間隔をおいて先端を被加熱体3に向けて延在する平板状の磁極片13を付設している。   That is, in the induction heating coil unit of the design model (II) shown in FIGS. 6A and 6B, the tip is extended toward the heated body 3 with some spacing from the magnetic core 12 at both ends of the magnetic core 12. An existing flat pole piece 13 is attached.

一方、図7(a)、(b)に示す設計モデル(III)の誘導加熱コイルユニットは、磁極片13がソレノイドコイル11のコイル両端部に接合あるいはソレノイドコイル11のコイル両端部に近接して配置され、ソレノイドコイル11の外周に向かって張り出して磁心12のフランジ部を形成している。   On the other hand, in the induction heating coil unit of the design model (III) shown in FIGS. 7A and 7B, the pole piece 13 is joined to both ends of the solenoid coil 11 or close to both ends of the solenoid coil 11. The flange portion of the magnetic core 12 is formed by projecting toward the outer periphery of the solenoid coil 11.

なお、前記設計モデル(II)、(III)における磁極片13は、先記の磁芯12と同様にフェライト焼結体(ソフトフェライト)、もしくは薄ケイ素鋼板の積層体として鉄損増加を防ぐようにし、特に設計モデル(III)(図7参照)においては、磁極片13をフェライト焼結体の磁芯12と一体に形成するのがよい。   The magnetic pole piece 13 in the design models (II) and (III) is a ferrite sintered body (soft ferrite) or a laminated body of thin silicon steel plates to prevent an increase in iron loss, like the magnetic core 12 described above. In particular, in the design model (III) (see FIG. 7), the pole piece 13 is preferably formed integrally with the magnetic core 12 of the ferrite sintered body.

ここで、前記の設計モデル(I)、(II)、(III)について、誘導加熱コイルユニットに20kWの電力を通電して被加熱体3を誘導加熱する条件で求めた各コイルユニットのコイル損失を次記の表1に記す。ここで、コイルユニットのソレノイドコイルは全巻き数が12ターンのものであるが、表1には、巻始め1ターンから中央の6ターンまでを示している。7ターンから巻終わりの12ターンまでは、1ターンから6ターンまでとほぼ対称的なデータを示すので省略している。   Here, with respect to the design models (I), (II), and (III), the coil loss of each coil unit obtained under the condition that the induction heating coil unit is energized with 20 kW and the object to be heated 3 is induction heated. Is shown in Table 1 below. Here, although the total number of turns of the solenoid coil of the coil unit is 12 turns, Table 1 shows from the first turn to 6 turns in the center. Data from 7 turns to 12 turns at the end of the winding are omitted because they show almost symmetrical data from 1 turn to 6 turns.

Figure 2015056224
Figure 2015056224

上記の表1から判るように、基本的な設計モデル(I)に対して、磁芯12に磁極片13を追加した設計モデル(II)、(III)によれば、ソレノイドコイル11の各ターンの損失、および全コイル損失が、磁極片の追加のない基本的な設計モデル(I)対して大きく低減され、特に磁極片13をコイル端部に接合して配した設計モデル(III)ではコイル損失の低減効果が顕著である。   As can be seen from Table 1 above, according to the design models (II) and (III) in which the pole piece 13 is added to the magnetic core 12 with respect to the basic design model (I), each turn of the solenoid coil 11 Loss and total coil loss are greatly reduced with respect to the basic design model (I) in which no pole piece is added, and in particular in the design model (III) in which the pole piece 13 is joined to the coil end, the coil The effect of reducing the loss is remarkable.

次に、本発明のソレノイド形誘導加熱コイルユニット1について、前記した磁極片13(図6,図7参照)の追加に加えて、ソレノイドコイル11の巻回ピッチを次記のように変更し、該コイルユニットに発生する外部磁界の磁界強度,均一性を高めて被加熱体3を効率よく均一加熱することかできるように改良した応用実施例を図8に示す。   Next, for the solenoid induction heating coil unit 1 of the present invention, in addition to the addition of the magnetic pole piece 13 (see FIGS. 6 and 7), the winding pitch of the solenoid coil 11 is changed as follows: FIG. 8 shows an application example improved so that the heated body 3 can be efficiently heated uniformly by increasing the magnetic field strength and uniformity of the external magnetic field generated in the coil unit.

この実施例においては、コイルユニットの設計仕様に対応するソレノイドコイル全体の巻回数に対して、図示のようにソレノイドコイル11の両端部におけるほどコイル導体の巻回ピッチp1を密にし、コイル中央部におけるほどコイル導体の巻回ピッチp2を粗(p1<p2)に設定して巻回するようにしている。   In this embodiment, with respect to the number of turns of the entire solenoid coil corresponding to the design specifications of the coil unit, the winding pitch p1 of the coil conductor is made denser at both ends of the solenoid coil 11 as shown in the figure, and The winding pitch p2 of the coil conductor is set to be coarser (p1 <p2) so as to increase the winding.

すなわち、コイル全域でコイル導体を均一に巻回したソレノイドコイルの軸方向の発生磁束密度はコイル中央部に比べて両端部が低下する傾向があるが、図8のようにコイルピッチを変えてコイル導体を疎密巻きにすることにより、コイルユニット1の端部から被加熱体3に向かう磁束密度の軸方向の分布の均一性を高めることができるので、被加熱体を効率よく均一に加熱することかできる。   That is, the generated magnetic flux density in the axial direction of the solenoid coil in which the coil conductor is uniformly wound throughout the coil tends to decrease at both ends as compared with the center of the coil, but the coil pitch is changed as shown in FIG. By making the conductor sparsely and densely wound, the uniformity of the distribution in the axial direction of the magnetic flux density from the end of the coil unit 1 toward the heated body 3 can be improved, so that the heated body can be heated efficiently and uniformly. I can do it.

1:ソレノイド形誘導加熱コイルユニット
11:ソレノイドコイル
12:磁芯
13:磁極片
2:高周波電源
3:被加熱体
φ:交番磁束
1: Solenoid induction heating coil unit 11: Solenoid coil 12: Magnetic core 13: Magnetic pole piece 2: High frequency power supply 3: Heated object φ: Alternating magnetic flux

Claims (7)

金属板ないし金属ブロックの被加熱体の表面を加熱する誘導加熱装置であって、コイル導体を筒状に巻回したソレノイドコイルの内側に磁性体の磁芯を内挿して誘導加熱コイルユニットを構成し、この誘導加熱コイルユニットの周面を被加熱体の表面と平行に対向配置し、この状態で前記ソレノイドコイルに交流電力を印加しつつ、コイルユニットを被加熱体の加熱面域に沿い走査移動して被加熱体を誘導加熱することを特徴とする誘導加熱装置。   An induction heating device that heats the surface of a heated object such as a metal plate or metal block, and an induction heating coil unit is configured by inserting a magnetic core inside a solenoid coil in which a coil conductor is wound in a cylindrical shape. Then, the circumferential surface of the induction heating coil unit is arranged in parallel with the surface of the heated body, and the coil unit is scanned along the heating surface area of the heated body while applying AC power to the solenoid coil in this state. An induction heating apparatus characterized by moving and heating an object to be heated. 請求項1に記載の誘導加熱装置において、誘導加熱コイルユニットは、その断面形状が楕円形ないし長方形のような偏平な形状に構成され、そのフラットワイズ面を被加熱体に対向配置させたことを特徴とする誘導加熱装置。   2. The induction heating device according to claim 1, wherein the induction heating coil unit is configured to have a flat shape such as an elliptical shape or a rectangular shape in cross section, and the flatwise surface thereof is disposed opposite to the object to be heated. A feature of the induction heating device. 請求項1または2のいずれかの項に記載の誘導加熱装置において、誘導加熱コイルユニットの磁芯両端部に、該磁芯を通過する交番磁束を被加熱体に向けて集中的に導く磁極片を設けたことを特徴とする誘導加熱装置。   The induction heating apparatus according to claim 1 or 2, wherein the magnetic pole piece for intensively guiding the alternating magnetic flux passing through the magnetic core toward the heated body is provided at both ends of the magnetic core of the induction heating coil unit. An induction heating apparatus characterized by comprising: 請求項3に記載の誘導加熱装置において、磁極片がソレノイドコイルのコイル両端部に近接して配置され、前記ソレノイドコイルの外周方向に張り出す形状としたことを特徴とする誘導加熱装置。   4. The induction heating apparatus according to claim 3, wherein the magnetic pole piece is disposed in the vicinity of both ends of the solenoid coil and has a shape projecting in the outer peripheral direction of the solenoid coil. 請求項1ないし4のいずれかの項に記載の誘導加熱装置において、誘導加熱コイルユニットに備えた磁芯および極片の磁性体がフェライト焼結体,もしくは薄鋼板の積層体であることを特徴とする誘導加熱装置。   5. The induction heating device according to claim 1, wherein the magnetic core and pole piece magnetic body provided in the induction heating coil unit is a ferrite sintered body or a laminate of thin steel plates. Induction heating device. 請求項1ないし5のいずれかの項に記載の誘導加熱装置において、誘導加熱コイルユニットの磁芯外周側に巻装したソレノイドコイルは、そのコイル両端部におけるコイル導体の巻回ピッチを密に、コイル中央部におけるコイル導体の巻回ピッチを粗に設定したことを特徴とする誘導加熱装置。   In the induction heating device according to any one of claims 1 to 5, the solenoid coil wound around the outer periphery of the magnetic core of the induction heating coil unit has a tight winding pitch of the coil conductor at both ends of the coil. An induction heating apparatus characterized in that a winding pitch of a coil conductor in a central portion of the coil is set roughly. 請求項1ないし6のいずれかの項に記載の誘導加熱装置において、誘導加熱コイルユニットの走査移動手段として、該コイルユニットを産業用ロボットなどの走査駆動装置に搭載して被加熱体の表面を走査移動するようにしたことを特徴とする誘導加熱装置。   The induction heating device according to any one of claims 1 to 6, wherein the coil unit is mounted on a scanning drive device such as an industrial robot as a scanning movement unit of the induction heating coil unit, and the surface of the object to be heated is mounted. An induction heating apparatus characterized by being moved by scanning.
JP2013187500A 2013-09-10 2013-09-10 Induction heating device Active JP6161479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187500A JP6161479B2 (en) 2013-09-10 2013-09-10 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013187500A JP6161479B2 (en) 2013-09-10 2013-09-10 Induction heating device

Publications (2)

Publication Number Publication Date
JP2015056224A true JP2015056224A (en) 2015-03-23
JP6161479B2 JP6161479B2 (en) 2017-07-12

Family

ID=52820511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187500A Active JP6161479B2 (en) 2013-09-10 2013-09-10 Induction heating device

Country Status (1)

Country Link
JP (1) JP6161479B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941739A (en) * 2017-05-18 2017-07-11 湖南中科电气股份有限公司 A kind of inductor of continuous heating
CN107180656A (en) * 2017-05-16 2017-09-19 中广核研究院有限公司 Simulate the heater of the dead pipeline section phenomenon of nuclear power station
JP2019011698A (en) * 2017-06-29 2019-01-24 株式会社クボタ Exhaust treatment device for diesel engine
CN112004433A (en) * 2018-05-17 2020-11-27 菲利普莫里斯生产公司 Aerosol-generating device with improved inductor coil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823140U (en) * 1971-07-24 1973-03-16
JPH0355790A (en) * 1989-07-24 1991-03-11 Okano Valve Seizo Kk High-frequency heating method and its device
JPH0449233B2 (en) * 1986-11-07 1992-08-10 Mitsubishi Electric Corp
JP2510652B2 (en) * 1988-02-09 1996-06-26 三菱電機株式会社 Induction heating device
JP2765180B2 (en) * 1990-04-19 1998-06-11 日本電気株式会社 Induction heating device and induction heating method
JP2010287333A (en) * 2009-06-09 2010-12-24 Kansai Electric Power Co Inc:The Continuous induction heating device
JP2011069500A (en) * 2009-09-22 2011-04-07 Toyota Auto Body Co Ltd Induction heating drying device
JP2011198730A (en) * 2010-03-24 2011-10-06 Tokyo Electric Power Co Inc:The Movable heating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823140U (en) * 1971-07-24 1973-03-16
JPH0449233B2 (en) * 1986-11-07 1992-08-10 Mitsubishi Electric Corp
JP2510652B2 (en) * 1988-02-09 1996-06-26 三菱電機株式会社 Induction heating device
JPH0355790A (en) * 1989-07-24 1991-03-11 Okano Valve Seizo Kk High-frequency heating method and its device
JP2765180B2 (en) * 1990-04-19 1998-06-11 日本電気株式会社 Induction heating device and induction heating method
JP2010287333A (en) * 2009-06-09 2010-12-24 Kansai Electric Power Co Inc:The Continuous induction heating device
JP2011069500A (en) * 2009-09-22 2011-04-07 Toyota Auto Body Co Ltd Induction heating drying device
JP2011198730A (en) * 2010-03-24 2011-10-06 Tokyo Electric Power Co Inc:The Movable heating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180656A (en) * 2017-05-16 2017-09-19 中广核研究院有限公司 Simulate the heater of the dead pipeline section phenomenon of nuclear power station
CN107180656B (en) * 2017-05-16 2024-04-09 中广核研究院有限公司 Heating device for simulating dead pipe section phenomenon of nuclear power station
CN106941739A (en) * 2017-05-18 2017-07-11 湖南中科电气股份有限公司 A kind of inductor of continuous heating
JP2019011698A (en) * 2017-06-29 2019-01-24 株式会社クボタ Exhaust treatment device for diesel engine
CN112004433A (en) * 2018-05-17 2020-11-27 菲利普莫里斯生产公司 Aerosol-generating device with improved inductor coil
JP2021524234A (en) * 2018-05-17 2021-09-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Aerosol generator with improved inductor coil
EP3793381B1 (en) 2018-05-17 2023-01-25 Philip Morris Products S.A. Aerosol-generating device having improved inductor coil

Also Published As

Publication number Publication date
JP6161479B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6161479B2 (en) Induction heating device
JP2008204648A (en) Induction heating device
JP6323564B2 (en) Induction heating device for metal strip
JP4786365B2 (en) Induction heating apparatus and induction heating method for metal plate
JP2008288200A (en) Induction heating device for metal plate and induction heating method
JP4727552B2 (en) Stator coil and core heating apparatus and heating method
US20180286580A1 (en) Manufacturing method of reactor and heating device
JP5042909B2 (en) Induction heating apparatus and induction heating method for metal plate
JP4597715B2 (en) Magnetic heating device
JP5549791B1 (en) High frequency induction heating device, processing device
JP6791939B2 (en) Heater device and controllable heating process
JP6331900B2 (en) Induction heating device for metal strip
WO2014088423A1 (en) Apparatus and method for induction heating of magnetic materials
KR101558088B1 (en) Induction heating apparatus
US20170079148A1 (en) Method and apparatus for welding printed circuits
JP2020013635A (en) Induction heating apparatus
JPH07169561A (en) Induction heating device
JP7290858B2 (en) induction heating coil
JP4890278B2 (en) Metal plate induction heating device
JP5015345B2 (en) Induction heating apparatus and induction heating method for metal plate
WO2023033114A1 (en) Transverse flux induction heating device
JP2010129422A (en) Electromagnetic induction heating device
JP2006310198A (en) Induction heating device and its method
JP2002100467A (en) Single-turn coil for induction heating
JP2018130804A (en) Heating device for rotor core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250