JP2014025126A - Anodic oxide film of aluminum stock and method for producing the same - Google Patents

Anodic oxide film of aluminum stock and method for producing the same Download PDF

Info

Publication number
JP2014025126A
JP2014025126A JP2012167862A JP2012167862A JP2014025126A JP 2014025126 A JP2014025126 A JP 2014025126A JP 2012167862 A JP2012167862 A JP 2012167862A JP 2012167862 A JP2012167862 A JP 2012167862A JP 2014025126 A JP2014025126 A JP 2014025126A
Authority
JP
Japan
Prior art keywords
film
mol
acid concentration
anodized film
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012167862A
Other languages
Japanese (ja)
Inventor
Masahiro Fujita
昌弘 藤田
Yohei Umemoto
洋平 梅本
Hiroomi Tanaka
洋臣 田中
Hiroaki Nagashima
洋明 長島
Yunosuke Fukami
優之助 深見
Masaya Nomura
雅也 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2012167862A priority Critical patent/JP2014025126A/en
Publication of JP2014025126A publication Critical patent/JP2014025126A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the one having film pores with a pore diameter of 100 to 300 nm in the anodic oxide film on the surface of an aluminum stock.SOLUTION: In the method for producing an anodic oxide film, an anode 14 and a cathode 15 are immersed into an electrolyte 11 to produce an anodic oxide film on the surface of a workpiece. The production method is characterized in that, using the workpiece of an aluminum stock for the anode 14 and using a mixed solution of phosphoric acid concentration of 0.1 to 3.0 mol/L and a citric acid concentration of 0.1 to 1.5 mol/L at an electrolyte temperature of 10 to 65°C, the workpiece 14 is subjected to anode oxidation treatment under the electrolytic condition satisfying a current density of 5 to 35 A/dmto produce an anode oxide film in which the pore size of film pores is 100 to 300 nm.

Description

本発明は、アルミニウムまたはアルミニウム合金のアルミニウム素材に施される100nm〜300nmの大孔径を有する陽極酸化皮膜およびその製造方法に関する。   The present invention relates to an anodized film having a large pore diameter of 100 nm to 300 nm applied to an aluminum material of aluminum or aluminum alloy and a method for producing the same.

アルミニウムまたはアルミニウム合金のアルミニウム素材(アルミニウム基材)に施された陽極酸化皮膜は、一般的にセル構造をとり、セル1つ1つに数10nmの小さな孔が存在する。無数に存在する陽極酸化皮膜の孔を利用した方法として、アンカー効果で樹脂や塗装との一体化、密着性を向上させる方法や、孔内に固体潤滑剤を充填することで潤滑性を向上させる方法、孔内に貴金属を担持することで触媒として用いる方法、陽極酸化皮膜をろ過フィルタとして用いる方法、などが挙げられる。   An anodized film applied to an aluminum material (aluminum base material) of aluminum or an aluminum alloy generally has a cell structure, and small pores of several tens of nanometers exist in each cell. As a method using the pores of an infinite number of anodic oxide films, it is possible to improve the lubricity by filling the hole with solid lubricant in the method of improving the integration and adhesion with resin and coating by the anchor effect. Examples thereof include a method, a method of using a noble metal in the pores as a catalyst, and a method of using an anodized film as a filter.

陽極酸化皮膜をこれらの用途に用いる場合、皮膜孔内への物質の充填や担持のし易さ、皮膜孔の孔詰まり防止の観点から孔径は100nm以上、用途によっては200nm以上が好ましい。   When the anodized film is used for these applications, the pore diameter is preferably 100 nm or more and 200 nm or more depending on the application from the viewpoint of easy filling and loading of the substance into the film hole and prevention of clogging of the film hole.

アルミニウムまたはアルミニウム合金のアルミニウム素材の陽極酸化処理には、一般的に硫酸浴が用いられて、その表面に陽極酸化皮膜が作製される。しかし、硫酸浴で作製された陽極酸化皮膜の孔径は約10nmであるため、陽極酸化処理後、2次電解や長時間硫酸などの水溶液に浸漬して孔径を大きくする工程を別工程で行なう必要がある。   In anodizing treatment of an aluminum material of aluminum or aluminum alloy, a sulfuric acid bath is generally used, and an anodized film is formed on the surface thereof. However, since the pore diameter of the anodic oxide film produced in the sulfuric acid bath is about 10 nm, it is necessary to perform the step of increasing the pore diameter by immersing in an aqueous solution such as secondary electrolysis or sulfuric acid for a long time after anodizing. There is.

陽極酸化皮膜の孔径を大きくする方法は、陽極酸化皮膜を溶かすことで孔径を大きくしているため孔径のバラツキが大きく、溶けた陽極酸化皮膜が水溶液中に蓄積される関係上、溶液の更新を頻繁に行なう必要がある、という問題がある。   The method of increasing the pore diameter of the anodized film is to increase the hole diameter by dissolving the anodized film, so there is a large variation in the hole diameter, and the solution is updated because the dissolved anodized film accumulates in the aqueous solution. There is a problem that needs to be done frequently.

また、陽極酸化処理時に印加した電圧と陽極酸化皮膜の孔径は比例する傾向があり、硫酸浴に比べて印加電圧が高いリン酸浴を用いて孔径が大きな陽極酸化皮膜を作製する方法も特許文献1で知られているが最大でも皮膜孔径は90nmである。   In addition, the voltage applied during the anodizing treatment and the pore diameter of the anodized film tend to be proportional, and a method for producing an anodized film having a large pore diameter using a phosphoric acid bath having a higher applied voltage than that of a sulfuric acid bath is also disclosed in Patent Literature. 1 is known, but the maximum pore diameter is 90 nm.

特許文献1に記載されたリン酸浴を用いて孔径が大きな皮膜を作製する方法は、1.6〜5.0mol/L、液温10〜30℃のリン酸水溶液中にアルミニウム素材を浸漬してこれを陽極とし、電圧20〜100V、電流密度0.5〜2A/dmで直流電解処理を5〜25分行なうことで30〜90nmの孔径を持つ陽極酸化皮膜を作製し、溶融樹脂との接合に用いる方法である。 A method for producing a film having a large pore size using a phosphoric acid bath described in Patent Document 1 is obtained by immersing an aluminum material in an aqueous phosphoric acid solution of 1.6 to 5.0 mol / L and a liquid temperature of 10 to 30 ° C. This is used as an anode, and an anodic oxide film having a pore diameter of 30 to 90 nm is prepared by performing direct current electrolytic treatment for 5 to 25 minutes at a voltage of 20 to 100 V and a current density of 0.5 to 2 A / dm 2. This method is used for bonding.

アルミニウム素材(アルミニウム基材)に陽極酸化皮膜を作製した後、金型に設置し、樹脂を射出成形することで溶融樹脂を皮膜孔内に入り込ませ、アルミニウム素材と樹脂を接合させる方法である。   In this method, after an anodized film is formed on an aluminum material (aluminum base material), it is placed in a mold and the resin is injection-molded to allow the molten resin to enter the film hole, thereby joining the aluminum material and the resin.

特許第4541153号公報Japanese Patent No. 4541153

特許文献1に記載の陽極酸化皮膜では、皮膜孔内に貴金属を担持させることによる触媒としての利用や固定潤滑剤の充填による潤滑性能の向上など様々な用途に用いると、皮膜孔の孔径が最大で90nmと小さいため、さらに孔径の大きな皮膜孔を備えた陽極酸化皮膜の作製方法が望まれている。しかし、特許文献1に記載の陽極酸化皮膜の製造方法を用いて陽極酸化皮膜に100nm以上の孔径の皮膜孔を得ようと、より高い電圧を印加すると、陽極酸化皮膜は皮膜焼けなどの不具合が生じてしまう。皮膜焼けが生じると、皮膜がボロボロになって破損し、脆い状態になる。   When the anodized film described in Patent Document 1 is used for various applications such as use as a catalyst by supporting a noble metal in the film hole and improvement of lubrication performance by filling with a fixed lubricant, the hole diameter of the film hole is maximum. Therefore, a method for producing an anodized film having a film hole having a larger hole diameter is desired. However, when a higher voltage is applied to obtain a film hole having a pore diameter of 100 nm or more in the anodized film using the method for producing an anodized film described in Patent Document 1, the anodized film has a problem such as film burning. It will occur. When film burning occurs, the film becomes tattered and damaged, and becomes brittle.

本発明は、上述した事情を考慮してなされたもので、アルミニウム素材表面の陽極酸化皮膜に、孔径100nm〜300nmの皮膜孔を有する陽極酸化皮膜およびその製造方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object thereof is to provide an anodized film having a film hole with a pore diameter of 100 nm to 300 nm on an anodized film on the surface of an aluminum material and a method for producing the same.

本発明は、上述した目的を達成するために、電解液に陽極と陰極とを浸漬させ、前記陽極である加工物の表面に陽極酸化皮膜を生成する陽極酸化皮膜の製造方法において、前記陽極にアルミニウム素材の加工物を用いて、前記電解液にリン酸濃度0.1〜3.0mol/L、クエン酸濃度0.1〜1.5mol/Lの混合溶液を電解液温度10〜65℃で使用し、前記加工物を電流密度5〜35A/dmの電解条件で陽極酸化処理し、皮膜孔の孔径が100nm〜300nmの陽極酸化皮膜を作製することを特徴とするアルミニウム素材の陽極酸化皮膜の製造方法を提供する。 In order to achieve the above-described object, the present invention provides a method for producing an anodized film in which an anode and a cathode are immersed in an electrolytic solution, and an anodized film is formed on the surface of a workpiece that is the anode. Using a workpiece made of an aluminum material, a mixed solution having a phosphoric acid concentration of 0.1 to 3.0 mol / L and a citric acid concentration of 0.1 to 1.5 mol / L is added to the electrolyte at an electrolyte temperature of 10 to 65 ° C. An anodized film made of an aluminum material, characterized in that an anodized film having a pore diameter of 100 nm to 300 nm is prepared by anodizing the workpiece under electrolysis conditions with a current density of 5 to 35 A / dm 2. A manufacturing method is provided.

また、本発明は、上述した目的を達成するために、陽極にアルミニウム素材の加工物が設けられ、前記加工物の表面に陽極酸化皮膜が一体に設けられ、前記陽極酸化皮膜は、孔径が100nm〜300nmの皮膜孔を多数備えたことを特徴とするアルミニウム素材の陽極酸化皮膜を提供する。   Further, in order to achieve the above-mentioned object, the present invention is provided with a workpiece made of an aluminum material on the anode, an anodized film integrally provided on the surface of the workpiece, and the anodized film has a pore diameter of 100 nm. Provided is an anodized film made of an aluminum material characterized by comprising a large number of film holes of ˜300 nm.

さらに、本発明は、上述した目的を達成するために、陽極にアルミニウム素材の加工物が設けられ、前記加工物にリン酸濃度0.1〜3.0mol/Lおよびクエン酸濃度0.1〜1.5mol/Lの混合溶液の電解液が電解液温度10〜65℃で用いられて陽極酸化処理され、前記加工物の表面に陽極酸化皮膜が形成され、前記陽極酸化皮膜は、100nm〜300nmの孔径の皮膜孔が備えられたことを特徴とするアルミニウム素材の陽極酸化皮膜を提供する。   Furthermore, in order to achieve the above-mentioned object, the present invention is provided with a workpiece made of an aluminum material on the anode, and the workpiece has a phosphoric acid concentration of 0.1 to 3.0 mol / L and a citric acid concentration of 0.1 to 0.1. An electrolytic solution of a 1.5 mol / L mixed solution is used at an electrolyte temperature of 10 to 65 ° C. and anodized to form an anodized film on the surface of the workpiece, and the anodized film has a thickness of 100 nm to 300 nm. An anodized film made of an aluminum material, characterized in that it is provided with a film hole having a diameter of 5 mm.

本発明においては、アルミニウム素材の表面に、孔径100nm〜300nmの皮膜孔を有する陽極酸化皮膜を作製することができ、生成された陽極酸化皮膜により、塗装密着性の向上を図ることができ、皮膜孔内への潤滑剤の充填により潤滑性能を向上させることができる。   In the present invention, an anodized film having a film hole with a pore diameter of 100 nm to 300 nm can be produced on the surface of an aluminum material, and coating adhesion can be improved by the generated anodized film. Lubricating performance can be improved by filling the holes with a lubricant.

また、陽極酸化皮膜は孔径100nm〜300nmの皮膜孔を作製できるので、ろ過フィルタや貴金属の担持による触媒としての利用等、種々の用途に応用することができる。   Moreover, since the anodic oxide film can produce a film hole having a pore diameter of 100 nm to 300 nm, it can be applied to various uses such as use as a filter by a filter or noble metal support.

アルミニウム素材の陽極酸化皮膜およびその製造方法の実施に用いられる陽極酸化処理装置の概要を示す構成図。The block diagram which shows the outline | summary of the anodic oxidation processing apparatus used for implementation of the anodized film of an aluminum raw material, and its manufacturing method. 陽極酸化皮膜の皮膜孔の孔径とリン酸濃度との関係を示す表データ図。The table | surface data figure which shows the relationship between the hole diameter of the film hole of an anodized film, and phosphoric acid concentration. 図2に示された表データをプロットしたグラフを示す図。The figure which shows the graph which plotted the table data shown by FIG. 陽極酸化皮膜の皮膜孔の孔径とクエン酸濃度との関係を示す表データ図。The table | surface data figure which shows the relationship between the hole diameter of a film hole of an anodized film, and a citric acid density | concentration. 図4に示された表データをプロットしたグラフを示す図。The figure which shows the graph which plotted the table data shown by FIG. 混合溶液で構成される電解液温度と陽極酸化皮膜の皮膜孔の孔径との関係を表す表データ図。The table data figure showing the relationship between the electrolyte solution temperature comprised with a mixed solution, and the hole diameter of the film hole of an anodized film. 図6に示された表データをプロットしたグラフを示す図。The figure which shows the graph which plotted the table data shown by FIG. 電流密度と陽極酸化皮膜の皮膜孔の孔径との関係を示す表データ図。The table data figure which shows the relationship between a current density and the hole diameter of the film hole of an anodized film. 図8に示された表データをプロットしたグラフを示す図。The figure which shows the graph which plotted the table data shown by FIG. 交直重畳電解における周波数変化と陽極酸化皮膜の皮膜孔の孔径との関係を示す表データ図。The table data figure which shows the relationship between the frequency change in AC / DC superposition electrolysis, and the hole diameter of the film hole of an anodized film. 図10に示された表データをプロットしたグラフを示す図。The figure which shows the graph which plotted the table data shown by FIG. 陽極酸化処理装置を用いて、直流電解、交直重畳電解および交流電解の電解(加工)条件で作製される陽極酸化処理の皮膜孔について、皮膜孔の表面装置、孔径および孔数を従来技術の最大孔径と比較して示す図。With regard to anodized film holes produced under the electrolysis (machining) conditions of direct current electrolysis, AC / DC superposition electrolysis and alternating current electrolysis using an anodizing apparatus, the surface apparatus, hole diameter, and number of holes of the film hole are the maximum of the conventional technology. The figure shown in comparison with a hole diameter. 電流密度と陽極酸化皮膜の皮膜孔の孔径との関係を示す表データ図。The table data figure which shows the relationship between a current density and the hole diameter of the film hole of an anodized film. 図13に示された表データをプロットしたグラフを示す図。The figure which shows the graph which plotted the table data shown by FIG. 処理時間と陽極酸化皮膜の皮膜孔の孔径および膜厚との関係を示す表データ図。The table | surface data figure which shows the relationship between processing time, the hole diameter of the film hole of an anodized film, and a film thickness.

以下、本発明の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係るアルミニウム素材(アルミニウム基材)の陽極酸化皮膜およびその製造方法の実施に使用される陽極酸化処理装置10の概要を示す構成図である。陽極酸化処理装置10は、リン酸とクエン酸の混合溶液である電解液11を収容した浴槽12を備える。浴槽12の電解液11の中に陽極14となるアルミニウム素材(アルミニウム基材)と陰極15とが浸漬され、導電線16を介して電源17に接続される。陰極15は、一般的に陽極酸化処理で使用されるチタン板、カーボン板、アルミニウム板、ステンレス板などの板材が用いられる。陽極酸化処理装置10は電源17を使用して直流電解、交直重畳電解、交流電解のいずれかの電解処理が行なわれる。   FIG. 1 is a block diagram showing an outline of an anodizing treatment apparatus 10 used for carrying out an anodized film of an aluminum material (aluminum substrate) and a method for producing the same according to the present invention. The anodizing apparatus 10 includes a bathtub 12 that contains an electrolytic solution 11 that is a mixed solution of phosphoric acid and citric acid. An aluminum material (aluminum base material) serving as the anode 14 and the cathode 15 are immersed in the electrolyte solution 11 of the bathtub 12 and connected to the power source 17 via the conductive wire 16. The cathode 15 is made of a plate material such as a titanium plate, a carbon plate, an aluminum plate, or a stainless plate that is generally used in anodizing treatment. The anodizing apparatus 10 uses a power source 17 to perform any one of DC electrolysis, AC / DC superposition electrolysis, and AC electrolysis.

[陽極酸化皮膜の作製方法]
陽極14には、加工物としてアルミニウムまたはアルミニウム合金のいずれかのアルミニウム素材(アルミニウム基材)が用いられる。アルミニウムまたはアルミニウム合金のアルミニウム素材を浴槽12の電解液11に浸漬されて、これを陽極14とする。電解液は、リン酸濃度が0.1〜3.0mol/L、クエン酸濃度が0.1〜1.5mol/Lで液温が10〜65℃の混合溶液である。
[Preparation method of anodized film]
For the anode 14, an aluminum material (aluminum base material) of either aluminum or an aluminum alloy is used as a workpiece. An aluminum material of aluminum or aluminum alloy is immersed in the electrolyte solution 11 of the bathtub 12, and this is used as the anode 14. The electrolytic solution is a mixed solution having a phosphoric acid concentration of 0.1 to 3.0 mol / L, a citric acid concentration of 0.1 to 1.5 mol / L, and a liquid temperature of 10 to 65 ° C.

陽極酸化処理装置10では、電源17から5〜35A/dmの電流密度となるように電圧を印加して電解加工処理を行なうことで、電解加工中に陽極であるアルミニウム素材14の表面に陽極酸化皮膜が生成される。陽極酸化皮膜の皮膜孔は100nm〜300nmの大きさの孔径を有する陽極酸化皮膜となる。電解処理方法は、直流電解、交直重畳電解、交流電解のいずれの電解方法においてもよいが、より大きな孔径の皮膜孔を作製したい場合には直流電解や交直重畳電解が好ましく、皮膜孔の孔数がより多く必要な場合は、交流電解が好ましい。 In the anodizing apparatus 10, by applying a voltage from the power source 17 to a current density of 5 to 35 A / dm 2 and performing an electrolytic processing, an anode is formed on the surface of the aluminum material 14 as an anode during the electrolytic processing. An oxide film is formed. The film hole of the anodized film becomes an anodized film having a hole diameter of 100 nm to 300 nm. The electrolytic treatment method may be any of DC electrolysis, AC / DC superposition electrolysis, or AC electrolysis, but DC electrolysis or AC / DC superposition electrolysis is preferred when it is desired to produce a film hole with a larger pore diameter. If more is required, AC electrolysis is preferred.

[電解液にクエン酸を添加する役割]
特許文献1に記載の発明では、電解液としてリン酸の単独浴を用いて陽極酸化処理を行なっており、皮膜孔の孔径の大きな陽極酸化皮膜を生成するために、高い電圧を印加すると、一時的に過剰な大電流が流れることで陽極酸化皮膜が過剰に発熱し、皮膜焼け等の不具合が生ずる。本実施形態では、電解液11のリン酸濃度を減少させ、代りにリン酸より分子量の大きいクエン酸を添加し、クエン酸とリン酸の混合溶液を電解液11に用いる。電解液11にクエン酸を添加することで、一般的な大電流が抑制されるため、高電圧を印加することができる。高電圧を印加しても大電流が流れるのを抑制して、皮膜孔の孔径が大きな陽極酸化皮膜を作製することができる。
[Role of adding citric acid to the electrolyte]
In the invention described in Patent Document 1, anodization is performed using a single bath of phosphoric acid as an electrolytic solution. When a high voltage is applied to generate an anodized film having a large pore size, When an excessively large current flows, the anodic oxide film excessively generates heat, resulting in defects such as film burning. In the present embodiment, the phosphoric acid concentration of the electrolytic solution 11 is decreased, and citric acid having a molecular weight larger than that of phosphoric acid is added instead, and a mixed solution of citric acid and phosphoric acid is used as the electrolytic solution 11. By adding citric acid to the electrolytic solution 11, a general large current is suppressed, so that a high voltage can be applied. Even when a high voltage is applied, a large current can be prevented from flowing, and an anodized film having a large hole diameter can be produced.

[アルミニウム素材に関して]
アルミニウム素材(アルミニウム基材)として、純アルミやA1000番系〜7000番系、AC材、ADC材などのアルミニウム合金のいずれを用いてもよいが、本実施形態では、アルミニウム素材としてアルミニウム合金A1100材を用いた例を示す。
[For aluminum materials]
As an aluminum material (aluminum substrate), any of aluminum alloys such as pure aluminum, A1000 series to 7000 series, AC material, ADC material, etc. may be used. In this embodiment, aluminum alloy A1100 material is used as the aluminum material. An example using is shown.

一般に、ADC12材等のように合金成分を多く含むアルミニウム合金は、合金成分の影響で電流が流れにくく、電圧が高くなり易い。その結果、合金成分の多いアルミニウム合金ほど、陽極酸化皮膜は皮膜孔の孔径が大きくなる。   In general, an aluminum alloy containing a large amount of alloy components such as the ADC12 material is less likely to cause a current to flow due to the influence of the alloy components, and the voltage tends to increase. As a result, as the aluminum alloy has more alloy components, the anodized film has a larger pore diameter.

本実施形態では、アルミニウム素材に、合金成分が少なく、電流が流れ易いことで電圧が低くなり、得られた陽極酸化皮膜は、皮膜孔の孔径が小さくなりやすいアルミニウム合金A1100材を試験片として用いた。   In the present embodiment, the aluminum material has a small alloy component and the current flows easily, so that the voltage is lowered, and the obtained anodic oxide film uses the aluminum alloy A1100 material in which the hole diameter of the film hole is likely to be small as a test piece. It was.

[陽極酸化皮膜の孔径の測定方法]
陽極酸化処理装置10により作製された陽極酸化皮膜の皮膜孔の孔径は、電界放射型走査電子顕微鏡にて皮膜表面を観察して行なわれ、複数の皮膜孔、例えば5個の皮膜孔の孔径の平均値を算出して測定した。
[Measurement method of pore diameter of anodized film]
The hole diameter of the anodized film produced by the anodizing apparatus 10 is determined by observing the surface of the film with a field emission scanning electron microscope, and has a plurality of film holes, for example, five hole diameters. The average value was calculated and measured.

[第1実施例]
陽極酸化処理装置10を用いて加工物であるアルミニウム素材(アルミニウム基材)の表面に陽極酸化皮膜を施す陽極酸化処理を実施した。陽極酸化処理では、陽極14である加工物にアルミニウム合金A1100材を試験片として用い、さらに、陰極15には一般的に陽極酸化処理で使用するチタン板、カーボン板、アルミニウム板、あるいはステンレス板を用い、電解液11にリン酸濃度0〜4.0mol/L、クエン酸濃度0.1〜1.0mol/Lの混合溶液を使用して陽極酸化皮膜の作製を行なった。
[First embodiment]
Using the anodizing apparatus 10, an anodizing treatment was performed in which an anodized film was applied to the surface of an aluminum material (aluminum base material) as a workpiece. In the anodizing treatment, an aluminum alloy A1100 material is used as a test piece for the workpiece that is the anode 14, and the cathode 15 is typically a titanium plate, a carbon plate, an aluminum plate, or a stainless steel plate used in the anodizing treatment. An anodic oxide film was prepared using a mixed solution having a phosphoric acid concentration of 0 to 4.0 mol / L and a citric acid concentration of 0.1 to 1.0 mol / L as the electrolytic solution 11.

陽極酸化処理装置10の電解(加工)条件は、電源17から20kHzの交直重畳電解(電圧0V〜最大300Vの矩形波)で、電流密度15A/dm、電解液温度が常温、例えば20℃、処理時間1分である。 The electrolysis (processing) conditions of the anodizing apparatus 10 are AC / DC superimposed electrolysis (rectangular wave of voltage 0 V to maximum 300 V) of 20 kHz from the power source 17, current density 15 A / dm 2 , electrolyte temperature is room temperature, for example, 20 ° C. Processing time is 1 minute.

陽極酸化処理装置10による試験結果は図2および図3に示す。   The test results using the anodizing apparatus 10 are shown in FIGS.

図2は、溶解液のクエン酸濃度を一定としたとき、作製された陽極酸化皮膜の皮膜孔の孔径とリン酸濃度の関係を示す表データであり、図3は図2に示された表データをプロットしたグラフである。   FIG. 2 is a table data showing the relationship between the pore diameter of the prepared anodic oxide film and the phosphoric acid concentration when the citric acid concentration of the solution is constant, and FIG. 3 is a table shown in FIG. It is the graph which plotted data.

図3において、実線Aはクエン酸濃度0.1mol/L時におけるリン酸濃度と陽極酸化皮膜の皮膜孔の孔径との関係を示すグラフ、点線Bおよび一点鎖線Cは、クエン酸濃度0.5mol/Lおよび1.0mol/L時のリン酸濃度と陽極酸化皮膜の皮膜孔の孔径との関係をそれぞれ示すグラフ、破線で示す符号Dは、従来技術で得られた陽極酸化皮膜の皮膜孔の最大孔径の90nmのラインである。   In FIG. 3, the solid line A is a graph showing the relationship between the phosphoric acid concentration and the pore diameter of the anodized film when the citric acid concentration is 0.1 mol / L, the dotted line B and the alternate long and short dash line C are the citric acid concentration of 0.5 mol. / L and 1.0 mol / L are graphs showing the relationship between the phosphoric acid concentration and the pore diameter of the anodized film, respectively, and the reference symbol D shown by a broken line indicates the thickness of the anodized film obtained by the prior art. The line has a maximum pore diameter of 90 nm.

電解液11のリン酸濃度が0mol/Lのとき、つまりクエン酸のみの電解液では、陽極酸化皮膜は生成されなかった。   When the phosphoric acid concentration of the electrolytic solution 11 was 0 mol / L, that is, in the electrolytic solution containing only citric acid, no anodized film was formed.

電解液11のクエン酸濃度を0.1mol/L、0.5mol/L、1.0mol/Lでそれぞれ一定としたとき、リン酸濃度が0.1mol/Lから高くなるに従って、皮膜孔の孔径は大きくなっていき、0.5mol/Lのとき最大となった。リン酸濃度が0.5mol/Lを超えると、皮膜孔の孔径は徐々に小さくなっていき、リン酸濃度が3.0mol/Lのとき、特許文献1に記載された皮膜孔の最大孔径と略同等の孔径(90nm)となり、リン酸濃度が4.0mol/Lのとき、特許文献1に示す従来技術の最大孔径90nmを下回る。   When the citric acid concentration of the electrolyte solution 11 is constant at 0.1 mol / L, 0.5 mol / L, and 1.0 mol / L, the pore diameter of the coating hole increases as the phosphoric acid concentration increases from 0.1 mol / L. Increased and reached a maximum at 0.5 mol / L. When the phosphoric acid concentration exceeds 0.5 mol / L, the pore diameter of the coating pores gradually decreases. When the phosphoric acid concentration is 3.0 mol / L, the maximum pore diameter of the coating pores described in Patent Document 1 When the pore diameter is approximately the same (90 nm) and the phosphoric acid concentration is 4.0 mol / L, the pore diameter is less than the maximum pore diameter of 90 nm of the prior art disclosed in Patent Document 1.

第1実施例では、以上の試験結果から、リン酸濃度の影響に関して、電解液のクエン酸濃度をほぼ一定としたとき、リン酸濃度は0.1mol/L〜3.0mol/Lの範囲が好ましく、より好ましくは0.3〜1.0mol/Lである。電解液のリン酸濃度が0.1mol/Lよりも低いと陽極酸化皮膜は成長しにくく、リン酸濃度が3.0mol/Lを超えると電流が流れ易くなるためクエン酸を添加しても一時的な大電流を抑制できず、高い電圧を印加できないことから、皮膜孔の孔径は小さくなってしまう。   In the first example, from the above test results, regarding the influence of the phosphoric acid concentration, when the citric acid concentration of the electrolytic solution is substantially constant, the phosphoric acid concentration is in the range of 0.1 mol / L to 3.0 mol / L. Preferably, it is 0.3 to 1.0 mol / L. When the phosphoric acid concentration of the electrolytic solution is lower than 0.1 mol / L, the anodic oxide film is difficult to grow, and when the phosphoric acid concentration exceeds 3.0 mol / L, current flows easily. Since a large current cannot be suppressed and a high voltage cannot be applied, the hole diameter of the film hole becomes small.

第1実施例により、孔径100nm〜300nmの大径の皮膜孔を多数有する陽極酸化皮膜を作製することができ、生成した陽極酸化皮膜をろ過フィルタのフィルタリングや貴金属の担持による触媒としての利用等の多数の用途に応用できる。また、孔径の大きい皮膜孔を有する陽極酸化皮膜を作製することができるので、塗装密着性の向上を図ることができ、皮膜孔内に潤滑剤を有効的に充填することができるので、潤滑性能の向上を図ることができる。   According to the first embodiment, an anodic oxide film having a large number of large-sized film holes with a pore diameter of 100 nm to 300 nm can be produced, and the generated anodized film can be used as a filter by filtering a filter or supporting a noble metal. It can be applied to many applications. In addition, since an anodized film having a film hole with a large hole diameter can be produced, the coating adhesion can be improved, and the lubricant can be effectively filled in the film hole, so that the lubrication performance is achieved. Can be improved.

[第2実施例]
陽極酸化処理装置10を用いて、加工物である陽極14に、アルミニウム合金A1100材の試験片を採用し、クエン酸濃度0〜2.0mol/L、リン酸濃度0.1〜3.0mol/Lの混合溶液を電解液11に用いて陽極酸化処理して陽極酸化皮膜の作製を行った。この他陽極酸化処理装置10の電解(加工)条件は、電源17から20kHzの交直重畳電解(電圧:0V〜最大300Vの矩形波)で、電流密度15A/dm、電解液温度が常温、例えば20℃、処理時間1分である。
[Second Embodiment]
Using the anodizing apparatus 10, a test piece of aluminum alloy A1100 material was adopted for the anode 14, which was a workpiece, and the citric acid concentration was 0 to 2.0 mol / L, and the phosphoric acid concentration was 0.1 to 3.0 mol / L. The mixed solution of L was anodized using the electrolytic solution 11 to prepare an anodized film. The other electrolysis (processing) conditions of the anodizing apparatus 10 are AC / DC superposition electrolysis (voltage: rectangular wave of 0 V to maximum 300 V) from the power source 17, current density 15 A / dm 2 , electrolyte temperature is room temperature, for example, 20 ° C., treatment time 1 minute.

陽極酸化処理装置10による試験結果は図4および図5に示す。図4は、溶解液のリン酸濃度を一定としたとき、作製された陽極酸化皮膜の皮膜孔の孔径とクエン酸濃度との関係を示す表データであり、図5は、図4の表データをプロットしたグラフである。   The test results by the anodizing apparatus 10 are shown in FIGS. FIG. 4 is tabular data showing the relationship between the pore diameter of the prepared anodized film and the citric acid concentration when the phosphoric acid concentration of the solution is constant, and FIG. 5 is the tabular data of FIG. Is a graph in which is plotted.

図5において、実線Eは、リン酸濃度0.1mol/L時のクエン酸濃度と陽極酸化皮膜の皮膜孔の孔径との関係を示すグラフである。また、破線F、一点鎖線Gおよび二点鎖線Hは、リン酸濃度がそれぞれ0.3mol/L、0.5mol/Lおよび3.0mol/L時におけるクエン酸濃度と陽極酸化皮膜の皮膜孔の孔径との関係をそれぞれ示すグラフである。符号Dは、従来技術における陽極酸化皮膜の皮膜孔の最大孔径を示す破線である。   In FIG. 5, the solid line E is a graph showing the relationship between the citric acid concentration at a phosphoric acid concentration of 0.1 mol / L and the pore diameter of the anodized film. The broken line F, the alternate long and short dash line G, and the alternate long and two short dashes line H indicate the citric acid concentration and the pores of the anodized film when the phosphoric acid concentrations are 0.3 mol / L, 0.5 mol / L, and 3.0 mol / L, respectively. It is a graph which shows the relationship with a hole diameter, respectively. Reference symbol D is a broken line showing the maximum hole diameter of the film hole of the anodized film in the prior art.

電解液11のリン酸濃度がそれぞれ0.1mol/L、0.3mol/L、0.5mol/Lで一定としたとき、クエン酸濃度は、0mol/Lから濃度が高くなるに連れ、陽極酸化皮膜の皮膜孔の孔径が一般的に大きくなる。クエン酸濃度が1.5mol/Lのときに皮膜孔の孔径は最大となり、それ以上の濃度では皮膜孔の孔径は略一定となった。また、リン酸濃度3.0mol/Lのときは、リン酸濃度が高く電流が流れ易いため、クエン酸を添加しても一時的な大電流を抑制できないことから、印加できる電圧は低いままであり、皮膜孔の孔径は一定であった。また、クエン酸濃度0mol/Lのときでも皮膜孔は100nmを超える孔径を得ることはできたが、部分的な皮膜焼けや皮膜孔の孔径のバラツキが大きい問題があった。   When the phosphoric acid concentration of the electrolytic solution 11 is constant at 0.1 mol / L, 0.3 mol / L, and 0.5 mol / L, respectively, the citric acid concentration is anodized as the concentration increases from 0 mol / L. The hole diameter of the film hole of the film generally increases. When the citric acid concentration was 1.5 mol / L, the pore diameter of the film pores became maximum, and at higher concentrations, the pore diameter of the film pores became substantially constant. In addition, when the phosphoric acid concentration is 3.0 mol / L, since the phosphoric acid concentration is high and current flows easily, even if citric acid is added, a temporary large current cannot be suppressed, so that the voltage that can be applied remains low. Yes, the hole diameter of the film hole was constant. Moreover, even when the citric acid concentration was 0 mol / L, it was possible to obtain pore diameters exceeding 100 nm, but there was a problem that partial film burning and fluctuations in the pore diameter of the film pores were large.

第2実施例では、以上の試験結果から、クエン酸濃度の影響に関して、溶解液のリン酸濃度を略一定としたとき、クエン酸濃度は0.1mol/L〜1.5mol/Lが好ましく、さらに好ましいのは0.5〜1.5mol/Lである。クエン酸濃度が0.1mol/Lよりも低いと一時的な大電流を抑制する効果が見られず、皮膜焼けなどの不具合が生じる。また、クエン酸濃度が1.5mol/Lを超えると皮膜孔の孔径が変化しなくなるだけでなく、電解液11の粘性が増して陽極酸化処理が困難になるため好ましくない。   In the second example, from the above test results, the citric acid concentration is preferably 0.1 mol / L to 1.5 mol / L when the phosphoric acid concentration of the solution is substantially constant with respect to the influence of the citric acid concentration. More preferred is 0.5 to 1.5 mol / L. When the citric acid concentration is lower than 0.1 mol / L, the effect of suppressing a temporary large current is not seen, and defects such as film burning occur. On the other hand, when the citric acid concentration exceeds 1.5 mol / L, not only the pore diameter of the film hole does not change, but also the viscosity of the electrolytic solution 11 increases and the anodizing treatment becomes difficult, which is not preferable.

また、第2実施例では、第1実施例に示された陽極酸化皮膜と同等の皮膜孔の孔径を有することができる。   Further, in the second embodiment, it is possible to have a hole diameter equivalent to that of the anodized film shown in the first embodiment.

さらに、リン酸濃度とクエン酸濃度とが共に高い場合、例えばリン酸濃度が1.0mol/Lでクエン酸濃度が1.0〜1.5mol/Lと高い場合は、両濃度が各々0.5mol/Lの場合と略等しい皮膜孔の孔径が得られると考えられる。リン酸濃度が高くなると電流が流れ易く、印加できる電圧は小さくなる。一方、クエン酸濃度が高くなると、一時的な大電流抑制効果が高くなり、印加できる電圧は高くできる。リン酸濃度とクエン酸濃度とが好ましい濃度範囲において、両方の濃度が共に高い場合は、電圧への影響が相殺されて、各々の濃度が0.5mol/Lの場合と同じ孔径になると考えられる。一般に印加した電圧と孔径は比例するので、電解液濃度による影響(孔径)が同じなら、電解液温度など他の条件を変化させても同じように孔径が変化していくと考えられる。   Furthermore, when both the phosphoric acid concentration and the citric acid concentration are high, for example, when the phosphoric acid concentration is 1.0 mol / L and the citric acid concentration is as high as 1.0 to 1.5 mol / L, both the concentrations are each set to 0.00. It is thought that the pore diameter of the film hole is almost equal to that in the case of 5 mol / L. As the phosphoric acid concentration increases, current flows easily and the voltage that can be applied decreases. On the other hand, as the citric acid concentration increases, the temporary large current suppression effect increases and the voltage that can be applied can be increased. In the preferable concentration range of phosphoric acid concentration and citric acid concentration, when both concentrations are high, it is considered that the influence on the voltage is offset and the same pore diameter is obtained as when each concentration is 0.5 mol / L. . In general, since the applied voltage and the pore diameter are proportional, if the influence (pore diameter) of the electrolyte concentration is the same, the pore diameter will change in the same way even if other conditions such as the electrolyte temperature are changed.

[第3実施例]
陽極酸化処理装置10を用いて、加工物である陽極14に、アルミニウム合金A1100材の試験片を採用し、リン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lの混合溶液を電解液11に用いて、電解液温度を0〜95℃に変化させて陽極酸化皮膜の作製を行った。この他、陽極酸化処理装置10の電解(加工)条件は、電源17から20kHzの交直重畳電解(電圧:0V〜最大300Vの矩形波)で、電流密度15A/dm、処理時間1分である。
[Third embodiment]
Using the anodizing apparatus 10, a test piece of aluminum alloy A1100 material is employed for the processed anode 14, and a mixed solution having a phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L is electrolyzed. An anodic oxide film was prepared by using the solution 11 while changing the electrolyte temperature to 0 to 95 ° C. In addition, the electrolysis (processing) conditions of the anodizing apparatus 10 are AC / DC superimposed electrolysis (voltage: rectangular wave of 0 V to maximum 300 V) from the power source 17, current density 15 A / dm 2 , and processing time 1 minute. .

図6および図7に示す陽極酸化処理装置10による試験結果は、電解液11の混合溶液のリン酸濃度とクエン酸濃度とを一定にしたとき、電解液温度と陽極酸化皮膜の皮膜孔の孔径との関係を示すものである。   The test results by the anodizing apparatus 10 shown in FIGS. 6 and 7 show that when the phosphoric acid concentration and citric acid concentration of the mixed solution of the electrolytic solution 11 are constant, the electrolytic solution temperature and the pore diameter of the film hole of the anodized film It shows the relationship.

図6は、電解液温度と陽極酸化皮膜の皮膜孔の孔径との関係を示す表データであり、図7は、図6に示された表データをプロットしたグラフである。図7において、実線Iは、溶解液のリン酸濃度0.5mol/Lおよびクエン酸濃度0.5mol/Lを一定にした混合溶液を用いて、電解液温度と陽極酸化皮膜の皮膜孔の孔径との関係を示すグラフである。符号Dは、従来技術の皮膜孔の最大孔径を示す破線であり、図3および図5に示す破線Dと同様である。   FIG. 6 is a table data showing the relationship between the electrolyte solution temperature and the pore diameter of the anodized film, and FIG. 7 is a graph plotting the table data shown in FIG. In FIG. 7, the solid line I indicates the electrolyte solution temperature and the pore diameter of the pores of the anodized film using a mixed solution in which the phosphoric acid concentration of the dissolution liquid is 0.5 mol / L and the citric acid concentration is 0.5 mol / L. It is a graph which shows the relationship. Reference sign D is a broken line indicating the maximum hole diameter of the conventional film hole, and is the same as the broken line D shown in FIGS. 3 and 5.

電解液11の混合溶液は、リン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lで一定にしたとき、電解液温度が0℃から高くなるに連れ、電解液11自体の陽極酸化皮膜を溶解する能力が上がることで皮膜孔の孔径は大きくなり、電解液11が50℃のとき最大となった。50℃を超えると電解液11自体の溶解力が過剰に高くなり、電解力の上昇に起因して電流が流れ易くなることで高い電圧を印加できなくなり、皮膜孔の孔径は小さくなった。また、電解液11が10℃よりも低いと陽極酸化皮膜が成長しにくく、65℃を超えると電解液の水分が蒸発し易くなった。   When the mixed solution of the electrolytic solution 11 is made constant at a phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L, as the electrolytic solution temperature increases from 0 ° C., the anodic oxidation of the electrolytic solution 11 itself is performed. By increasing the ability to dissolve the film, the hole diameter of the film hole was increased, and was maximized when the electrolytic solution 11 was 50 ° C. When the temperature exceeds 50 ° C., the dissolving power of the electrolytic solution 11 itself becomes excessively high, and it becomes impossible to apply a high voltage because the current easily flows due to the increase of the electrolytic power, and the hole diameter of the film hole becomes small. Further, when the electrolytic solution 11 was lower than 10 ° C., the anodized film was difficult to grow, and when it exceeded 65 ° C., the water in the electrolytic solution was easily evaporated.

第3実施例では、以上の試験結果から、電解液温度の皮膜孔の孔径への影響に関しては、電解液温度は10〜65℃が好ましく、より好ましいのは10〜50℃である。電解液温度が10℃よりも低いと陽極酸化皮膜が成長しにくいだけでなく、高い冷却能力を持つ冷却器が必要になり、大量のエネルギーを消費するため好ましくない。電解液温度が65℃を超えると電解液11の水分が蒸発し易くなるため、電解液濃度の管理が困難になり好ましくないことが知見できる。   In the third example, from the above test results, regarding the influence of the electrolyte temperature on the pore diameter of the coating hole, the electrolyte temperature is preferably 10 to 65 ° C, more preferably 10 to 50 ° C. When the electrolyte temperature is lower than 10 ° C., not only is the anodic oxide film difficult to grow, but a cooler having a high cooling capacity is required, which consumes a large amount of energy, which is not preferable. It can be found that when the electrolytic solution temperature exceeds 65 ° C., the water in the electrolytic solution 11 easily evaporates, which makes it difficult to manage the electrolytic solution concentration.

第3実施例においても、従来技術の陽極酸化皮膜の最大孔径の皮膜孔に較べ、120nm以上の大孔径の皮膜孔を備えた陽極酸化皮膜を提供できる。   Also in the third embodiment, an anodized film having a film hole having a large pore diameter of 120 nm or more can be provided as compared with the film hole having the maximum pore diameter of the prior art anodized film.

[第4実施例]
陽極酸化処理装置10を用いて、加工物である陽極14に、アルミニウム合金A1100材の試験片を採用し、リン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lの混合溶液を電解液11に用いて、電源17からの電解(加工)条件として、電流密度を0.1〜45A/dmと変化させて陽極酸化皮膜の作製を行った。この他陽極酸化処理装置10の電解条件は、20kHzの交直重畳電解(電圧:0V〜最大300Vの矩形波)または直流電解で、電解液温度が常温、例えば20℃、処理時間1分である。
[Fourth embodiment]
Using the anodizing apparatus 10, a test piece of aluminum alloy A1100 material is employed for the processed anode 14, and a mixed solution having a phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L is electrolyzed. An anodic oxide film was prepared using the liquid 11 while changing the current density from 0.1 to 45 A / dm 2 as the electrolytic (processing) condition from the power source 17. Other electrolysis conditions of the anodizing apparatus 10 are 20 kHz AC / DC superposition electrolysis (voltage: rectangular wave of 0 V to maximum 300 V) or DC electrolysis, and the electrolyte temperature is room temperature, for example, 20 ° C., and the treatment time is 1 minute.

図8および図9に示す陽極酸化処理装置10による試験結果は、電解液11の混合溶液がリン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lで一定としたとき、電解(加工)条件の電流密度と陽極酸化皮膜の皮膜孔の孔径との関係を示すものである。   The test results by the anodizing apparatus 10 shown in FIG. 8 and FIG. 9 show that when the mixed solution of the electrolytic solution 11 is constant at a phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L, electrolysis (processing) ) The relationship between the current density of the conditions and the hole diameter of the film hole of the anodized film is shown.

このうち、図8は、電流密度と陽極酸化皮膜の皮膜孔の孔径との関係を示す表データであり、図9は、図8に示された表データをプロットしたグラフである。図9において、実線Jは、電解液11のリン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lを一定にした混合溶液を用いて、電解(加工)条件の電流密度と陽極酸化皮膜の皮膜孔の孔径との関係を示すグラフである。   Among these, FIG. 8 is a table data showing the relationship between the current density and the pore diameter of the anodized film, and FIG. 9 is a graph plotting the table data shown in FIG. In FIG. 9, the solid line J shows the current density and anodic oxidation under electrolytic (processing) conditions using a mixed solution in which the phosphoric acid concentration of the electrolytic solution 11 is 0.5 mol / L and the citric acid concentration is 0.5 mol / L. It is a graph which shows the relationship with the hole diameter of the film hole of a film | membrane.

電解液11の混合溶液は、リン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lを一定にしたとき、電流密度の増加とともに陽極酸化皮膜の皮膜孔の孔径は大きくなり、電流密度が35A/dm以上では皮膜孔の孔径は一定となった。電流密度と印加電圧とは比例しているため、印加電圧が高いほど皮膜孔の孔径が大きくなることを示している。また、交直重畳電解と直流電解と電解(加工)条件の違いで、陽極酸化皮膜の皮膜孔の孔径に違いは見られなかった。 When the mixed solution of the electrolytic solution 11 has a constant phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L, the pore diameter of the pores of the anodized film increases as the current density increases. Is 35 A / dm 2 or more, the hole diameter of the film hole is constant. Since the current density is proportional to the applied voltage, the higher the applied voltage, the larger the hole diameter of the film hole. In addition, there was no difference in the hole diameter of the anodized film due to the difference between AC / DC superposition electrolysis, direct current electrolysis and electrolysis (processing) conditions.

第4実施例では、以上の試験結果から、電流密度の影響に関しては、電流密度は5〜35A/dmが好ましい。さらに好ましくは10〜25A/dmである。電流密度が5A/dmよりも低いと印加電圧も低くなるため、皮膜孔の孔径は小さくなる。電流密度が35A/dmを超えると局所的に発熱が大きくなり、電解液の攪拌のみでは冷却が追いつかず、陽極酸化皮膜は皮膜焼けなどの不具合が生じてしまう。 In the fourth example, from the above test results, the current density is preferably 5 to 35 A / dm 2 with respect to the influence of the current density. More preferably from 10~25A / dm 2. When the current density is lower than 5 A / dm 2 , the applied voltage is also reduced, so that the hole diameter of the coating hole is reduced. When the current density exceeds 35 A / dm 2 , heat generation is locally increased, and cooling cannot catch up only with stirring of the electrolytic solution, and the anodized film suffers from defects such as film burning.

第4実施例では、従来技術における最大孔径90nm以上で孔径300nmまでの皮膜孔を有する陽極酸化皮膜を提供することができる。   In the fourth embodiment, it is possible to provide an anodized film having a film hole having a maximum hole diameter of 90 nm or more and a hole diameter of 300 nm in the prior art.

[第5実施例]
陽極酸化処理装置10を用いて、加工物である陽極14に、アルミニウム合金A1100材の試験片を採用し、電解液11にリン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lの混合溶液を用いて、陽極酸化処理装置10の電解(加工)条件に交直重畳電解における周波数を50〜20000Hz(電圧:0V〜最大300Vの矩形波)の範囲で変化させて陽極酸化皮膜の作製を行った。この他の電解条件は、電流密度15A/dm、電解液温度が常温で、例えば20℃、処理時間1分である。
[Fifth embodiment]
Using the anodizing apparatus 10, a test piece of aluminum alloy A1100 material was adopted for the anode 14 as a workpiece, and the electrolyte solution 11 had a phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L. Using the mixed solution, the anodizing film is produced by changing the frequency in the AC / DC superposition electrolysis in the range of 50 to 20000 Hz (voltage: rectangular wave of 0V to maximum 300V) according to the electrolysis (processing) conditions of the anodizing apparatus 10. went. Other electrolysis conditions are a current density of 15 A / dm 2 , an electrolyte temperature of room temperature, for example, 20 ° C., and a processing time of 1 minute.

陽極酸化処理装置10による試験結果は、図10および図11に示す。このうち、図10は、電解液11の混合溶液の密度をリン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lで一定としたとき、交直重畳電解における周波数変化と、陽極酸化皮膜の皮膜孔の孔径との関係を示す表データであり、図11は、図10に示された表データをプロットしたグラフである。図11において、実線Lは、周波数が変化しても、陽極酸化皮膜の皮膜孔の孔径が一定であることが判明した。   The test results obtained by the anodizing apparatus 10 are shown in FIGS. Among these, FIG. 10 shows the frequency change in AC / DC superposition electrolysis and the anodized film when the density of the mixed solution of the electrolytic solution 11 is constant at a phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L. 11 is a graph plotting the table data shown in FIG. 10. In FIG. 11, the solid line L indicates that the pore diameter of the anodized film is constant even when the frequency is changed.

したがって、第5実施例では、交直重畳電解における周波数が変化しても皮膜孔の孔径はほぼ一定で変化しないことが分かったので、周波数の変化は皮膜孔の孔径の大小に影響を与えない。ただ、周波数は高い方が、1周期において、高い電圧を印加している時間が短くなり、発熱が少なく電解液11の温度変化が小さくなり、大量生産を行なう上で有効である。   Therefore, in the fifth example, it has been found that even if the frequency in AC / DC superposition electrolysis is changed, the hole diameter of the film hole is substantially constant and does not change, so the change in frequency does not affect the size of the hole diameter of the film hole. However, the higher the frequency, the shorter the time during which a high voltage is applied in one cycle, the less heat generation, the smaller the temperature change of the electrolyte solution 11, and the more effective for mass production.

[第6実施例]
陽極酸化処理装置10を用いて、加工物である陽極14に、アルミニウム合金A1100材の試験片を採用し、電解液11としてリン酸濃度0.5mol/L、クエン酸濃度0.5mol/Lの混合溶液を用いて、陽極酸化処理装置10に直流電解、交直重畳電解、交流電解をそれぞれ使用して陽極酸化皮膜の作製を行った。この他陽極酸化処理装置10の電解(加工)条件は、周波数20kHz(交直重畳電解の電圧:0V〜最大300Vの矩形波、交流電解の電圧:最大±300Vのsin波)、電流密度15A/dm、電解液温度が常温で、例えば20℃、処理時間1分である。
[Sixth embodiment]
Using the anodizing apparatus 10, a test piece of aluminum alloy A1100 material was adopted for the anode 14, which was a workpiece, and the electrolyte solution 11 had a phosphoric acid concentration of 0.5 mol / L and a citric acid concentration of 0.5 mol / L. Using the mixed solution, an anodized film was prepared by using direct current electrolysis, AC / DC superposition electrolysis, and alternating current electrolysis for the anodizing apparatus 10. In addition, the electrolysis (processing) conditions of the anodizing apparatus 10 include a frequency of 20 kHz (voltage of AC / DC superposition electrolysis: rectangular wave of 0 V to maximum 300 V, voltage of AC electrolysis: sin wave of maximum ± 300 V), current density 15 A / dm. 2. Electrolyte temperature is normal temperature, for example, 20 degreeC, and processing time is 1 minute.

第6実施例に用いた陽極酸化処理装置10は、直流電解、交直重畳電解および交流電解のいずれの電解加工処理も可能であるので、いずれかの電解加工処理を行なえる電源17であればよく、特定の電源17に限定されない。   The anodic oxidation processing apparatus 10 used in the sixth embodiment can perform any electrolytic processing such as direct current electrolysis, AC / DC superposition electrolysis, or alternating current electrolysis, and may be any power source 17 that can perform any electrolytic processing. It is not limited to a specific power source 17.

直流電解および交直重畳電解の陽極酸化処理装置10を用いて、陽極酸化皮膜を作製すると、図12に示すように、皮膜孔の孔径は、平均236nmおよび215nmと、それぞれ200nm以上の充分大きな皮膜孔の孔径が得られた。   When an anodic oxide film is produced using the anodic oxidation treatment apparatus 10 of direct current electrolysis and AC / DC superposition electrolysis, as shown in FIG. 12, the average pore diameters of the film holes are 236 nm and 215 nm, which are 200 nm or more respectively. The pore diameter was obtained.

また、図12に示すように、交流電解の陽極酸化処理装置10を使用して陽極酸化皮膜を作製すると、陽極酸化皮膜に形成される皮膜孔の孔径は、比較例に示される陽極酸化皮膜の皮膜孔の最大孔径(90nm)より、例えば平均115nmと大きいものの、直流電解や交直重畳電解の孔径より小径であった。交流電解では、陽極酸化皮膜の皮膜孔の孔数が直流電解や交直重畳電解より多いことが特徴である。   Further, as shown in FIG. 12, when an anodized film is produced using an anodizing apparatus 10 for AC electrolysis, the hole diameter of the film hole formed in the anodized film is the same as that of the anodized film shown in the comparative example. Although it was larger than the maximum hole diameter (90 nm) of the film hole, for example, an average of 115 nm, it was smaller than the hole diameter of DC electrolysis or AC / DC superposition electrolysis. The AC electrolysis is characterized in that the number of pores of the anodized film is larger than that of DC electrolysis or AC / DC superposition electrolysis.

第6実施例では、陽極酸化処理装置10に、直流電解、交直重畳電解、交流電解のいずれの電解加工処理を用いても、従来技術よりも大きな皮膜孔の孔径を有する陽極酸化皮膜を作製でき、皮膜孔の孔径の大きさを重視する場合は直流電解や交直重畳電解が好ましく、皮膜孔の孔数を重視する場合は交流電解が好ましいことが分かった。   In the sixth embodiment, an anodic oxide film having a larger hole diameter than that of the prior art can be produced by using any one of DC electrolysis, AC / DC superposition electrolysis, and AC electrolysis for the anodizing apparatus 10. It was found that DC electrolysis and AC / DC superposition electrolysis are preferable when importance is attached to the pore size of the coating hole, and AC electrolysis is preferred when importance is attached to the number of pores of the coating hole.

第1実施例〜第6実施例で作製される陽極酸化皮膜においては、従来技術で得られる陽極酸化皮膜の最大孔径の皮膜孔を超える大孔径、例えば100nm〜300nmの皮膜孔を多数有する陽極酸化皮膜を作製することができる。   In the anodic oxide films produced in the first to sixth examples, anodization having a large number of large pore diameters, for example, 100 nm to 300 nm, exceeding the maximum pore diameter of the anodized film obtained by the prior art. A film can be produced.

陽極酸化皮膜が100nm〜300nmの大孔径の皮膜孔を備えることで、塗装密着性が向上し、強酸や有機溶媒に強いろ過フィルタを得ることができる。また、大孔径の皮膜孔を有する陽極酸化皮膜を提供できるので、オイルの保持性の向上や固体潤滑剤を皮膜孔内に充填させることができ、潤滑性が向上する。さらに、陽極酸化皮膜の大孔径の皮膜孔内に白金等の貴金属を担持して触媒として用いることで、触媒の表面積が向上し、触媒機能を有効に発揮することができる。   When the anodized film has a film hole having a large pore diameter of 100 nm to 300 nm, coating adhesion is improved, and a filtration filter resistant to strong acids and organic solvents can be obtained. In addition, since an anodic oxide film having a film hole with a large pore diameter can be provided, oil retention can be improved and a solid lubricant can be filled in the film hole, thereby improving lubricity. Furthermore, by supporting a noble metal such as platinum in a film hole having a large pore diameter of the anodized film and using it as a catalyst, the surface area of the catalyst is improved and the catalyst function can be effectively exhibited.

加えて、陽極酸化皮膜は大孔径の皮膜孔の奥深くまで電解液が入り易くなり、陽極酸化皮膜の厚膜化が可能となる。   In addition, the anodic oxide film can easily enter the electrolyte solution deeply into the large pore film hole, and the anodic oxide film can be thickened.

[第7実施例]
第1〜第6実施例では、アルミニウム合金A1100材を試験片として、陽極酸化処理装置10により、アルミニウム合金上に陽極酸化皮膜を作製した例を示したが、他のアルミニウム合金(AC材やADC材)を用いて陽極酸化皮膜を作製してもよい。
[Seventh embodiment]
In the first to sixth embodiments, an example in which an anodized film was produced on an aluminum alloy by the anodizing apparatus 10 using the aluminum alloy A1100 material as a test piece was shown. However, other aluminum alloys (AC material and ADC) Material) may be used to produce an anodized film.

図13および図14は、アルミニウム合金A5052材を試験片として用いて、陽極酸化処理装置10により陽極酸化皮膜を作製した例を、アルミニウム合金A1100材の試験片を用いて作製された例と比較して示すものである。   FIG. 13 and FIG. 14 compare an example in which an anodized film was produced by the anodizing apparatus 10 using an aluminum alloy A5052 material as a test piece and an example produced using a test piece of an aluminum alloy A1100 material. It is shown.

陽極酸化皮膜の作製条件は、電解液としてリン酸濃度とクエン酸濃度を共に0.5mol/L、電解液温度20℃、20kHzの交直重畳電解条件で、電流密度を5〜45A/dm変化させて陽極酸化皮膜を作製した。 The anodized film was prepared under the conditions of AC / DC superimposed electrolysis conditions in which the phosphoric acid concentration and citric acid concentration were both 0.5 mol / L, the electrolyte temperature was 20 ° C., and 20 kHz, and the current density was changed by 5 to 45 A / dm 2. Thus, an anodized film was prepared.

図13は、電流密度と陽極酸化皮膜の皮膜孔の孔径との関係を示す表データであり、図14は、図13に示された表データをプロットしたグラフである。陽極酸化皮膜の孔径は、図14に示すように、実線Mであるアルミニウム合金A5052材の場合も、点線Nで示すアルミニウム合金A1100材の場合も、大きな違いは存在しなかった。すなわち、アルミニウム合金の材質が異なっても、陽極酸化皮膜の皮膜孔は孔径の変化な大きな違いがなく、略同様であることを知見した。AC材やADC材のような他のアルミニウム合金についても、陽極酸化皮膜の皮膜孔の孔径の変化は、略同様であると思料される。   FIG. 13 is a table data showing the relationship between the current density and the pore diameter of the anodized film, and FIG. 14 is a graph plotting the table data shown in FIG. As shown in FIG. 14, there was no significant difference in the hole diameter of the anodized film between the aluminum alloy A5052 material indicated by the solid line M and the aluminum alloy A1100 material indicated by the dotted line N. In other words, it was found that even if the material of the aluminum alloy is different, the film holes of the anodized film are substantially the same without any significant change in the hole diameter. For other aluminum alloys such as AC materials and ADC materials, the change in the hole diameter of the anodized film is considered to be substantially the same.

[他の実施例]
第1〜第6実施例では、陽極酸化処理装置10を用いてアルミニウム合金A1100材に処理時間1分で陽極酸化皮膜を作製した例について説明した。処理時間が陽極酸化処理皮膜の作製に及ぼす影響について検討した。
[Other embodiments]
In the first to sixth examples, an example in which an anodized film was formed on an aluminum alloy A1100 material using a anodizing apparatus 10 in a processing time of 1 minute has been described. The effect of the treatment time on the preparation of the anodized film was investigated.

図15には、処理時間を3分に延ばして、作製される陽極酸化皮膜の皮膜孔の孔径と膜厚の影響を示す表データである。図15に示す試験結果によると、処理時間を延長することで陽極酸化皮膜は膜厚が厚くなることは知見できたが、皮膜孔の孔径変化は生じていないことがわかった。また、陽極酸化皮膜の膜厚が1〜2μm程度では、様々な用途に使用し難く、膜厚が3μm未満では用途が制限される。   FIG. 15 is table data showing the influence of the hole diameter and film thickness of the film hole of the anodized film produced by extending the treatment time to 3 minutes. According to the test results shown in FIG. 15, it was found that the film thickness of the anodized film was increased by extending the treatment time, but it was found that no change in the hole diameter of the film hole occurred. Moreover, when the film thickness of the anodized film is about 1 to 2 μm, it is difficult to use for various applications, and when the film thickness is less than 3 μm, the application is limited.

10 陽極酸化処理装置
11 電解液(リン酸とクエン酸の混合溶液)
12 浴槽
14 陽極(アルミニウム素材、アルミニウム基材)
15 陰極
16 導電線
17 電源
10 Anodizing treatment device 11 Electrolytic solution (mixed solution of phosphoric acid and citric acid)
12 Bath 14 Anode (aluminum material, aluminum base)
15 Cathode 16 Conductive wire 17 Power supply

Claims (11)

電解液に陽極と陰極を浸漬させ、前記陽極である加工物の表面に陽極酸化皮膜を生成する陽極酸化皮膜の製造方法において、
前記陽極にアルミニウム素材の加工物を用いて、前記電解液にリン酸濃度0.1〜3.0mol/L、クエン酸濃度0.1〜1.5mol/Lの混合溶液を電解液温度10〜65℃で使用し、
前記加工物を電流密度5〜35A/dmの電解条件で陽極酸化処理し、皮膜孔の孔径が100nm〜300nmの陽極酸化皮膜を作製することを特徴とするアルミニウム素材の陽極酸化皮膜の製造方法。
In the method for producing an anodic oxide film in which an anode and a cathode are immersed in an electrolytic solution, and an anodic oxide film is generated on the surface of the workpiece as the anode,
Using a workpiece made of an aluminum material for the anode, a mixed solution having a phosphoric acid concentration of 0.1 to 3.0 mol / L and a citric acid concentration of 0.1 to 1.5 mol / L is added to the electrolyte solution. Use at 65 ° C,
A method for producing an anodized film of an aluminum material, characterized in that the workpiece is anodized under electrolysis conditions of a current density of 5 to 35 A / dm 2 to produce an anodized film having a pore diameter of 100 nm to 300 nm. .
前記電解液は、好ましくは、リン酸濃度0.3〜1.0mol/L、クエン酸濃度0.5〜1.5mol/Lの混合溶液が使用される請求項1に記載のアルミニウム素材の陽極酸化皮膜の製造方法。 The anode of an aluminum material according to claim 1, wherein the electrolytic solution is preferably a mixed solution having a phosphoric acid concentration of 0.3 to 1.0 mol / L and a citric acid concentration of 0.5 to 1.5 mol / L. Manufacturing method of oxide film. 前記加工物は、好ましくは、電流密度10〜25A/dmの電解条件で陽極酸化処理される請求項1に記載のアルミニウム素材の陽極酸化皮膜の製造方法。 2. The method for producing an anodized film of an aluminum material according to claim 1, wherein the workpiece is preferably anodized under electrolysis conditions of a current density of 10 to 25 A / dm 2 . 前記電解液は、好ましくは、10〜50℃の温度が使用される請求項1に記載のアルミニウム素材の陽極酸化皮膜の製造方法。 The method for producing an anodized film of an aluminum material according to claim 1, wherein the electrolytic solution is preferably used at a temperature of 10 to 50 ° C. 前記加工物は、直流電解、交直重畳電解または交流電解の電解条件で陽極酸化処理される請求項1に記載のアルミニウム素材の陽極酸化皮膜の製造方法。 2. The method for producing an anodized film of an aluminum material according to claim 1, wherein the workpiece is anodized under an electrolytic condition of DC electrolysis, AC / DC superposition electrolysis or AC electrolysis. 前記陽極酸化皮膜の皮膜孔に孔径の大きさが重視される場合、直流電解または交直重量電解で陽極酸化処理される請求項1に記載のアルミニウム素材の陽極酸化皮膜の製造方法。 2. The method for producing an anodized film of an aluminum material according to claim 1, wherein when the pore size of the film of the anodized film is important, anodization is performed by direct current electrolysis or AC / DC weight electrolysis. 前記陽極酸化皮膜の皮膜孔に孔数が重視される場合、交流電解で陽極酸化処理される請求項1に記載のアルミニウム素材の陽極酸化皮膜の製造方法。 The method for producing an anodized film of an aluminum material according to claim 1, wherein when the number of holes is important in the film hole of the anodized film, anodization is performed by AC electrolysis. 前記加工物が、周波数50〜20000Hzの交直重量電解の電解条件で陽極酸化処理を行なう際、より高い方の周波数が選択されて陽極酸化処理が行なわれる請求項1に記載のアルミニウム素材の陽極酸化皮膜の製造方法。 2. The anodization of an aluminum material according to claim 1, wherein when the workpiece is anodized under an electrolytic condition of AC / DC weight electrolysis with a frequency of 50 to 20000 Hz, the higher frequency is selected and the anodization is performed. A method for producing a film. 陽極にアルミニウム素材の加工物が設けられ、
前記加工物の表面に陽極酸化処理により陽極酸化皮膜が一体に設けられ、
前記陽極酸化皮膜は、孔径が100nm〜300nmの皮膜孔を多数備えたことを特徴とするアルミニウム素材の陽極酸化皮膜。
An aluminum workpiece is provided on the anode,
Anodized film is integrally provided by anodizing treatment on the surface of the workpiece,
The anodized film made of an aluminum material, wherein the anodized film has a large number of film holes having a pore diameter of 100 nm to 300 nm.
陽極にアルミニウム素材の加工物が設けられ、
前記加工物にリン酸濃度0.1〜3.0mol/Lおよびクエン酸濃度0.1〜1.5mol/Lの混合溶液の電解液が電解液温度10〜65℃で用いられて陽極酸化処理され、前記加工物の表面に陽極酸化皮膜が形成され、
前記陽極酸化皮膜は、100nm〜300nmの孔径の皮膜孔が備えられたことを特徴とするアルミニウム素材の陽極酸化皮膜。
An aluminum workpiece is provided on the anode,
An electrolytic solution of a mixed solution having a phosphoric acid concentration of 0.1 to 3.0 mol / L and a citric acid concentration of 0.1 to 1.5 mol / L is used for the workpiece at an electrolyte temperature of 10 to 65 ° C. An anodized film is formed on the surface of the workpiece,
The anodized film of aluminum material, wherein the anodized film is provided with a film hole having a pore diameter of 100 nm to 300 nm.
前記加工物に、リン酸濃度0.3〜1.0mol/Lおよびクエン酸濃度0.5〜1.5mol/Lの混合溶液の電解液が用いられる請求項10に記載のアルミニウム素材の陽極酸化皮膜。 11. The anodization of an aluminum material according to claim 10, wherein an electrolytic solution of a mixed solution having a phosphoric acid concentration of 0.3 to 1.0 mol / L and a citric acid concentration of 0.5 to 1.5 mol / L is used for the workpiece. Film.
JP2012167862A 2012-07-30 2012-07-30 Anodic oxide film of aluminum stock and method for producing the same Pending JP2014025126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012167862A JP2014025126A (en) 2012-07-30 2012-07-30 Anodic oxide film of aluminum stock and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012167862A JP2014025126A (en) 2012-07-30 2012-07-30 Anodic oxide film of aluminum stock and method for producing the same

Publications (1)

Publication Number Publication Date
JP2014025126A true JP2014025126A (en) 2014-02-06

Family

ID=50199032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012167862A Pending JP2014025126A (en) 2012-07-30 2012-07-30 Anodic oxide film of aluminum stock and method for producing the same

Country Status (1)

Country Link
JP (1) JP2014025126A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229786A (en) * 2014-06-04 2015-12-21 スズキ株式会社 Method of forming coating on aluminum or aluminum alloy, pretreatment liquid used in the same and member obtained by the same
CN105543931A (en) * 2016-01-13 2016-05-04 西安交通大学 Aluminium alloy based surface dimension adjustable nanopore array and quick preparation method thereof
KR101731906B1 (en) 2015-05-06 2017-05-08 한국과학기술원 Forming method of oxide layer on the surface of metal of cylinder shape or prism shape
JP2020134744A (en) * 2019-02-21 2020-08-31 キヤノン株式会社 Image heating device and image forming device
KR102257077B1 (en) * 2019-11-25 2021-05-27 주식회사 에이피텍 Method for forming anodized film including urushiol

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013799A (en) * 2001-06-27 2003-01-15 Honda Motor Co Ltd Aluminum alloy-made piston for internal combustion engine and its manufacturing method
JP2004035930A (en) * 2002-07-02 2004-02-05 Suzuki Motor Corp Aluminum alloy material and anodization treatment method therefor
JP2005179730A (en) * 2003-12-19 2005-07-07 Toto Ltd Method of producing porous metal oxide, and biochip using porous metal oxide obtained thereby
JP2008038237A (en) * 2006-08-10 2008-02-21 National Institute For Materials Science Method of manufacturing alumina porous structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013799A (en) * 2001-06-27 2003-01-15 Honda Motor Co Ltd Aluminum alloy-made piston for internal combustion engine and its manufacturing method
JP2004035930A (en) * 2002-07-02 2004-02-05 Suzuki Motor Corp Aluminum alloy material and anodization treatment method therefor
JP2005179730A (en) * 2003-12-19 2005-07-07 Toto Ltd Method of producing porous metal oxide, and biochip using porous metal oxide obtained thereby
JP2008038237A (en) * 2006-08-10 2008-02-21 National Institute For Materials Science Method of manufacturing alumina porous structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229786A (en) * 2014-06-04 2015-12-21 スズキ株式会社 Method of forming coating on aluminum or aluminum alloy, pretreatment liquid used in the same and member obtained by the same
KR101731906B1 (en) 2015-05-06 2017-05-08 한국과학기술원 Forming method of oxide layer on the surface of metal of cylinder shape or prism shape
CN105543931A (en) * 2016-01-13 2016-05-04 西安交通大学 Aluminium alloy based surface dimension adjustable nanopore array and quick preparation method thereof
JP2020134744A (en) * 2019-02-21 2020-08-31 キヤノン株式会社 Image heating device and image forming device
JP7286340B2 (en) 2019-02-21 2023-06-05 キヤノン株式会社 Image heating device and image forming device
KR102257077B1 (en) * 2019-11-25 2021-05-27 주식회사 에이피텍 Method for forming anodized film including urushiol

Similar Documents

Publication Publication Date Title
JP2014025126A (en) Anodic oxide film of aluminum stock and method for producing the same
TWI421380B (en) Corrosion resistance of aluminum or aluminum alloys
Zhang et al. Bamboo shoot nanotubes with diameters increasing from top to bottom: Evidence against the field-assisted dissolution equilibrium theory
WO2015115531A1 (en) Method for manufacturing aluminum plate, aluminum plate, current collector for electric storage device, and electric storage device
JP2008038237A (en) Method of manufacturing alumina porous structure
JP2009235539A (en) Method for anodizing aluminum member
JP5700235B2 (en) Method of forming alumite film
JP2022051582A (en) Titanium base material, method for manufacturing the same, electrode for water electrolysis and water electrolysis apparatus
KR20180108807A (en) METHOD FOR MANUFACTURING ALUMINUM PLATE
JP4888948B2 (en) Method for forming high speed anodized film of aluminum material
WO2022138219A1 (en) Metal-filled microstructure and method for manufacturing metal-filled microstructure
JP2010215945A (en) Oxide layer and method of forming the same
Salerno et al. Increased growth rate of anodic porous alumina by use of ionic liquid as electrolyte additive
JP2007154300A (en) Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
JP2016145381A (en) Porous film, and method and device for producing the same
CN110685000B (en) High-corrosion-resistance coating, preparation method, electrolyte and application thereof
JP5003816B2 (en) Method for producing aluminum electrode plate for electrolytic capacitor
JP2014065946A (en) Aluminum anode oxide coating
JP2009299188A5 (en)
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP5155704B2 (en) Method for producing aluminum having fine structure on surface and method for producing porous alumina
JP5438485B2 (en) Surface treatment member
JP2012057225A (en) Plating pretreatment method
Castro et al. Optimizing the Operational Parameters Used in Preparing Anodic Aluminum Oxide (AAO) Templates from Low-purity Aluminum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607