JP2014025040A5 - - Google Patents

Download PDF

Info

Publication number
JP2014025040A5
JP2014025040A5 JP2012168934A JP2012168934A JP2014025040A5 JP 2014025040 A5 JP2014025040 A5 JP 2014025040A5 JP 2012168934 A JP2012168934 A JP 2012168934A JP 2012168934 A JP2012168934 A JP 2012168934A JP 2014025040 A5 JP2014025040 A5 JP 2014025040A5
Authority
JP
Japan
Prior art keywords
test
additive
oil
water
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168934A
Other languages
Japanese (ja)
Other versions
JP2014025040A (en
JP5943252B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2012168934A external-priority patent/JP5943252B2/en
Priority to JP2012168934A priority Critical patent/JP5943252B2/en
Priority to BR112015002101A priority patent/BR112015002101A2/en
Priority to EP13742227.5A priority patent/EP2880138B1/en
Priority to CN201380046934.2A priority patent/CN104619818B/en
Priority to RU2015106989A priority patent/RU2641104C2/en
Priority to PCT/EP2013/065884 priority patent/WO2014019975A1/en
Priority to US14/417,837 priority patent/US20150191672A1/en
Publication of JP2014025040A publication Critical patent/JP2014025040A/en
Publication of JP2014025040A5 publication Critical patent/JP2014025040A5/ja
Publication of JP5943252B2 publication Critical patent/JP5943252B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

以下に、本発明の優れた耐摩耗性及び省燃費性を有すると共に、燃料の燃焼等によって生じた水蒸気による凝結水等を油中に分散させ、内燃機関の腐食や錆を防止する性能を有する、内燃機関用潤滑油組成物について実施例及び比較例によって具体的に説明するが、本発明はこれらによって何ら限定されるものではない。
1.組成材料
実施例及び比較例の調製にあたり、下記の組成材料を用意した。
(1)基油
実施例及び比較例にて使用した基油1〜4は表1の性状を示すものである。ここで、40℃動粘度、100℃動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」によって得られる値である。また、粘度指数は、JIS−K−2283「原油及び石油製品-動粘度試験方法及び粘度指数算出方法」に準拠して得られる値である。流動点(P.P)についてはJIS K 2269、引火点についてはJIS K 2265−4(COC:クリーブランド開放法)、硫黄分についてはJIS K 2541(放射線励式起法)を用いた。さらに、%C、%C及び%CについてはASTM D3238を用いた。
(2)添加剤
(2−1)添加剤A1:グリセリンモノオレエート(花王社製、製品名:エキセルO−95R)
・分子蒸留モノグリセライド
・融点 41℃
・水酸基価 222mgKOH/g
(2−2)添加剤A2:ラウリルジエタノールアミン(ADEKA社製、製品名:アデカキクルーブFM812)
・密度:0.91g/cm分子量
・引火点:182℃
・水酸基価:393mgKOH/g
・塩基価:192mgKOH/g
(2−3)添加剤A3:オレイルジエタノールアミン(ADEKA社製、製品名:アデカキクルーブFM832)
・融点:31℃
・密度:0.92g/cm(25℃)
・動粘度:69.3mm/s @40℃
・引火点:230℃ (JIS K2265−4,COC)
・水酸基価:322mgKOH/g
・塩基価:160mgKOH/g
(2−4)添加剤A4:ポリエステル−ポリエチレンオキシド−ポリエステル−ブロックコポリマー(Croda社製、製品名:HYPERMER B246)
・EINECS No. 215−535−7
・密度:0.94g/cm3
・界面活性剤、縮合した12−ヒドロキシステアリン酸とポリエチレンオキシドとの反応により製造される、モル質量>1000g/モルを有するポリエステル−ポリエチレンオキシド−ポリエステル−ブロックコポリマー
(2−5)添加剤A5:オレイルアミン(ライオン アクゾ社製、製品名:アーミンOD)
・オレイルアミン99%以上
・ヨウ素価、70以上
(2−6)添加剤A6:ポリエチレン−ポリオキシプロピレン縮合物(ADEKA社製、洗浄剤用界面活性剤、製品名:アデカプルロニックL101)
・融点:15℃
・比重:1.02
・重量平均分子量:3800
・粘度:756mPa・s @25℃
(2−7)添加剤B:GF−5パッケージ
内燃機関油用添加剤パッケージで、潤滑油中に本添加剤を8.9-10.55質量%配合すると、API−SN、ILSAC GF−5規格に適した性能が得られることがオロナイト社の商品カタログに記載されている。実施例中では、本添加剤Bの配合量を9.05質量%としてILSAC GF−5規格に適した配合量を使用しているが、添加剤Bの配合量が特に制限されるものではない。
(2−8)添加剤C1:粘度指数向上剤−1
ポリメタアクリレート系粘度指数向上剤。非分散タイプ。

Figure 2014025040
(2−9)添加剤C2:粘度指数向上剤−2
オレフィンコーポリマー系粘度指数向上剤。非分散タイプ。
Figure 2014025040
(2−10)添加剤D:消泡剤溶液
軽油にジメチルポリシロキサンタイプのシリコーンオイルを3質量%溶解した消泡剤溶液。
2.潤滑油組成物の調製
上記した組成材料を用いて、表2及び3に示す組成により実施例1〜8、比較例1〜13の潤滑油組成物を調製した。
3.試験
実施例1〜8及び比較例1〜13の潤滑油組成物について、その性能を見るために以下に示す各種試験を行った。
(1)100℃動粘度
100℃動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」に準拠して測定した。
(2)低温粘度
−30℃及び−35℃における低温粘度はASTM D5293に準拠して測定した。
(3)シェル式4球摩耗試験
シェル式4球試験は、ASTM D4172に準拠して、回転数1800rpm、油温50℃、荷重40kgf、及び時間は30分の条件で実施した。試験後、試験片を取り出して、摩耗痕幅を測定し、結果を示した。
(4)摩擦係数測定試験
摩擦特性を見るために、ASTM−G−133(American Society for Testing and Materials)で使用されるCAMERON−PLINT・TE77試験機を用いて摩擦係数を測定、評価した。上部試験片はSK−3製で直径6mm、長さ16mmの円筒形とし、下部試験片はSK−3製の板を用い、試験温度80℃、荷重300N、振幅15mm、往復振動数10Hzで10分間試験を実施し、安定した最後の1分間に測定した摩擦係数の平均値を記した。摩擦係数が小さいほど摩擦低減性が優れていることを示す。
(5)乳化性試験
潤滑油のエマルジョン安定性(水を抱き込む性能)を評価するために、ASTM D7563に準拠した以下の乳油化性試験を実施した。
市販の高速で撹拌が可能なブレンダー、例えば今回の評価では株式会社エム・エフ・アイ社製のステンレス製容器を用いたWARING BLENDER 7011H (現在は7011S)を使用して、試作のE85燃料、蒸留水を使って評価試験を実施した。試験手順は以下の通り。
室温(20℃±5℃)下で、200mlメスシリンダーで評価する試験油を185ml計測し、ブレンダー7011Hへ投入、次に100mlメスシリンダーで試作E85燃料を15ml計測、ブレンダー7011Hへ投入し、最後に100mlメスシリンダーで蒸留水を15ml計測、7011Hへ投入する。その後直ちに容器のふたをして、回転数15000rpmで、60秒間撹拌する。撹拌が終了したら、直ちに蓋ができる摺りガラス栓付の100mlメスシリンダーへ混合溶液を100ml入れて、既定の温度(−5〜0℃もしくは20〜25℃)の恒温槽へ24時間静置する。撹拌してから恒温槽に24時間静置後、油-エマルジョン−水の量をメスシリンダーの目盛で計測し、水の分離が見られたものは水分離、水の分離が見られなかったものは水分離無しで、表2及び表3に示した。
試作E85燃料については、市販のJIS1号自動車ガソリン150mlと和光純薬工業の特級エタノール850mlをメスシリンダーで測り、常温で混合したものを使用した。
試験に必要な混合は、規定された時間内に短期間で終了し、使用にあたっては軽質分が揮発しないようにしっかりと密閉できる容器に入れて、室内の冷暗所に保管した。
比較例5及び実施例4については、米国の独立研究開発機関であるSouth West Research Institute にてASTM D7563を実施し、同じ結果を得た。
4.考察
比較例1は、グリセリンモノオレエートを含まないエンジン油で、乳化性試験では水の分離は見られなかった。しかし、グリセリンモノオレエートを含まないため、摩擦係数測定試験の結果は摩擦係数が0.112と高く、エンジン摩擦低減による省燃費性の効果が得られない。
比較例2及び3は異なる粘度指数向上剤を使用した0W−20グレードのエンジン油で、それぞれにグリセリンモノオレエートを添加し、摩擦係数は0.1以下の結果が得られ、摩擦係数低減による省燃費性の効果が得られた。しかし一方では、グリセリンモノオレエートを使用したこれらの油種では、その界面化学作用が強いため、水と油類とが比較的早く分離してしまうことがわかった。
比較例2、3及び4の結果を比較することにより、使用する非分散タイプの粘度指数向上剤のタイプ(ポリ(メタ)アクリレート、オレフィンコーポリマー)、濃度による違いによる乳化性の違いは見られないことが明らかとなった。
比較例9、10及び11では、アミンのエチレンオキサイド付加物以外の界面活性剤を添加した。強い塩基性を示すオレイルアミン以外の界面活性剤ではグリセリンモノオレエートによる強い水分離性を解除することができなかった。オレイルアミンは、グリセリンモノオレエートの強い水分離性を改善し、Emulsion-Retention(エマルション安定性)を向上させる効果は非常に高いが、一方ではエンジン油の耐摩耗性を著しく低下させることがシェル式4球摩耗試験の結果からわかった。
シェル式4球摩耗試験結果で0.50mm以上のものは、耐摩耗性が好ましくない。比較例-1は摩耗痕径0.39mmであり、この結果と比べて摩耗痕径が大きくなるものは、耐摩耗剤の働きを阻害するため、摩耗痕径が増加し、悪化する。ゆえに好ましくない。0.45mm以下が好ましく、比較例−1本来の耐摩耗性を保持するためには0.39mmの+10%以内の摩耗痕径(=0.43mm)がより好ましい。
比較例5、及び6、7では、モノラウリルアミンのエチレンオキサイド付加物を、濃度0.3〜0.9質量%の範囲で変化させた時の乳化性、耐摩耗性、摩擦係数を測定した。
その結果、アルキル基の炭素数がC12では、耐摩耗性、摩擦係数に対しては大きな影響を与えない一方、乳化性に対しても全く改善効果が見られず、アミンのエチレンオキサイド付加物でも炭素数が短くては乳化性を改善することが非常に困難であることがわかった。
比較例8及び比較例12では、オレイルアミンのエチレンオキサイド付加物の濃度が0.4質量%未満では、グリセリンモノオレエートの水分離性を解除することが困難であった。
実施例1〜6では、基油の硫黄含有量及び不飽和度が少ないグループ2、3、及び4の場合では、オレイルアミンのエチレンオキサイド付加物が0.4質量%以上添加されていれば、グリセリンモノオレエートの強い界面活性効果による水分離性を解除し、Emulsion-Retentionを改善することができた。また、耐摩耗性及び、摩擦係数低減効果も維持できることも明らかとなった。実施例7では、既定の性状を示すAPIのグループ3基油の中でも、フィッシャートロプシュ法によって合成されたGTL(ガストゥリキッド)基油を使用した。
アミンのエチレンオキサイド付加物による特定の濃度範囲であればフィッシャートロプシュ法によって合成された基油に対しても、良好な耐摩耗性及び摩擦低減効果を維持しながら、水分離性を解除し、Emulsion-Retentionを維持することができることが明らかとなった。

Figure 2014025040

Figure 2014025040

Figure 2014025040
Below, it has the excellent wear resistance and fuel saving performance of the present invention, and also has the ability to prevent the corrosion and rust of the internal combustion engine by dispersing condensed water due to water vapor generated by fuel combustion etc. in the oil. The lubricating oil composition for an internal combustion engine will be specifically described with reference to examples and comparative examples, but the present invention is not limited thereto.
1. Composition material In preparation of an Example and a comparative example, the following composition material was prepared.
(1) Base oil Base oils 1 to 4 used in Examples and Comparative Examples have the properties shown in Table 1. Here, the kinematic viscosity at 40 ° C. and the kinematic viscosity at 100 ° C. are values obtained by JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”. The viscosity index is a value obtained according to JIS-K-2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”. JIS K 2269 was used for the pour point (PP), JIS K 2265-4 (COC: Cleveland open method) was used for the flash point, and JIS K 2541 (radiation-excited method) was used for the sulfur content. Additionally,% C A, for% C N and% C P using ASTM D3238.
(2) Additive (2-1) Additive A1: Glycerol monooleate (product name: Excel O-95R, manufactured by Kao Corporation)
・ Molecular distillation monoglyceride
Melting point: 41 ° C
・ Hydroxyl value 222mgKOH / g
(2-2) Additive A2: Lauryl diethanolamine (manufactured by ADEKA, product name: Adeki Kluve FM812)
Density: 0.91 g / cm 3 molecular weight
Flash point: 182 ° C
・ Hydroxyl value: 393 mgKOH / g
・ Base number: 192 mgKOH / g
(2-3) Additive A3: Oleyldiethanolamine (manufactured by ADEKA, product name: Adeki Kluve FM832)
Melting point: 31 ° C
Density: 0.92 g / cm 3 (25 ° C.)
Kinematic viscosity: 69.3 mm 2 / s @ 40 ° C
Flash point: 230 ° C (JIS K2265-4, COC)
・ Hydroxyl value: 322 mgKOH / g
・ Base number: 160 mgKOH / g
(2-4) Additive A4: Polyester-polyethylene oxide-polyester-block copolymer (manufactured by Croda, product name: HYPERMER B246)
・ EINECS No. 215-535-7
Density: 0.94 g / cm 3
Surfactant, polyester-polyethylene oxide-polyester-block copolymer (2-5) additive A5: oleylamine produced by reaction of condensed 12-hydroxystearic acid with polyethylene oxide having a molar mass> 1000 g / mol (Lion Akzo, product name: Armin OD)
・ Oleylamine 99% or more
-Iodine value, 70 or more (2-6) Additive A6: Polyethylene-polyoxypropylene condensate (manufactured by ADEKA, surfactant for detergent, product name: Adeka Pluronic L101)
Melting point: 15 ° C
Specific gravity: 1.02
-Weight average molecular weight: 3800
Viscosity: 756 mPa · s @ 25 ° C
(2-7) Additive B: GF-5 Package In the additive package for internal combustion engine oil, when 8.9-10.55% by mass of this additive is blended in the lubricating oil, API-SN, ILSAC GF-5 It is described in the product catalog of Oronite that performance suitable for the standard can be obtained. In Examples, the additive amount of the additive B is 9.05% by mass, and the additive amount suitable for the ILSAC GF-5 standard is used. However, the additive amount of the additive B is not particularly limited. .
(2-8) Additive C1: Viscosity index improver-1
Polymethacrylate viscosity index improver. Non-distributed type.
Figure 2014025040
(2-9) Additive C2: Viscosity index improver-2
Olefin copolymer viscosity index improver. Non-distributed type.
Figure 2014025040
(2-10) Additive D: Antifoaming agent solution An antifoaming agent solution in which 3% by mass of a dimethylpolysiloxane type silicone oil is dissolved in light oil.
2. Preparation of Lubricating Oil Composition Lubricating oil compositions of Examples 1 to 8 and Comparative Examples 1 to 13 were prepared with the compositions shown in Tables 2 and 3 using the composition materials described above.
3. Tests Various tests shown below were performed on the lubricating oil compositions of Examples 1 to 8 and Comparative Examples 1 to 13 in order to see the performance.
(1) 100 ° C. Kinematic viscosity The 100 ° C. kinematic viscosity was measured in accordance with JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.
(2) Low temperature viscosity The low temperature viscosity at -30 ° C and -35 ° C was measured according to ASTM D5293.
(3) Shell-type four-ball wear test The shell-type four-ball test was performed under the conditions of a rotation speed of 1800 rpm, an oil temperature of 50 ° C., a load of 40 kgf, and a time of 30 minutes in accordance with ASTM D4172. After the test, the test piece was taken out, the wear scar width was measured, and the result was shown.
(4) Friction coefficient measurement test In order to see the friction characteristics, the friction coefficient was measured and evaluated using a CAMERON-PLINT / TE77 tester used in ASTM-G-133 (American Society for Testing and Materials). The upper test piece is made of SK-3 and has a cylindrical shape with a diameter of 6 mm and a length of 16 mm. The lower test piece is a plate made of SK-3, and the test temperature is 80 ° C., the load is 300 N, the amplitude is 15 mm, and the reciprocating frequency is 10 Hz. A minute test was performed and the average value of the coefficient of friction measured during the last stable minute was noted. A smaller friction coefficient indicates better friction reduction.
(5) Emulsification test In order to evaluate the emulsion stability (the ability to embed water) of the lubricating oil, the following milk oil test was performed in accordance with ASTM D7563.
Using a commercially available blender capable of stirring at high speed, for example, WARING BLENDER 7011H (currently 7011S) using a stainless steel container manufactured by MIF Co., Ltd. An evaluation test was conducted using water. The test procedure is as follows.
At room temperature (20 ° C ± 5 ° C), measure 185 ml of test oil to be evaluated with a 200 ml graduated cylinder and put it into blender 7011H, then measure 15 ml of prototype E85 fuel with 100 ml graduated cylinder and throw it into blender 7011H. Measure 15 ml of distilled water with a 100 ml graduated cylinder and put into 7011H. Immediately after that, the container is covered and stirred for 60 seconds at a rotational speed of 15000 rpm. When the stirring is completed, 100 ml of the mixed solution is immediately put into a 100 ml graduated cylinder with a sliding glass stopper that can be covered, and left in a constant temperature bath at a predetermined temperature (−5 to 0 ° C. or 20 to 25 ° C.) for 24 hours. After stirring, let stand in a thermostatic chamber for 24 hours, measure the amount of oil-emulsion-water with a graduated cylinder scale, water separation was seen, water separation was not seen, water separation was not seen Are shown in Tables 2 and 3 without water separation.
As the prototype E85 fuel, a commercial JIS No. 1 automobile gasoline 150 ml and Wako Pure Chemical Industries' special grade ethanol 850 ml were measured with a graduated cylinder and mixed at room temperature.
The mixing required for the test was completed in a short period of time within a specified time, and was kept in a cool and dark place indoors in a container that could be tightly sealed so that light components would not evaporate.
For Comparative Example 5 and Example 4, ASTM D7563 was conducted at South West Research Institute, an independent research and development organization in the United States, and the same results were obtained.
4). Discussion Comparative Example 1 was an engine oil containing no glycerin monooleate, and no water separation was observed in the emulsification test. However, since it does not contain glycerin monooleate, the result of the friction coefficient measurement test has a high coefficient of friction of 0.112, and the fuel saving effect by reducing engine friction cannot be obtained.
Comparative Examples 2 and 3 are 0W-20 grade engine oils using different viscosity index improvers, and glycerin monooleate was added to each, resulting in a coefficient of friction of 0.1 or less. A fuel-saving effect was obtained. However, on the other hand, it was found that these oil types using glycerin monooleate have a strong interfacial chemical action, so that water and oils are separated relatively quickly.
By comparing the results of Comparative Examples 2, 3 and 4, the type of non-dispersion type viscosity index improver used (poly (meth) acrylate, olefin copolymer), and the difference in emulsification depending on the concentration can be seen. It became clear that there was no.
In Comparative Examples 9, 10 and 11, surfactants other than amine ethylene oxide adducts were added. Surfactants other than oleylamine showing strong basicity could not release strong water separability by glycerin monooleate. Although oleylamine improves the strong water separability of glycerin monooleate and improves the Emulsion-Retention (emulsion stability), it is highly effective in reducing the wear resistance of engine oil. It was found from the results of the 4-ball wear test.
A shell type 4-ball wear test result of 0.50 mm or more is not preferable in wear resistance. Comparative Example-1 has a wear scar diameter of 0.39 mm. When the wear scar diameter is larger than this result, the wear scar diameter increases and deteriorates because the action of the antiwear agent is inhibited. Therefore, it is not preferable. 0.45 mm or less is preferable, and in order to maintain the original wear resistance of Comparative Example-1, a wear scar diameter (= 0.43 mm) within + 10% of 0.39 mm is more preferable.
In Comparative Examples 5, 6, and 7, the emulsifiability, wear resistance, and coefficient of friction were measured when the ethylene oxide adduct of monolaurylamine was changed in a concentration range of 0.3 to 0.9% by mass. .
As a result, when the carbon number of the alkyl group is C12, there is no significant effect on the wear resistance and friction coefficient, but no improvement effect is seen on the emulsification property. It was found that it is very difficult to improve the emulsifiability when the carbon number is short.
In Comparative Examples 8 and 12, when the concentration of the oleylamine ethylene oxide adduct was less than 0.4% by mass, it was difficult to release the water separability of glycerin monooleate.
In Examples 1 to 6, in the case of groups 2, 3, and 4 where the sulfur content of the base oil and the degree of unsaturation are low, glycerin is added if 0.4 wt% or more of the oleylamine ethylene oxide adduct is added. Emulsion-Retention could be improved by removing the water separability due to the strong surfactant effect of monooleate. It was also revealed that the wear resistance and the friction coefficient reducing effect can be maintained. In Example 7, a GTL (gas-to-liquid) base oil synthesized by the Fischer-Tropsch method was used among API group 3 base oils exhibiting predetermined properties.
Emulsion is released from the base oil synthesized by the Fischer-Tropsch method within the specific concentration range of amine oxide oxide adduct while maintaining good wear resistance and friction reduction effect. It became clear that -Retention can be maintained.

Figure 2014025040

Figure 2014025040

Figure 2014025040

JP2012168934A 2012-07-30 2012-07-30 Lubricating oil composition for internal combustion engines Active JP5943252B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012168934A JP5943252B2 (en) 2012-07-30 2012-07-30 Lubricating oil composition for internal combustion engines
RU2015106989A RU2641104C2 (en) 2012-07-30 2013-07-29 Lubricating oil composition for internal combustion engines
EP13742227.5A EP2880138B1 (en) 2012-07-30 2013-07-29 Lubricating oil composition for internal combustion engines
CN201380046934.2A CN104619818B (en) 2012-07-30 2013-07-29 Lubricant oil composite for internal combustion engine
BR112015002101A BR112015002101A2 (en) 2012-07-30 2013-07-29 COMPOSITION OF LUBRICANT OIL FOR INTERNAL COMBUSTION ENGINES
PCT/EP2013/065884 WO2014019975A1 (en) 2012-07-30 2013-07-29 Lubricating oil composition for internal combustion engines
US14/417,837 US20150191672A1 (en) 2012-07-30 2013-07-29 Lubricating oil composition for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168934A JP5943252B2 (en) 2012-07-30 2012-07-30 Lubricating oil composition for internal combustion engines

Publications (3)

Publication Number Publication Date
JP2014025040A JP2014025040A (en) 2014-02-06
JP2014025040A5 true JP2014025040A5 (en) 2015-09-10
JP5943252B2 JP5943252B2 (en) 2016-07-05

Family

ID=48877248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168934A Active JP5943252B2 (en) 2012-07-30 2012-07-30 Lubricating oil composition for internal combustion engines

Country Status (7)

Country Link
US (1) US20150191672A1 (en)
EP (1) EP2880138B1 (en)
JP (1) JP5943252B2 (en)
CN (1) CN104619818B (en)
BR (1) BR112015002101A2 (en)
RU (1) RU2641104C2 (en)
WO (1) WO2014019975A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059529B2 (en) * 2012-12-26 2017-01-11 昭和シェル石油株式会社 Lubricating oil composition for internal combustion engines
US9550952B2 (en) * 2013-09-17 2017-01-24 Vanderbilt Chemicals, Llc Method of reducing aqueous separation in an emulsion composition suitable for engine fueled by E85 fuel
US11041137B2 (en) 2013-10-29 2021-06-22 Croda, Inc. Lubricant composition comprising hydroxycarboxylic acid derived friction modifier
CN104450061A (en) * 2014-11-12 2015-03-25 浙江西格迈汽车部件有限公司 Fluorescent shock absorber oil
CN105176649B (en) * 2015-10-21 2018-10-23 苏州赛斯德工程设备有限公司 A kind of ocean-going vessel diesel engine special lube and preparation method thereof
CN105176631A (en) * 2015-10-22 2015-12-23 无棣华信石油技术服务有限公司 Composite additive for internal combustion engine oil and preparation method of composite additive
CN105176633A (en) * 2015-10-22 2015-12-23 无棣华信石油技术服务有限公司 Composite additive for engine lubricating oil and preparation method thereof
CN105255546A (en) * 2015-11-02 2016-01-20 宋介珍 Methanol engine lubricating oil and preparation method thereof
CN105733764A (en) * 2016-01-08 2016-07-06 金海卿 Engine lubricating oil
CN105695048A (en) * 2016-01-13 2016-06-22 北京联飞翔科技股份有限公司 Lubricant additive and lubricant containing same
CN105733782A (en) * 2016-03-29 2016-07-06 南宁飞日润滑科技股份有限公司 Dual-fuel engine oil and preparation method thereof
CN105733783A (en) * 2016-03-30 2016-07-06 河北和甘灵生物科技有限公司 Ester-synthesized diesel internal combustion engine lubricating oil and preparation technique thereof
EP3252130B1 (en) * 2016-06-03 2021-02-17 Infineum International Limited Additive package and lubricating oil composition
CN106085566B (en) * 2016-06-19 2019-03-22 海南极风润滑油有限公司 A kind of energy conservation and environmental protection ship use intermediate speed diesel engine lubricant and preparation method thereof
CN106190448A (en) * 2016-07-12 2016-12-07 天津蓝新石油化工有限公司 A kind of preparation method of gasoline engine lubricant oil
CN106190506B (en) * 2016-08-11 2019-10-18 江苏龙蟠科技股份有限公司 A kind of diesel engine oil composition reducing oil consumption
JP2018062551A (en) * 2016-10-11 2018-04-19 出光興産株式会社 Lubricant composition
GB201817589D0 (en) 2018-10-29 2018-12-12 Castrol Ltd Lubricant compositions
EP3978106B1 (en) 2019-05-28 2024-01-31 Kao Corporation Surfactant and surfactant composition
EP3978467B1 (en) 2019-05-28 2024-01-31 Kao Corporation Rust inhibitor, rust inhibitor composition, coating formation material, coating, and metal composition
US11781084B2 (en) 2019-05-28 2023-10-10 Kao Corporation Oil agent additive and oil agent composition
WO2020241779A1 (en) 2019-05-28 2020-12-03 花王株式会社 Co-surfactant, surfactant composition, and composition for oil recovery
JP2023534715A (en) * 2020-07-21 2023-08-10 シェブロンジャパン株式会社 Lubricating oil composition containing magnesium and boron for hybrid vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000424B1 (en) 1977-07-12 1984-02-01 Imperial Chemical Industries Plc Linear or branched ester-ether block copolymers and their use as surfactants either alone or in blends with conventional surfactants
US5286394A (en) * 1989-06-27 1994-02-15 Ethyl Corporation Fuel economy and oxidation inhibition in lubricant compositions for internal combustion engines
US6333298B1 (en) * 1999-07-16 2001-12-25 Infineum International Limited Molybdenum-free low volatility lubricating oil composition
JP3555891B2 (en) * 2002-02-22 2004-08-18 新日本石油株式会社 Low friction sliding material and lubricating oil composition used therefor
JP4234979B2 (en) 2002-11-06 2009-03-04 新日本石油株式会社 Fuel-saving lubricating oil composition for internal combustion engines
US20090318320A1 (en) * 2006-09-11 2009-12-24 Showa Shell Sekiyu K.K. Lubricating Oil Composition
JP2009126868A (en) * 2007-11-19 2009-06-11 Adeka Corp Lubricant-additive composition and lubricant composition containing the same
JP5702589B2 (en) * 2009-12-10 2015-04-15 昭和シェル石油株式会社 Lubricating oil composition

Similar Documents

Publication Publication Date Title
JP2014025040A5 (en)
EP2880138B1 (en) Lubricating oil composition for internal combustion engines
US10106759B2 (en) Seal compatibility additive to improve fluoropolymer seal compatibility of lubricant compositions
JP5965131B2 (en) Lubricating oil composition for transmission
KR20150037750A (en) Poly(meth)acrylate-based viscosity index improver, lubricant additive and lubricant composition containing viscosity index improver
JPWO2016114401A1 (en) Lubricating oil composition
JP2014025041A5 (en)
CN104411811A (en) Poly(meth)acrylate viscosity index improver, and lubricating oil composition and lubricating oil additive containing said viscosity index improver
JP2017057378A (en) Viscosity index improver composition and lubricating oil composition
CN102796592B (en) A kind of organic molybdenum additive, its preparation method and the lubricant oil composite containing this additive
JP5528693B2 (en) Engine oil composition
CN104395444B (en) Poly- (methyl) acrylic ester viscosity index improver and the lube oil additive containing the viscosity index improver and lubricant oil composite
JP6087860B2 (en) Lubricating oil composition
JP2020164747A (en) Lubricant composition
JP5627921B2 (en) Grease composition for resin
EP3615642A1 (en) Lubricating oil composition for internal combustion engine
JP6516191B2 (en) Lubricating oil additive, method for producing the same, and lubricating oil composition using the same
EP3783087A1 (en) Lubricating oil composition and viscosity modifier for lubricating oil
JP2011219632A (en) Diesel engine oil composition
JP6757278B2 (en) Conductive lubricating oil composition
JP2013060533A (en) Lubricant composition
JPH11246883A (en) Engine oil composition
JP2013112786A (en) Method for improving flash point of oil or oil composition, and oil composition improved in flash point
CN108611157A (en) A kind of superpower emulsion resistance methanol machine oil and preparation method thereof
JP2018188549A (en) Lubricant composition