JP2014024731A - Borosilicate glass - Google Patents

Borosilicate glass Download PDF

Info

Publication number
JP2014024731A
JP2014024731A JP2012168000A JP2012168000A JP2014024731A JP 2014024731 A JP2014024731 A JP 2014024731A JP 2012168000 A JP2012168000 A JP 2012168000A JP 2012168000 A JP2012168000 A JP 2012168000A JP 2014024731 A JP2014024731 A JP 2014024731A
Authority
JP
Japan
Prior art keywords
glass
borosilicate glass
radiation
content
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168000A
Other languages
Japanese (ja)
Other versions
JP5971615B2 (en
Inventor
Shinsaku Nishida
晋作 西田
Ken Choju
研 長壽
Hiroshi Sasaki
博 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012168000A priority Critical patent/JP5971615B2/en
Priority to PCT/JP2013/069927 priority patent/WO2014021142A1/en
Publication of JP2014024731A publication Critical patent/JP2014024731A/en
Application granted granted Critical
Publication of JP5971615B2 publication Critical patent/JP5971615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0035Gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/007Particle radiation, e.g. electron-beam, alpha or beta radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/21Pharmaceuticals, e.g. medicaments, artificial body parts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass in which transparency is high before radiation irradiation, and coloration is hardly caused even after radiation irradiation, and further that is suitable for a medical container.SOLUTION: A borosilicate glass includes, as a glass composition, and by mass% in terms of following oxides, SiO65-78%; BO8-18%, LiO+NaO+KO 1-18%, CeO0.1-5.0%, and SnO0.1-2.0%, and preferably includes SiO65-75%, BO8-18%, LiO+NaO+KO 1-10%, CeO0.1-5.0%, SnO0.1-2.0%, AlO0-10%, CaO 0-7%, BaO 0-5%, LiO 0-5%, NaO 0-10%, and KO 0-5%.

Description

本発明は、ホウケイ酸ガラスに関し、より具体的には放射線照射後の着色が少ない医療用ホウケイ酸ガラスに関する。   The present invention relates to a borosilicate glass, and more specifically to a medical borosilicate glass with little coloring after irradiation.

従来、バイアル瓶、アンプル管、真空採血管等の医療用容器は、安全衛生のため、薬品充填前後等にガス滅菌や高圧蒸気滅菌が行われていた。   Conventionally, medical containers such as vials, ampoules, and vacuum blood collection tubes have been subjected to gas sterilization and high-pressure steam sterilization before and after chemical filling for safety and health.

しかしながら、ガス滅菌や高圧蒸気滅菌は、ガスや滅菌雰囲気の制御管理に熟練を要し、滅菌時間が長い上に滅菌処理が不十分になりやすいという問題があった。また、容器を封止した後に内部を滅菌することができないため、薬剤充填時の菌類の混入を防ぐべく、無菌環境下での薬液充填作業が必要であった。このような無菌環境下での薬液充填には専用の設備環境が必要になるため、医薬品の製造コストが増加する原因となっていた。   However, gas sterilization and high-pressure steam sterilization have problems in that control and management of gas and sterilization atmosphere require skill, and the sterilization process tends to be insufficient due to a long sterilization time. In addition, since the inside cannot be sterilized after the container is sealed, a chemical solution filling operation in an aseptic environment is necessary to prevent contamination of fungi at the time of drug filling. The filling of the chemical solution under such an aseptic environment requires a dedicated facility environment, which causes an increase in the manufacturing cost of the pharmaceutical product.

このような事情から、ガス滅菌、高圧蒸気滅菌に代わり、放射線を照射して滅菌する放射線滅菌が提案されている。放射線滅菌では、一般的に電子線やγ線等の放射線が用いられており、ガス滅菌等に比べ短時間で大量の対象物を効率良く滅菌処理できる。また、電子線やγ線等の放射線は容器を透過するため、薬剤を容器に充填した後で容器内部の滅菌を行うことが可能である。すなわち、薬剤の充填を無菌環境下で行わずに済み、医薬品の製造コストを抑えることができる。   Under such circumstances, instead of gas sterilization and high-pressure steam sterilization, radiation sterilization in which radiation is sterilized for irradiation has been proposed. In radiation sterilization, radiation such as electron beams and γ rays is generally used, and a large amount of objects can be efficiently sterilized in a shorter time than gas sterilization. In addition, since radiation such as electron beams and γ rays penetrates the container, the inside of the container can be sterilized after filling the container with the medicine. That is, it is not necessary to fill the medicine in an aseptic environment, and the manufacturing cost of the medicine can be reduced.

ところで、医療用容器は、容器内への異物の混入を検査する等の目的で、容器自体の着色が少ないことが好ましい。しかしながら、放射線滅菌では、放射線のエネルギーが高いために、放射線が照射された医療用容器が変色(着色)し、滅菌後の容器内の視認検査等が困難になってしまうという問題があった。 By the way, it is preferable that a medical container has little coloring of the container itself for the purpose of inspecting the mixing of foreign matters into the container. However, in radiation sterilization, since the energy of radiation is high, there is a problem that a medical container irradiated with radiation is discolored (colored), and visual inspection in the container after sterilization becomes difficult.

このような問題を解決すべく、放射線による着色を低減したガラスが開発されている(例えば、特許文献1)。特許文献1に開示される放射線照射変色防止ガラスは、CeOを0.1〜3%含有するため、放射線の照射による着色が抑制されている。 In order to solve such a problem, glass with reduced coloring due to radiation has been developed (for example, Patent Document 1). Irradiation discoloration glass disclosed in Patent Document 1, since it contains CeO 2 0.1 to 3%, coloration due to the irradiation of radiation is suppressed.

特開平9−295828号公報Japanese Patent Laid-Open No. 9-295828

CeOは、ガラス中においてCe3+イオンまたはCe4+イオンの状態で存在する。そして、ガラス中のCe4+イオンはガラスを黄褐色に着色する性質を有する。つまり、ガラス組成としてCeOを含有すると、ガラスを成形した時点で(放射線を照射する以前に)ガラスが着色してしまい、可視光透過率が低下する場合がある。このような組成成分に起因するガラスの初期着色は、放射線照射後もガラスに残る。そのため、たとえCeOを添加して放射線照射に起因する変色を抑制できたとしても、初期着色が強い場合、最終的なガラスは強く着色したものになる。すなわち、CeOを含有する従来のガラスでは、放射線滅菌後の検査等が困難になるおそれがあった。なお、以下ではCe4+に起因するガラスの着色を初期着色と呼称し、放射線照射に起因するガラスの着色を放射線着色と呼称する。 CeO 2 exists in the state of Ce 3+ ions or Ce 4+ ions in the glass. The Ce 4+ ions in the glass have the property of coloring the glass yellowish brown. That is, when CeO 2 is contained as a glass composition, the glass is colored (before irradiation with radiation) at the time when the glass is molded, and the visible light transmittance may be lowered. The initial coloration of the glass due to such composition components remains in the glass even after irradiation. Therefore, even if CeO 2 is added and discoloration due to radiation irradiation can be suppressed, if the initial coloring is strong, the final glass is strongly colored. That is, in the conventional glass containing CeO 2 , it may be difficult to perform inspection after radiation sterilization. Hereinafter, the coloring of the glass caused by Ce 4+ is referred to as initial coloring, and the coloring of the glass caused by radiation irradiation is referred to as radiation coloring.

本発明は、このような事情を考慮して成されたものであり、放射線照射前において透明性が高く、尚且つ放射線を照射後も着色し難く、さらに医療用容器に適したガラスを提供することを課題とする。   The present invention has been made in consideration of such circumstances, and provides a glass that is highly transparent before radiation irradiation, is difficult to be colored after radiation irradiation, and is suitable for medical containers. This is the issue.

本発明者は鋭意検討の結果、ガラス組成を以下のように厳密に規定することによって、上記課題を解決することを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventor has found that the above problems can be solved by strictly defining the glass composition as follows, and proposes the present invention.

本発明のホウケイ酸ガラスは、ガラス組成として下記酸化物換算の質量%で、SiO 65〜78%、B 8〜18%、LiO+NaO+KO 1〜18%、CeO 0.1〜5.0%、SnO 0.1〜2.0%を含有することを特徴とする。 Borosilicate glass of the present invention, in mass% terms of oxide as a glass composition, SiO 2 65~78%, B 2 O 3 8~18%, Li 2 O + Na 2 O + K 2 O 1~18%, CeO 2 It contains 0.1 to 5.0% and SnO 2 0.1 to 2.0%.

また、本発明のホウケイ酸ガラスは、ガラス組成として下記酸化物換算の質量%で、SiO 65〜75%、B 8〜18%、LiO+NaO+KO 1〜10%、CeO 0.1〜5.0%、SnO 0.1〜2.0%、Al 0〜10%、CaO 0〜7%、BaO 0〜5%、LiO 0〜5%、NaO 0〜10%、KO 0〜5%を含有することが好ましい。 Furthermore, borosilicate glass of the present invention, in mass% terms of oxide as a glass composition, SiO 2 65~75%, B 2 O 3 8~18%, Li 2 O + Na 2 O + K 2 O 1~10%, CeO 2 0.1~5.0%, SnO 2 0.1~2.0 %, Al 2 O 3 0~10%, CaO 0~7%, BaO 0~5%, Li 2 O 0~5% , Na 2 O 0 to 10%, K 2 O 0 to 5% is preferable.

また、本発明のホウケイ酸ガラスは、CeOの含有量が1.1〜5.0%であることがさらに好ましい。 In the borosilicate glass of the present invention, the CeO 2 content is more preferably 1.1 to 5.0%.

また、本発明のホウケイ酸ガラスは、放射線照射前の吸光度が0.15以下であることが好ましい。なお、「吸光度」とは以下の式で表される値である。
A=Log(1/T500
A:吸光度
500:肉厚5.0mm、波長500nmにおける分光透過率
The borosilicate glass of the present invention preferably has an absorbance of 0.15 or less before radiation irradiation. The “absorbance” is a value represented by the following formula.
A = Log (1 / T 500 )
A: Absorbance T 500 : Spectral transmittance at a thickness of 5.0 mm and a wavelength of 500 nm

本発明のホウケイ酸ガラスは、放射線を吸収線量25kGy照射した後の吸光度が0.30以下であることが好ましい。   The borosilicate glass of the present invention preferably has an absorbance of 0.30 or less after irradiation with radiation at an absorbed dose of 25 kGy.

本発明のホウケイ酸ガラスは、放射線により滅菌処理される医療用容器に用いられることが好ましい。医療用容器とは、薬剤が充填される医薬容器、および真空採血管等の薬剤が充填されない医療用途の容器のことを指す。   The borosilicate glass of the present invention is preferably used in a medical container that is sterilized by radiation. The medical container refers to a medical container filled with a medicine and a medical use container such as a vacuum blood collection tube not filled with the medicine.

本発明のホウケイ酸ガラスは、γ線または電子線により滅菌処理される真空採血管に用いられることが好ましい。   The borosilicate glass of the present invention is preferably used for a vacuum blood collection tube that is sterilized by γ rays or electron beams.

本発明のホウケイ酸ガラスは、γ線または電子線により滅菌処理される医薬容器に用いられることが好ましい。医薬容器は、例えば、バイアル瓶、アンプル管等の薬剤が充填される容器のことを指す。 The borosilicate glass of the present invention is preferably used in a pharmaceutical container that is sterilized by γ rays or electron beams. The pharmaceutical container refers to a container filled with a medicine such as a vial bottle or an ampoule tube.

本発明のホウケイ酸ガラスによれば、CeOを含有することによって放射線照射に起因する着色を抑制しつつ、他の成分をバランス良く含有することによってCe4+イオン等に起因する放射線照射前のガラスの着色も抑制することができる。また、本発明のホウケイ酸ガラスは、アルカリ溶出量が少ないホウケイ酸ガラスを基本組成とするため、医薬容器として用いた場合に、充填された薬剤の変質を抑制することができる。したがって、本発明のホウケイ酸ガラスは、医療用容器として好適であり、放射線滅菌処理後も容器内の検査を容易に行うことができる。 According to the borosilicate glass of the present invention, by containing CeO 2 , while suppressing coloring due to radiation irradiation, it contains other components in a well-balanced manner before radiation irradiation due to Ce 4+ ions and the like. Coloring of the glass can also be suppressed. In addition, since the borosilicate glass of the present invention has a basic composition of borosilicate glass with a small amount of alkali elution, it is possible to suppress deterioration of the filled medicine when used as a pharmaceutical container. Therefore, the borosilicate glass of the present invention is suitable as a medical container, and the inside of the container can be easily inspected even after the radiation sterilization treatment.

以下、本発明の実施形態のホウケイ酸ガラスについて説明する。先ず、本発明のガラスを構成する成分の作用と、その含有量を上記のように規定した理由を説明する。なお、各成分の含有範囲の説明において、%表示は質量%を指す。 Hereinafter, the borosilicate glass of embodiment of this invention is demonstrated. First, the effect | action of the component which comprises the glass of this invention and the reason which prescribed | regulated the content as mentioned above are demonstrated. In addition, in description of the containing range of each component,% display points out the mass%.

SiOは、ガラス骨格構造を形成する主要成分である。SiOの含有量は、65〜78%、好ましくは67〜75%、より好ましくは67〜73%である。SiOの含有量が65%より少ないと、ガラスの機械的強度が低下し易くなる。SiOの含有量が78%より多いと、ガラスの粘度が高くなって溶融性や成形性が低下し易くなる。 SiO 2 is a main component that forms a glass skeleton structure. The content of SiO 2 is 65 to 78%, preferably 67 to 75%, more preferably 67 to 73%. When the content of SiO 2 is less than 65%, the mechanical strength of the glass tends to decrease. When the content of SiO 2 is more than 78%, the viscosity of the glass becomes high, and the meltability and moldability tend to be lowered.

Alは、ガラスの化学的耐久性や機械的強度を高める成分であり、またガラスの耐失透性を高める成分である。Alの含有量は、0〜10%、好ましくは3〜10%、より好ましくは5〜9%、5〜8%、6.5〜8%である。Alの含有量が10%より多いと、ガラスの粘度が高くなって溶融性や成形性が低下し易くなる。 Al 2 O 3 is a component that increases the chemical durability and mechanical strength of the glass, and is a component that increases the devitrification resistance of the glass. The content of Al 2 O 3 is 0 to 10%, preferably 3 to 10%, more preferably 5 to 9%, 5 to 8%, and 6.5 to 8%. When the content of Al 2 O 3 is more than 10%, meltability and formability viscosity of the glass becomes high it is likely to decrease.

は、SiOと同様にガラス骨格構造を形成する成分であるが、SiOと異なりガラスの粘度を低下させる成分である。Bの含有量は、8〜18%、好ましくは8〜15%、より好ましくは8〜13%である。Bの含有量が18%より多いと、ガラスが分相し易くなる。ガラスに分相が生じると、ガラスの化学的耐久性が低下し易くなる。また、Bの含有量が18%より多いと、溶融ガラスからのBの蒸発量が増え、溶融ガラス表面に異質層が形成されやすくなってガラスの均質性が低下し易くなる。Bの含有量が8%より少ないと、ガラスの粘度が高くなって溶融性や成形性が低下し易くなる。 B 2 O 3 is a component that forms a glass skeleton structure like SiO 2 , but is a component that lowers the viscosity of glass unlike SiO 2 . The content of B 2 O 3 is 8 to 18%, preferably 8 to 15%, more preferably 8 to 13%. When the content of B 2 O 3 is more than 18%, the glass is likely to undergo phase separation. When phase separation occurs in the glass, the chemical durability of the glass tends to decrease. Further, when the content of B 2 O 3 is more than 18%, increasing the amount of evaporation of B 2 O 3 from the molten glass, liable to lower the homogeneity of the glass is easy to heterogeneous layer formed on the molten glass surface Become. When the content of B 2 O 3 is less than 8%, the viscosity of the glass becomes high, and the meltability and moldability tend to decrease.

アルカリ金属酸化物であるLiO、NaO、KOはガラスの粘度を低下させ、溶融性や成形性を高める成分である。LiO+NaO+KOの含有量は、1〜18%、好ましくは1〜10%、より好ましくは5〜10%、5〜9%、5〜8%である。LiO+NaO+KOが1%より少ないとガラスの粘度が高くなり、溶融性や成形性が悪化する。LiO+NaO+KOが18%より多いとガラスの化学的耐久性が低下するとともに、ガラスからのアルカリ溶出量が増加し、ガラス表面に析出物が発生し易くなる。 Li 2 O is an alkali metal oxide, Na 2 O, K 2 O reduces the viscosity of the glass is a component for enhancing the meltability and formability. The content of Li 2 O + Na 2 O + K 2 O is 1 to 18%, preferably 1 to 10%, more preferably 5 to 10%, 5 to 9%, and 5 to 8%. When Li 2 O + Na 2 O + K 2 O is less than 1%, the viscosity of the glass increases, and the meltability and moldability deteriorate. If the Li 2 O + Na 2 O + K 2 O content is more than 18%, the chemical durability of the glass decreases, the amount of alkali elution from the glass increases, and precipitates are likely to be generated on the glass surface.

LiOは、ガラスの粘度を低下させて、溶融性や成形性を高める成分である。LiOの含有量は好ましくは0〜5%、より好ましくは0〜4%である。LiOの含有量が5%よりも多いと、溶融ガラスからLiを含む結晶が析出し易くなる。尚、LiOは原料のコストが高いため、含有量は少ない方が好ましい。 Li 2 O is a component that lowers the viscosity of the glass and improves meltability and moldability. The content of Li 2 O is preferably 0 to 5%, more preferably 0 to 4%. When the content of Li 2 O is more than 5%, crystals containing Li are easily precipitated from the molten glass. Since high Li 2 O is cost of the raw materials, the content is preferably small.

NaOは、ガラスの粘度を低下させて、溶融性や成形性を高める成分である。NaOの含有量は好ましくは0〜10%、より好ましくは3〜8%、5〜8%である。NaOの含有量が10%より多いと、ガラスの化学的耐久性が低下するとともにガラスからのアルカリ溶出量が増加する。 Na 2 O is a component that lowers the viscosity of the glass and improves the meltability and moldability. The content of Na 2 O is preferably 0 to 10%, more preferably 3 to 8%, and 5 to 8%. When the content of Na 2 O is greater than 10%, the amount of alkali elution from the glass with reduced chemical durability of the glass is increased.

Oは、ガラスの粘度を低下させて、溶融性や成形性を高める成分である。KOの含有量は、好ましくは0〜5%、より好ましくは0〜4%、0〜3%である。KOの含有量が5%より多いと、ガラスの化学的耐久性が低下し易くなる。 K 2 O is a component that lowers the viscosity of the glass and improves the meltability and moldability. The content of K 2 O is preferably 0 to 5%, more preferably 0 to 4%, and 0 to 3%. When the content of K 2 O is more than 5%, the chemical durability of the glass tends to decrease.

アルカリ土類金属酸化物である、CaO、BaOは、ガラスの粘度を低下させて、溶融性や成形性を高める成分である。CaO+BaOの含有量は、好ましくは0.5〜10%、より好ましくは1〜5%、1〜3%である。CaO+BaOが0.5%より少ないとガラスの粘度が高くなり、溶融性や成形性が悪化し易くなる。CaO+BaOが10%より多いとガラスにCaあるいはBaを含む結晶が析出し易くなる。   CaO and BaO, which are alkaline earth metal oxides, are components that lower the viscosity of the glass and increase the meltability and moldability. The content of CaO + BaO is preferably 0.5 to 10%, more preferably 1 to 5%, and 1 to 3%. When CaO + BaO is less than 0.5%, the viscosity of the glass increases, and the meltability and moldability tend to deteriorate. If CaO + BaO is more than 10%, crystals containing Ca or Ba are likely to be precipitated on the glass.

CaOは、ガラスの粘度を低下させて、溶融性や成形性を高める成分である。CaOの含有量は、好ましくは0〜7%、より好ましくは0〜5%、0〜3%、0〜2%である。CaOの含有量が7%よりも多いと、ガラスの耐酸性が低下し易くなる。また、ガラスからCaを含む結晶が析出し易くなる。   CaO is a component that lowers the viscosity of the glass and improves meltability and moldability. The content of CaO is preferably 0 to 7%, more preferably 0 to 5%, 0 to 3%, and 0 to 2%. When there is more content of CaO than 7%, the acid resistance of glass will fall easily. Further, crystals containing Ca are likely to precipitate from the glass.

BaOは、ガラスの粘度を低下させるとともに、耐失透性を向上する成分である。BaOの含有量は、好ましくは0〜5%、より好ましくは0〜3%、さらに好ましくは0〜2%である。BaOの含有量が5%よりも多いと、ガラスの歪点が低下して耐熱性が悪化し易くなる。また、ガラスからBaを含む結晶が析出し易くなる。   BaO is a component that reduces the viscosity of the glass and improves the devitrification resistance. The content of BaO is preferably 0 to 5%, more preferably 0 to 3%, and still more preferably 0 to 2%. When there is more content of BaO than 5%, the strain point of glass will fall and heat resistance will deteriorate easily. Further, crystals containing Ba are likely to precipitate from the glass.

CeOは、ガラスの耐放射線着色性を高める成分である。CeOの含有量は0.1〜5.0%、好ましくは0.1〜2.0%、より好ましくは0.5〜2.0%、さらに好ましくは1.1〜2.0%である。CeOの含有量が0.1%より少ないと、ガラスの耐放射線着色性が低くなり、放射線照射によりガラスが著しく着色してしまう。CeOの含有量が5.0%より多いと、放射線照射前のガラスの着色が強くなる。Ceイオンは、通常ガラス中ではCe3+とCe4+の状態で共存する。Ce3+は波長314nmを中心とするシャープな吸収帯を持つ。Ce4+は波長240nmを中心とし、可視域にかかるブロードな吸収帯を持つ。CeOの含有量が多くなるほどガラス中のCe4+の絶対量も多くなるため、放射線照射前のガラスの着色が強くなり易い。 CeO 2 is a component that enhances the radiation resistance of glass. The CeO 2 content is 0.1 to 5.0%, preferably 0.1 to 2.0%, more preferably 0.5 to 2.0%, and still more preferably 1.1 to 2.0%. is there. If the CeO 2 content is less than 0.1%, the radiation resistance coloring property of the glass is lowered, and the glass is markedly colored by the irradiation of radiation. When the content of CeO 2 is more than 5.0%, the coloring of the glass before radiation irradiation becomes strong. Ce ions usually coexist in the state of Ce 3+ and Ce 4+ in glass. Ce 3+ has a sharp absorption band centered at a wavelength of 314 nm. Ce 4+ is centered on a wavelength of 240 nm and has a broad absorption band in the visible range. As the CeO 2 content increases, the absolute amount of Ce 4+ in the glass also increases, so that the color of the glass before radiation irradiation tends to increase.

SnOはCe4+等に起因するガラスの初期着色を抑制する成分である。Snイオンは、通常、ガラス中ではSn2+とSn4+の状態で共存する。SnOがCeOと共存した場合、SnイオンはCeイオンの酸化力によって酸化され、Sn4+の割合が増加する。同時に、Ceイオン自身は還元されるためCe4+の割合が減少する。このように、Ce4+の割合が減少すると、ガラスの初期着色が低減する。SnOの含有量は0.1〜2.0%、好ましくは0.1〜1.5%、より好ましくは0.1〜1.0%である。SnOの含有量が2.0%より多いと、Snイオンによるガラスの着色が強まるとともに、熱加工時にガラスが黒化し易くなる。SnOの含有量が0.1%より少ないと、ガラス中のCe4+の割合が減少し難くなるため、初期着色を抑制し難くなる。 SnO 2 is a component that suppresses the initial coloration of the glass due to Ce 4+ and the like. Sn ions usually coexist in the glass in the state of Sn 2+ and Sn 4+ . When SnO 2 coexists with CeO 2 , Sn ions are oxidized by the oxidizing power of Ce ions, and the ratio of Sn 4+ increases. At the same time, Ce ions themselves are reduced, and the ratio of Ce 4+ decreases. Thus, when the proportion of Ce 4+ is reduced, the initial coloration of the glass is reduced. The content of SnO 2 is 0.1 to 2.0%, preferably 0.1 to 1.5%, more preferably 0.1 to 1.0%. When the content of SnO 2 is more than 2.0%, the coloring of the glass with Sn ions is strengthened, and the glass is easily blackened during the heat processing. When the content of SnO 2 is less than 0.1%, the ratio of Ce 4+ in the glass is difficult to decrease, and thus it is difficult to suppress initial coloring.

本発明のホウケイ酸ガラスは上記成分以外にも、放射線照射前後のガラスの着色が強まらない範囲において、他の成分を添加してもよい。例えば、ガラスの粘度、清澄性等の改良のためにMgO、SrO、ZnO、ZrO、P、Cr、SO、PbO、La、WO、Co、Nb、Y等を添加してもよい。なお、これらの成分の添加量は合量で5%以下が好ましい。 In addition to the above components, other components may be added to the borosilicate glass of the present invention within a range where the coloration of the glass before and after radiation irradiation does not increase. For example, MgO, SrO, ZnO, ZrO 2 , P 2 O 5 , Cr 2 O 3 , SO 2 , PbO, La 2 O 3 , WO 3 , Co 3 O 4 for improving the viscosity and clarity of the glass. Nb 2 O 5 , Y 2 O 3 or the like may be added. The total amount of these components added is preferably 5% or less.

Feは、ガラス原料やガラス製造工程から混入する成分である。Feは、TiOと組み合わせることによって容器の内部に充填された薬剤を紫外線から守る働きがある。しかし、Feの含有量が多過ぎると、ガラスが着色する虞がある。よって、Feの含有量は好ましくは0.001%〜0.5%、より好ましくは0.001%〜0.2%、0.001%〜0.1%、0.001%〜0.05%である。 Fe 2 O 3 is a component mixed from the glass raw material and the glass manufacturing process. Fe 2 O 3 has a function of protecting the medicine filled in the container from ultraviolet rays by combining with TiO 2 . However, if the content of Fe 2 O 3 is too large, there is a fear that the glass is colored. Therefore, the content of Fe 2 O 3 is preferably 0.001% to 0.5%, more preferably 0.001% to 0.2%, 0.001% to 0.1%, 0.001% to 0.05%.

TiOは、紫外線を遮断し、充填された医薬品の変質を防止する成分である。また、ガラスの高温粘度を低下させ、成形性を向上する成分である。しかし、TiOの含有量が多過ぎると、ガラスが着色したり、失透し易くなる。よって、TiOの含有量は、好ましくは0〜2%であり、より好ましくは0〜1%、0〜0.5%、0〜0.3%、0〜0.1%、0.001〜0.05%である。 TiO 2 is a component that blocks ultraviolet rays and prevents deterioration of the filled medicine. Moreover, it is a component which reduces the high temperature viscosity of glass and improves a moldability. However, when the content of TiO 2 is too large, or glass is colored, easily devitrified. Therefore, the content of TiO 2 is preferably 0 to 2%, more preferably 0 to 1%, 0 to 0.5%, 0 to 0.3%, 0 to 0.1%, 0.001. ~ 0.05%.

Clは、ガラス製造時の清澄性を向上する成分であり、Clの含有量は好ましくは0〜1%である。Clの含有量が1%より多くなると、ガラスの生産時に蒸発したClが水分と反応して、生産設備の金属を侵食する可能性がある。Clの含有量は、好ましくは0〜0.5%、より好ましくは0〜0.3%、さらに好ましくは0.01〜0.3%である。 Cl 2 is a component that improves clarity during glass production, and the content of Cl 2 is preferably 0 to 1%. When the content of Cl 2 exceeds 1%, Cl 2 evaporated during the production of glass may react with moisture and corrode the metal in the production facility. The Cl 2 content is preferably 0 to 0.5%, more preferably 0 to 0.3%, and still more preferably 0.01 to 0.3%.

Sbは、溶融ガラスの清澄性を向上させる成分である。一方で、Sbは、環境負荷の高い成分であるため、その含有量は1%未満であることが好ましい。 Sb 2 O 3 is a component that improves the clarity of the molten glass. Meanwhile, Sb 2 O 3 are the high environmental load component, the content thereof is preferably less than 1%.

ZrOは、ガラスの耐薬品性、特に耐酸性を改善すると共に、高温粘性を下げて溶融
性を向上させる成分である。ZrOの含有量は、好ましくは0〜1%、より好ましくは0〜0.5%、0.01〜0.3%である。5%より多いと、失透温度が上昇し、失透異物が析出しやすくなる。
ZrO 2 is a component that improves the chemical resistance of glass, particularly the acid resistance, and lowers the high-temperature viscosity to improve the meltability. The content of ZrO 2 is preferably 0 to 1%, more preferably 0 to 0.5%, and 0.01 to 0.3%. If it exceeds 5%, the devitrification temperature rises and devitrified foreign matter tends to precipitate.

また、本発明のホウケイ酸ガラスはH、CO、CO、HO、He、Ne、Ar、N等の微量成分を0.1%まで含んでもよい。また、ガラス中にPt、Rh等の貴金属元素を500ppmまで添加してもよい。 Furthermore, borosilicate glass of the present invention H 2, CO 2, CO, H 2 O, He, Ne, Ar, minor components such as N 2 may contain up to 0.1%. Moreover, you may add noble metal elements, such as Pt and Rh, to 500 ppm in glass.

本発明のホウケイ酸ガラスは、放射線照射前の肉厚5mmにおける波長500nmの光の吸光度が0.15以下、好ましくは0.12以下、より好ましくは0.10以下である。放射線照射前の肉厚5mmにおける波長500nmの光の吸光度が0.20より高いと、放射線照射後もガラスの着色が強く残り、放射線滅菌後の検査等が困難になる。   In the borosilicate glass of the present invention, the absorbance of light having a wavelength of 500 nm at a thickness of 5 mm before radiation irradiation is 0.15 or less, preferably 0.12 or less, more preferably 0.10 or less. If the absorbance of light having a wavelength of 500 nm at a thickness of 5 mm before radiation irradiation is higher than 0.20, the glass will remain strongly colored even after radiation irradiation, and inspection after radiation sterilization becomes difficult.

本発明のホウケイ酸ガラスは、放射線を吸収線量25kGyで照射した後の肉厚5mmにおける波長500nmの光の吸光度が0.30以下、好ましくは0.28以下、より好ましくは0.25以下である。放射線を吸収線量25kGyで照射した後の肉厚5mmにおける波長500nmの光の吸光度が0.30より高いと、放射線照射後のガラスの着色が強く、放射線滅菌後の検査等が困難になる。   In the borosilicate glass of the present invention, the absorbance of light having a wavelength of 500 nm at a thickness of 5 mm after irradiation with radiation at an absorbed dose of 25 kGy is 0.30 or less, preferably 0.28 or less, more preferably 0.25 or less. . If the absorbance of light having a wavelength of 500 nm at a thickness of 5 mm after irradiation with radiation at an absorbed dose of 25 kGy is higher than 0.30, the glass after irradiation is strongly colored, and inspection after radiation sterilization becomes difficult.

本発明のホウケイ酸ガラスはγ線や電子線等の放射線により滅菌処理される医薬容器や真空採血管等の医療用容器に用いられることが好ましい。これらの医療用容器は、例えば、管状に成形した本発明のホウケイ酸ガラスを切断および加工することによって製造できる。これらの医療用容器は、γ線または電子線による滅菌処理に供されることが、より好ましい。γ線は高いエネルギーを有するため、滅菌能力が高く、短時間で大量の容器を滅菌処理することができる。また、電子線は、環境負荷が少なく、滅菌装置および工程の管理が容易である。   The borosilicate glass of the present invention is preferably used for medical containers such as pharmaceutical containers and vacuum blood collection tubes that are sterilized by radiation such as γ rays and electron beams. These medical containers can be manufactured, for example, by cutting and processing the borosilicate glass of the present invention formed into a tubular shape. These medical containers are more preferably subjected to sterilization treatment with γ rays or electron beams. Since γ rays have high energy, sterilization ability is high, and a large amount of containers can be sterilized in a short time. In addition, the electron beam has a low environmental load and is easy to manage the sterilization apparatus and process.

なお、上記用途は一例であり、本発明のホウケイ酸ガラスの用途はこれらに限らず、任意用途、任意形状に適用可能である。また、これらの医療用容器の滅菌処理に用いる放射線はγ線および電子線に限らず、任意の種類および強度の放射線を用いて良い。   In addition, the said use is an example and the use of the borosilicate glass of this invention is not restricted to these, It is applicable to arbitrary uses and arbitrary shapes. Moreover, the radiation used for the sterilization treatment of these medical containers is not limited to γ rays and electron beams, and radiation of any kind and intensity may be used.

以下、実施例に基づいて、本発明を詳細に説明する。
Hereinafter, based on an Example, this invention is demonstrated in detail.

表1〜3は、本発明の実施例(試料No.1〜12)及び比較例(試料No.13、14)を示している。   Tables 1 to 3 show examples (sample Nos. 1 to 12) and comparative examples (samples No. 13 and 14) of the present invention.

以下のようにして、各試料を調製した。まず、表中のガラス組成になるように、ガラス原料を秤量、混合して、ガラスバッチを作製した。次に、このガラスバッチを白金坩堝で1650℃、5時間溶融した後、流し出してガラスインゴットを作製した。次に、ガラスインゴットを25mm×30mmの寸法に切断、研磨して肉厚5.0mmおよび1.5mmの板状ガラス試料を得た。そして、得られた各試料の放射線照射前後において、以下の特性を評価した。   Each sample was prepared as follows. First, glass raw materials were weighed and mixed so as to have the glass composition in the table to prepare a glass batch. Next, this glass batch was melted in a platinum crucible at 1650 ° C. for 5 hours and then poured out to prepare a glass ingot. Next, the glass ingot was cut into a size of 25 mm × 30 mm and polished to obtain plate-like glass samples having a thickness of 5.0 mm and 1.5 mm. And the following characteristics were evaluated before and after radiation irradiation of each obtained sample.

波長500nmにおける吸光度は、波長500nmにおける分光透過率を測定し、当該分光透過率に基づいて算出した。波長500nmにおける分光透過率は、SHIMADZU製 UV−3100PC分光光度計を用いて波長500nmの値を読み取った。吸光度が小さいほど、透明性が高いガラスである。   The absorbance at a wavelength of 500 nm was calculated based on the spectral transmittance measured by measuring the spectral transmittance at a wavelength of 500 nm. The spectral transmittance at a wavelength of 500 nm was read at a wavelength of 500 nm using a UV-3100PC spectrophotometer manufactured by SHIMADZU. The smaller the absorbance, the more transparent the glass.

放射線としては、γ線および電子線を吸収線量25kGyで照射した。γ線照射は、コバルト60の線源を用いて行った。また、電子線照射は、出力が5MeVの電子加速器を用いて行った。吸収線量は、ガラス製の線量計により測定した。   As radiation, γ rays and electron beams were irradiated at an absorbed dose of 25 kGy. The γ-ray irradiation was performed using a cobalt 60 radiation source. Electron beam irradiation was performed using an electron accelerator with an output of 5 MeV. The absorbed dose was measured with a glass dosimeter.

表1〜3から明らかなように、試料No.1〜12は、放射線照射前の肉厚5.0mm、波長500nmにおける吸光度の値が0.15以下であった。また、放射線を吸収線量25kGyだけ照射した後の肉厚5.0mmにおける波長500nmの光の吸光度が0.30以下であった。   As is apparent from Tables 1 to 3, sample No. Nos. 1 to 12 had an absorbance value of 0.15 or less at a thickness of 5.0 mm before irradiation with a wavelength of 500 nm. Moreover, the light absorbency of the light of wavelength 500nm in thickness 5.0mm after irradiating only radiation dose 25kGy was 0.30 or less.

一方、試料No.13、14は、SnOを含有していないため、放射線照射前の肉厚5.0mm、波長500nmにおける吸光度の値が0.15を超えていた。また、放射線を吸収線量25kGyだけ照射した後の肉厚5.0mmにおける波長500nmの光の吸光度が0.30を超えていた。すなわち、試料No.13、14は、本発明の実施例に比べ、放射線照射前後の透明性が劣っていた。 On the other hand, sample No. Since Nos. 13 and 14 did not contain SnO 2 , the absorbance value at a thickness of 5.0 mm and a wavelength of 500 nm before irradiation exceeded 0.15. Further, the absorbance of light having a wavelength of 500 nm at a thickness of 5.0 mm after irradiation with an absorbed dose of 25 kGy exceeded 0.30. That is, sample no. 13 and 14 were inferior in transparency before and after radiation irradiation as compared with the examples of the present invention.

本発明のホウケイ酸ガラスは、医療用容器の材料等として有用である。   The borosilicate glass of the present invention is useful as a material for medical containers.

Claims (8)

ガラス組成として下記酸化物換算の質量%で、SiO 65〜78%、B 8〜18%、LiO+NaO+KO 1〜18%、CeO 0.1〜5.0%、SnO 0.1〜2.0%を含有することを特徴とするホウケイ酸ガラス。 By mass% terms of oxide as a glass composition, SiO 2 65~78%, B 2 O 3 8~18%, Li 2 O + Na 2 O + K 2 O 1~18%, CeO 2 0.1~5.0% A borosilicate glass containing 0.1 to 2.0% of SnO 2 . ガラス組成として下記酸化物換算の質量%で、SiO 65〜75%、B 8〜18%、LiO+NaO+KO 1〜10%、CeO 0.1〜5.0%、SnO 0.1〜2.0%、Al 0〜10%、CaO 0〜7%、BaO 0〜5%、LiO 0〜5%、NaO 0〜10%、KO 0〜5%を含有することを特徴とする請求項1に記載のホウケイ酸ガラス。 By mass% terms of oxide as a glass composition, SiO 2 65~75%, B 2 O 3 8~18%, Li 2 O + Na 2 O + K 2 O 1~10%, CeO 2 0.1~5.0% SnO 2 0.1-2.0%, Al 2 O 3 0-10%, CaO 0-7%, BaO 0-5%, Li 2 O 0-5%, Na 2 O 0-10%, K The borosilicate glass according to claim 1, containing 0 to 5% of 2 O. CeOの含有量が1.1〜5.0%であることを特徴とする請求項1または2に記載のホウケイ酸ガラス。 The borosilicate glass according to claim 1, wherein the content of CeO 2 is 1.1 to 5.0%. 放射線照射前の吸光度が0.15以下であることを特徴とする請求項1〜3の何れかに記載のホウケイ酸ガラス。   The borosilicate glass according to any one of claims 1 to 3, wherein the absorbance before irradiation is 0.15 or less. 放射線を吸収線量25kGyで照射した後の吸光度が0.30以下であることを特徴とする請求項1〜4の何れかに記載のホウケイ酸ガラス。   The borosilicate glass according to any one of claims 1 to 4, wherein the absorbance after irradiation with radiation at an absorbed dose of 25 kGy is 0.30 or less. 放射線により滅菌処理される医療用容器に用いられることを特徴とする請求項1〜5の何れかに記載のホウケイ酸ガラス。   The borosilicate glass according to claim 1, wherein the borosilicate glass is used for a medical container that is sterilized by radiation. γ線または電子線により滅菌処理される真空採血管に用いられることを特徴とする請求項1〜5の何れかに記載のホウケイ酸ガラス。   The borosilicate glass according to any one of claims 1 to 5, wherein the borosilicate glass is used for a vacuum blood collection tube sterilized by gamma rays or electron beams. γ線または電子線により滅菌処理される医薬容器に用いられることを特徴とする請求項1〜5の何れかに記載のホウケイ酸ガラス。   The borosilicate glass according to any one of claims 1 to 5, wherein the borosilicate glass is used for a pharmaceutical container sterilized by gamma rays or electron beams.
JP2012168000A 2012-07-30 2012-07-30 Borosilicate glass Active JP5971615B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012168000A JP5971615B2 (en) 2012-07-30 2012-07-30 Borosilicate glass
PCT/JP2013/069927 WO2014021142A1 (en) 2012-07-30 2013-07-23 Borosilicate glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168000A JP5971615B2 (en) 2012-07-30 2012-07-30 Borosilicate glass

Publications (2)

Publication Number Publication Date
JP2014024731A true JP2014024731A (en) 2014-02-06
JP5971615B2 JP5971615B2 (en) 2016-08-17

Family

ID=50027822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168000A Active JP5971615B2 (en) 2012-07-30 2012-07-30 Borosilicate glass

Country Status (2)

Country Link
JP (1) JP5971615B2 (en)
WO (1) WO2014021142A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098430A (en) * 2013-09-02 2015-05-28 日本電気硝子株式会社 Borosilicate glass for medicament container
US10099956B2 (en) * 2014-09-05 2018-10-16 Nippon Electric Glass Co., Ltd. Borosilicate glass for pharmaceutical container and glass tube for pharmaceutical container
WO2018225691A1 (en) * 2017-06-06 2018-12-13 日本電気硝子株式会社 Method for producing colored glass for pharmaceutical containers and colored glass for pharmaceutical containers
WO2019078188A1 (en) * 2017-10-20 2019-04-25 日本電気硝子株式会社 Glass for medicine container and glass tube for medicine container
CN111977972A (en) * 2020-09-01 2020-11-24 湖南旗滨医药材料科技有限公司 Borosilicate glass and preparation method thereof
JP2021073163A (en) * 2021-01-22 2021-05-13 株式会社オハラ Optical glass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3326979B1 (en) * 2015-07-17 2022-12-14 Nippon Electric Glass Co., Ltd. Borosilicate glass for pharmaceutical container
EP3819268B1 (en) * 2019-11-08 2021-09-29 Schott AG Toughenable glass with high hydrolytic resistance and reduced color tinge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219343A (en) * 1990-12-18 1992-08-10 Nippon Electric Glass Co Ltd Ultraviolet light absorbing glass for medical application
JP2007210851A (en) * 2006-02-10 2007-08-23 Asahi Techno Glass Corp Glass tube for fluorescent lamp
JP2007314409A (en) * 2006-04-24 2007-12-06 Nippon Electric Glass Co Ltd Glass for illumination lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219343A (en) * 1990-12-18 1992-08-10 Nippon Electric Glass Co Ltd Ultraviolet light absorbing glass for medical application
JP2007210851A (en) * 2006-02-10 2007-08-23 Asahi Techno Glass Corp Glass tube for fluorescent lamp
JP2007314409A (en) * 2006-04-24 2007-12-06 Nippon Electric Glass Co Ltd Glass for illumination lamp

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098430A (en) * 2013-09-02 2015-05-28 日本電気硝子株式会社 Borosilicate glass for medicament container
US10099956B2 (en) * 2014-09-05 2018-10-16 Nippon Electric Glass Co., Ltd. Borosilicate glass for pharmaceutical container and glass tube for pharmaceutical container
WO2018225691A1 (en) * 2017-06-06 2018-12-13 日本電気硝子株式会社 Method for producing colored glass for pharmaceutical containers and colored glass for pharmaceutical containers
JPWO2018225691A1 (en) * 2017-06-06 2020-04-09 日本電気硝子株式会社 Method for producing colored glass for pharmaceutical container and colored glass for pharmaceutical container
US11884583B2 (en) 2017-06-06 2024-01-30 Nippon Electric Glass Co., Ltd. Method for producing colored glass for pharmaceutical containers and colored glass for pharmaceutical containers
WO2019078188A1 (en) * 2017-10-20 2019-04-25 日本電気硝子株式会社 Glass for medicine container and glass tube for medicine container
JPWO2019078188A1 (en) * 2017-10-20 2020-09-24 日本電気硝子株式会社 Glass for pharmaceutical containers and glass tubes for pharmaceutical containers
JP7148896B2 (en) 2017-10-20 2022-10-06 日本電気硝子株式会社 Glass for pharmaceutical containers and glass tubes for pharmaceutical containers
CN111977972A (en) * 2020-09-01 2020-11-24 湖南旗滨医药材料科技有限公司 Borosilicate glass and preparation method thereof
JP2021073163A (en) * 2021-01-22 2021-05-13 株式会社オハラ Optical glass
JP7133658B2 (en) 2021-01-22 2022-09-08 株式会社オハラ optical glass

Also Published As

Publication number Publication date
WO2014021142A1 (en) 2014-02-06
JP5971615B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5971615B2 (en) Borosilicate glass
CN110128011B (en) Borosilicate glass with improved hydrolysis resistance, preferably for use in the medical field
JP7148896B2 (en) Glass for pharmaceutical containers and glass tubes for pharmaceutical containers
EP3098206B1 (en) Crystal glass
JP2014169209A (en) Medicine container and method for producing the same
Ogawa et al. Effects of phosphate buffer in parenteral drugs on particle formation from glass vials
CN106477878B (en) A kind of resistance to ionizing radiation and uvioresistant transparent wrapper glass
JP6709501B2 (en) Glass for drug container and glass tube for drug container
JP6075600B2 (en) Glass for pharmaceutical containers and glass tube using the same
CN113582538A (en) Borosilicate glass composition, borosilicate glass, and preparation method and application thereof
JP6829548B2 (en) Optical glass
JP3079579B2 (en) Medical UV absorbing glass
JP2007290899A (en) Glass composition
JP2014055092A (en) Glass for medical container
JP2015093820A (en) Glass for medical container
JP2015093819A (en) Glass for medical container
JP2008286787A (en) Radiation shielding safety glass
JP2017119625A (en) Pharmaceutical container and method for producing the same
JP2015151313A (en) Glass for medical container
JP2015151314A (en) Glass for medical container
CN114772921A (en) Glass clarifying agent and application thereof, and neutral borosilicate glass and application thereof
US3359125A (en) Radiation indicating glass
JPH09295828A (en) Glass for preventing discoloration by exposure to radiation
JP7133658B2 (en) optical glass
JPH03252330A (en) Glass for blood collecting tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5971615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160703