JP2014022500A - Vapor growth device and manufacturing method of semiconductor device - Google Patents

Vapor growth device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2014022500A
JP2014022500A JP2012158612A JP2012158612A JP2014022500A JP 2014022500 A JP2014022500 A JP 2014022500A JP 2012158612 A JP2012158612 A JP 2012158612A JP 2012158612 A JP2012158612 A JP 2012158612A JP 2014022500 A JP2014022500 A JP 2014022500A
Authority
JP
Japan
Prior art keywords
flow path
susceptor
gas flow
temperature control
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012158612A
Other languages
Japanese (ja)
Other versions
JP5947133B2 (en
Inventor
Toshiharu Kobayashi
利玄 小林
Kazuaki Kaneko
和昭 金子
Koji Otsuka
浩次 大塚
Keiji Takada
啓二 高田
Takeshi Saiki
健史 斉木
Yutaka Komaki
豊 小牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012158612A priority Critical patent/JP5947133B2/en
Publication of JP2014022500A publication Critical patent/JP2014022500A/en
Application granted granted Critical
Publication of JP5947133B2 publication Critical patent/JP5947133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vapor growth device capable of reducing the generation of a foreign substance caused by exfoliation of a by-product, by controlling the temperature of a susceptor or a gas passage forming member.SOLUTION: The vapor growth device is configured to perform vapor growth by heating a substrate 4 to be treated by causing source gas to flow through a gas passage on the substrate 4 to be treated. The vapor growth device comprises: a susceptor 1 for holding the substrate 4 to be treated; a gas passage forming member 7 which is disposed in counter to the susceptor 1 so as to constitute the gas passage between the gas passage forming member and the susceptor 1; and a plurality of thermometers provided on at least either the susceptor 1 or the gas passage forming member 7. The plurality of thermometers include a first thermometer and a second thermometer which is provided at a downstream side of the gas passage with respect to the first thermometer.

Description

本発明は、気相成長装置および半導体装置の製造方法に関し、特に、サセプタまたはガス流路形成部材の温度を制御し、副生成物の剥がれによる異物の発生を低減させることを可能とする気相成長装置および半導体装置の製造方法に関する。   The present invention relates to a vapor phase growth apparatus and a method for manufacturing a semiconductor device, and more particularly, to control the temperature of a susceptor or a gas flow path forming member and reduce the generation of foreign substances due to peeling of by-products. The present invention relates to a growth apparatus and a method for manufacturing a semiconductor device.

半導体装置の分野において、基板の表面に所望の膜を形成する成膜処理技術は、重要な製造技術の一つである。この成膜処理技術の中で、MOCVD(有機金属化学気相蒸着法)は、光デバイスや光速デバイスなどの有効な化合物半導体の薄膜を形成することができる成膜処理技術として注目されている。   In the field of semiconductor devices, a film forming technique for forming a desired film on the surface of a substrate is one of important manufacturing techniques. Among these film formation techniques, MOCVD (Metal Organic Chemical Vapor Deposition) has attracted attention as a film formation technique that can form an effective compound semiconductor thin film such as an optical device or a light speed device.

たとえば、特開2006−173540号公報(特許文献1)においては、反応管内に設けたサセプタに支持される被処理基板をサセプタを介して加熱するとともに、被処理基板面に対して平行に原料ガスを流して薄膜の気相成長を行なう気相成長装置において、サセプタより原料ガス流れ方向上流側の反応管に、反応管内に導入される原料ガスの温度をその熱分解温度以下に制御する第1温度制御領域を設けるとともに、第1温度制御領域とサセプタとの間に、第1温度制御領域によって制御される温度より高く、かつ、基板の加熱温度よりも低い温度に制御する第2温度制御領域を設けたことを特徴とするものが開示されている。   For example, in Japanese Patent Application Laid-Open No. 2006-173540 (Patent Document 1), a substrate to be processed supported by a susceptor provided in a reaction tube is heated via the susceptor, and a source gas is parallel to the surface of the substrate to be processed. In a vapor phase growth apparatus that performs vapor phase growth of a thin film by flowing a gas, the temperature of the source gas introduced into the reaction tube is controlled to be equal to or lower than the thermal decomposition temperature in the reaction tube upstream of the susceptor in the source gas flow direction. A second temperature control region in which a temperature control region is provided, and is controlled between the first temperature control region and the susceptor so as to be higher than the temperature controlled by the first temperature control region and lower than the substrate heating temperature. What is characterized by providing is disclosed.

また、特開2005−322837号公報(特許文献2)においては、原料ガスを被処理基板が設けられる反応管に導入し、導入される原料ガスを加熱することによって化学反応をさせながら被処理基板上の成膜される面に沿う方向に流して成膜原料成分を被処理基板上に成長させる気相成長装置において、反応管内の被処理基板よりもガスの流過方向上流側に設けられる複数のガス加熱ヒーターと、複数のガス加熱ヒーターを個別に温度制御する制御手段とを含むことを特徴とするものが開示されている。   In JP 2005-322837 A (Patent Document 2), a source gas is introduced into a reaction tube provided with a substrate to be processed, and the introduced source gas is heated to cause a chemical reaction while being heated. In a vapor phase growth apparatus for growing a film forming raw material component on a substrate to be processed by flowing it in a direction along the surface on which the film is formed, a plurality of devices provided upstream of the substrate in the reaction tube in the gas flow direction. And a control means for individually controlling the temperature of the plurality of gas heaters is disclosed.

特開2006−173540号公報JP 2006-173540 A 特開2005−322837号公報JP 2005-322837 A

図8は、原料ガスが水平方向に流れるように形成された従来の横型の一般的な気相成長装置の概略断面図を示す図である。   FIG. 8 is a diagram showing a schematic cross-sectional view of a conventional horizontal general vapor phase growth apparatus formed so that the source gas flows in the horizontal direction.

従来の気相成長装置は、基板保持部材3を介して被処理基板4を支持するサセプタ1を有する。サセプタ1の下部には加熱用のヒータ2が配置され、ヒータ2を動作させることにより、サセプタ1を介して被処理基板4を加熱することができる。ヒータ2は、サセプタ1と離間しており、周辺雰囲気を介してサセプタ1を加熱する。ヒータ2を動作させ、被処理基板4の温度が所定の温度に達した状態で、原料ガスを反応室6の一方の側面に設けられたガス導入口5から反応室6に導入する。導入された原料ガスは、反応室6の上部に設けれたガス流路形成部材7とサセプタ1との間に形成されたガス流路を流れ(図8中矢印)、被処理基板4表面に供給される。   The conventional vapor phase growth apparatus has a susceptor 1 that supports a substrate 4 to be processed via a substrate holding member 3. A heater 2 for heating is disposed below the susceptor 1, and the substrate to be processed 4 can be heated via the susceptor 1 by operating the heater 2. The heater 2 is separated from the susceptor 1 and heats the susceptor 1 through the surrounding atmosphere. The heater 2 is operated, and the raw material gas is introduced into the reaction chamber 6 from the gas inlet 5 provided on one side surface of the reaction chamber 6 in a state where the temperature of the substrate 4 to be processed has reached a predetermined temperature. The introduced source gas flows through the gas flow path formed between the gas flow path forming member 7 provided in the upper part of the reaction chamber 6 and the susceptor 1 (arrow in FIG. 8), and reaches the surface of the substrate 4 to be processed. Supplied.

被処理基板4に対向する領域において、原料ガスが熱分解され、被処理基板4上に結晶膜が成膜される。成膜に寄与しないガスは、反応室6の他方の側面に設けれたガス排気口8から排気される。   In a region facing the substrate 4 to be processed, the source gas is thermally decomposed, and a crystal film is formed on the substrate 4 to be processed. Gas that does not contribute to film formation is exhausted from a gas exhaust port 8 provided on the other side surface of the reaction chamber 6.

ここで、サセプタ1は回転軸を有し、回転軸を中心に回転することができる。また、基板保持部材3は被処理基板4を保持した状態で回転することができる。これらサセプタ1および基板保持部材3の回転により、被処理基板4の温度分布を均一にすることができるとともに、被処理基板4上の原料ガス濃度を均一にすることができるため、結晶膜を被処理基板4上で均一に成長させることができる。   Here, the susceptor 1 has a rotation axis and can rotate around the rotation axis. The substrate holding member 3 can be rotated while holding the substrate to be processed 4. By rotating the susceptor 1 and the substrate holding member 3, the temperature distribution of the substrate to be processed 4 can be made uniform and the source gas concentration on the substrate to be processed 4 can be made uniform. It is possible to grow uniformly on the processing substrate 4.

しかしながら、成膜時には被処理基板4だけでなくサセプタ1やガス流路形成部材7も成膜用のヒータ2により温度が上昇しているため、原料ガスがサセプタ1やガス流路形成部材7表面で熱分解し、副生成物が形成される。サセプタ1やガス流路形成部材7の表面に付着した副生成物が剥がれると異物となって被処理基板4に付着し、歩留まりを低下させるという問題がある。   However, since the temperature of not only the substrate to be processed 4 but also the susceptor 1 and the gas flow path forming member 7 is increased by the film forming heater 2 during film formation, the source gas is exposed to the surface of the susceptor 1 and the gas flow path forming member 7. And by-products are formed. When the by-product attached to the surface of the susceptor 1 or the gas flow path forming member 7 is peeled off, it becomes a foreign substance and adheres to the substrate 4 to be processed, resulting in a problem that the yield is lowered.

これに対し、特許文献1または特許文献2に記載の発明では、サセプタ1やガス流路形成部材7の温度については十分に管理しておらず、サセプタ1やガス流路形成部材7に生成された副生成物の剥がれによる異物の発生については、十分に考慮されていない。   On the other hand, in the invention described in Patent Document 1 or Patent Document 2, the temperatures of the susceptor 1 and the gas flow path forming member 7 are not sufficiently controlled and are generated in the susceptor 1 and the gas flow path forming member 7. The generation of foreign substances due to peeling of by-products is not fully considered.

本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、サセプタまたはガス流路形成部材の温度を制御し、副生成物の剥がれによる異物の発生を低減させることを可能とする気相成長装置および半導体装置の製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to control the temperature of a susceptor or a gas flow path forming member and reduce the generation of foreign substances due to peeling of by-products. It is another object of the present invention to provide a vapor phase growth apparatus and a method for manufacturing a semiconductor device.

本発明に係る気相成長装置は、被処理基板上のガス流路に原料ガスを流し、被処理基板を加熱することにより気相成長を行なうものであって、被処理基板を保持するサセプタと、サセプタとの間にガス流路を構成するように、サセプタに対向して配置されたガス流路形成部材と、サセプタおよびガス流路形成部材のうち少なくとも一方に設けられた複数の温度計とを備える。上記複数の温度計は、第1温度計と、第1温度計に対してガス流路の下流側に設けられた第2温度計とを含む。   A vapor phase growth apparatus according to the present invention performs vapor phase growth by flowing a raw material gas through a gas flow path on a substrate to be processed and heating the substrate to be processed, and a susceptor for holding the substrate to be processed; A gas flow path forming member disposed to face the susceptor so as to form a gas flow path between the susceptor and a plurality of thermometers provided on at least one of the susceptor and the gas flow path forming member. Is provided. The plurality of thermometers includes a first thermometer and a second thermometer provided on the downstream side of the gas flow path with respect to the first thermometer.

1つの実施態様では、上記気相成長装置は、複数の温度計の測定結果に基づいてガス流路における所定位置の温度を制御する温度制御機構をさらに備える。   In one embodiment, the vapor phase growth apparatus further includes a temperature control mechanism that controls the temperature at a predetermined position in the gas flow path based on the measurement results of a plurality of thermometers.

1つの実施態様では、上記気相成長装置において、上記温度制御機構は、第1温度計の測定結果に基づいてガス流路における第1位置の温度を制御する第1温度制御機構と、第2温度計の測定結果に基づいてガス流路における第1位置よりも下流側の第2位置の温度を制御する第2温度制御機構とを有する。上記第1温度制御機構および第2温度制御機構は、第1位置および第2位置の温度を互いに独立して制御することができる。   In one embodiment, in the vapor phase growth apparatus, the temperature control mechanism includes a first temperature control mechanism that controls a temperature at a first position in the gas flow path based on a measurement result of the first thermometer, and a second temperature control mechanism. And a second temperature control mechanism that controls the temperature of the second position downstream of the first position in the gas flow path based on the measurement result of the thermometer. The first temperature control mechanism and the second temperature control mechanism can control the temperatures of the first position and the second position independently of each other.

1つの実施態様では、上記気相成長装置において、上記複数の温度制御機構は、中心が同一となるように配置された複数の円環状部材を含む。   In one embodiment, in the vapor phase growth apparatus, the plurality of temperature control mechanisms include a plurality of annular members arranged so as to have the same center.

1つの実施態様では、上記気相成長装置において、上記温度制御機構は、ガス流路から離間した位置に配置された温度調整部材を含む。   In one embodiment, in the vapor phase growth apparatus, the temperature control mechanism includes a temperature adjusting member disposed at a position separated from the gas flow path.

本発明に係る半導体装置の製造方法は、半導体基板を準備する工程と、半導体基板をサセプタによって保持する工程と、サセプタ上に形成されたガス流路に原料ガスを流す工程と、ガス流路の上流側に配置された第1温度計および第1温度計に対してガス流路の下流側に配置された第2温度計を含む複数の温度計によって前記サセプタまたはガス流路形成部材のうち少なくとも一方の温度を測定しながら、半導体基板をサセプタを介してヒータで加熱する工程とを備える。   A method of manufacturing a semiconductor device according to the present invention includes a step of preparing a semiconductor substrate, a step of holding the semiconductor substrate by a susceptor, a step of flowing a source gas through a gas flow path formed on the susceptor, At least one of the susceptor and the gas flow path forming member by a plurality of thermometers including a first thermometer disposed on the upstream side and a second thermometer disposed on the downstream side of the gas flow path with respect to the first thermometer. A step of heating the semiconductor substrate with a heater through a susceptor while measuring one temperature.

1つの実施態様では、上記半導体装置の製造方法は、上記複数の温度計の測定結果に基づいて、ガス流路の所定位置を加熱または冷却する工程をさらに備える。   In one embodiment, the manufacturing method of the semiconductor device further includes a step of heating or cooling a predetermined position of the gas flow path based on measurement results of the plurality of thermometers.

1つの実施態様では、上記半導体装置の製造方法において、上記ガス流路の所定位置を加熱または冷却する工程において、ガス流路における第1位置および第2位置の温度を互いに独立して調整する。   In one embodiment, in the method of manufacturing the semiconductor device, in the step of heating or cooling the predetermined position of the gas flow path, the temperatures of the first position and the second position in the gas flow path are adjusted independently of each other.

本発明によれば、サセプタまたはガス流路形成部材の温度を制御し、副生成物による異物を低減させることを可能とする気相成長装置および半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the vapor phase growth apparatus which can control the temperature of a susceptor or a gas flow path formation member, and can reduce the foreign material by a by-product, and a semiconductor device can be provided.

本発明の実施の形態1に係る気相成長装置の概略断面図である。It is a schematic sectional drawing of the vapor phase growth apparatus which concerns on Embodiment 1 of this invention. 図1に示すガス流路形成部材およびサセプタの詳細を説明する図である。It is a figure explaining the detail of the gas flow path formation member and susceptor shown in FIG. 図2に示す温度制御機構を説明する図である。It is a figure explaining the temperature control mechanism shown in FIG. 半導体装置の製造フローを示すフロー図である。It is a flowchart which shows the manufacturing flow of a semiconductor device. ガス濃度の異なる領域における温度制御機構の動作を説明する図である。It is a figure explaining operation | movement of the temperature control mechanism in the area | region where gas concentrations differ. サセプタの温度と被処理基板上の異物数との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a susceptor, and the number of the foreign materials on a to-be-processed substrate. ガス流路形成部材の温度と被処理基板上の異物数との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a gas flow path formation member, and the number of the foreign materials on a to-be-processed substrate. 従来の気相成長装置の概略断面図である。It is a schematic sectional drawing of the conventional vapor phase growth apparatus.

以下に、本発明の実施の形態について説明する。なお、同一または相当する部分に同一の参照符号を付し、その説明を繰返さない場合がある。   Embodiments of the present invention will be described below. Note that the same or corresponding portions are denoted by the same reference numerals, and the description thereof may not be repeated.

なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、以下の実施の形態において、各々の構成要素は、特に記載がある場合を除き、本発明にとって必ずしも必須のものではない。   Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the following embodiments, each component is not necessarily essential for the present invention unless otherwise specified.

(実施の形態1)
図1は、実施の形態1に係る気相成長装置の概略断面図である。図1を参照して、本実施の形態に係る気相成長装置は、基板保持部材3を介して被処理基板4を保持するサセプタ1と、サセプタ1の下部に設けられたヒータ2と、反応室6の中央部に設けられたガス導入口5と、サセプタ1に対向して配置され原料ガスの流路を形成するガス流路形成部材7と、ガス排気口8と、サセプタ1を回転させる回転軸9とを備える。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of a vapor phase growth apparatus according to the first embodiment. Referring to FIG. 1, the vapor phase growth apparatus according to the present embodiment includes a susceptor 1 that holds a substrate to be processed 4 via a substrate holding member 3, a heater 2 provided below the susceptor 1, and a reaction. The gas inlet 5 provided in the center of the chamber 6, the gas flow path forming member 7 that is disposed opposite to the susceptor 1 to form the flow path of the source gas, the gas exhaust port 8, and the susceptor 1 are rotated. And a rotating shaft 9.

サセプタ1は、たとえば、円盤状であり、サセプタ上1には複数の被処理基板4が設置できるようになっている。   The susceptor 1 has a disk shape, for example, and a plurality of substrates to be processed 4 can be installed on the susceptor 1.

ヒータ2を、動作させることにより、サセプタ1を介して被処理基板4を加熱することができる。この際、周辺雰囲気を介してガス流路形成部材7も加熱される。サセプタ1の凹部に形成された基板保持部材3によって、被処理基板4が保持される。基板保持部材3は、回転することができる。   By operating the heater 2, the substrate 4 to be processed can be heated via the susceptor 1. At this time, the gas flow path forming member 7 is also heated through the surrounding atmosphere. The substrate 4 to be processed is held by the substrate holding member 3 formed in the recess of the susceptor 1. The substrate holding member 3 can rotate.

ガス導入口5は、たとえば、中心軸と同軸の多層管から成り、複数の原料ガスを被処理基板4に平行となる方向に導入することができる(図1中矢印)。導入された原料ガスは、ガス流路形成部材7とサセプタ1との間を通って、ガス排気口8から排出される。ガス流路形成部材7は、ガス導入口5を中心とする円盤状の部材である。ガス導入口5と回転軸9とは中心軸を同軸とし、互いに対向するように配置されている。ガス排気口8は、反応室6の下部にサセプタ1を挟むように形成されている。   The gas inlet 5 is formed of, for example, a multilayer tube coaxial with the central axis, and can introduce a plurality of source gases in a direction parallel to the substrate 4 to be processed (arrow in FIG. 1). The introduced source gas passes between the gas flow path forming member 7 and the susceptor 1 and is discharged from the gas exhaust port 8. The gas flow path forming member 7 is a disk-shaped member centered on the gas inlet 5. The gas inlet 5 and the rotating shaft 9 are arranged so that the central axes are coaxial and face each other. The gas exhaust port 8 is formed so as to sandwich the susceptor 1 under the reaction chamber 6.

図2は、図1に示すガス流路形成部材およびサセプタの詳細を説明する図である。図2を参照して、ガス流路形成部材7の上面には、3つの上部温度制御機構10a〜10cおよび3つの上部温度計11a〜11cが配置されている。上部温度制御機構10a〜10cは、原料ガスの進行方向において、上流から下流に向かって並んで配置されている。上部温度制御機構10a〜10cと上部温度計11a〜11cは交互に並んで配置されている。   FIG. 2 is a diagram illustrating details of the gas flow path forming member and the susceptor shown in FIG. Referring to FIG. 2, three upper temperature control mechanisms 10 a to 10 c and three upper thermometers 11 a to 11 c are arranged on the upper surface of gas flow path forming member 7. The upper temperature control mechanisms 10a to 10c are arranged side by side from upstream to downstream in the direction of travel of the source gas. Upper temperature control mechanisms 10a to 10c and upper thermometers 11a to 11c are alternately arranged.

また、サセプタ1の下面には、3つの下部温度制御機構12a〜12cと3つの下部温度計13a〜13cが配置されている。下部温度制御機構12a〜12cは、原料ガスの進行方向において、上流から下流に向かって並んで配置されている。下部温度計13a〜13cは、下部温度制御機構12a〜12cと交互に並んで配置されている。   Further, on the lower surface of the susceptor 1, three lower temperature control mechanisms 12a to 12c and three lower thermometers 13a to 13c are arranged. The lower temperature control mechanisms 12a to 12c are arranged side by side from the upstream to the downstream in the traveling direction of the source gas. The lower thermometers 13a to 13c are arranged alternately with the lower temperature control mechanisms 12a to 12c.

上部温度制御機構10a、上部温度計11a、下部温度制御機構12aおよび下部温度計13aは、被処理基板4に対して内周側(ガス導入口5,回転軸9側)に配置されている。上部温度制御機構10b、上部温度計11b、下部温度制御機構12bおよび下部温度計13bは、ガス流路形成部材7とサセプタ1とが並ぶ方向において、被処理基板4と重なる範囲に配置されている。上部温度制御機構10c、上部温度計11c、下部温度制御機構12cおよび下部温度計13cは、被処理基板4の外周側(ガス排気口8側)に配置されている。   The upper temperature control mechanism 10a, the upper thermometer 11a, the lower temperature control mechanism 12a, and the lower thermometer 13a are arranged on the inner peripheral side (the gas inlet 5 and the rotary shaft 9 side) with respect to the substrate 4 to be processed. The upper temperature control mechanism 10b, the upper thermometer 11b, the lower temperature control mechanism 12b, and the lower thermometer 13b are arranged in a range that overlaps the target substrate 4 in the direction in which the gas flow path forming member 7 and the susceptor 1 are arranged. . The upper temperature control mechanism 10c, the upper thermometer 11c, the lower temperature control mechanism 12c, and the lower thermometer 13c are arranged on the outer peripheral side (gas exhaust port 8 side) of the substrate 4 to be processed.

上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cは、たとえば、温度調整部材としてヒータを有する。上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cは、制御部と繋がっており、温度計によって測定された結果に基づいて制御部でヒータの出力を制御することにより、ガス流路形成部材7およびサセプタ1の温度を制御する。   The upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c have, for example, a heater as a temperature adjustment member. The upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c are connected to the control unit, and the gas flow path is formed by controlling the output of the heater by the control unit based on the result measured by the thermometer. The temperature of the member 7 and the susceptor 1 is controlled.

ヒータの出力制御については、手動で出力値を入力してもよく、予め把握したヒータの出力値とガス流路形成部材7およびサセプタ1の温度の相関関係に基づいて、自動で行なってもよい。上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cの温度は、互いに独立して制御することができる。   The output control of the heater may be manually input, or may be automatically performed based on the correlation between the heater output value and the temperatures of the gas flow path forming member 7 and the susceptor 1 that have been grasped in advance. . The temperatures of the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c can be controlled independently of each other.

上部温度計11a〜11cおよび下部温度計13a〜13cは、たとえば、熱電対が用いられる。熱電対は、ガス流路形成部材7の上面およびサセプタ1の下面に接するように設けられていてもよいし、ガス流路形成部材7およびサセプタ1の内部に埋め込まれていてもよい。   For example, thermocouples are used for the upper thermometers 11a to 11c and the lower thermometers 13a to 13c. The thermocouple may be provided in contact with the upper surface of the gas flow path forming member 7 and the lower surface of the susceptor 1, or may be embedded in the gas flow path forming member 7 and the susceptor 1.

図3は、図2に示す温度制御機構を説明する図である。図3(a)は、上部温度制御機構および上部温度計が配置されたガス流路形成部材の上面図である。図3(b)は、下部温度制御機構が配置されたサセプタの上面図である。   FIG. 3 is a diagram for explaining the temperature control mechanism shown in FIG. FIG. 3A is a top view of the gas flow path forming member in which the upper temperature control mechanism and the upper thermometer are arranged. FIG. 3B is a top view of the susceptor in which the lower temperature control mechanism is arranged.

図3(a)を参照して、ガス流路形成部材7の上面には、上部温度制御機構10a〜10cがガス導入口5の中心軸を中心として円環状に形成され、それぞれの径は異なっている。上部温度制御機構10a〜10cの幅は、それぞれ同一であってもよいし、異なっていてもよい。たとえば、上部温度制御機構10a〜10cの幅を内周側(10a側)から外周側(10c側)に向けて順に大きくしてもよいし、内周側(10a側)から外周側(10c側)に向けて順に小さくしてもよい。幅を変更することで、ガス流路形成部材7に伝播させる熱量を変化させることができる。   Referring to FIG. 3 (a), upper temperature control mechanisms 10a to 10c are formed in an annular shape around the central axis of gas introduction port 5 on the upper surface of gas flow path forming member 7, and the diameters thereof are different. ing. The widths of the upper temperature control mechanisms 10a to 10c may be the same or different. For example, the width of the upper temperature control mechanisms 10a to 10c may be increased in order from the inner peripheral side (10a side) to the outer peripheral side (10c side), or from the inner peripheral side (10a side) to the outer peripheral side (10c side). ) May be made smaller in order. By changing the width, the amount of heat propagated to the gas flow path forming member 7 can be changed.

上部温度計11aは、上部温度制御機構10aと10bとの間に配置され、上部温度計11bは、上部温度制御機構10bと10cとの間に配置され、上部温度計11cは上部温度制御機構10cの外周側に配置される。   The upper thermometer 11a is disposed between the upper temperature control mechanisms 10a and 10b, the upper thermometer 11b is disposed between the upper temperature control mechanisms 10b and 10c, and the upper thermometer 11c is the upper temperature control mechanism 10c. It is arrange | positioned at the outer peripheral side.

図3(b)を参照して、サセプタ1の上面には、回転軸9を中心に複数の基板保持部材3が周方向に等間隔で並んで配置される。基板保持部材3の中央に被処理基板4が配置される。サセプタ1の下面には、下部温度制御機構12a〜12cが回転軸9の中心軸を中心として円環状に形成され、それぞれの径は異なっている。   With reference to FIG. 3B, a plurality of substrate holding members 3 are arranged on the upper surface of the susceptor 1 at equal intervals in the circumferential direction around the rotation shaft 9. A substrate 4 to be processed is disposed in the center of the substrate holding member 3. Lower temperature control mechanisms 12 a to 12 c are formed in an annular shape around the central axis of the rotation shaft 9 on the lower surface of the susceptor 1, and the diameters thereof are different.

下部温度制御機構12a〜12cの幅は、それぞれ同一であってもよいし、異なっていてもよい。たとえば、下部温度制御機構12a〜12cの幅を内周側(12a側)から外周側(12c側)に向けて順に大きくしてもよいし、内周側(12a側)から外周側(12c側)に向けて順に小さくしてもよい。幅を変更することで、サセプタ1に伝播させる熱量を変化させることができる。   The widths of the lower temperature control mechanisms 12a to 12c may be the same or different. For example, the widths of the lower temperature control mechanisms 12a to 12c may be increased in order from the inner peripheral side (12a side) to the outer peripheral side (12c side), or from the inner peripheral side (12a side) to the outer peripheral side (12c side). ) May be made smaller in order. By changing the width, the amount of heat propagated to the susceptor 1 can be changed.

下部温度計13aは、下部温度制御機構12aと12bとの間に配置され、下部温度計13bは、下部温度制御機構12bと12cとの間に配置され、下部温度計13cは下部温度制御機構12cの外周側に配置される。   The lower thermometer 13a is disposed between the lower temperature control mechanisms 12a and 12b, the lower thermometer 13b is disposed between the lower temperature control mechanisms 12b and 12c, and the lower thermometer 13c is the lower temperature control mechanism 12c. It is arrange | positioned at the outer peripheral side.

図4は、半導体装置の製造フローを示すフロー図である。図4を参照して、まず、本実施の形態に係る気相成長装置のサセプタ1上に搭載する被処理基板4を準備する(S10工程)。準備された複数の被処理基板4をそれぞれ基板保持部材3に載置する(S20工程)。次に、サセプタ1をヒータ2によって加熱し、被処理基板4の温度を成膜処理に必要な温度(原料ガスを熱分解させるのに必要な温度)に昇温させる(S30工程)。このとき、サセプタ1および基板保持部材3を回転させる。   FIG. 4 is a flowchart showing a manufacturing flow of the semiconductor device. Referring to FIG. 4, first, a substrate 4 to be processed to be mounted on the susceptor 1 of the vapor phase growth apparatus according to the present embodiment is prepared (step S10). The prepared plurality of substrates to be processed 4 are respectively placed on the substrate holding member 3 (step S20). Next, the susceptor 1 is heated by the heater 2, and the temperature of the substrate 4 to be processed is raised to a temperature necessary for the film forming process (a temperature necessary for thermally decomposing the source gas) (step S30). At this time, the susceptor 1 and the substrate holding member 3 are rotated.

被処理基板4が原料ガスを熱分解させる温度になった後、反応室6中央部に配置されたガス導入口5から原料ガスを導入する(S40工程)。原料ガスは、各々の被処理基板4に対して平行となるように、サセプタの外周に向かって放射状に導入される。導入された原料ガスは、ガス流路形成部材7とサセプタ1とによって形成されるガス流路を流れる。原料ガスが被処理基板4の表面に到達すると、加熱された被処理基板4の表面からの熱により原料ガスが分解する。そして、被処理基板4の表面に、原料ガスの成分を原料とする膜が形成される。   After the temperature of the substrate to be processed 4 reaches a temperature at which the source gas is thermally decomposed, the source gas is introduced from the gas inlet 5 disposed in the central portion of the reaction chamber 6 (step S40). The source gas is introduced radially toward the outer periphery of the susceptor so as to be parallel to each substrate 4 to be processed. The introduced source gas flows through the gas flow path formed by the gas flow path forming member 7 and the susceptor 1. When the source gas reaches the surface of the substrate 4 to be processed, the source gas is decomposed by heat from the heated surface of the substrate 4 to be processed. And the film | membrane which uses the component of source gas as a raw material is formed in the surface of the to-be-processed substrate 4. FIG.

ここで、サセプタ1および基板保持部材3は回転しているため、被処理基板4の温度が均一になり、被処理基板4上の原料ガスの濃度が均一となる。この結果、被処理基板4上で、半導体層としての結晶膜の成長を均一に行なうことができる。   Here, since the susceptor 1 and the substrate holding member 3 are rotating, the temperature of the substrate to be processed 4 becomes uniform, and the concentration of the source gas on the substrate to be processed 4 becomes uniform. As a result, the crystal film as the semiconductor layer can be uniformly grown on the substrate 4 to be processed.

このとき、ヒータ2から放出される熱は、ヒータ2の周辺雰囲気を介して、ガス流路形成部材7にも伝播するため、サセプタ1の温度だけでなくガス流路形成部材7の温度も上昇する。温度が上昇したガス流路形成部材7およびサセプタ1と原料ガスとが反応して、ガス流路形成部材7およびサセプタ1の表面に副生成物が生成される。副生成物が剥がれると異物となって被処理基板4の表面に付着する場合がある。   At this time, the heat released from the heater 2 propagates to the gas flow path forming member 7 through the ambient atmosphere of the heater 2, so that not only the temperature of the susceptor 1 but also the temperature of the gas flow path forming member 7 rises. To do. The gas flow path forming member 7 and the susceptor 1 whose temperature has increased react with the raw material gas, and a by-product is generated on the surfaces of the gas flow path forming member 7 and the susceptor 1. When the by-product is peeled off, it may become a foreign substance and adhere to the surface of the substrate 4 to be processed.

そこで、ヒータ2の駆動時および原料ガス導入中には、サセプタ1およびガス流路形成部材7の温度を下部温度計13a〜13cおよび上部温度計11a〜11cにて計測する(S50工程)。測定された温度に基づいて、サセプタ1およびガス流路形成部材7を下部温度制御機構12a〜12cおよび上部温度制御機構10a〜10cによって加熱または冷却し、サセプタ1およびガス流路形成部材7の温度を制御する(S60工程)。   Therefore, the temperature of the susceptor 1 and the gas flow path forming member 7 is measured by the lower thermometers 13a to 13c and the upper thermometers 11a to 11c when the heater 2 is driven and the raw material gas is introduced (step S50). Based on the measured temperature, the susceptor 1 and the gas flow path forming member 7 are heated or cooled by the lower temperature control mechanisms 12a to 12c and the upper temperature control mechanisms 10a to 10c. Is controlled (step S60).

このようにして、副生成物がサセプタ1およびガス流路形成部材7から剥がれ被処理基板4表面に付着するのを防止し、薄膜形成において、歩留まりを向上させることができる。なお、成膜形成に用いられた後の原料ガスは、ガス排気口8から排出される。   In this way, it is possible to prevent the by-product from peeling off from the susceptor 1 and the gas flow path forming member 7 and adhere to the surface of the substrate 4 to be processed, thereby improving the yield in the formation of the thin film. Note that the raw material gas used for film formation is discharged from the gas exhaust port 8.

次に、温度制御機構の動作について説明する。図5は、ガス濃度の異なる領域における温度制御機構の動作を説明する図である。図5に示すように、サセプタ1とガス流路形成部材7との間に位置する空間および上部温度制御機構10a〜10c,上部温度計11a〜11c,下部温度制御機構12a〜12c,下部温度計13a〜13cを配置する領域は、原料ガス濃度に応じて、原料ガス上流部14と被処理基板部分15と原料ガス下流部16とに分割することができる。たとえば、原料ガスにはTMGa(トリメチルガリウム)やNH等が用いられる。 Next, the operation of the temperature control mechanism will be described. FIG. 5 is a diagram for explaining the operation of the temperature control mechanism in regions with different gas concentrations. As shown in FIG. 5, the space between the susceptor 1 and the gas flow path forming member 7 and the upper temperature control mechanisms 10a to 10c, the upper thermometers 11a to 11c, the lower temperature control mechanisms 12a to 12c, and the lower thermometer The region in which 13a to 13c are arranged can be divided into a source gas upstream portion 14, a substrate portion 15 to be processed, and a source gas downstream portion 16 according to the source gas concentration. For example, TMGa (trimethyl gallium), NH 3 or the like is used as the source gas.

原料ガス上流部14は、原料ガスが被処理基板4に到達する前の領域である。被処理基板部分15は、原料ガスが被処理基板4に到達し熱分解される領域である。原料ガス下流部16は、原料ガスが熱分解された後の領域である。   The source gas upstream portion 14 is a region before the source gas reaches the substrate 4 to be processed. The processed substrate portion 15 is a region where the source gas reaches the processed substrate 4 and is thermally decomposed. The source gas downstream portion 16 is a region after the source gas is thermally decomposed.

原料ガス上流部14には、上部温度制御機構10a、上部温度計11a、下部温度制御機構12aおよび下部温度計13aが配置される。被処理基板部分15には、上部温度制御機構10b、上部温度計11b、下部温度制御機構12bおよび下部温度計13bが配置される。原料ガス下流部16には、上部温度制御機構10c、上部温度計11c、下部温度制御機構12cおよび下部温度計13cが配置される。   In the raw material gas upstream portion 14, an upper temperature control mechanism 10a, an upper thermometer 11a, a lower temperature control mechanism 12a, and a lower thermometer 13a are arranged. An upper temperature control mechanism 10b, an upper thermometer 11b, a lower temperature control mechanism 12b, and a lower thermometer 13b are disposed on the processing target substrate portion 15. In the raw material gas downstream portion 16, an upper temperature control mechanism 10c, an upper thermometer 11c, a lower temperature control mechanism 12c, and a lower thermometer 13c are arranged.

原料ガス上流部14では、被処理基板4上で原料ガスが消費されていないため、原料ガスの濃度が濃い状態となっている。また、原料ガスを熱分解しやすい温度にするため、サセプタ1およびガス流路形成部材7は、高温となっている。原料ガスの濃度が高く、高温の領域においては、原料ガスが熱分解しやすく気相成長が起こりやすため、副生成物が生成されやすい。したがって、原料ガス上流部14では副生成物が生成されやすくなる。   In the source gas upstream portion 14, since the source gas is not consumed on the substrate 4 to be processed, the concentration of the source gas is high. Further, the susceptor 1 and the gas flow path forming member 7 are at a high temperature so that the temperature of the raw material gas is easily decomposed. In the region where the concentration of the source gas is high and the temperature is high, the source gas is likely to be thermally decomposed and vapor phase growth is likely to occur. Accordingly, by-products are easily generated in the raw material gas upstream portion 14.

ここで、生成される副生成物の性質(剥がれ易さ)は、原料ガスの濃度、原料ガスが反応する温度および部材の性質によって異なる。本実施の形態に係る気相成長装置においては、ガス流路の上下方向では、原料ガスの濃度のバラツキがある。また、サセプタ1とガス流路形成部材7の材料は異なる。このため、原料ガス上流部14内でも、サセプタ1とガス流路形成部材7とを異なる温度に制御するのが好ましい。   Here, the property (ease of peeling) of the by-product generated varies depending on the concentration of the source gas, the temperature at which the source gas reacts, and the property of the member. In the vapor phase growth apparatus according to the present embodiment, the concentration of the source gas varies in the vertical direction of the gas flow path. The materials of the susceptor 1 and the gas flow path forming member 7 are different. For this reason, it is preferable to control the susceptor 1 and the gas flow path forming member 7 to different temperatures also in the source gas upstream portion 14.

原料ガスの流れにより、異物は上流から下流に流れやすいため、サセプタ1とガス流路形成部材7の温度を測定し温度制御することで、副生成物の剥がれを抑制し、異物が被処理基板4に付着することを効果的に防止することができる。   Due to the flow of the raw material gas, foreign substances are likely to flow from upstream to downstream. Therefore, by measuring the temperature of the susceptor 1 and the gas flow path forming member 7 and controlling the temperature, peeling of by-products is suppressed, and the foreign substances are processed substrates. 4 can be effectively prevented.

なお、サセプタ1およびガス流路形成部材7を冷却する場合において、原料ガス上流部14では、冷却しすぎると、被処理基板4で熱分解する温度に達することができないという問題が発生する。このため、原料ガス上流部14では、被処理基板4に原料ガスが到達した時に原料ガスが熱分解できるように、サセプタ1およびガス流路形成部材7の温度を調整する必要がある。   In the case of cooling the susceptor 1 and the gas flow path forming member 7, if the source gas upstream portion 14 is cooled too much, there arises a problem that the temperature at which the substrate 4 is thermally decomposed cannot be reached. Therefore, in the source gas upstream portion 14, it is necessary to adjust the temperatures of the susceptor 1 and the gas flow path forming member 7 so that the source gas can be thermally decomposed when the source gas reaches the substrate 4 to be processed.

原料ガス上流部14を通過した原料ガスは、被処理基板部分15に到達する。被処理基板部分15では、被処理基板4上での結晶膜の成膜に、原料ガスのほとんどが消費されるため、原料ガスの濃度は、原料ガス上流部14と比較して急激に薄くなる。また、ガス流路の上下方向では、原料ガスの濃度のバラツキが生じる。   The source gas that has passed through the source gas upstream portion 14 reaches the substrate portion 15 to be processed. In the substrate portion 15 to be processed, most of the source gas is consumed for forming the crystal film on the substrate 4 to be processed, so that the concentration of the source gas is drastically reduced as compared with the upstream portion 14 of the source gas. . In addition, the concentration of the source gas varies in the vertical direction of the gas flow path.

副生成物の剥がれ易さは、原料ガスの濃度に応じて変化するため、サセプタ1およびガス流路形成部材7の温度を原料ガス上流部14と異なる温度に設定するのが好ましい。   Since the ease of peeling of the by-product varies depending on the concentration of the raw material gas, it is preferable to set the temperatures of the susceptor 1 and the gas flow path forming member 7 to a temperature different from that of the raw material gas upstream portion 14.

たとえば、ガス流路形成部材7の温度は、上部温度制御機構10bによって842〜846℃に制御される。一方、サセプタ1の温度は、被処理基板4上で原料ガスが熱分解できるように、下部温度制御機構12bによって、1108〜1113℃に制御される。   For example, the temperature of the gas flow path forming member 7 is controlled to 842-846 ° C. by the upper temperature control mechanism 10b. On the other hand, the temperature of the susceptor 1 is controlled to 1108 to 1113 ° C. by the lower temperature control mechanism 12b so that the source gas can be thermally decomposed on the substrate 4 to be processed.

被処理基板部分15を通過した原料ガスは、原料ガス下流部16に到達する。原料ガス下流部16では、被処理基板部分15で原料ガスが消費されているため、原料ガスの濃度は、被処理基板部分15と比較してさらに薄くなる。また、ヒータ2から離れており、ガス排気口8に近いため、原料ガス、サセプタ1およびガス流路形成部材7の温度が低くなりやすい。また、ガス流路の上下方向では、原料ガスの濃度のバラツキが生じる。   The source gas that has passed through the target substrate portion 15 reaches the source gas downstream portion 16. In the raw material gas downstream portion 16, since the raw material gas is consumed in the processed substrate portion 15, the concentration of the raw material gas is further reduced as compared with the processed substrate portion 15. Moreover, since it is away from the heater 2 and close to the gas exhaust port 8, the temperatures of the source gas, the susceptor 1 and the gas flow path forming member 7 are likely to be lowered. In addition, the concentration of the source gas varies in the vertical direction of the gas flow path.

副生成物の剥がれ易さは、原料ガスの濃度および原料ガスが反応する温度に応じて変化するため、原料ガス下流部16では、サセプタ1およびガス流路形成部材7の温度を原料ガス上流部14および被処理基板部分15と比較して異なる温度に設定するのが好ましい。   Since the ease of peeling of the by-product varies depending on the concentration of the raw material gas and the temperature at which the raw material gas reacts, the temperature of the susceptor 1 and the gas flow path forming member 7 is set to the upstream portion of the raw material gas at the raw material gas downstream portion 16. 14 and the substrate portion 15 to be processed are preferably set to different temperatures.

このように、原料ガスの濃度が異なる領域において、上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cによって、それぞれ独立して温度を制御することで、各領域ごとに個別に副生成物の剥がれを防止できる。   In this way, in the regions where the concentrations of the raw material gases are different, the temperature is independently controlled by the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c, so that by-products are individually produced for each region. Can be prevented.

なお、原料ガス上流部14では、ガス導入口5から加熱されていない原料ガスが導入されるのに対して、被処理基板部分15および原料ガス下流部16では、十分に加熱され温度が上昇した原料ガスが流れる。このため、原料ガス上流部14においては、原料ガスを熱分解しやすい温度に昇温させるための熱量が必要である。したがって、上部温度制御機構10aのヒータ能力は、上部温度制御機構10bおよび上部温度制御機構10cのヒータ能力よりも大きい方が好ましい。すなわち、上部温度制御機構10aの幅は、上部温度制御機構10bの幅および上部温度制御機構10cの幅よりも大きいことが好ましい。   In the raw material gas upstream portion 14, unheated raw material gas is introduced from the gas introduction port 5, whereas in the processed substrate portion 15 and the raw material gas downstream portion 16, the material gas is sufficiently heated and the temperature rises. Source gas flows. For this reason, in the upstream part 14 of raw material gas, the calorie | heat amount for heating up raw material gas to the temperature which is easy to thermally decompose is required. Therefore, the heater capability of the upper temperature control mechanism 10a is preferably larger than the heater capabilities of the upper temperature control mechanism 10b and the upper temperature control mechanism 10c. That is, the width of the upper temperature control mechanism 10a is preferably larger than the width of the upper temperature control mechanism 10b and the width of the upper temperature control mechanism 10c.

同様に、下部温度制御機構12aのヒータ能力は、下部温度制御機構12bおよび下部温度制御機構12cのヒータ能力よりも大きい方が好ましい。すなわち、下部温度制御機構12aの幅は、下部温度制御機構12bの幅および上部温度制御機構12cの幅よりも大きいことが好ましい。   Similarly, the heater capability of the lower temperature control mechanism 12a is preferably larger than the heater capabilities of the lower temperature control mechanism 12b and the lower temperature control mechanism 12c. That is, the width of the lower temperature control mechanism 12a is preferably larger than the width of the lower temperature control mechanism 12b and the width of the upper temperature control mechanism 12c.

上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cが、原料ガスに直接接する場合には、上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cの影響を直接受け、原料ガスに温度ムラが生じる場合がある。原料ガスに温度ムラが生じると被処理基板4上に形成される膜の膜厚が不均一になるため、部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cは、ガス流路から離れた位置に配置されるのが好ましい。ガス流路から離れていれば、上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cは、ガス流路形成部材7およびサセプタ1に埋め込まれていてもよい。   When the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c are in direct contact with the source gas, the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c are directly affected by the source gas. Temperature unevenness may occur. If temperature unevenness occurs in the raw material gas, the film thickness of the film formed on the substrate to be processed 4 becomes non-uniform, so that the partial temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c are separated from the gas flow path. It is preferable to arrange at a different position. The upper temperature control mechanisms 10 a to 10 c and the lower temperature control mechanisms 12 a to 12 c may be embedded in the gas flow path forming member 7 and the susceptor 1 as long as they are separated from the gas flow path.

次に、サセプタおよびガス流路形成材料の温度と異物との関係について説明する。被処理基板上の異物数については、被処理基板に成膜された結晶膜にレーザを照射し、その反射強度から異物数を計測している。   Next, the relationship between the temperature of the susceptor and the gas flow path forming material and foreign matters will be described. Regarding the number of foreign matters on the substrate to be processed, the crystal film formed on the substrate to be processed is irradiated with a laser, and the number of foreign matters is measured from the reflection intensity.

図6は、サセプタの温度と被処理基板上の異物数との関係を示すグラフである。グラフの縦軸は被処理基板4上の異物数であり、横軸はサセプタ1の温度である。サセプタ1の温度については、被処理基板部分15にて測定した結果を示している。   FIG. 6 is a graph showing the relationship between the temperature of the susceptor and the number of foreign substances on the substrate to be processed. The vertical axis of the graph is the number of foreign matters on the substrate 4 to be processed, and the horizontal axis is the temperature of the susceptor 1. About the temperature of the susceptor 1, the result measured in the to-be-processed substrate part 15 is shown.

ここで、サセプタ1の温度が低いほど、被処理基板4上の異物数が少なく、サセプタ1の温度が高いほど、被処理基板4上の異物数が多くなっている。たとえば、サセプタ1の温度が約1113℃の時における被処理基板4上の異物数は、約3550個に対して、サセプタ1の温度が約1119℃の時における被処理基板4上の異物数は、6650個である。サセプタの温度が5℃上昇するだけで、被処理基板4上の異物数が大幅に増加している。   Here, the lower the temperature of the susceptor 1, the smaller the number of foreign matters on the substrate to be processed 4, and the higher the temperature of the susceptor 1, the larger the number of foreign matters on the substrate to be processed 4. For example, the number of foreign matters on the substrate to be processed 4 when the temperature of the susceptor 1 is about 1113 ° C. is about 3550, whereas the number of foreign matters on the substrate 4 to be processed when the temperature of the susceptor 1 is about 1119 ° C. , 6650. The number of foreign matters on the substrate to be processed 4 is greatly increased only by increasing the temperature of the susceptor by 5 ° C.

図7は、ガス流路形成部材の温度と被処理基板上の異物数との関係を示すグラフである。グラフの縦軸は被処理基板4上の異物数であり、横軸はガス流路形成部材7の温度である。ガス流路形成部材7の温度については、被処理基板部分15にて測定した結果を示している。   FIG. 7 is a graph showing the relationship between the temperature of the gas flow path forming member and the number of foreign substances on the substrate to be processed. The vertical axis of the graph is the number of foreign substances on the substrate 4 to be processed, and the horizontal axis is the temperature of the gas flow path forming member 7. About the temperature of the gas flow path formation member 7, the result measured in the to-be-processed substrate part 15 is shown.

ここで、ガス流路形成部材7の温度が低いほど、被処理基板4上の異物数が少なく、ガス流路形成部材7の温度が高いほど、異物数が多くなっている。たとえば、ガス流路形成部材7の温度が約846℃の時における被処理基板4上の異物数は約3550個に対して、ガス流路形成部材7の温度が約849℃の時における被処理基板4上の異物数は約6650個である。ガス流路形成部材7の温度がわずか3℃上昇するだけで、被処理基板4上の異物数が大幅に増加している。   Here, the lower the temperature of the gas flow path forming member 7, the smaller the number of foreign substances on the substrate 4 to be processed, and the higher the temperature of the gas flow path forming member 7, the greater the number of foreign substances. For example, when the temperature of the gas flow path forming member 7 is about 846 ° C., the number of foreign matters on the substrate 4 to be processed is about 3550, whereas the temperature of the gas flow path forming member 7 is about 849 ° C. The number of foreign matters on the substrate 4 is about 6650. The number of foreign matters on the substrate to be processed 4 is greatly increased only by raising the temperature of the gas flow path forming member 7 by only 3 ° C.

上述のように、わずかな温度上昇で、異物数が大幅に増加してしまうため、上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cは、それぞれ独立して精密に温度制御できることが好ましい。   As described above, since the number of foreign matters greatly increases with a slight increase in temperature, it is preferable that the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c can be independently and precisely controlled. .

原料ガス上流部14、被処理基板部分15、原料ガス下流部16のそれぞれの環境に応じて、上部温度制御機構10a〜10cの幅および下部温度制御機構12a〜12cの幅を適宜変更するとともに、上部温度制御機構、下部温度制御機構、上部温度計および下部温度計の数を増やすことで、サセプタ1およびガス流路形成部材7に伝播させる熱量を適宜変更できるとともに、サセプタ1およびガス流路形成部材7の温度を測定し制御できる範囲を増やすことができ、精密な温度制御が可能となる。   While appropriately changing the widths of the upper temperature control mechanisms 10a to 10c and the widths of the lower temperature control mechanisms 12a to 12c according to the environment of the source gas upstream portion 14, the substrate portion 15 to be processed, and the source gas downstream portion 16, By increasing the number of the upper temperature control mechanism, the lower temperature control mechanism, the upper thermometer, and the lower thermometer, the amount of heat transmitted to the susceptor 1 and the gas flow path forming member 7 can be appropriately changed, and the susceptor 1 and the gas flow path formation The range in which the temperature of the member 7 can be measured and controlled can be increased, and precise temperature control becomes possible.

上述のようにサセプタ1およびガス流路形成部材7の温度を適切に制御することによって、被処理基板4に付着する異物の発生および異物の剥がれを抑制することができる。   By appropriately controlling the temperatures of the susceptor 1 and the gas flow path forming member 7 as described above, it is possible to suppress the generation of foreign matter adhering to the substrate 4 to be processed and the peeling of the foreign matter.

本実施の形態においては、上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cはヒータを有すると説明したが、ヒータに限定されず、冷却管に冷却水を流し、冷却水の温度および流量を制御することにより温度を制御する温度制御機構であってもよいし、サセプタ1やガス流路形成部材7に冷却用ガスを流し、ガスの種類や流量を制御することにより温度を制御する温度制御機構であってもよい。   In the present embodiment, the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c have been described as having heaters. However, the present invention is not limited to heaters, and cooling water is allowed to flow through cooling pipes, It may be a temperature control mechanism that controls the temperature by controlling the flow rate, or the cooling gas is allowed to flow through the susceptor 1 or the gas flow path forming member 7, and the temperature is controlled by controlling the type and flow rate of the gas. A temperature control mechanism may be used.

また、本実施の形態においては、上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cは各々独立して異なる温度に制御すると説明したが、複数のヒータの出力値を同一にしてもよいし、1つのヒータで温度を制御してもよい。このような構成においては、少なくも2つの温度計を上流側、下流側に配置することで、温度計を1つ設置した場合と比較して、早期に温度異常を発見することができる。   In the present embodiment, it has been described that the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c are independently controlled to different temperatures, but the output values of a plurality of heaters may be the same. The temperature may be controlled by one heater. In such a configuration, by arranging at least two thermometers on the upstream side and the downstream side, a temperature abnormality can be detected at an early stage as compared with the case where one thermometer is installed.

さらに、本実施の形態おいては、上部温度制御機構10a〜10cおよび下部温度制御機構12a〜12cは必ずしも両方必要ではなく、上部温度制御機構10a〜10cのみが備えられていてもよく、下部温度制御機構12a〜12cのみが備えられていてもよい。   Furthermore, in the present embodiment, the upper temperature control mechanisms 10a to 10c and the lower temperature control mechanisms 12a to 12c are not necessarily required, and only the upper temperature control mechanisms 10a to 10c may be provided. Only the control mechanisms 12a to 12c may be provided.

以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments of the present invention have been described above, the embodiments disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 サセプタ、2 ヒータ、3 基板保持部材、4 被処理基板、5 ガス導入口、6 反応室、7 ガス流路形成部材、8 ガス排気口、9 回転軸、10a〜10c 上部温度制御機構、11a〜11c 上部温度計、12a〜12c 下部温度制御機構、13a〜13c 下部温度計、14 原料ガス上流部、15 被処理基板部分、16 原料ガス下流部。   Reference Signs List 1 susceptor, 2 heater, 3 substrate holding member, 4 substrate to be processed, 5 gas inlet, 6 reaction chamber, 7 gas flow path forming member, 8 gas exhaust port, 9 rotating shaft, 10a to 10c upper temperature control mechanism, 11a -11c Upper thermometer, 12a-12c Lower temperature control mechanism, 13a-13c Lower thermometer, 14 Raw material gas upstream part, 15 Processed substrate part, 16 Raw material gas downstream part.

Claims (8)

被処理基板上のガス流路に原料ガスを流し、前記被処理基板を加熱することにより気相成長を行なう気相成長装置であって、
前記被処理基板を保持するサセプタと、
前記サセプタとの間に前記ガス流路を構成するように、前記サセプタに対向して配置されたガス流路形成部材と、
前記サセプタおよび前記ガス流路形成部材のうち少なくとも一方に設けられた複数の温度計とを備え、
前記複数の温度計は、第1温度計と、前記第1温度計に対して前記ガス流路の下流側に設けられた第2温度計とを含む、気相成長装置。
A vapor phase growth apparatus for performing vapor phase growth by flowing a source gas through a gas flow path on a substrate to be processed and heating the substrate to be processed.
A susceptor for holding the substrate to be processed;
A gas flow path forming member disposed to face the susceptor so as to constitute the gas flow path between the susceptor and
A plurality of thermometers provided on at least one of the susceptor and the gas flow path forming member,
The plurality of thermometers includes a first thermometer and a second thermometer provided downstream of the gas flow path with respect to the first thermometer.
前記複数の温度計の測定結果に基づいて前記ガス流路における所定位置の温度を制御する温度制御機構をさらに備えた、請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, further comprising a temperature control mechanism that controls a temperature at a predetermined position in the gas flow path based on measurement results of the plurality of thermometers. 前記温度制御機構は、
前記第1温度計の測定結果に基づいて前記ガス流路における第1位置の温度を制御する第1温度制御機構と、
前記第2温度計の測定結果に基づいて前記ガス流路における前記第1位置よりも下流側の第2位置の温度を制御する第2温度制御機構とを有し、
前記第1温度制御機構および前記第2温度制御機構は、前記第1位置および前記第2位置の温度を互いに独立して制御することができる、請求項2に記載の気相成長装置。
The temperature control mechanism is
A first temperature control mechanism for controlling the temperature of the first position in the gas flow path based on the measurement result of the first thermometer;
A second temperature control mechanism for controlling the temperature of the second position downstream of the first position in the gas flow path based on the measurement result of the second thermometer,
The vapor phase growth apparatus according to claim 2, wherein the first temperature control mechanism and the second temperature control mechanism can control the temperatures of the first position and the second position independently of each other.
前記複数の温度制御機構は、中心が同一となるように配置された複数の円環状部材を含む、請求項3に記載の気相成長装置。   4. The vapor phase growth apparatus according to claim 3, wherein the plurality of temperature control mechanisms include a plurality of annular members arranged so as to have the same center. 5. 前記温度制御機構は、前記ガス流路から離間した位置に配置された温度調整部材を含む、請求項2から請求項4のいずれかに記載の気相成長装置。   5. The vapor phase growth apparatus according to claim 2, wherein the temperature control mechanism includes a temperature adjustment member disposed at a position separated from the gas flow path. 半導体基板を準備する工程と、
前記半導体基板をサセプタによって保持する工程と、
前記サセプタ上に形成されたガス流路に原料ガスを流す工程と、
前記ガス流路の上流側に配置された第1温度計および前記第1温度計に対して前記ガス流路の下流側に配置された第2温度計を含む複数の温度計によって前記サセプタおよびガス流路形成部材のうち少なくとも一方の温度を測定しながら、前記半導体基板を前記サセプタを介してヒータで加熱する工程とを備えた、半導体装置の製造方法。
Preparing a semiconductor substrate;
Holding the semiconductor substrate with a susceptor;
Flowing a source gas through a gas flow path formed on the susceptor;
The susceptor and gas by a plurality of thermometers including a first thermometer disposed upstream of the gas flow path and a second thermometer disposed downstream of the gas flow path with respect to the first thermometer. And a step of heating the semiconductor substrate with a heater through the susceptor while measuring the temperature of at least one of the flow path forming members.
前記複数の温度計の測定結果に基づいて、前記ガス流路の所定位置を加熱または冷却する工程をさらに備えた、請求項6に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 6, further comprising a step of heating or cooling a predetermined position of the gas flow path based on measurement results of the plurality of thermometers. 前記ガス流路の所定位置を加熱または冷却する工程において、前記ガス流路における第1位置および第2位置の温度を互いに独立して調整する、請求項7に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 7, wherein in the step of heating or cooling the predetermined position of the gas flow path, the temperatures of the first position and the second position in the gas flow path are adjusted independently of each other.
JP2012158612A 2012-07-17 2012-07-17 Vapor phase growth apparatus and semiconductor device manufacturing method Expired - Fee Related JP5947133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158612A JP5947133B2 (en) 2012-07-17 2012-07-17 Vapor phase growth apparatus and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158612A JP5947133B2 (en) 2012-07-17 2012-07-17 Vapor phase growth apparatus and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2014022500A true JP2014022500A (en) 2014-02-03
JP5947133B2 JP5947133B2 (en) 2016-07-06

Family

ID=50197070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158612A Expired - Fee Related JP5947133B2 (en) 2012-07-17 2012-07-17 Vapor phase growth apparatus and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5947133B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519334A (en) * 2013-04-05 2016-06-30 ザイコン アイピー ビーヴイXeikon Ip Bv Digital printing process and toner dispersion
WO2019012344A1 (en) * 2017-07-14 2019-01-17 King Abdullah University Of Science And Technology Metal organic chemical vapor deposition system and method
JP2023533401A (en) * 2021-06-01 2023-08-03 浙江求是半導体設備有限公司 Heating body for epitaxial growth equipment
JP2023533400A (en) * 2021-06-01 2023-08-03 浙江求是半導体設備有限公司 epitaxial growth equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071591U (en) * 2000-03-08 2000-09-14 株式会社アドバンテスト Vapor phase epitaxial growth equipment
WO2001014619A1 (en) * 1999-08-24 2001-03-01 Aixtron Ag Method and device for depositing materials with a large electronic energy gap and high binding energy
JP2008195995A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Vapor deposition apparatus
JP2008235438A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Depositing method and depositing device
JP2008270589A (en) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device, and manufacturing apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014619A1 (en) * 1999-08-24 2001-03-01 Aixtron Ag Method and device for depositing materials with a large electronic energy gap and high binding energy
JP2003507319A (en) * 1999-08-24 2003-02-25 アイクストロン、アーゲー Method and apparatus for depositing materials having a wide electronic bandgap and high binding energy
JP3071591U (en) * 2000-03-08 2000-09-14 株式会社アドバンテスト Vapor phase epitaxial growth equipment
JP2008195995A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Vapor deposition apparatus
JP2008235438A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Depositing method and depositing device
JP2008270589A (en) * 2007-04-23 2008-11-06 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device, and manufacturing apparatus therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519334A (en) * 2013-04-05 2016-06-30 ザイコン アイピー ビーヴイXeikon Ip Bv Digital printing process and toner dispersion
WO2019012344A1 (en) * 2017-07-14 2019-01-17 King Abdullah University Of Science And Technology Metal organic chemical vapor deposition system and method
US11661655B2 (en) 2017-07-14 2023-05-30 King Abdullah University Of Science And Technology Metalorganic chemical vapor deposition system and method
JP2023533401A (en) * 2021-06-01 2023-08-03 浙江求是半導体設備有限公司 Heating body for epitaxial growth equipment
JP2023533400A (en) * 2021-06-01 2023-08-03 浙江求是半導体設備有限公司 epitaxial growth equipment
JP7417721B2 (en) 2021-06-01 2024-01-18 浙江求是半導体設備有限公司 epitaxial growth equipment
JP7417722B2 (en) 2021-06-01 2024-01-18 浙江求是半導体設備有限公司 Heating element for epitaxial growth equipment

Also Published As

Publication number Publication date
JP5947133B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP6134767B2 (en) Wafer and thin film temperature control method
JP5518043B2 (en) Temperature measurement and control of wafer support in heat treatment chamber
US10077508B2 (en) Multizone control of lamps in a conical lamphead using pyrometers
US7700376B2 (en) Edge temperature compensation in thermal processing particularly useful for SOI wafers
JP2018113443A (en) Reactor system and method for reducing residue build-up during film deposition process
JP5947133B2 (en) Vapor phase growth apparatus and semiconductor device manufacturing method
JP2007116094A (en) Temperature control method of epitaxial growth apparatus
TWI570265B (en) Film forming apparatus, base, and film forming method
JP2015216269A (en) Vapor phase growth method and vapor phase growth apparatus
JP6272743B2 (en) Substrate processing equipment
JP2000012463A (en) Film formation device
JP2008270589A (en) Manufacturing method of semiconductor device, and manufacturing apparatus therefor
JP4978608B2 (en) Epitaxial wafer manufacturing method
JPH1097999A (en) Heating device, processing device, heating method and processing method
JP2006019583A (en) Method and device for heat treatment
JP2015119005A (en) Film forming device
JP2005109098A (en) Thin film forming device and method
JP2012174731A (en) Vapor phase deposition method and compound semiconductor film formed by vapor phase deposition method
JP2017190506A (en) Vapor growth apparatus and vapor growth method
JP2004115904A (en) Substrate treatment apparatus
TW202236550A (en) Supplemental energy for low temperature processes
JP2010199212A (en) Vapor deposition device and vapor deposition method
JP2009275254A (en) Vapor phase growth device
JP2019106462A (en) Vapor phase growth apparatus and temperature measurement method
JP2008205197A (en) Method for manufacturing compound semiconductor epitaxial wafer and compound semiconductor epitaxial wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160602

R150 Certificate of patent or registration of utility model

Ref document number: 5947133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees