JP2006019583A - Method and device for heat treatment - Google Patents

Method and device for heat treatment Download PDF

Info

Publication number
JP2006019583A
JP2006019583A JP2004197008A JP2004197008A JP2006019583A JP 2006019583 A JP2006019583 A JP 2006019583A JP 2004197008 A JP2004197008 A JP 2004197008A JP 2004197008 A JP2004197008 A JP 2004197008A JP 2006019583 A JP2006019583 A JP 2006019583A
Authority
JP
Japan
Prior art keywords
reaction chamber
window
semiconductor substrate
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197008A
Other languages
Japanese (ja)
Inventor
Shusaku Sugiyama
周作 杉山
Shinichiro Yagi
真一郎 八木
Kouzo Yokota
香蔵 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2004197008A priority Critical patent/JP2006019583A/en
Publication of JP2006019583A publication Critical patent/JP2006019583A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for heat treatment with a simple structure in which airtightness is well maintained for the entire device, frequency in maintenance for cleaning, re-assembling or the like is minimum, the temperature of a semiconductor substrate is precisely controlled, and quality of the semiconductor substrate is easily maintained for high yield in heat treatment. <P>SOLUTION: A reaction chamber 10 comprises a gas guiding inlet 4 for introducing reactive gas, a gas exhausting opening 5 for exhausting the reactive gas, and an infrared ray transmission window 16. The reaction chamber 10 comprises, in its interior, a susceptor 2 on which a semiconductor substrate 1 is placed. The reaction chamber 10 comprises, outside of it, a heating means 8 for heating the semiconductor substrate 1, a substrate temperature measuring means 11a which measures temperature of the semiconductor substrate 1 through the infrared ray transmission window 16, a reaction chamber cooling means 12 for cooling the entire reaction chamber 10, and a window cooling means 13 for cooling the infrared ray transmission window 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、反応室内に所定の反応ガスを導入して半導体基板に目的の処理を行う加熱処理装置及び加熱処理方法に関し、さらに詳しくは半導体基板の温度を精度良く制御し、且つ半導体基板の品質を容易に維持できるとともにメインテナンスの頻度を最小限に抑えた加熱処理装置及び加熱処理方法に関する。   The present invention relates to a heat treatment apparatus and a heat treatment method for introducing a predetermined reaction gas into a reaction chamber and performing a desired treatment on a semiconductor substrate, and more specifically, controlling the temperature of the semiconductor substrate with high accuracy and the quality of the semiconductor substrate. It is related with the heat processing apparatus and the heat processing method which can maintain easily and minimized the frequency of maintenance.

半導体基板に目的の処理を行う加熱処理装置として、気相成長装置、CVD(Chemical Vapor Deposition)装置、光励起CVD装置、プラズマCVD装置等があげられる。ここで、例えば気相成長装置として、シリコン半導体基板等の半導体基板に対してエピタキシャル成長を行う成膜装置があげられ、該装置は、反応室に反応ガスであるソースガスを導入し、そこで気相反応及び/又は化学反応を行うことによって半導体基板上に薄膜を形成させるものである。   As a heat treatment apparatus that performs a target process on a semiconductor substrate, a vapor phase growth apparatus, a CVD (Chemical Vapor Deposition) apparatus, a photoexcited CVD apparatus, a plasma CVD apparatus, and the like can be given. Here, for example, a vapor deposition apparatus includes a film forming apparatus that performs epitaxial growth on a semiconductor substrate such as a silicon semiconductor substrate. The apparatus introduces a source gas, which is a reactive gas, into a reaction chamber, where the vapor phase grows. A thin film is formed on a semiconductor substrate by performing a reaction and / or a chemical reaction.

図3は、従来の反応室を備えた成膜装置の一例を示す概略図である。例えば石英ガラスからなる反応室10の内部において、半導体基板1がサセプタ2の上に載置され、サセプタ回転機構3により回転する。そして、ガス導入口4から反応ガス(ソースガス)を反応室10に導入してガス排出口5から排出されていく過程において、半導体基板1の表面を通過するソースガス(図中に矢印で示されている)の一部が該表面上で化学反応をすることによって薄膜が生成し、それが堆積されていく。   FIG. 3 is a schematic view showing an example of a film forming apparatus having a conventional reaction chamber. For example, in the reaction chamber 10 made of quartz glass, the semiconductor substrate 1 is placed on the susceptor 2 and rotated by the susceptor rotating mechanism 3. Then, in the process of introducing the reaction gas (source gas) from the gas inlet 4 into the reaction chamber 10 and being discharged from the gas outlet 5, the source gas (indicated by an arrow in the figure) passing through the surface of the semiconductor substrate 1 is obtained. A portion of the film (s) is chemically reacted on the surface to form a thin film that is deposited.

このような成膜過程においては、反応室10に備えられた反応室上壁6及び反応室下壁7の内側表面にソースガスの一部が分解して生成した反応生成物が付着・堆積する。この付着・堆積した反応生成物が剥離して、成膜中の半導体基板上に塵となって付着し、成膜品質や成膜工程の歩留まりを低下させることがある。   In such a film formation process, reaction products generated by partial decomposition of the source gas are deposited and deposited on the inner surfaces of the reaction chamber upper wall 6 and the reaction chamber lower wall 7 provided in the reaction chamber 10. . The attached / deposited reaction product may be peeled off and attached as dust on the semiconductor substrate during film formation, thereby reducing film formation quality and yield in the film formation process.

そこで、反応室(成膜室)の機能構成をアウターチャンバーとインナーチャンバーの二重構造とし、成膜品質を維持するために必要な付着・堆積物を除去するメインテナンスの容易化を図る成膜室が開示されている(例えば特許文献1参照)。   Therefore, the functional configuration of the reaction chamber (film formation chamber) has a double structure of an outer chamber and an inner chamber, and a film formation chamber that facilitates maintenance to remove adhesion and deposits necessary to maintain film quality. Is disclosed (for example, see Patent Document 1).

一方、特許文献2に記載の従来のCVD装置では、例えば反応室内のサセプタに半導体基板を載置し、所定の温度に加熱した状態で反応ガスを供給して半導体基板表面に膜を形成している。この場合、ヒータ等によって下方からサセプタを加熱し、その上に載置された半導体基板を加熱する。そして、サセプタの温度制御はサセプタに熱電対を押しつけて温度を測定し、これが設定温度になるようにヒータ発熱量を調整するといった方法で行われている。このとき、実際の半導体基板温度を正確に測定するために、熱電対付きダミー基板を用いてダミー基板温度とサセプタ温度との校正を事前に行い、この結果に基づいて実際の半導体基板温度を推定するなどの対策がとられている。   On the other hand, in the conventional CVD apparatus described in Patent Document 2, for example, a semiconductor substrate is placed on a susceptor in a reaction chamber, and a reaction gas is supplied in a state heated to a predetermined temperature to form a film on the surface of the semiconductor substrate. Yes. In this case, the susceptor is heated from below by a heater or the like, and the semiconductor substrate placed thereon is heated. The temperature control of the susceptor is performed by a method in which a thermocouple is pressed against the susceptor, the temperature is measured, and the heater heat generation amount is adjusted so that this becomes a set temperature. At this time, in order to accurately measure the actual semiconductor substrate temperature, the dummy substrate temperature and the susceptor temperature are calibrated in advance using a dummy substrate with a thermocouple, and the actual semiconductor substrate temperature is estimated based on this result. Measures such as doing are taken.

しかし、ダミー基板と表面状態が違う半導体基板を処理すると、両者は熱放射の吸収率,放射率が異なるためダミー基板の温度と実際の半導体基板の温度が大きくずれる場合がある。また、CVDプロセスで最も多用される0.01〜100Torrの圧力範囲では、サセプタ温度が一定でも半導体基板温度は圧力に依存して変化することが分かっている。   However, when a semiconductor substrate having a surface state different from that of the dummy substrate is processed, the temperature of the dummy substrate and the actual temperature of the actual semiconductor substrate may be greatly deviated from each other because the absorption rate and emissivity of the heat radiation are different. Further, it has been found that in the pressure range of 0.01 to 100 Torr that is most frequently used in the CVD process, the semiconductor substrate temperature varies depending on the pressure even if the susceptor temperature is constant.

このような問題は、放射温度計を用いて半導体基板の温度を直接測定すれば解消できる。放射温度計を使用して半導体基板の温度を測定する方法の一つに、反応室上部に備えられた赤外線透過窓を介して外部から温度を測定する方法がある。   Such a problem can be solved by directly measuring the temperature of the semiconductor substrate using a radiation thermometer. One method of measuring the temperature of a semiconductor substrate using a radiation thermometer is a method of measuring the temperature from the outside through an infrared transmission window provided in the upper part of the reaction chamber.

この場合、赤外線透過窓は反応ガスにさらされるため、窓の内側に反応生成物が付着・堆積して窓が曇り、赤外線の透過率が時間とともに減少してしまう。そのため放射温度計が測定する赤外線強度がしだいに減少し、測定した温度が実際の基板温度より低くなるという問題があった。これに対して、反応室内側で窓の周囲から不活性ガスを吹き付け、反応ガスが赤外線透過窓に触れないようにして反応生成物の付着・堆積を防止するという構造が考案されていた。しかし、この方法では、不活性ガスの流れが反応ガスの流れに影響を及ぼし、成膜の均一性が損なわれるといった問題があった。さらに、不活性ガスを供給するために装置構造が複雑になり、また成膜中は常に不活性ガスを流しておく必要があるため、ガスの消費量が多くなってしまう。   In this case, since the infrared transmission window is exposed to the reaction gas, the reaction product adheres and accumulates inside the window, the window becomes cloudy, and the infrared transmittance decreases with time. As a result, the infrared intensity measured by the radiation thermometer gradually decreases, and the measured temperature becomes lower than the actual substrate temperature. On the other hand, a structure has been devised in which inert gas is blown from the periphery of the window on the inside of the reaction chamber so that the reaction gas does not touch the infrared transmission window to prevent adhesion and deposition of reaction products. However, this method has a problem that the flow of the inert gas affects the flow of the reaction gas and the uniformity of film formation is impaired. Furthermore, the structure of the apparatus becomes complicated in order to supply the inert gas, and the inert gas must always be flowed during the film formation, so that the amount of gas consumption increases.

そこで、反応室の構成を、半導体基板に対面して設けた反応ガス供給ヘッドと、この反応ガス供給ヘッドに設けた反応ガス導入口と、この反応ガス導入口の孔を通してウエハを測定するように配置した少なくとも1個の放射温度計と、放射温度計と反応ガス供給ヘッドとの間に設けられた赤外線透過窓とを有するものとして、反応生成物が赤外線透過窓に付着するのを反応ガス流自体により防止する技術が開示されている(特許文献2)。
しかし、このような装置も非常に複雑な構成であり、しかも反応ガスを汚染するおそれがあり、成膜された膜の品質が低下するといった問題が生じることがある。
Therefore, the reaction chamber is configured to measure the wafer through a reaction gas supply head provided facing the semiconductor substrate, a reaction gas introduction port provided in the reaction gas supply head, and a hole in the reaction gas introduction port. It is assumed that the reaction product adheres to the infrared transmission window by having at least one radiation thermometer arranged and an infrared transmission window provided between the radiation thermometer and the reaction gas supply head. A technique for preventing it by itself is disclosed (Patent Document 2).
However, such an apparatus also has a very complicated configuration, and there is a possibility that the reaction gas may be contaminated, which may cause a problem that the quality of the formed film is deteriorated.

特開2002−246314号公報JP 2002-246314 A 特開平06−204143号公報Japanese Patent Laid-Open No. 06-204143

本発明の目的は、より簡易な構造で装置全体の気密性等を良好に保ちつつ、かつ、清掃や再組立等のメインテナンスの頻度を最小限にすることができ、さらに、半導体基板の温度を精度良く制御し、且つ半導体基板の品質を容易に維持でき、また加熱処理を高歩留まりとできる加熱処理装置及び加熱処理方法を提供することにある。   The object of the present invention is to maintain a good airtightness of the entire apparatus with a simpler structure, to minimize the frequency of maintenance such as cleaning and reassembly, and to reduce the temperature of the semiconductor substrate. An object of the present invention is to provide a heat treatment apparatus and a heat treatment method that can be controlled with high accuracy, can easily maintain the quality of a semiconductor substrate, and can achieve high yield in heat treatment.

上記目的達成のため、本発明は、反応室内で半導体基板を加熱処理する装置であって、少なくとも、前記反応室は反応ガスを導入するガス導入口と反応ガスを排出するガス排出口を有するとともに赤外線透過窓を備え、前記反応室内部には半導体基板を載置するサセプタを具備し、前記反応室外部には、前記半導体基板を加熱する加熱手段と、前記赤外線透過窓を介して前記半導体基板の温度を測定する基板温度測定手段と、前記反応室全体を冷却する反応室冷却手段と、前記赤外線透過窓を冷却する窓冷却手段とを具備するものであることを特徴とする加熱処理装置を提供する(請求項1)。   To achieve the above object, the present invention is an apparatus for heat-treating a semiconductor substrate in a reaction chamber, and at least the reaction chamber has a gas inlet for introducing a reactive gas and a gas outlet for discharging the reactive gas. An infrared transmission window is provided, and a susceptor for placing a semiconductor substrate is provided inside the reaction chamber, and heating means for heating the semiconductor substrate is provided outside the reaction chamber, and the semiconductor substrate is interposed via the infrared transmission window. A heat treatment apparatus comprising: a substrate temperature measuring means for measuring the temperature of the substrate; a reaction chamber cooling means for cooling the entire reaction chamber; and a window cooling means for cooling the infrared transmission window. (Claim 1).

このように、反応室外部に、反応室冷却手段の他に、窓冷却手段を具備する加熱処理装置であれば、装置全体の気密性等を良好に保ったまま反応室外部から赤外線透過窓を効果的に冷却することができ、該窓の反応室内側に反応生成物が付着・堆積するのを防止することができる。従って、半導体基板の温度を精度良く制御して、例えば長時間あるいは高温の加熱処理であっても半導体基板の品質を容易に維持でき、反応生成物による汚染や結晶欠陥が発生しない、高歩留まりで加熱処理ができる加熱処理装置とできる。また清掃や再組立等のメインテナンスの頻度を最小限にすることができるものとなる。   In this way, if the heat treatment apparatus is equipped with a window cooling means in addition to the reaction chamber cooling means outside the reaction chamber, an infrared transmission window is provided from the outside of the reaction chamber while maintaining good airtightness of the entire apparatus. It is possible to cool effectively and prevent the reaction product from adhering to and depositing on the reaction chamber side of the window. Therefore, by controlling the temperature of the semiconductor substrate with high precision, for example, the quality of the semiconductor substrate can be easily maintained even during a long-time or high-temperature heat treatment, and no contamination or crystal defects due to reaction products occur, with a high yield. A heat treatment apparatus capable of heat treatment can be obtained. In addition, the frequency of maintenance such as cleaning and reassembly can be minimized.

この場合、前記反応室外部に、前記赤外線透過窓の温度を測定する窓温度測定手段及び/又は前記サセプタの温度を測定するサセプタ温度測定手段を具備するものであることが好ましい(請求項2)。
このように、反応室外部に窓温度測定手段を具備するものであれば、冷却する窓の温度を正確に測定することができ、例えば窓温度の測定結果により窓冷却手段を制御して確実に反応生成物の付着・堆積を防止できる窓温度とすることができる。またサセプタ温度測定手段を具備するものであれば、半導体基板を載置するサセプタ温度を正確に測定することができ、これを基板温度測定と共に行なうことで、半導体基板の温度をより精度良く制御することができるものとなる。
In this case, it is preferable that outside the reaction chamber is provided with a window temperature measuring means for measuring the temperature of the infrared transmission window and / or a susceptor temperature measuring means for measuring the temperature of the susceptor. .
Thus, if the window temperature measuring means is provided outside the reaction chamber, the temperature of the window to be cooled can be accurately measured. For example, the window cooling means is controlled by the measurement result of the window temperature to ensure the The window temperature can prevent the adhesion and deposition of reaction products. If the susceptor temperature measuring means is provided, the susceptor temperature on which the semiconductor substrate is placed can be accurately measured, and by performing this together with the substrate temperature measurement, the temperature of the semiconductor substrate can be controlled more accurately. Will be able to.

また、前記赤外線透過窓は、石英ガラスからなるものであることが好ましい(請求項3)。
このように、赤外線透過窓が石英ガラスからなるものであれば、赤外線の透過率が高く、反応室内の半導体基板を反応室外部から効率よく加熱でき、また精度よく温度測定・温度制御ができる。
The infrared transmission window is preferably made of quartz glass.
Thus, if the infrared transmission window is made of quartz glass, the infrared transmittance is high, the semiconductor substrate in the reaction chamber can be efficiently heated from the outside of the reaction chamber, and temperature measurement and temperature control can be performed with high accuracy.

また、前記加熱手段は、ランプヒータであることが好ましい(請求項4)。
このように、加熱手段がランプヒータであれば、赤外線透過窓を介して、外部から半導体基板を容易に加熱することができる。
The heating means is preferably a lamp heater.
Thus, if the heating means is a lamp heater, the semiconductor substrate can be easily heated from the outside through the infrared transmission window.

また、前記各温度測定手段は、放射温度計であることが好ましい(請求項5)。
このように、半導体基板、窓、サセプタ等の温度を測定する温度測定手段が放射温度計であれば、赤外線透過窓を介して外部から容易に温度測定ができ、半導体基板の温度をより精度よく検出することができる。
Moreover, it is preferable that each said temperature measurement means is a radiation thermometer (Claim 5).
Thus, if the temperature measuring means for measuring the temperature of the semiconductor substrate, window, susceptor, etc. is a radiation thermometer, the temperature can be easily measured from the outside through the infrared transmission window, and the temperature of the semiconductor substrate can be more accurately determined. Can be detected.

また、前記窓冷却手段は、前記赤外線透過窓と反応しない冷却用流体をノズルより吹き付けるものであることが好ましい(請求項6)。
このように、窓冷却手段が、赤外線透過窓と反応しない冷却用流体をノズルより吹き付けるものであれば、赤外線透過窓が冷却用流体と反応して劣化したり、また冷却用流体の反応生成物が窓に付着・堆積するということがないので、半導体基板の温度をより長期間にわたり精度よく検出することができ、半導体基板の品質を維持できる。またこのように冷却用流体をノズルで吹き付けるので、窓の必要な部分だけを集中的かつ効率的に冷却できる。
Moreover, it is preferable that the said window cooling means sprays the cooling fluid which does not react with the said infrared rays transmission window from a nozzle (Claim 6).
Thus, if the window cooling means blows a cooling fluid that does not react with the infrared transmission window from the nozzle, the infrared transmission window reacts with the cooling fluid and deteriorates, or a reaction product of the cooling fluid. Therefore, the temperature of the semiconductor substrate can be accurately detected over a longer period of time, and the quality of the semiconductor substrate can be maintained. Further, since the cooling fluid is sprayed by the nozzle in this way, only the necessary portion of the window can be intensively and efficiently cooled.

また、前記冷却用流体は、空気、窒素ガス、アルゴンガスのいずれかであることが好ましい(請求項7)。
このように、冷却用流体が空気、窒素ガス、アルゴンガスのいずれかであれば、取り扱いが容易であり、また赤外線透過窓と反応することが全くないので、窓の劣化及び堆積物の発生を防止して、確実に半導体基板の温度を長期間にわたり精度よく検出することができる。
The cooling fluid is preferably air, nitrogen gas, or argon gas.
In this way, if the cooling fluid is air, nitrogen gas, or argon gas, it is easy to handle and does not react with the infrared transmission window at all. Thus, the temperature of the semiconductor substrate can be reliably detected over a long period of time.

また、前記窓冷却手段は、前記冷却用流体を少なくとも0.1kg/cmの圧力で吹き付けるものであることが好ましい(請求項8)。
このように、窓冷却手段が、冷却用流体を少なくとも0.1kg/cmの圧力で吹き付けるものであれば、充分な冷却効果があり、赤外線透過窓の反応室内側に反応生成物が付着・堆積するのを確実に防止することができる。
なお、冷却用流体の圧力は、その最大値が5kg/cmであれば、冷却手段も大掛かりなものとならず、またそれ以上の圧力をかけたとしても反応生成物の付着・堆積を防止する効果が著しく向上するわけではないので十分である。
Moreover, it is preferable that the said window cooling means sprays the said cooling fluid with the pressure of at least 0.1 kg / cm < 2 > (Claim 8).
Thus, if the window cooling means sprays the cooling fluid at a pressure of at least 0.1 kg / cm 2 , there is a sufficient cooling effect, and the reaction product adheres to the reaction chamber side of the infrared transmission window. Accumulation can be reliably prevented.
Note that if the maximum pressure of the cooling fluid is 5 kg / cm 2 , the cooling means will not be large, and even if a higher pressure is applied, reaction products will not adhere or accumulate. This is sufficient because the effect of doing so is not significantly improved.

また、前記窓冷却手段のノズルは、円環形状であり、前記冷却用流体を前記赤外線透過窓の外周部から内側に向かって吹き付けるように内周側に吹出し口を備えるものであることが好ましい(請求項9)。
このように、窓冷却手段のノズルが円環形状であり、冷却用流体を赤外線透過窓の外周部から内側に向かって吹き付けるように内周側に吹出し口を備えるものであれば、反応室外部にある加熱手段や基板温度測定手段と、反応室内部のサセプタに載置された半導体基板との間の障害とはならないので、加熱や温度測定・制御を妨げず、半導体基板を効率的に加熱し、その温度を精度よく制御することができる。そして、このような吹出し口を備えるものであれば、赤外線透過窓を一様に、かつ効率よく冷却できる。
Moreover, it is preferable that the nozzle of the said window cooling means is an annular shape, and is provided with an outlet on the inner peripheral side so as to spray the cooling fluid inward from the outer peripheral portion of the infrared transmitting window. (Claim 9).
Thus, if the nozzle of the window cooling means has an annular shape and has a blowout port on the inner peripheral side so as to spray the cooling fluid inward from the outer peripheral portion of the infrared transmission window, the reaction chamber exterior Therefore, heating and temperature measurement / control are not hindered, and the semiconductor substrate can be efficiently heated without interfering with the heating means and substrate temperature measuring means in the chamber and the semiconductor substrate placed on the susceptor inside the reaction chamber. The temperature can be controlled with high accuracy. And if it has such a blower outlet, an infrared rays transmission window can be cooled uniformly and efficiently.

また、本発明は、反応室内で半導体基板を加熱処理する方法であって、前記反応室内に配置されたサセプタに半導体基板を載置し、反応室外部に設けられた反応室冷却手段により前記反応室全体を冷却し、前記反応室に備えられた赤外線透過窓を介して反応室外部の基板温度測定手段により前記半導体基板の温度を測定しながら、反応室外部の加熱手段により外部から加熱して基板温度を制御し、且つ少なくとも前記反応室のガス導入口から反応ガスを導入している間は、反応室外部に設けられた窓冷却手段により前記赤外線透過窓を外部から冷却して、加熱処理を行なうことを特徴とする加熱処理方法を提供する(請求項10)。   The present invention is also a method for heat-treating a semiconductor substrate in a reaction chamber, wherein the semiconductor substrate is placed on a susceptor disposed in the reaction chamber, and the reaction is cooled by a reaction chamber cooling means provided outside the reaction chamber. The whole chamber is cooled and heated from the outside by the heating means outside the reaction chamber while the temperature of the semiconductor substrate is measured by the substrate temperature measuring means outside the reaction chamber through the infrared transmission window provided in the reaction chamber. While the substrate temperature is controlled and at least the reaction gas is introduced from the gas inlet of the reaction chamber, the infrared transmission window is cooled from the outside by a window cooling means provided outside the reaction chamber, and heat treatment is performed. A heat treatment method is provided (claim 10).

このように、反応室内に配置されたサセプタに半導体基板を載置し、反応室外部に設けられた反応室冷却手段により反応室全体を冷却するとともに、これとは別に、少なくとも前記反応室のガス導入口から反応ガスを導入している間は、反応室外部に設けられた窓冷却手段により前記赤外線透過窓を外部から冷却して加熱処理を行なえば、装置全体の気密性等を良好に保ったまま反応室外部から赤外線透過窓を効果的に冷却することができ、該窓の反応室内側に反応生成物が付着・堆積するのを防止することができる。
このように、赤外線透過窓には反応生成物が付着・堆積しないので、半導体基板直上の赤外線透過窓から反応生成物が剥離・落下して半導体基板を汚染することもなく、反応中、半導体基板表面に結晶欠陥が発生することを防止できる。
従って、半導体基板の温度を精度良く制御して、例えば長時間あるいは高温の加熱処理であっても半導体基板の品質を容易に維持でき、反応生成物による汚染や結晶欠陥が発生せず高歩留まりで加熱処理ができる。
In this way, the semiconductor substrate is placed on the susceptor arranged in the reaction chamber, and the entire reaction chamber is cooled by the reaction chamber cooling means provided outside the reaction chamber, and separately from this, at least the gas in the reaction chamber While the reaction gas is introduced from the inlet, if the infrared transmission window is cooled from the outside by the window cooling means provided outside the reaction chamber and the heat treatment is performed, the airtightness of the entire apparatus is kept good. It is possible to effectively cool the infrared transmission window from the outside of the reaction chamber, and to prevent the reaction product from adhering to and depositing on the reaction chamber side of the window.
As described above, since the reaction product does not adhere to or accumulate on the infrared transmission window, the reaction product is not peeled off or dropped from the infrared transmission window immediately above the semiconductor substrate to contaminate the semiconductor substrate. Crystal defects can be prevented from occurring on the surface.
Therefore, by controlling the temperature of the semiconductor substrate with high accuracy, it is possible to easily maintain the quality of the semiconductor substrate even for long-time or high-temperature heat treatment, for example, without causing contamination by reaction products and crystal defects, and at a high yield. Heat treatment is possible.

この場合、前記加熱処理の際に、前記反応室外部の窓温度測定手段及び/又はサセプタ温度測定手段により前記赤外線透過窓及び/又は前記サセプタの温度も測定しながら温度制御を行なうことが好ましい(請求項11)。
このように、加熱処理の際に、窓温度測定手段及び/又はサセプタ温度測定手段により赤外線透過窓及び/又はサセプタの温度も測定しながら温度制御を行なえば、窓温度の測定結果により窓冷却手段を制御して確実に反応生成物の付着・堆積を防止できる窓温度とすることができる。またサセプタ温度測定を基板温度測定と共に行なうことで、半導体基板の温度をより精度良く制御することができる。
In this case, during the heat treatment, it is preferable to perform temperature control while measuring the temperature of the infrared transmission window and / or the susceptor by the window temperature measuring means and / or the susceptor temperature measuring means outside the reaction chamber ( Claim 11).
As described above, during the heat treatment, if the temperature control is performed while the temperature of the infrared transmission window and / or the susceptor is also measured by the window temperature measuring means and / or the susceptor temperature measuring means, the window cooling means is determined by the measurement result of the window temperature. The window temperature can be controlled so as to surely prevent the reaction product from adhering or accumulating. Further, by performing the susceptor temperature measurement together with the substrate temperature measurement, the temperature of the semiconductor substrate can be controlled with higher accuracy.

また、前記半導体基板として、シリコンからなるものを用いることが好ましい(請求項12)。
このように、半導体基板としてシリコンからなるものを用いれば、半導体集積回路用として主流のシリコン基板を、反応生成物による汚染や結晶欠陥の発生を防止して、高歩留まりで加熱処理できる。
The semiconductor substrate is preferably made of silicon.
As described above, when a semiconductor substrate made of silicon is used, a mainstream silicon substrate for a semiconductor integrated circuit can be heat-treated at a high yield while preventing contamination by reaction products and generation of crystal defects.

また、前記加熱処理は、前記半導体基板の主表面上に気相成長を行なう処理であることが好ましい(請求項13)。
このように、加熱処理が半導体基板の主表面上に気相成長を行なう処理であれば、例えば厚い気相成長膜を形成するために長時間あるいは高温の加熱処理を必要とする場合であっても、品質を維持して膜を形成することが容易にでき、反応生成物による汚染や結晶欠陥の発生を防止して、高歩留まりで気相成長処理ができる。
The heat treatment is preferably a vapor deposition process on the main surface of the semiconductor substrate.
As described above, if the heat treatment is a process for performing vapor phase growth on the main surface of the semiconductor substrate, for example, a long time or high temperature heat treatment is required to form a thick vapor phase growth film. However, it is easy to form a film while maintaining the quality, and it is possible to prevent the occurrence of contamination and crystal defects due to reaction products, and to perform vapor phase growth processing at a high yield.

本発明に従えば、加熱処理装置全体の気密性等を良好に保ったまま反応室外部から赤外線透過窓を効果的に冷却することができ、該窓の反応室内側に反応生成物が付着・堆積するのを防止することができる。従って、半導体基板の温度を精度良く制御して、例えば長時間あるいは高温の加熱処理であっても半導体基板の品質を容易に維持でき、反応生成物による汚染や結晶欠陥が発生しない、高歩留まりの加熱処理ができる加熱処理装置あるいは加熱処理方法とできる。また清掃や再組立等のメインテナンスの頻度を最小限にすることができる加熱処理装置となる。   According to the present invention, the infrared transmission window can be effectively cooled from the outside of the reaction chamber while keeping the airtightness of the entire heat treatment apparatus good, and the reaction product adheres to the reaction chamber side of the window. Accumulation can be prevented. Therefore, by controlling the temperature of the semiconductor substrate accurately, for example, the quality of the semiconductor substrate can be easily maintained even during long-time or high-temperature heat treatment, and contamination and crystal defects due to reaction products do not occur, resulting in high yield. A heat treatment apparatus or a heat treatment method capable of performing heat treatment can be obtained. Further, the heat treatment apparatus can minimize the frequency of maintenance such as cleaning and reassembly.

以下、本発明について詳述する。
従来の成膜装置やCVD装置等の加熱処理装置に存在した、反応生成物が反応室内壁に付着・堆積してしまうという問題に対処するため、例えば特許文献1又は2のような技術が開示されている。
しかし、特許文献1に開示された技術は、反応生成物の付着・堆積を防止するものではないため、定期的なメインテナンスが必要である。
さらに、いずれの文献に開示された技術も、反応室の内部構造の改造であることにかわりはなく、根本的な解決策ではなかった。
すなわち、いずれの技術も反応室を二重構造にするものであるが、この場合装置が複雑となるので、構造上の精度向上のためにコストアップが伴っていた。また、二重構造であるため、反応室の気密性が低下するおそれもあった。
Hereinafter, the present invention will be described in detail.
In order to cope with the problem of reaction products adhering to and depositing on the reaction chamber wall, which has existed in conventional heat treatment apparatuses such as film forming apparatuses and CVD apparatuses, a technique such as Patent Document 1 or 2 is disclosed. Has been.
However, since the technique disclosed in Patent Document 1 does not prevent the adhesion and deposition of reaction products, regular maintenance is required.
Furthermore, the technique disclosed in any document is not a fundamental solution because it is a modification of the internal structure of the reaction chamber.
In other words, each of the techniques makes the reaction chamber a double structure. However, in this case, the apparatus becomes complicated, and this increases the cost for improving the structural accuracy. In addition, since it has a double structure, the airtightness of the reaction chamber may be reduced.

これに対して、反応室外部に赤外線透過窓専用の窓冷却手段を具備する加熱処理装置であれば、装置全体の気密性等を良好に保ったまま反応室外部から赤外線透過窓を効果的に冷却することができ、該窓の反応室内側に反応生成物が付着・堆積するのを防止することができる。従って、装置のメインテナンスの頻度が最小限で済み、そして半導体基板の温度を精度良く制御して、例えば厚いエピタキシャル膜を形成させる場合のように、長時間を要したり、堆積速度を向上させるため高温とする必要がある加熱処理であっても半導体基板の品質を容易に維持でき、半導体基板に反応生成物による汚染や結晶欠陥が発生せず、高歩留まりで加熱処理ができる加熱処理装置とできる。本発明者らは以上のことを想到し、本発明を完成させた。
以下、本発明の実施の形態について具体的に説明するが、本発明はこれらに限定されるものではない。
On the other hand, if the heat treatment apparatus has a window cooling means dedicated to the infrared transmission window outside the reaction chamber, the infrared transmission window can be effectively extended from the outside of the reaction chamber while maintaining the airtightness of the entire apparatus. The cooling can be performed, and the reaction product can be prevented from adhering and depositing on the reaction chamber side of the window. Therefore, in order to minimize the frequency of maintenance of the apparatus and to control the temperature of the semiconductor substrate with high precision to form a thick epitaxial film, for example, and to increase the deposition rate. Even when heat treatment is required to be performed at a high temperature, the quality of the semiconductor substrate can be easily maintained, and the heat treatment apparatus capable of performing heat treatment at a high yield without causing contamination or crystal defects due to reaction products on the semiconductor substrate. . The present inventors have conceived the above and completed the present invention.
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.

図1は、本発明に係る加熱処理装置の実施形態の一例を示す概略図である。
この加熱処理装置20の例えば石英ガラスからなる反応室10は、反応ガスを導入するガス導入口4と反応ガスを排出するガス排出口5を有するとともに、例えば石英ガラスからなる赤外線透過窓16を備え、反応室10の内部には例えばシリコンからなる半導体基板1を載置するサセプタ2を具備する。反応室10の外部には、半導体基板1を加熱する例えばランプヒータ等の加熱手段8と、加熱手段8からの光を反射して加熱効率を高める例えばアルミ製のリフレクタ9と、赤外線透過窓16を介して半導体基板1の温度を測定する例えば放射温度計等の基板温度測定手段11aと、反応室10の全体を冷却する空気を送風するための例えばブロアー等の反応室冷却手段12と、赤外線透過窓16を冷却する窓冷却手段13とを具備するものである。さらに、反応室10の外部に、例えば放射温度計等の窓温度測定手段11b及びサセプタ温度測定手段11cを具備することが好ましい。
FIG. 1 is a schematic view showing an example of an embodiment of a heat treatment apparatus according to the present invention.
The reaction chamber 10 made of, for example, quartz glass of the heat treatment apparatus 20 has a gas introduction port 4 for introducing a reaction gas and a gas discharge port 5 for discharging the reaction gas, and an infrared transmission window 16 made of, for example, quartz glass. The reaction chamber 10 includes a susceptor 2 on which a semiconductor substrate 1 made of, for example, silicon is placed. Outside the reaction chamber 10, a heating unit 8 such as a lamp heater for heating the semiconductor substrate 1, a reflector 9 made of, for example, aluminum that reflects light from the heating unit 8 to increase heating efficiency, and an infrared transmission window 16. A substrate temperature measuring means 11a such as a radiation thermometer, for example, a reaction chamber cooling means 12 such as a blower for blowing air for cooling the entire reaction chamber 10, and infrared rays. A window cooling means 13 for cooling the transmission window 16 is provided. Furthermore, it is preferable that a window temperature measuring unit 11b such as a radiation thermometer and a susceptor temperature measuring unit 11c are provided outside the reaction chamber 10, for example.

赤外線透過窓16は、石英ガラスからなるものであれば赤外線の透過率が高く好ましいが、石英ガラスに限らず、赤外線を透過するものであればよい。
また、加熱手段8はランプヒータであれば容易に加熱できるので好ましいが、赤外線透過窓を介して赤外線加熱できるものであれば特に限定はされない。加熱手段の設置位置は、半導体基板を均一に加熱するために、反応室10の上下に設置することが好ましい。
各温度測定手段11a、11b、11cは、放射温度計であれば外部から容易に温度測定ができるので好ましいが、例えばCCDカメラ等を用いたサーマルカメラ等を用いることもできる。各温度測定手段の設置位置については、基板温度測定手段11aは赤外線透過窓16の上方、窓温度測定手段11bは赤外線透過窓16の斜め上方、サセプタ温度測定手段11cは反応室下方に設置することができるが、正確な温度測定ができ、且つ加熱手段等と干渉しない位置であれば特に限定はされない。
The infrared transmission window 16 is preferably made of quartz glass, since it has a high infrared transmittance. However, the infrared transmission window 16 is not limited to quartz glass, and any infrared transmission window may be used.
The heating means 8 is preferably a lamp heater because it can be easily heated, but is not particularly limited as long as it can be heated by infrared rays through an infrared transmission window. The installation position of the heating means is preferably installed above and below the reaction chamber 10 in order to uniformly heat the semiconductor substrate.
Each of the temperature measuring means 11a, 11b, and 11c is preferably a radiation thermometer because it can easily measure the temperature from the outside. For example, a thermal camera using a CCD camera or the like can also be used. Regarding the position of each temperature measurement means, the substrate temperature measurement means 11a is installed above the infrared transmission window 16, the window temperature measurement means 11b is installed obliquely above the infrared transmission window 16, and the susceptor temperature measurement means 11c is installed below the reaction chamber. However, there is no particular limitation as long as the temperature can be accurately measured and the position does not interfere with the heating means or the like.

反応室冷却手段12は、装置内に空気を送風するブロアー等とすることができるが、反応室10の全体を冷却できるものであれば特に限定はされない。
窓冷却手段13は、赤外線透過窓16と反応しない冷却用流体をノズルより吹き付けるものであれば、赤外線透過窓16が冷却用流体と反応して劣化したり、また冷却用流体の反応生成物が窓16に付着・堆積するということがないので、半導体基板の温度をより長期間にわたり精度よく検出することができる。またこのように冷却用流体をノズルで吹き付けるので、窓16の必要な部分だけを集中的かつ効率的に冷却できる。
The reaction chamber cooling means 12 can be a blower that blows air into the apparatus, but is not particularly limited as long as it can cool the entire reaction chamber 10.
If the window cooling means 13 blows the cooling fluid which does not react with the infrared transmitting window 16 from the nozzle, the infrared transmitting window 16 reacts with the cooling fluid and deteriorates, or the reaction product of the cooling fluid is Since there is no adhesion / deposition on the window 16, the temperature of the semiconductor substrate can be detected accurately over a longer period of time. Further, since the cooling fluid is sprayed by the nozzle in this way, only the necessary portion of the window 16 can be intensively and efficiently cooled.

図2は窓冷却手段の実施形態の一例である冷却リングノズルを示す概略図である。この冷却リングノズル14は、円環形状のリング部14aと、複数の吹出し口14bとを備えている。吹出し口14bは、冷却ガス供給管15からリング部14aに供給される冷却ガスを赤外線透過窓16の外周部から内側に向かって吹き付けるように、リング部14aの内周側に備えられている。このようにすれば、反応室外部から加熱や温度測定をする際の障害とならず、また窓16を一様に、かつ効率よく冷却できる。吹出し口14bはリング部14aに等間隔に配置されることが好ましく、その数は例えば3〜24個程度である。また、冷却ガス供給管15は1箇所だけでもよいが、各吹出し口から一様に冷却ガスを吹き出して一様に冷却を行なうため、リング部14aの2箇所以上に設けてもよい。また、供給管にバランスバルブ(不図示)を取付けたものであれば、吹き付けるガス流量を適量に調節して、冷却ガスを安定して一様に吹き付けることができる。また、吹出し口は、方向や窓に対する角度を自由に変えることができるものであれば、必要に応じて吹き付け方向や角度を変えることにより、より冷却効果を高めることができる。   FIG. 2 is a schematic view showing a cooling ring nozzle as an example of an embodiment of the window cooling means. The cooling ring nozzle 14 includes an annular ring portion 14a and a plurality of outlets 14b. The outlet 14b is provided on the inner peripheral side of the ring portion 14a so that the cooling gas supplied from the cooling gas supply pipe 15 to the ring portion 14a is blown inward from the outer peripheral portion of the infrared transmission window 16. In this way, it is possible to cool the window 16 uniformly and efficiently without hindering heating or temperature measurement from the outside of the reaction chamber. The outlets 14b are preferably arranged at equal intervals in the ring portion 14a, and the number thereof is, for example, about 3 to 24. Further, the cooling gas supply pipe 15 may be provided only at one place, but may be provided at two or more places on the ring portion 14a in order to uniformly cool the cooling gas by blowing it out from each outlet. Further, if a balance valve (not shown) is attached to the supply pipe, the cooling gas can be stably and uniformly blown by adjusting the flow rate of the blown gas to an appropriate amount. Moreover, if a blower outlet can change the direction and the angle with respect to a window freely, a cooling effect can be heightened more by changing a spraying direction and an angle as needed.

冷却用流体は、空気、窒素ガス、アルゴンガスのいずれかであれば、取り扱いが容易であり、また赤外線透過窓と反応することが全くないので、より確実に半導体基板の温度を長期間にわたり精度よく検出することができる。
また、窓冷却手段が、冷却用流体を少なくとも0.1〜5kg/cmの圧力で吹き付けるものであれば、充分な冷却効果があり、赤外線透過窓の反応室内側に反応生成物が付着・堆積するのを確実に防止することができるし、冷却手段が大掛かりとならないので好ましい。
If the cooling fluid is air, nitrogen gas, or argon gas, it is easy to handle and does not react with the infrared transmission window at all. Can be detected well.
Further, if the window cooling means sprays the cooling fluid at a pressure of at least 0.1 to 5 kg / cm 2 , there is a sufficient cooling effect, and the reaction product adheres to the reaction chamber side of the infrared transmission window. It is preferable because accumulation can be surely prevented and the cooling means does not become large.

次に、図1のような装置を用いた半導体基板の加熱処理方法について説明する。
まず、反応室10内に配置されたサセプタ2に半導体基板1を載置する。この半導体基板1としては特に限定されないが、シリコン単結晶基板等とすることができる。このようにシリコンからなるものを用いれば、半導体集積回路用として主流のシリコン基板を、反応生成物による汚染や結晶欠陥の発生を防止して、高歩留まりで加熱処理できるので好ましい。
Next, a method for heat treatment of a semiconductor substrate using the apparatus as shown in FIG. 1 will be described.
First, the semiconductor substrate 1 is placed on the susceptor 2 disposed in the reaction chamber 10. The semiconductor substrate 1 is not particularly limited, but may be a silicon single crystal substrate or the like. The use of such a silicon substrate is preferable because a mainstream silicon substrate for a semiconductor integrated circuit can be heat-treated at a high yield while preventing contamination by reaction products and generation of crystal defects.

次に、反応室冷却手段12により反応室10の全体を冷却し、赤外線透過窓16を介して基板温度測定手段11aにより半導体基板1の温度を測定しながら、加熱手段8により外部から加熱して基板温度を制御する。この制御は、例えば測定基板温度と設定基板温度が一致するように加熱手段8の出力を調整するものである。
このとき、窓温度測定手段11b及びサセプタ温度測定手段11cにより赤外線透過窓16及びサセプタ2の温度も測定しながら温度制御を行なえば、窓温度の測定結果により窓冷却手段13を制御して、確実に反応生成物の付着・堆積を防止できる窓温度とすることができるので好ましい。またサセプタ温度測定を基板温度測定と共に行なうことで、半導体基板1の温度をより精度良く制御することができるので好ましい。なお、図1に示した実施形態では、サセプタ温度測定手段11cは例えば石英ガラスからなる反応室下壁7を介して温度測定を行なう。加熱処理中は反応ガスは反応室10内で半導体基板1より上方を通過するので、反応室下壁7にはほとんど接触しない。従って反応室下壁7への反応生成物の付着・堆積は反応室冷却手段12による冷却だけで十分防止できるので、正確なサセプタ温度測定が可能となる。
Next, the whole reaction chamber 10 is cooled by the reaction chamber cooling means 12 and heated from the outside by the heating means 8 while measuring the temperature of the semiconductor substrate 1 by the substrate temperature measuring means 11 a through the infrared transmission window 16. Control the substrate temperature. In this control, for example, the output of the heating means 8 is adjusted so that the measured substrate temperature matches the set substrate temperature.
At this time, if the temperature control is performed while the temperature of the infrared transmitting window 16 and the susceptor 2 is also measured by the window temperature measuring unit 11b and the susceptor temperature measuring unit 11c, the window cooling unit 13 is controlled by the measurement result of the window temperature to ensure In particular, the window temperature can be set such that adhesion and deposition of reaction products can be prevented. Further, it is preferable to perform the susceptor temperature measurement together with the substrate temperature measurement because the temperature of the semiconductor substrate 1 can be controlled with higher accuracy. In the embodiment shown in FIG. 1, the susceptor temperature measuring means 11c measures the temperature via the reaction chamber lower wall 7 made of, for example, quartz glass. During the heat treatment, the reaction gas passes above the semiconductor substrate 1 in the reaction chamber 10, and therefore hardly contacts the reaction chamber lower wall 7. Accordingly, the adhesion and deposition of the reaction product on the lower wall 7 of the reaction chamber can be sufficiently prevented only by the cooling by the reaction chamber cooling means 12, so that accurate susceptor temperature measurement can be performed.

そして、ガス導入口4から所定の反応ガスを導入し、ガス排出口5から排出するが、少なくとも反応ガスを導入している間は、窓冷却手段13により赤外線透過窓16を外部から冷却して、加熱処理を行なう。このように反応室冷却手段12により反応室10の全体を冷却し、さらに窓冷却手段13により反応室外部から赤外線透過窓16を個別にかつ効果的に冷却することにより、窓16の反応室内側への反応生成物の付着・堆積が防止できる。   Then, a predetermined reaction gas is introduced from the gas introduction port 4 and discharged from the gas discharge port 5. At least during the introduction of the reaction gas, the infrared transmission window 16 is cooled from the outside by the window cooling means 13. Then, heat treatment is performed. In this way, the reaction chamber cooling means 12 cools the entire reaction chamber 10 and the window cooling means 13 individually and effectively cools the infrared transmission window 16 from the outside of the reaction chamber. Adhesion / deposition of reaction products on can be prevented.

このように、赤外線透過窓には反応生成物が付着・堆積しないので、半導体基板直上の窓から反応生成物が剥離・落下して半導体基板を汚染することもなく、反応中、半導体基板表面に結晶欠陥が発生することを防止できる。また、窓を介して測定される基板の温度を正確に測定できる。
従って、半導体基板の温度を精度良く制御して、半導体基板の品質を容易に維持でき、反応生成物による汚染や結晶欠陥が発生しない、高歩留まりで加熱処理ができる。
特に、本発明の加熱処理方法は、精度の高い基板温度制御と汚染や結晶欠陥のない基板品質が長時間にわたり維持できるので、高温で長い処理時間が必要な厚さ10〜100μm程度の厚い膜の気相成長を行なう際に特に効果的である。
In this way, reaction products do not adhere to or accumulate on the infrared transmission window, so that the reaction products do not peel off or fall from the window directly above the semiconductor substrate to contaminate the semiconductor substrate, and the surface of the semiconductor substrate is not affected during the reaction. Generation of crystal defects can be prevented. In addition, the temperature of the substrate measured through the window can be accurately measured.
Therefore, the temperature of the semiconductor substrate can be accurately controlled to easily maintain the quality of the semiconductor substrate, and the heat treatment can be performed at a high yield without causing contamination or crystal defects due to reaction products.
In particular, the heat treatment method of the present invention can maintain substrate quality with high accuracy and substrate quality without contamination and crystal defects over a long period of time, so a thick film having a thickness of about 10 to 100 μm that requires a long treatment time at a high temperature. This is particularly effective when performing vapor phase growth.

以下に本発明の実施例および比較例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1、比較例1)
本発明の実施例として、図1の加熱処理装置を用いて、直径200mmのシリコン単結晶基板の主表面上に気相成長によりシリコン単結晶層を約900秒間エピタキシャル成長させた。反応ガスとしてSiHClを用い、基板温度は1130℃に制御し、成長膜厚は60μmとした。石英ガラス製の赤外線透過窓の冷却には空気を用い、吹出し口を等間隔で12箇所設置した図2のリングノズルにより、空気を1kg/cmの圧力で吹き付けながら気相成長を行なった。また、冷却効果の確認のため、石英ガラス窓の温度測定も行なった。
また、比較例として、リングノズルによる空気の吹き付けを行なわない以外は実施例と同一条件の気相成長を行なった。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
(Example 1, Comparative Example 1)
As an example of the present invention, a silicon single crystal layer was epitaxially grown for about 900 seconds by vapor phase growth on the main surface of a silicon single crystal substrate having a diameter of 200 mm using the heat treatment apparatus of FIG. SiHCl 3 was used as a reaction gas, the substrate temperature was controlled at 1130 ° C., and the growth film thickness was 60 μm. Vapor phase growth was performed while air was blown at a pressure of 1 kg / cm 2 using the ring nozzle of FIG. 2 in which air was used for cooling the infrared transmission window made of quartz glass and 12 outlets were installed at equal intervals. In order to confirm the cooling effect, the temperature of the quartz glass window was also measured.
As a comparative example, vapor phase growth was performed under the same conditions as in the example except that air was not blown by the ring nozzle.

その結果、空気を吹き付けない比較例の場合は、窓の温度は450℃近くに達し、反応生成物の付着により窓に曇りが見られた。一方、冷却ガスを吹き付けた場合は、窓の温度は400℃程度に抑制され、窓に曇りが発生しなかった。   As a result, in the case of the comparative example in which air was not blown, the temperature of the window reached approximately 450 ° C., and fogging was observed on the window due to adhesion of the reaction product. On the other hand, when the cooling gas was sprayed, the temperature of the window was suppressed to about 400 ° C., and the window was not fogged.

尚、本発明は上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的思想に包含される。   The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same operational effects. It is included in the technical idea of the invention.

本発明に係る加熱処理装置の実施形態の一例を示す概略図である。It is the schematic which shows an example of embodiment of the heat processing apparatus which concerns on this invention. 本発明に係る窓冷却手段の実施形態の一例である冷却リングノズルを示す概略図である。It is the schematic which shows the cooling ring nozzle which is an example of embodiment of the window cooling means which concerns on this invention. 従来の反応室を備えた成膜装置の一例を示す概略図である。It is the schematic which shows an example of the film-forming apparatus provided with the conventional reaction chamber.

符号の説明Explanation of symbols

1…半導体基板、 2…サセプタ、 3…サセプタ回転機構、 4…ガス導入口、
5…ガス排出口、 6…成膜室上壁、 7…成膜室(反応室)下壁、 8…加熱手段、
9…リフレクタ、 10…反応室、 11a…基板温度測定手段、
11b…窓温度測定手段、 11c…サセプタ温度測定手段、
12…反応室冷却手段、 13…窓冷却手段、 14…冷却リングノズル、
14a…リング部、 14b…吹出し口、 15…冷却ガス供給管、
16…赤外線透過窓、 20…加熱処理装置。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Susceptor, 3 ... Susceptor rotation mechanism, 4 ... Gas inlet,
5 ... Gas outlet, 6 ... Upper wall of film formation chamber, 7 ... Lower wall of film formation chamber (reaction chamber), 8 ... Heating means,
9 ... reflector, 10 ... reaction chamber, 11a ... substrate temperature measuring means,
11b ... Window temperature measuring means, 11c ... Susceptor temperature measuring means,
12 ... Reaction chamber cooling means, 13 ... Window cooling means, 14 ... Cooling ring nozzle,
14a ... ring part, 14b ... outlet, 15 ... cooling gas supply pipe,
16 ... Infrared transmitting window, 20 ... Heat treatment apparatus.

Claims (13)

反応室内で半導体基板を加熱処理する装置であって、少なくとも、前記反応室は反応ガスを導入するガス導入口と反応ガスを排出するガス排出口を有するとともに赤外線透過窓を備え、前記反応室内部には半導体基板を載置するサセプタを具備し、前記反応室外部には、前記半導体基板を加熱する加熱手段と、前記赤外線透過窓を介して前記半導体基板の温度を測定する基板温度測定手段と、前記反応室全体を冷却する反応室冷却手段と、前記赤外線透過窓を冷却する窓冷却手段とを具備するものであることを特徴とする加熱処理装置。   An apparatus for heat-treating a semiconductor substrate in a reaction chamber, wherein at least the reaction chamber has a gas introduction port for introducing a reaction gas and a gas discharge port for discharging the reaction gas, and includes an infrared transmission window. Comprises a susceptor for placing a semiconductor substrate, and outside the reaction chamber, a heating means for heating the semiconductor substrate, and a substrate temperature measuring means for measuring the temperature of the semiconductor substrate through the infrared transmission window, A heat treatment apparatus comprising: a reaction chamber cooling means for cooling the entire reaction chamber; and a window cooling means for cooling the infrared transmission window. 前記反応室外部に、前記赤外線透過窓の温度を測定する窓温度測定手段及び/又は前記サセプタの温度を測定するサセプタ温度測定手段を具備するものであることを特徴とする請求項1に記載の加熱処理装置。   2. The apparatus according to claim 1, further comprising a window temperature measuring unit that measures the temperature of the infrared transmission window and / or a susceptor temperature measuring unit that measures the temperature of the susceptor outside the reaction chamber. Heat treatment device. 前記赤外線透過窓は、石英ガラスからなるものであることを特徴とする請求項1又は請求項2に記載の加熱処理装置。   The heat treatment apparatus according to claim 1, wherein the infrared transmission window is made of quartz glass. 前記加熱手段は、ランプヒータであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の加熱処理装置。   The heat treatment apparatus according to claim 1, wherein the heating unit is a lamp heater. 前記各温度測定手段は、放射温度計であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の加熱処理装置。   5. The heat treatment apparatus according to claim 1, wherein each of the temperature measuring means is a radiation thermometer. 前記窓冷却手段は、前記赤外線透過窓と反応しない冷却用流体をノズルより吹き付けるものであることを特徴とする請求項1乃至請求項5のいずれか1項に記載の加熱処理装置。   The said window cooling means sprays the cooling fluid which does not react with the said infrared permeable window from a nozzle, The heat processing apparatus of any one of Claim 1 thru | or 5 characterized by the above-mentioned. 前記冷却用流体は、空気、窒素ガス、アルゴンガスのいずれかであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の加熱処理装置。   The heat treatment apparatus according to claim 1, wherein the cooling fluid is any one of air, nitrogen gas, and argon gas. 前記窓冷却手段は、前記冷却用流体を少なくとも0.1kg/cmの圧力で吹き付けるものであることを特徴とする請求項1乃至請求項7のいずれか1項に記載の加熱処理装置。 The heat treatment apparatus according to claim 1, wherein the window cooling unit sprays the cooling fluid at a pressure of at least 0.1 kg / cm 2 . 前記窓冷却手段のノズルは、円環形状であり、前記冷却用流体を前記赤外線透過窓の外周部から内側に向かって吹き付けるように内周側に吹出し口を備えるものであることを特徴とする請求項1乃至請求項8のいずれか1項に記載の加熱処理装置。   The nozzle of the window cooling means has an annular shape, and has a blowout port on the inner peripheral side so as to spray the cooling fluid inward from the outer peripheral portion of the infrared transmitting window. The heat processing apparatus of any one of Claim 1 thru | or 8. 反応室内で半導体基板を加熱処理する方法であって、前記反応室内に配置されたサセプタに半導体基板を載置し、反応室外部に設けられた反応室冷却手段により前記反応室全体を冷却し、前記反応室に備えられた赤外線透過窓を介して反応室外部の基板温度測定手段により前記半導体基板の温度を測定しながら、反応室外部の加熱手段により外部から加熱して基板温度を制御し、且つ少なくとも前記反応室のガス導入口から反応ガスを導入している間は、反応室外部に設けられた窓冷却手段により前記赤外線透過窓を外部から冷却して、加熱処理を行なうことを特徴とする加熱処理方法。   A method for heat-treating a semiconductor substrate in a reaction chamber, wherein the semiconductor substrate is placed on a susceptor disposed in the reaction chamber, and the entire reaction chamber is cooled by a reaction chamber cooling means provided outside the reaction chamber, While measuring the temperature of the semiconductor substrate by the substrate temperature measuring means outside the reaction chamber through the infrared transmission window provided in the reaction chamber, the substrate temperature is controlled by heating from the outside by the heating means outside the reaction chamber, And at least during the introduction of the reaction gas from the gas inlet of the reaction chamber, the infrared transmission window is cooled from the outside by a window cooling means provided outside the reaction chamber, and heat treatment is performed. Heat treatment method. 前記加熱処理の際に、前記反応室外部の窓温度測定手段及び/又はサセプタ温度測定手段により前記赤外線透過窓及び/又は前記サセプタの温度も測定しながら温度制御を行なうことを特徴とする請求項10に記載の加熱処理方法。   The temperature control is performed while the temperature of the infrared transmission window and / or the susceptor is also measured by the window temperature measuring means and / or the susceptor temperature measuring means outside the reaction chamber during the heat treatment. The heat treatment method according to 10. 前記半導体基板として、シリコンからなるものを用いることを特徴とする請求項10又は請求項11に記載の加熱処理方法。   The heat treatment method according to claim 10 or 11, wherein the semiconductor substrate is made of silicon. 前記加熱処理は、前記半導体基板の主表面上に気相成長を行なう処理であることを特徴とする請求項10乃至請求項12のいずれか1項に記載の加熱処理方法。   The heat treatment method according to any one of claims 10 to 12, wherein the heat treatment is a treatment for performing vapor phase growth on a main surface of the semiconductor substrate.
JP2004197008A 2004-07-02 2004-07-02 Method and device for heat treatment Pending JP2006019583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197008A JP2006019583A (en) 2004-07-02 2004-07-02 Method and device for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197008A JP2006019583A (en) 2004-07-02 2004-07-02 Method and device for heat treatment

Publications (1)

Publication Number Publication Date
JP2006019583A true JP2006019583A (en) 2006-01-19

Family

ID=35793540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197008A Pending JP2006019583A (en) 2004-07-02 2004-07-02 Method and device for heat treatment

Country Status (1)

Country Link
JP (1) JP2006019583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153519A (en) * 2006-12-19 2008-07-03 Sumitomo Electric Ind Ltd Vapor deposition apparatus, and vapor deposition method
JP2016069500A (en) * 2014-09-30 2016-05-09 株式会社ニデック Dyeing apparatus
JP2016129162A (en) * 2015-01-09 2016-07-14 信越半導体株式会社 Epitaxial wafer manufacturing method
JP2018194468A (en) * 2017-05-18 2018-12-06 日本電子株式会社 Automatic sample changer for nmr
KR20190136662A (en) * 2018-05-31 2019-12-10 세메스 주식회사 Method and Apparatus for treating substrate
WO2019195081A3 (en) * 2018-04-06 2019-12-12 Varian Semiconductor Equipment Associates, Inc. System and apparatus for process chamber window cooling

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153519A (en) * 2006-12-19 2008-07-03 Sumitomo Electric Ind Ltd Vapor deposition apparatus, and vapor deposition method
JP2016069500A (en) * 2014-09-30 2016-05-09 株式会社ニデック Dyeing apparatus
JP2016129162A (en) * 2015-01-09 2016-07-14 信越半導体株式会社 Epitaxial wafer manufacturing method
JP2018194468A (en) * 2017-05-18 2018-12-06 日本電子株式会社 Automatic sample changer for nmr
US10903096B2 (en) 2018-04-06 2021-01-26 Varian Semiconductor Equipment Associates, Inc. System and apparatus for process chamber window cooling
WO2019195081A3 (en) * 2018-04-06 2019-12-12 Varian Semiconductor Equipment Associates, Inc. System and apparatus for process chamber window cooling
CN111937130A (en) * 2018-04-06 2020-11-13 瓦里安半导体设备公司 System and apparatus for cooling a process chamber window
KR20200131336A (en) * 2018-04-06 2020-11-23 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Systems and devices for cooling process chamber windows
JP2021520631A (en) * 2018-04-06 2021-08-19 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Systems and equipment for cooling process chamber windows
KR102409756B1 (en) 2018-04-06 2022-06-16 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Systems and devices for cooling process chamber windows
JP7144530B2 (en) 2018-04-06 2022-09-29 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド System and apparatus for cooling process chamber windows
CN111937130B (en) * 2018-04-06 2023-07-07 瓦里安半导体设备公司 System for cooling chamber window and cooling device
KR102065349B1 (en) * 2018-05-31 2020-01-13 세메스 주식회사 Method and Apparatus for treating substrate
KR20190136662A (en) * 2018-05-31 2019-12-10 세메스 주식회사 Method and Apparatus for treating substrate

Similar Documents

Publication Publication Date Title
US20220307139A1 (en) Reactor system and method to reduce residue buildup during a film deposition process
TWI613730B (en) Multizone control of lamps in a conical lamphead using pyrometers
TWI745717B (en) A coated liner assembly for a semiconductor processing chamber
WO2009099720A1 (en) Cvd apparatus
KR20010034128A (en) Method of cleaning a cvd cold-wall chamber and exhaust lines
US20110200749A1 (en) Film deposition apparatus and method
US5916370A (en) Semiconductor processing chamber having diamond coated components
JP5542584B2 (en) Film forming apparatus and film forming method
US6123766A (en) Method and apparatus for achieving temperature uniformity of a substrate
KR20150133633A (en) Vapor phase growing method and vapor phase growing apparatus
WO2004076715A1 (en) Vacuum processing apparatus
JP2006019583A (en) Method and device for heat treatment
CN107641796B (en) Processing equipment and chemical vapor deposition process
US20180286719A1 (en) Film forming apparatus and film forming method
JP5904861B2 (en) Vapor growth equipment
JP2010147201A (en) Substrate processing device
WO2023248780A1 (en) Vapor phase growth apparatus
JP4641268B2 (en) Vapor growth apparatus and vapor growth method
JP2017190506A (en) Vapor growth apparatus and vapor growth method
TWI609988B (en) Process equipment and chemical vapor deposition process
JPH09153485A (en) Vapor growth device
TW202200827A (en) Method for ascertaining the end of a cleaning process for a process chamber of a MOCVD reactor
KR20140062360A (en) Chemical vapor deposition apparatus
JPH09162129A (en) Semiconductor wafer processor, method for processing semiconductor wafer and semiconductor device
JPS61132594A (en) Vapor-phase reaction apparatus