JP4641268B2 - Vapor growth apparatus and vapor growth method - Google Patents

Vapor growth apparatus and vapor growth method Download PDF

Info

Publication number
JP4641268B2
JP4641268B2 JP2006043071A JP2006043071A JP4641268B2 JP 4641268 B2 JP4641268 B2 JP 4641268B2 JP 2006043071 A JP2006043071 A JP 2006043071A JP 2006043071 A JP2006043071 A JP 2006043071A JP 4641268 B2 JP4641268 B2 JP 4641268B2
Authority
JP
Japan
Prior art keywords
reaction tube
infrared
substrate
processed
infrared reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006043071A
Other languages
Japanese (ja)
Other versions
JP2007221076A (en
Inventor
伸昌 田中
俊範 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006043071A priority Critical patent/JP4641268B2/en
Publication of JP2007221076A publication Critical patent/JP2007221076A/en
Application granted granted Critical
Publication of JP4641268B2 publication Critical patent/JP4641268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、気相成長装置および気相成長方法に関する。   The present invention relates to a vapor phase growth apparatus and a vapor phase growth method.

発光ダイオード(LED)、半導体レーザなどの半導体デバイスの製造方法として、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)などの有機金属ガスと、アンモニア、ホスフィン、アルシンなどの水素化合物とを原料として化合物半導体薄膜を形成する有機金属化学気相蒸着法(Metal Organic Chemical Vapor Deposition:略称MOCVD法)を用いる気相成長方法が行われている。MOCVD法は、前述の原料を反応炉内に導入して混合し、被処理基板上で熱化学反応させることによって被処理基板上で薄膜を形成するものである。   As a method for manufacturing semiconductor devices such as light emitting diodes (LEDs) and semiconductor lasers, compound semiconductors using organic metal gases such as trimethylgallium (TMG) and trimethylaluminum (TMA) and hydrogen compounds such as ammonia, phosphine and arsine as raw materials A vapor phase growth method using a metal organic chemical vapor deposition method (abbreviated as MOCVD method) for forming a thin film has been performed. In the MOCVD method, the aforementioned raw materials are introduced into a reaction furnace, mixed, and subjected to a thermochemical reaction on the substrate to be processed to form a thin film on the substrate to be processed.

MOCVD法を用いる気相成長装置の1つとして、横型MOCVD装置がある。横型MOCVD装置は、反応炉内に反応管を水平方向に設け、反応管内に載置される被処理基板に対し、ガスを水平方向に反応管内に導入して被処理基板上で反応させるものである。このような横型MOCVD装置では、ガスの流れが、被処理基板の成膜される面に沿った層流状になり、膜厚、膜質の面内均一性が良いという利点がある。したがって、横型MOCVD法は一般的に広く用いられている。   As one of vapor phase growth apparatuses using the MOCVD method, there is a horizontal MOCVD apparatus. A horizontal MOCVD apparatus is a device in which a reaction tube is provided in a reaction furnace in a horizontal direction, and a gas is introduced into the reaction tube in a horizontal direction to react with the substrate to be processed placed on the reaction tube. is there. Such a horizontal MOCVD apparatus has an advantage that the gas flow is in a laminar flow along the surface on which the substrate to be processed is formed, and the in-plane uniformity of film thickness and film quality is good. Therefore, the horizontal MOCVD method is generally widely used.

図16は、従来の典型的な横型MOCVD装置1の反応炉2まわりの構成を説明する模式図である。従来の横型MOCVD装置1では、反応炉2を水平方向に貫通して角筒状の反応管3が設けられる。反応管3は、石英などで構成され、一端部が反応炉2外に臨んで開口して、成膜原料成分を含有するガスを反応管3内に導入するガス導入口4を構成し、また他端部が反応炉2外に臨んで開口して、成膜原料成分を含有するガスを反応管3外に排出するガス排気口5を構成する。   FIG. 16 is a schematic diagram illustrating a configuration around a reaction furnace 2 of a conventional typical horizontal MOCVD apparatus 1. In a conventional horizontal MOCVD apparatus 1, a rectangular tube-like reaction tube 3 is provided through a reaction furnace 2 in the horizontal direction. The reaction tube 3 is made of quartz or the like, and has one end that faces the outside of the reaction furnace 2 and opens to constitute a gas inlet 4 for introducing a gas containing a film forming raw material component into the reaction tube 3. The other end of the gas outlet 5 faces the outside of the reaction furnace 2 and opens to constitute a gas exhaust port 5 for discharging the gas containing the film forming raw material component out of the reaction tube 3.

反応管3の長手方向の略中央部には、被処理基板6を載置するサセプタ7が設けられる。またサセプタ7の下部には、被処理基板6を加熱するためのヒータ8が設けられる。被処理基板6の表面に成膜するに際しては、ガスをガス導入口4から矢符9に示す方向に反応管3内へ導入し、サセプタ7の下部に設けられるヒータ8によって被処理基板6を加熱し、成膜反応を促進して被処理基板6上に薄膜形成を行う。薄膜形成に使用され、被処理基板6上を通過したガスは、ガス排気口5から矢符10方向に排出される。   A susceptor 7 on which the substrate 6 to be processed is placed is provided at a substantially central portion in the longitudinal direction of the reaction tube 3. A heater 8 for heating the substrate 6 to be processed is provided below the susceptor 7. When forming a film on the surface of the substrate 6 to be processed, gas is introduced into the reaction tube 3 in the direction indicated by the arrow 9 from the gas inlet 4, and the substrate 6 to be processed is heated by the heater 8 provided below the susceptor 7. Heating is performed to promote a film forming reaction to form a thin film on the substrate 6 to be processed. The gas used for forming the thin film and passing over the substrate 6 to be processed is discharged from the gas exhaust port 5 in the direction of the arrow 10.

このような従来の横型MOCVD装置1においては、前述のように成膜時に反応管3内に導入されたガスが、被処理基板6の周辺において、ヒータ8で加熱された被処理基板6およびサセプタ7によって間接的に昇温され、熱化学反応が促進されることによって被処理基板6上に薄膜が形成される。したがって、成膜時にガスが反応管3内に所定濃度、すなわち一定のガスの流速分布で供給されるとともに、被処理基板6上において常に温度状態が均一であることが、被処理基板6面内において組成および膜厚が均一で良好な薄膜を形成する上で必要な条件である。また、半導体装置のように製品の品質が重要視される生産現場においては、特に安定した歩留を長期間維持することが極めて重要であり、プロセスの再現性をいかにして高めるかということも課題となっている。   In such a conventional horizontal MOCVD apparatus 1, as described above, the gas introduced into the reaction tube 3 during film formation is heated around the substrate 6 to be processed by the heater 8 and the susceptor. A thin film is formed on the substrate 6 by being heated indirectly by 7 and promoting a thermochemical reaction. Therefore, the gas is supplied into the reaction tube 3 at a predetermined concentration, that is, at a constant gas flow velocity distribution, and the temperature state is always uniform on the substrate 6 to be processed. Are the conditions necessary for forming a good thin film having a uniform composition and film thickness. In production sites where product quality is important, such as semiconductor devices, it is extremely important to maintain a stable yield for a long period of time, and how to improve process reproducibility. It has become a challenge.

しかしながら、従来の横型MOCVD装置1では、ヒータ8から放射される赤外線が石英製の反応管3を透過するので、反応管3の外部に熱が放出されてヒータ8からの熱エネルギの利用効率が非常に低くなる。このため、被処理基板6上に形成される成膜の品質、膜厚などの均一性を妨げることになる。また、従来の横型MOCVD装置1における成膜原料成分を被処理基板上に成長させる成膜ステップでは、気相反応の副生成物が反応管3の内壁に付着する。   However, in the conventional horizontal MOCVD apparatus 1, since the infrared rays radiated from the heater 8 pass through the quartz reaction tube 3, heat is released to the outside of the reaction tube 3, and the utilization efficiency of the heat energy from the heater 8 is increased. Very low. For this reason, the uniformity of the quality and thickness of the film formed on the substrate 6 to be processed is hindered. In the film forming step of growing the film forming raw material components on the substrate to be processed in the conventional horizontal MOCVD apparatus 1, a by-product of the gas phase reaction adheres to the inner wall of the reaction tube 3.

図17は、成膜ステップにおいて反応管3の内壁に副生成物11が付着する状態を示す模式図である。成膜原料成分を含有するガスをガス導入口4から矢符9に示す方向に反応管3内へ導入し、サセプタ7の下部に設けられるヒータ8によって被処理基板6を加熱することにより、被処理基板6上に薄膜が形成される。このとき、薄膜形成に用いられなかった残留ガスは、浮遊しながら反応管3のガス流過方向下流側に移動し、ガス排気口5から排出されるまでの間に、その一部が組成として不完全な副生成物11となり、反応管3の内壁に付着する。以後、反応管3の内壁に付着した副生成物11を付着物と呼ぶ。   FIG. 17 is a schematic diagram showing a state in which the by-product 11 adheres to the inner wall of the reaction tube 3 in the film forming step. A gas containing a film forming raw material component is introduced into the reaction tube 3 in the direction indicated by an arrow 9 from the gas inlet 4 and the substrate 6 to be processed is heated by the heater 8 provided below the susceptor 7. A thin film is formed on the processing substrate 6. At this time, the residual gas that has not been used for forming the thin film moves to the downstream side in the gas flow direction of the reaction tube 3 while floating, and a part of the residual gas has a composition until it is discharged from the gas exhaust port 5. It becomes an incomplete by-product 11 and adheres to the inner wall of the reaction tube 3. Hereinafter, the by-product 11 attached to the inner wall of the reaction tube 3 is referred to as an attached matter.

このようにして形成される付着物11は、気相成長を重ねるに従って堆積するとともに、次第に付着領域が拡大し、その付着領域の面積は、ガスの種類、ガスの流速、反応管3の寸法、反応管3内部の温度分布、薄膜形成条件などに従って定まる安定した大きさとなる。ここで付着物11は、石英製の反応管3よりも赤外線吸収率が大きいので、付着物11が形成される前と形成された後とで、反応管内部の温度分布が大きく変化する。反応管3内部の温度分布が変化すると、被処理基板6上に均一な薄膜を形成することが困難になる。このため、反応管3内部に付着物11がある程度付着し、反応管3内部の温度が安定し、プロセスの再現性が確保できるまで、被処理基板に対してダミーの成膜を行う成膜ステップを実施するという前処理が必要である。   The deposit 11 formed in this way is deposited as the vapor phase growth is repeated, and the adhesion region gradually expands. The area of the adhesion region is the type of gas, the flow rate of the gas, the dimensions of the reaction tube 3, It becomes a stable size determined according to the temperature distribution inside the reaction tube 3 and the thin film formation conditions. Here, since the deposit 11 has a higher infrared absorptivity than the reaction tube 3 made of quartz, the temperature distribution inside the reaction tube varies greatly before and after the deposit 11 is formed. When the temperature distribution inside the reaction tube 3 changes, it becomes difficult to form a uniform thin film on the substrate 6 to be processed. For this reason, the deposition step of performing dummy deposition on the substrate to be processed until the deposit 11 adheres to some extent inside the reaction tube 3, the temperature inside the reaction tube 3 is stabilized, and process reproducibility can be secured. It is necessary to perform a pre-processing of performing

この前処理は、成膜原料成分を含有するガスの種類、ガスの導入速度、反応管3の大きさ、ヒータ8の加熱温度などのプロセス条件にもよるけれども、少なくとも5回以上実施される必要がある。また前処理の実施回数が多くなるのに従って、反応管3の内壁に付着物が堆積し、付着物の厚みが増す。   This pretreatment needs to be performed at least five times, although it depends on the process conditions such as the type of gas containing the film forming raw material component, the gas introduction speed, the size of the reaction tube 3, and the heating temperature of the heater 8. There is. Further, as the number of pretreatments increases, deposits accumulate on the inner wall of the reaction tube 3 and the thickness of the deposits increases.

図18は、図16に示す横型MOCVD装置1によって1枚の被処理基板を処理する回数であるプロセス回数と付着物の厚みとの関係を示す図である。図18によれば、プロセスをn1回行うと、付着物の付着領域が安定し、製品としての被処理基板6への成膜(生産)を行うことができる。   FIG. 18 is a diagram showing the relationship between the number of processes, which is the number of times one substrate is processed by the horizontal MOCVD apparatus 1 shown in FIG. 16, and the thickness of the deposit. According to FIG. 18, when the process is performed n1 times, the adhesion region of the deposit is stabilized, and film formation (production) on the substrate 6 to be processed as a product can be performed.

しかしながら、プロセス回数がn2回に達すると、付着物の厚みがt2となって付着物11の重さが増加し、たとえば付着物11が反応管3の内壁の上側に付着する場合、該増加した付着物11の自重などにより付着物11が落下して、付着物11の一部に剥離が生じる。また付着物11が反応管3を流過するガスに対して障害となり、ガスの風圧力によって付着物11の一部に剥離が生じる。   However, when the number of processes reaches n2, the thickness of the deposit becomes t2, and the weight of the deposit 11 increases. For example, when the deposit 11 adheres to the upper side of the inner wall of the reaction tube 3, the increase occurs. The deposit 11 falls due to its own weight or the like, and a part of the deposit 11 is peeled off. Moreover, the deposit | attachment 11 becomes an obstacle with respect to the gas which flows through the reaction tube 3, and peeling arises in a part of the deposit | attachment 11 with the wind pressure of gas.

このような付着物11の剥離が生じると、剥離した領域においては反応管3を構成する石英が露出し、反応管3内部の温度が局所的に低下する。また、剥離した付着物11が被処理基板6上に落下し、製品として異物欠陥を生じる。   When the deposit 11 is peeled off, the quartz constituting the reaction tube 3 is exposed in the peeled region, and the temperature inside the reaction tube 3 is locally reduced. Further, the peeled deposit 11 falls on the substrate 6 to be processed, and a foreign matter defect is generated as a product.

したがって、通常プロセス回数がn2回に達するまでに、反応管3内壁に形成される付着物11を除去するメンテナンスを行う必要がある。このメンテナンスには数時間を要し、また、付着物11の付着領域が安定してから付着物11に剥離が生じるまでのプロセス回数は10回程度が限度であるので、被処理基板に対してダミーの成膜を行う前処理を行った後、10回のプロセスを実施するごとに上記メンテナンスを行わなければならない。このため、生産効率が非常に悪くなり、コストの増大を招くという問題がある。   Therefore, it is necessary to perform maintenance to remove the deposit 11 formed on the inner wall of the reaction tube 3 until the number of normal processes reaches n2. This maintenance takes several hours, and since the number of processes from the stabilization of the adhesion region of the deposit 11 until the deposit 11 is peeled off is about 10 times, After performing the pretreatment for forming the dummy film, the maintenance must be performed every time the process is performed 10 times. For this reason, there is a problem that the production efficiency is extremely deteriorated and the cost is increased.

そこで、このような問題に対して、プロセスの初期時および付着物の剥離が起こるときにおいても、反応管内部の温度分布を常に一定に保持することができる気相成長装置が提案されている(たとえば、特許文献1参照)。   In view of this, a vapor phase growth apparatus that can always keep the temperature distribution inside the reaction tube constant even at the initial stage of the process and when the deposits are peeled off has been proposed ( For example, see Patent Document 1).

特許文献1に開示される気相成長装置には、反応管の内壁または外壁に接するように、赤外線吸収手段が設けられる。特許文献1に開示される気相成長装置では、この赤外線吸収手段の赤外線吸収率と付着物の赤外線吸収率とを略等しくすることにより、プロセスの初期時においても、また付着物が剥離しても、反応管内の温度状態を均一化することができ、安定して被処理基板上に成膜を行うことができるというものである。このため、製品としての被処理基板に成膜を行う前に前処理を行う必要がなく、付着物の剥離前と剥離後とで反応管内部の温度分布が大きく変化しないので、安定して成膜を行うことができるとされる。   The vapor phase growth apparatus disclosed in Patent Document 1 is provided with infrared absorption means so as to be in contact with the inner wall or the outer wall of the reaction tube. In the vapor phase growth apparatus disclosed in Patent Document 1, by making the infrared absorption rate of the infrared absorption means substantially equal to the infrared absorption rate of the deposit, the deposit is peeled off even at the initial stage of the process. In addition, the temperature state in the reaction tube can be made uniform, and the film can be stably formed on the substrate to be processed. For this reason, it is not necessary to perform pretreatment before film formation on the substrate to be processed as a product, and the temperature distribution inside the reaction tube does not change greatly between before and after the removal of the deposit, so that stable formation can be achieved. It is said that the film can be performed.

しかしながら、付着物の赤外線吸収量は、付着物の厚み、密度などにより変化するので、特許文献1に開示の気相成長装置のように赤外線吸収手段と付着物との赤外線吸収率を等しくしても、これらの赤外線吸収量が等しくなるとは限らない。付着物と赤外線吸収手段との赤外線吸収量に差がある限り、付着物の剥離による反応管内部での温度分布の変化は避けられない。   However, since the amount of infrared absorption of the deposit varies depending on the thickness, density, etc. of the deposit, the infrared absorptivity of the infrared absorbing means and the deposit is equalized as in the vapor phase growth apparatus disclosed in Patent Document 1. However, these infrared absorption amounts are not necessarily equal. As long as there is a difference in the amount of infrared absorption between the deposit and the infrared absorbing means, a change in temperature distribution inside the reaction tube due to the peeling of the deposit is inevitable.

また特許文献1に開示の気相成長装置に備えられる赤外線吸収手段は、実際には付着物の形成を抑制するほどの温度上昇が得られるものではなく、付着物の形成量は従来のMOCVD装置1での付着物の形成量と変わらない。すなわち、特許文献1に開示の気相成長装置では、前処理を行う必要はないものの、メンテナンスは従来の横型MOCVD装置1と同様の時期に行われる必要がある。反応管内壁への付着物の形成は気相成長装置においては避けられないものであるので、生産効率を向上させるためには、メンテナンスの時期を遅らせること、すなわち反応管内壁への付着物の形成量を低減することが望まれている。   In addition, the infrared absorption means provided in the vapor phase growth apparatus disclosed in Patent Document 1 does not actually provide a temperature increase enough to suppress the formation of deposits, and the amount of deposits formed is a conventional MOCVD apparatus. 1 is the same as the amount of deposits formed. That is, in the vapor phase growth apparatus disclosed in Patent Document 1, it is not necessary to perform the pretreatment, but the maintenance needs to be performed at the same time as the conventional horizontal MOCVD apparatus 1. Since the formation of deposits on the inner wall of the reaction tube is inevitable in the vapor phase growth apparatus, in order to improve the production efficiency, the maintenance time is delayed, that is, the deposit is formed on the inner wall of the reaction tube. It is desirable to reduce the amount.

さらに、特に反応管の内壁に赤外線吸収手段が設けられる場合、赤外線吸収手段を設けることによる反応管内壁面の段差、ならびに表面形状および表面粗さなどの表面材質の違いなどによって、ガスの流速分布に乱れを発生し、被処理基板上への成膜に悪影響を与える恐れがある。また反応管の内壁に赤外線吸収手段を設けても、未だ加熱効率としては充分ではなく、さらなる加熱効率の向上が求められる。   Furthermore, especially when the infrared absorption means is provided on the inner wall of the reaction tube, the flow velocity distribution of the gas is affected by the difference in the surface material such as the step shape of the reaction tube inner wall surface and the surface roughness due to the provision of the infrared absorption means. Disturbance may occur, which may adversely affect film formation on the substrate to be processed. Even if infrared absorbing means is provided on the inner wall of the reaction tube, the heating efficiency is still not sufficient, and further improvement in heating efficiency is required.

特許3104677号公報Japanese Patent No. 3104677

本発明の目的は、成膜原料成分を含有するガスへの加熱効率を高め、また、反応管内壁に形成される付着物の量を低減することによって生産効率を高めるとともに、被処理基板上への成膜を均一に行うことができる気相成長装置および気相成長方法を提供することである。   The object of the present invention is to increase the heating efficiency to the gas containing the film forming raw material component, and to increase the production efficiency by reducing the amount of deposits formed on the inner wall of the reaction tube, and onto the substrate to be processed. It is an object to provide a vapor phase growth apparatus and a vapor phase growth method capable of uniformly forming the film.

本発明は、被処理基板が収容される反応管に成膜原料成分を含有するガスを被処理基板の成膜される面に沿う方向に流すようにして導入し、導入されるガスを加熱手段で加熱することによって反応させながら成膜原料成分を被処理基板上に成長させる気相成長装置において
反応管の外壁面に接するように設けられ、赤外線を反射し、反応管の外壁面に接する側の面内で、赤外線反射率が変化する赤外線反射手段を含み、
前記赤外線反射手段は、反応管外壁面に接して設けられ、貫通孔が形成されるシート状の赤外線反射部材を含むことを特徴とする気相成長装置である。
The present invention introduces a gas containing a film forming raw material component into a reaction tube in which a substrate to be processed is accommodated so as to flow in a direction along a surface of the substrate to be processed, and the introduced gas is heated. in the vapor phase growth apparatus for growing on a substrate to be processed to film-forming ingredients while the reaction by in heating,
Infrared reflecting means provided so as to be in contact with the outer wall surface of the reaction tube, reflecting infrared rays, and changing the infrared reflectance within the surface in contact with the outer wall surface of the reaction tube ,
Said infrared reflecting means is provided in contact with the reaction tube outer wall surface, a sheet-like infrared reflecting member through-hole is formed a vapor deposition apparatus characterized by including Mukoto.

また本発明は、赤外線反射手段は、
反応管の内壁に付着する付着物の付着領域にわたって、反応管の外壁面に接するように設けられることを特徴とする。
In the present invention, the infrared reflecting means is
It is characterized in that it is provided so as to be in contact with the outer wall surface of the reaction tube over the adhesion region of the deposits adhering to the inner wall of the reaction tube.

また本発明は、赤外線反射手段は、
加熱手段から離反するのに伴って赤外線反射率が高くなるように赤外線反射率が変化することを特徴とする。
In the present invention, the infrared reflecting means is
The infrared reflectivity changes so that the infrared reflectivity increases as the distance from the heating means increases.

た本発明は、被処理基板が収容される反応管の外壁面に、赤外線を反射する赤外線反射手段を設けるステップであって、反応管の外壁面に接する側の面内で、赤外線反射率が変化し、貫通孔が形成されるシート状の赤外線反射部材を含む赤外線反射手段を設けるステップと、
反応管に成膜原料成分を含有するガスを被処理基板の成膜される面に沿う方向に流すようにして導入するガス導入ステップと、
導入されるガスを加熱することによって反応させながら成膜原料成分を被処理基板上に成長させる成膜ステップとを含むことを特徴とする気相成長方法である。
Or the invention, the outer wall surface of the reaction tube target substrate is accommodated, comprising: providing a infrared reflecting means for reflecting infrared radiation, in a plane of the side in contact with the outer wall surface of the reaction tube, infrared reflectance A step of providing an infrared reflecting means including a sheet-like infrared reflecting member in which a through hole is formed ;
A gas introduction step for introducing a gas containing a film forming raw material component into the reaction tube so as to flow in a direction along the surface of the substrate to be formed;
And a film forming step of growing a film forming raw material component on a substrate to be processed while reacting by introducing a gas to be introduced.

また本発明は、反応管の外壁面に赤外線反射手段を設けるステップにおいて、
赤外線反射手段は、
反応管の内壁に付着する付着物の付着領域にわたって設けられることを特徴とする。
The present invention also provides a step of providing infrared reflecting means on the outer wall surface of the reaction tube.
Infrared reflecting means
It is characterized by being provided over the adhesion area of the deposits that adhere to the inner wall of the reaction tube.

本発明によれば、被処理基板が収容される反応管に成膜原料成分を含有するガスを被処理基板の成膜される面に沿う方向に流すようにして導入し、導入されるガスを加熱手段で加熱することによって反応させながら成膜原料成分を被処理基板上に成長させる気相成長装置には、赤外線を反射する赤外線反射手段が、反応管の外壁面に接するように設けられる。気相反応の副生成物として形成される付着物は、反応管の内壁面が高温となる箇所では形成されにくい。そこで、反応管の外壁面に接するように赤外線反射手段を設けることによって反応管の内壁を加熱して昇温させ、反応管内壁に形成される付着物の量を低減することができる。また赤外線反射手段を設けることによって、成膜の初期段階においても高い加熱効率でガスを加熱することができる。さらに赤外線反射手段が反応管の外壁面に接して設けられることにより、反応管内部のガスの流速分布を乱すことなく被処理基板上に成膜することができるので、被処理基板上に均一な膜を形成することができる。したがって、成膜原料成分を含有するガスへの加熱効率を高めることができるとともに、反応管内壁に形成される付着物の量を低減することによって生産効率を高めることができる。また被処理基板上に形成される薄膜に厚みむらが発生することを抑制できるとともに、均一な厚みの薄膜を再現性良く形成することができる。
また、赤外線反射手段は、反応管の外壁面に接する側の面内で、赤外線反射率が変化するので、たとえば、反応管の内壁に付着する付着物の量が多い領域の赤外線反射率を高く、反応管の内壁に付着する付着物の量が少ない領域の赤外線反射率を低くすることによって、反応管内壁に形成される付着物の形成速度を均一にすることができる。
また、赤外線反射手段は、反応管外壁面に接して設けられるシート状の赤外線反射部材を含む。赤外線反射手段として、たとえば膜状または薄板状などのシート状の赤外線反射部材が用いられるので、赤外線反射手段を設けることによる気相成長装置の大型化を防止することができる。またシート状の簡単な形状の部材を赤外線反射手段として用いることができるので、コストの上昇に影響することがなく、赤外線反射手段の反応管への設置およびメンテナンスにおいても、作業性が向上する。
また、赤外線反射部材には、貫通孔が形成される。このことによって、貫通孔の部分から赤外線を反応管外部に放出させることができるので、反応管内部に温度分布が生じることを抑制でき、被処理基板に均一な厚みの薄膜を形成することができる。
According to the present invention, a gas containing a film forming raw material component is introduced into a reaction tube in which a substrate to be processed is accommodated so as to flow in a direction along a surface on which the substrate to be processed is formed. In a vapor phase growth apparatus for growing a film forming raw material component on a substrate to be processed while being reacted by heating with a heating means, an infrared reflecting means for reflecting infrared rays is provided so as to be in contact with an outer wall surface of a reaction tube. The deposit formed as a by-product of the gas phase reaction is not easily formed at a location where the inner wall surface of the reaction tube is at a high temperature. Therefore, by providing infrared reflection means so as to be in contact with the outer wall surface of the reaction tube, the inner wall of the reaction tube can be heated and heated to reduce the amount of deposits formed on the inner wall of the reaction tube. Further, by providing the infrared reflecting means, the gas can be heated with high heating efficiency even in the initial stage of film formation. Furthermore, since the infrared reflecting means is provided in contact with the outer wall surface of the reaction tube, the film can be formed on the substrate to be processed without disturbing the gas flow velocity distribution inside the reaction tube. A film can be formed. Therefore, the heating efficiency of the gas containing the film forming raw material component can be increased, and the production efficiency can be increased by reducing the amount of deposits formed on the inner wall of the reaction tube. In addition, it is possible to suppress the occurrence of uneven thickness in the thin film formed on the substrate to be processed, and it is possible to form a thin film having a uniform thickness with good reproducibility.
In addition, since the infrared reflectance of the infrared reflecting means changes within the surface on the side in contact with the outer wall surface of the reaction tube, for example, the infrared reflectance of a region where the amount of deposits adhering to the inner wall of the reaction tube is large is increased. By reducing the infrared reflectance in the region where the amount of deposits adhering to the inner wall of the reaction tube is low, the formation rate of deposits formed on the inner wall of the reaction tube can be made uniform.
The infrared reflecting means includes a sheet-like infrared reflecting member provided in contact with the outer wall surface of the reaction tube. As the infrared reflecting means, for example, a sheet-like infrared reflecting member such as a film or a thin plate is used. Therefore, it is possible to prevent an increase in the size of the vapor phase growth apparatus by providing the infrared reflecting means. Further, since a sheet-like member having a simple shape can be used as the infrared reflecting means, the cost is not affected, and the workability is improved in installing and maintaining the infrared reflecting means in the reaction tube.
In addition, a through hole is formed in the infrared reflecting member. As a result, infrared rays can be emitted from the through-hole portion to the outside of the reaction tube, so that temperature distribution can be suppressed from occurring inside the reaction tube, and a thin film having a uniform thickness can be formed on the substrate to be processed. .

また本発明によれば、赤外線反射手段は、反応管の内壁に付着する付着物の付着領域にわたって、反応管の外壁面に接するように設けられる。赤外線反射手段がこのような付着物の付着領域にわたって設けられることによって、被処理基板付近における成膜条件が安定となり、均一な厚みの薄膜を一層再現性よく形成することができる。   Further, according to the present invention, the infrared reflecting means is provided so as to be in contact with the outer wall surface of the reaction tube over the attachment region of the deposit attached to the inner wall of the reaction tube. By providing the infrared reflecting means over the adhesion region of such an adhering substance, the film forming conditions in the vicinity of the substrate to be processed become stable, and a thin film having a uniform thickness can be formed with higher reproducibility.

また本発明によれば、赤外線反射手段は、加熱手段から離反するのに伴って赤外線反射率が高くなるように赤外線反射率が変化する。加熱手段から遠い領域においては、温度が低くなり付着物が形成されやすく、加熱手段に近い領域においては、温度が高くなるので付着物が形成されにくい。そこで、上記のように、加熱手段から離反するのに伴って赤外線反射率が高くなるように赤外線反射率を変化させることによって、付着物が付着しやすい反応管内壁の領域において赤外線反射率を高く、付着物が付着しにくい反応管内壁の領域において赤外線反射率を低くすることができるので、反応管内壁に形成される付着物の厚みむらを小さくすることができる。またこれによって、反応管内部でのガスの流速分布の乱れおよび反応管内部での温度分布をなくすことができるので、被処理基板上への成膜を一層均一に行うことができる。   Further, according to the present invention, the infrared reflectance of the infrared reflecting means changes so that the infrared reflectance increases as the distance from the heating means increases. In a region far from the heating means, the temperature is low and deposits are likely to be formed, and in a region near the heating means, the temperature is high and deposits are difficult to form. Therefore, as described above, the infrared reflectance is increased in the region of the inner wall of the reaction tube where deposits are likely to adhere by changing the infrared reflectance so that the infrared reflectance increases as the distance from the heating means increases. Since the infrared reflectance can be lowered in the region of the inner wall of the reaction tube where the deposits are difficult to adhere, the thickness unevenness of the deposit formed on the inner wall of the reaction tube can be reduced. This also eliminates the disturbance of the gas flow velocity distribution inside the reaction tube and the temperature distribution inside the reaction tube, so that film formation on the substrate to be processed can be performed more uniformly.

また本発明によれば、被処理基板が収容される反応管の外壁面に、赤外線を反射する赤外線反射手段を設けるステップであって、反応管の外壁面に接する側の面内で、赤外線反射率が変化し、貫通孔が形成されるシート状の赤外線反射部材を含む赤外線反射手段を設けるステップと、反応管に成膜原料成分を含有するガスを被処理基板の成膜される面に沿う方向に流すようにして導入するガス導入ステップと、導入されるガスを加熱することによって反応させながら成膜原料成分を被処理基板上に成長させる成膜ステップとを含む気相成長方法によって、被処理基板上に成膜を行う。このことによって、高い加熱効率でガスを加熱できるとともに反応管内壁に形成される付着物の量を低減して生産効率を高め、被処理基板上への均一な成膜を行うことができる。 Further, according to the present invention, there is provided a step of providing infrared reflecting means for reflecting infrared rays on the outer wall surface of the reaction tube in which the substrate to be processed is accommodated , and the infrared reflection is performed within the surface in contact with the outer wall surface of the reaction tube. A step of providing an infrared reflecting means including a sheet-like infrared reflecting member in which a rate changes and a through hole is formed, and a gas containing a film forming raw material component in a reaction tube along the surface of the substrate to be formed By a vapor phase growth method including a gas introduction step for introducing a gas flow in a direction and a film formation step for growing a film forming material component on a substrate to be processed while reacting by heating the introduced gas. Film formation is performed on the processing substrate. Thus, the gas can be heated with high heating efficiency, and the amount of deposits formed on the inner wall of the reaction tube can be reduced to increase production efficiency, and uniform film formation on the substrate to be processed can be performed.

また本発明によれば、反応管の外壁面に赤外線反射手段を設けるステップにおいて、赤外線反射手段は反応管の内壁に付着する付着物の付着領域にわたって設けられる。赤外線反射手段が少なくともこのような領域にわたって設けられることにより、成膜ステップにおいて形成される付着物の量が低減されるとともに、高い加熱効率で成膜を行うことができる。   Further, according to the present invention, in the step of providing the infrared reflecting means on the outer wall surface of the reaction tube, the infrared reflecting means is provided over the attachment region of the deposit attached to the inner wall of the reaction tube. By providing the infrared reflecting means over at least such a region, the amount of deposits formed in the film forming step can be reduced, and film formation can be performed with high heating efficiency.

本発明は、被処理基板が収容される反応管に成膜原料成分を含有するガスを被処理基板の成膜される面に沿う方向に流すようにして導入し、導入されるガスを加熱手段で加熱することによって反応させながら成膜原料成分を被処理基板上に成長させる気相成長装置であって、反応管の外壁面に接するように設けられ、赤外線を反射する赤外線反射手段を含むことを特徴とする気相成長装置である。   The present invention introduces a gas containing a film forming raw material component into a reaction tube in which a substrate to be processed is accommodated so as to flow in a direction along a surface of the substrate to be processed, and the introduced gas is heated. A vapor phase growth apparatus for growing a film-forming raw material component on a substrate to be processed while being heated by reaction, and is provided so as to be in contact with an outer wall surface of a reaction tube, and includes an infrared reflecting means for reflecting infrared rays Is a vapor phase growth apparatus characterized by

図1は気相成長装置20の反応炉21まわりの構成を簡略化して示す側面からみた断面図であり、図2は赤外線反射手段22が設けられる反応管23の上面図である。気相成長装置20は、大略、反応炉21と、反応管23と、被処理基板24を載置するサセプタ25と、サセプタ25の下部に設けられる加熱手段であるヒータ26と、反応管23の外壁面に接するように設けられ、赤外線を反射する赤外線反射手段22とを含んで構成される。なお、気相成長装置20には、被処理基板24の近傍に設けられる温度センサと、ヒータ26の動作を制御する制御手段とを含むけれども、図示を省略する。この気相成長装置20としては、たとえば半導体基板に薄膜形成処理を施すことに用いられる半導体処理装置などがある。 Figure 1 is a sectional view seen from the side schematically showing the configuration around the reaction furnace 21 of the vapor phase growth apparatus 20, FIG. 2 is a top view of the reaction tube 23 of the infrared reflecting means 22 is provided. The vapor phase growth apparatus 20 generally includes a reaction furnace 21, a reaction tube 23, a susceptor 25 on which a substrate to be processed 24 is placed, a heater 26 that is a heating unit provided below the susceptor 25, and a reaction tube 23. Infrared reflecting means 22 is provided so as to be in contact with the outer wall surface and reflects infrared rays. Although the vapor phase growth apparatus 20 includes a temperature sensor provided in the vicinity of the substrate to be processed 24 and a control unit that controls the operation of the heater 26, the illustration is omitted. Examples of the vapor phase growth apparatus 20 include a semiconductor processing apparatus used for performing a thin film forming process on a semiconductor substrate.

反応炉21は、直方体形状を有する筐体であり、たとえば金属製の穀体に耐火物などが内張りされて形成される。反応炉21の長手方向の両端において対向する壁面部には、互いに対向する位置に貫通孔がそれぞれ形成され、この貫通孔に反応管23が挿通するようにして装着される。反応管23は、角筒形状を有し、耐熱性を有する材料、たとえば石英、アルミナなどから構成される。   The reaction furnace 21 is a casing having a rectangular parallelepiped shape, and is formed by lining a refractory or the like on a metal grain, for example. Through-holes are respectively formed at opposing positions on the wall surfaces facing both ends of the reaction furnace 21 in the longitudinal direction, and the reaction tube 23 is inserted into the through-holes. The reaction tube 23 has a rectangular tube shape and is made of a heat-resistant material such as quartz or alumina.

反応管23は、一方の端部であるガス導入口27から、被処理基板24の成膜面上に成膜するための成膜原料成分を含有するガスが、被処理基板24の被処理面である成膜面に沿う方向である矢符28方向に導入され、他方の端部であるガス排気口29から、成膜処理に用いられたガスが矢符30方向に排気される。   In the reaction tube 23, a gas containing a film forming raw material component for forming a film on the film forming surface of the substrate to be processed 24 is supplied from the gas inlet 27 at one end to the surface to be processed of the substrate to be processed 24. The gas used in the film forming process is exhausted in the direction of the arrow 30 through the gas exhaust port 29 which is the other end.

反応管23のガス導入口27へのガスの供給は、高圧ボンベなどのガス供給源、ガス供給源に接続される圧力/流量調整弁およびガス供給源と反応管23とに接続されるガス供給管路を含んで構成されるガス供給手段によって行われるけれども、このガス供給手段については図示を省略する。   The gas supply to the gas inlet 27 of the reaction tube 23 includes a gas supply source such as a high-pressure cylinder, a pressure / flow rate adjusting valve connected to the gas supply source, and a gas supply connected to the gas supply source and the reaction tube 23. Although it is performed by a gas supply means including a pipe line, the illustration of the gas supply means is omitted.

反応管23には、反応管23が反応炉21に装着された状態で、反応炉21の底面部21aを臨む側(下側)であって長手方向略中央部に開口部31が形成される。開口部31の形成される部分には、反応炉21の底面部21aから立上がるようにしてヒータ26が設けられる。ヒータ26は、たとえば抵抗発熱体などからなり、不図示の回転駆動手段によって回転可能に設けられ、また不図示の電源から電力供給されて発熱することができる。このヒータ26の上にサセプタ25が装着される。サセプタ25は、保持部材であり、その上に載置される被処理基板24を保持することができる。ヒータ26に電力供給して発熱させるとともに回転駆動させることによって、サセプタ25が加熱および回転駆動され、さらにサセプタ25に載置される被処理基板24が、反応炉21内で回転しながら加熱昇温される。   In the reaction tube 23, the reaction tube 23 is attached to the reaction furnace 21, and an opening 31 is formed on the side (lower side) facing the bottom surface portion 21 a of the reaction furnace 21 and at a substantially central portion in the longitudinal direction. . A heater 26 is provided at a portion where the opening 31 is formed so as to rise from the bottom surface 21 a of the reaction furnace 21. The heater 26 is made of, for example, a resistance heating element, and is rotatably provided by a rotation driving unit (not shown). The heater 26 can be heated by being supplied with power from a power source (not shown). A susceptor 25 is mounted on the heater 26. The susceptor 25 is a holding member and can hold the substrate to be processed 24 placed thereon. By supplying electric power to the heater 26 to generate heat and rotating it, the susceptor 25 is heated and rotated, and the substrate to be processed 24 placed on the susceptor 25 is heated and heated while rotating in the reaction furnace 21. Is done.

赤外線反射手段22は、反応管23の外壁面に接するように設けられる。赤外線反射手段22としては、たとえば、モリブデン、ステンレス鋼、ニッケル、チタン、クロムなどの高融点金属材料、合金の薄板などを用いることができる。赤外線反射手段22は、反応管23の内壁に付着する付着物の付着領域にわたって、反応管23の外壁面に接するように設けられ、反応管23の上面部材23aの上側の面に接するように設けられる。 The infrared reflecting means 22 is provided in contact with the outer wall surface of the reaction tube 23. As the infrared reflecting means 22, for example, a high melting point metal material such as molybdenum, stainless steel, nickel, titanium, or chromium, a thin plate of an alloy, or the like can be used . Infrared reflecting means 22, over the attachment region of the deposits adhering to the inner wall of the reaction tube 23, provided in contact with the outer wall surface of the reaction tube 23, so as to be in contact with the upper surface of the top member 23a of the reaction tube 23 Provided.

ここで、反応管23の内壁に付着する付着物とは、たとえば、成膜原料成分を被処理基板24上に成長させる成膜ステップにおいて薄膜形成に用いられなかった残留ガスが浮遊しながら反応管23のガス流過方向下流側に移動し、ガス排気口29から排出されるまでの間にその一部が組成として不完全な副生成物となり、反応管23の内壁に付着したものを指す。このような付着物は、反応管23を構成する石英などの材料よりも赤外線吸収率が高いので、付着物の形成前と形成後とで反応管23内部の温度分布が大きく変化し、均一な薄膜の形成が困難になる。   Here, the adhering matter adhering to the inner wall of the reaction tube 23 is, for example, a reaction tube while a residual gas that has not been used for forming a thin film in a film forming step for growing a film forming raw material component on the substrate to be processed 24 23, a part of which becomes an incomplete by-product in the composition and moves to the downstream side of the gas exhaust port 29 and adheres to the inner wall of the reaction tube 23. Since such a deposit has a higher infrared absorption rate than a material such as quartz constituting the reaction tube 23, the temperature distribution inside the reaction tube 23 greatly changes before and after the formation of the deposit, and is uniform. Formation of a thin film becomes difficult.

反応管23の内壁に付着する付着物の付着領域は、次のようにして定められる。付着物の付着領域は、たとえば、赤外線反射手段22を設けないこと以外は気相成長装置20と同じ構成である気相成長装置を用い、予め定められる温度、反応管23内でのガスの流量およびガスの濃度、ならびに気相反応シミュレーションなどの薄膜形成条件によって被処理基板24に薄膜を形成する成膜プロセスを実施することにより求める。 The adhesion area of the deposit that adheres to the inner wall of the reaction tube 23 is determined as follows. For example, the deposit region is a vapor phase growth apparatus having the same configuration as the vapor phase growth apparatus 20 except that the infrared reflecting means 22 is not provided, and a predetermined temperature and a gas flow rate in the reaction tube 23 are used. It is obtained by carrying out a film forming process for forming a thin film on the substrate 24 to be processed according to thin film forming conditions such as gas concentration and gas phase reaction simulation.

図3は、成膜プロセスの回数と付着物の付着領域の面積との関係を示す図である。図3に示すように、付着物の付着領域は、成膜原料成分を含有するガスの種類、ガスの流速、反応管23の寸法、反応管23内部の温度分布、薄膜形成条件などに従って定まる安定した面積の大きさSおよび安定した形状の領域に収束する。   FIG. 3 is a diagram showing the relationship between the number of film forming processes and the area of the attached region of the attached matter. As shown in FIG. 3, the adhesion area of the deposit is stable depending on the type of gas containing the film forming raw material component, the gas flow rate, the dimensions of the reaction tube 23, the temperature distribution inside the reaction tube 23, the thin film formation conditions, and the like. Convergence to the area size S and the area of stable shape.

図4は赤外線反射手段22を設けないこと以外は気相成長装置20と同じ構成である気相成長装置を用いて成膜プロセスを行い、付着物32を付着させた反応管23の断面図であり、図5は図4に示す反応管23の上面部材23aをサセプタ25側から見た図である。気相反応は、ヒータ26によって加熱されるサセプタ25のガス流過方向上流側から下流側にかけて進行するので、付着物32は、反応管23の上面部材23aのサセプタ25の上方付近から下流側にかけて形成される。 FIG. 4 is a cross-sectional view of the reaction tube 23 in which the film forming process is performed using the vapor phase growth apparatus having the same configuration as the vapor phase growth apparatus 20 except that the infrared reflection means 22 is not provided, and the deposit 32 is adhered. FIG. 5 is a view of the upper surface member 23a of the reaction tube 23 shown in FIG. 4 as viewed from the susceptor 25 side. Since the gas phase reaction proceeds from the upstream side to the downstream side in the gas flow direction of the susceptor 25 heated by the heater 26, the adhering matter 32 extends from near the susceptor 25 to the downstream side of the upper surface member 23 a of the reaction tube 23. It is formed.

付着物の付着領域は、付着物の付着領域の面積が安定した大きさSになるまで成膜プロセスを実施することによって予め求めることができ、赤外線反射手段22を設ける領域は、求めた付着領域に応じて反応管23の外壁面上に設定される。   The adhesion area of the deposit can be obtained in advance by performing a film forming process until the area of the deposit area of the deposit becomes a stable size S, and the area where the infrared reflection means 22 is provided is the obtained adhesion area. Is set on the outer wall surface of the reaction tube 23 accordingly.

以下、気相成長装置20による被処理基板24に対する成膜動作について説明する。成膜時、まず成膜原料成分を含有するガスが、ガス導入口27から反応管23内へ導入される。ガス導入口27から反応管23内へ導入され被処理基板24付近に達したガスは、ヒータ26からサセプタ25および被処理基板24を介して放射される輻射熱およびガス中の熱伝導で温められ、熱化学反応が促進されることによって被処理基板6上に薄膜を形成する。   Hereinafter, the film forming operation on the substrate to be processed 24 by the vapor phase growth apparatus 20 will be described. At the time of film formation, first, a gas containing a film forming raw material component is introduced into the reaction tube 23 from the gas inlet 27. The gas introduced into the reaction tube 23 from the gas inlet 27 and reaching the vicinity of the substrate to be processed 24 is warmed by radiant heat radiated from the heater 26 via the susceptor 25 and the substrate to be processed and heat conduction in the gas. A thin film is formed on the substrate 6 to be processed by promoting the thermochemical reaction.

気相成長装置20によれば、赤外線反射手段22が設けられるので、反応管23を透過した赤外線が赤外線反射手段22によって反射され、再度反応管23内の昇温に利用される。このことにより、高い加熱効率を得ることができ、成膜の初期段階においても高い加熱効率でガスを加熱することができる。   According to the vapor phase growth apparatus 20, since the infrared reflecting means 22 is provided, the infrared light transmitted through the reaction tube 23 is reflected by the infrared reflecting means 22 and is used again for raising the temperature in the reaction tube 23. Accordingly, high heating efficiency can be obtained, and the gas can be heated with high heating efficiency even in the initial stage of film formation.

図6は、赤外線反射手段22を設ける気相成長装置20および図16に示す赤外線反射手段を備えない横型MOCVD装置1を用いたとき、被処理基板付近の温度が予め定める温度になるまでに要した時間をそれぞれ測定した結果を示す図である。ライン33は、赤外線反射手段を備えない横型MOCVD装置1を用いたときの被処理基板24付近の温度が予め定める温度になるまでに要した時間を示し、ライン34は、気相成長装置20を用いたときの被処理基板24付近の温度が予め定める温度になるまでに要した時間を示す。 6, when using a horizontal MOCVD apparatus 1 having no infrared reflective means shown in vapor phase growth apparatus 20 and 16 Ru provided an infrared reflecting means 22, to reach a temperature at which the temperature of the target near the substrate is predetermined It is a figure which shows the result of having measured each required time. A line 33 indicates the time required for the temperature in the vicinity of the substrate to be processed 24 to reach a predetermined temperature when using the horizontal MOCVD apparatus 1 that does not include infrared reflecting means. A line 34 indicates the vapor phase growth apparatus 20. The time required for the temperature near the substrate to be processed 24 when used to reach a predetermined temperature is shown.

なお、被処理基板付近の温度が予め定める温度になるまでに要した時間とは、常温(25℃)の状態から予め定める温度である成膜温度になるまでに要した時間である。成膜温度は、成膜原料の種類などによって決定され、成膜原料を熱化学反応させるために必要な温度である。なお、温度上昇に要する時間は、1回の成膜プロセス終了毎に反応管の温度を常温まで降温させ、その後次の成膜プロセスを行い、それぞれの成膜プロセスにおける昇温に要する時間を測定して得た値である。   Note that the time required for the temperature in the vicinity of the substrate to be processed to reach a predetermined temperature is the time required for the film formation temperature to be a predetermined temperature from a normal temperature (25 ° C.) state. The film forming temperature is determined by the type of film forming raw material and the like, and is a temperature necessary for causing the film forming raw material to undergo a thermochemical reaction. Note that the time required for temperature increase is that the temperature of the reaction tube is lowered to room temperature at the end of each film formation process, then the next film formation process is performed, and the time required for temperature increase in each film formation process is measured. This is the value obtained.

図6のライン33に示すように、赤外線反射手段を備えない横型MOCVD装置1では、1回目の成膜プロセスにおいて、予め定める温度までガスの温度を高めるのに長時間(T1)を要し、その後成膜プロセスを重ねる毎に昇温時間が短くなり、一定の値(T2)に収束した。すなわち、赤外線反射手段を備えない横型MOCVD装置1では、付着物32の付着領域が安定した後では、安定して短い時間で昇温させることができたけれども、初回のプロセスでは昇温に時間がかかり、熱エネルギの損失が大きいことが判る。このため、反応管23内の温度分布が安定するまで前処理を行う必要がある。   As shown by the line 33 in FIG. 6, in the horizontal MOCVD apparatus 1 that does not include the infrared reflecting means, it takes a long time (T1) to raise the gas temperature to a predetermined temperature in the first film formation process. Thereafter, each time the film formation process was repeated, the temperature rising time became shorter and converged to a certain value (T2). That is, in the horizontal MOCVD apparatus 1 that does not include the infrared reflecting means, the temperature can be raised stably in a short time after the adhesion region of the deposit 32 is stabilized. It can be seen that the loss of heat energy is large. For this reason, it is necessary to perform pretreatment until the temperature distribution in the reaction tube 23 is stabilized.

一方、図6のライン34に示すように、赤外線反射手段22を設ける気相成長装置20では、初回のプロセス時から昇温に要する時間が短く、成膜プロセスを重ねても昇温に要する時間は変わらなかった。すなわち、気相成長装置20では、初回のプロセス時においても、多数回の成膜プロセスが行われた後でも、昇温時間が変化しないので、前処理が不要であり、高い生産効率を得ることができるとともに、均一な厚みの薄膜を再現性良く形成することができる。 On the other hand, as shown in line 34 of FIG. 6, the vapor phase growth apparatus 20 Ru provided an infrared reflecting means 22, less time from the first time of the process to increase the temperature, needed to raise the temperature be repeated deposition process The time did not change. That is , in the vapor phase growth apparatus 20, since the temperature rise time does not change even during the first process or after a large number of film formation processes, no pretreatment is required and high production efficiency can be obtained. In addition, a thin film having a uniform thickness can be formed with good reproducibility.

図7は、図1に示す気相成長装置20によって被処理基板を処理する回数であるプロセス回数と付着物32の厚みとの関係を示す図である。図7に示すように、気相成長装置20によって被処理基板を処理すると、赤外線反射手段を設けない前述の横型MOCVD装置1を用いる場合に付着物32が剥離し始めるn2回の成膜プロセスを実施しても、付着物32の厚みは、付着物32が剥離し始める厚みであるt2よりも小さい。このように付着物32の量が低減されたのは、気相反応の副生成物として形成される付着物32が反応管23の内壁面が高温となる箇所では形成されにくく、反応管23の外壁面に接するように赤外線反射手段22を設けることによって反応管23の内壁が加熱されて昇温したからであると考えられる。付着物32の形成量が低減されることによって、反応管23内壁に形成される付着物32を除去するためのメンテナンス時間の間隔を長くし、その頻度を少なくすることができるので、一層生産効率を向上させることができる。   FIG. 7 is a diagram showing the relationship between the number of processes, which is the number of times the substrate to be processed is processed by the vapor phase growth apparatus 20 shown in FIG. As shown in FIG. 7, when the substrate to be processed is processed by the vapor phase growth apparatus 20, n2 times of film forming processes are started when the deposit 32 starts to peel off when using the above-described horizontal MOCVD apparatus 1 not provided with infrared reflection means. Even if it implements, the thickness of the deposit | attachment 32 is smaller than t2 which is the thickness from which the deposit | attachment 32 begins to peel. The amount of the deposit 32 is reduced in this way because the deposit 32 formed as a by-product of the gas phase reaction is less likely to be formed at a location where the inner wall surface of the reaction tube 23 is at a high temperature. It is considered that this is because the temperature of the inner wall of the reaction tube 23 is increased by providing the infrared reflecting means 22 so as to be in contact with the outer wall surface. Since the amount of deposit 32 is reduced, the maintenance time interval for removing the deposit 32 formed on the inner wall of the reaction tube 23 can be increased and the frequency thereof can be reduced. Can be improved.

さらに、赤外線反射手段22は、反応管23の外壁面に接して設けられる。たとえば、赤外線反射手段22が反応管23の内壁面に接して設けられると、反応管23内におけるガスの流速分布が変化してしまうけれども、本発明の気相成長装置20では、赤外線反射手段22は反応管23の外壁面に接して設けられるので、反応管23内部のガスの流速分布を乱すことがなく、被処理基板24上に均一な厚みの膜を形成することができる。   Further, the infrared reflecting means 22 is provided in contact with the outer wall surface of the reaction tube 23. For example, when the infrared reflecting means 22 is provided in contact with the inner wall surface of the reaction tube 23, the gas flow velocity distribution in the reaction tube 23 changes. However, in the vapor phase growth apparatus 20 of the present invention, the infrared reflecting means 22 is used. Is provided in contact with the outer wall surface of the reaction tube 23, so that a film having a uniform thickness can be formed on the substrate to be processed 24 without disturbing the flow velocity distribution of the gas inside the reaction tube 23.

なお、気相成長装置20は、上記の構成に限定されることなく、種々の変更が可能である。たとえば、赤外線反射手段22は、付着物32の付着領域のみにわたって設けられることに限定されるものではなく、外壁面に接するように設けられるものであればよい。ただし、赤外線反射手段22を、付着物32の付着領域にわたって設けることによって、反応管23内の温度分布が良好となり、被処理基板付近における成膜条件を安定にすることができるので、均一な厚みの薄膜を一層再現性よく形成することができる。   Note that the vapor phase growth apparatus 20 is not limited to the above-described configuration, and various modifications can be made. For example, the infrared reflecting means 22 is not limited to being provided only over the attachment region of the attached matter 32, and may be provided as long as it is in contact with the outer wall surface. However, by providing the infrared reflecting means 22 over the adhesion region of the deposit 32, the temperature distribution in the reaction tube 23 becomes good and the film forming conditions in the vicinity of the substrate to be processed can be stabilized, so that the thickness is uniform. The thin film can be formed with higher reproducibility.

赤外線反射手段22の設けられる部分の面積および形状が、付着物32の付着領域の面積に比べて小さ過ぎると、付着領域が未だ定着していないために、その後の安定化へ向けた経時変化によって被処理基板付近における(ガスの)温度分布が変化し、均一な厚みの薄膜を再現性よく形成できないおそれがある。また赤外線反射手段22の設けられる部分の面積が、付着物32の付着領域の面積に比べて大き過ぎると、反応管23内の高温領域が拡大することで、被処理基板付近で最適に制御されるべき成膜の条件、たとえばガスの温度、ガスの濃度、およびガスの流速などの条件が被処理基板の設置位置に対してずれてしまうおそれがある。   If the area and shape of the portion where the infrared reflecting means 22 is provided are too small compared to the area of the adhered region of the deposit 32, the adhered region has not yet been fixed. The temperature distribution (of gas) in the vicinity of the substrate to be processed may change, and a thin film having a uniform thickness may not be formed with good reproducibility. Further, if the area of the portion where the infrared reflecting means 22 is provided is too large compared to the area of the attached region of the deposit 32, the high temperature region in the reaction tube 23 is expanded and optimally controlled near the substrate to be processed. There is a possibility that conditions for film formation to be performed, for example, conditions such as gas temperature, gas concentration, and gas flow rate, may be deviated from the installation position of the substrate to be processed.

たとえば、反応管23全体を赤外線反射手段22で覆うと、被処理基板よりもガス導入口27寄りの部分でガスの反応が始まり、被処理基板に到達するまでにガスが加熱されて反応する時間が長くなる。これによって、被処理基板付近で最適に制御されるべき成膜の条件が、被処理基板よりもガス導入口27寄りの部分にシフトしてしまうため、被処理基板上で高品質な成膜が得られないおそれがある。   For example, when the entire reaction tube 23 is covered with the infrared reflecting means 22, the gas reaction starts at a portion closer to the gas introduction port 27 than the substrate to be processed, and the gas is heated and reacted until it reaches the substrate to be processed. Becomes longer. As a result, the film formation conditions that should be optimally controlled near the substrate to be processed shift to a portion closer to the gas inlet 27 than the substrate to be processed, so that high-quality film formation can be performed on the substrate to be processed. May not be obtained.

また、付着物32の付着領域は、上記のように、赤外線反射手段22を設けないこと以外は気相成長装置20と同じ構成である気相成長装置を用い、気相成長装置20を用いる場合と同じ薄膜形成条件で成膜プロセスを実施して定めることに限定されるものではなく、たとえば、シミュレーションなどにより予測されるものであってもよい。 In addition, as described above, the deposition region of the deposit 32 is a vapor phase growth apparatus having the same configuration as the vapor phase growth apparatus 20 except that the infrared reflection means 22 is not provided , and the vapor phase growth apparatus 20 is used. The film forming process is not limited to be performed under the same thin film forming conditions as those described above, and may be predicted by, for example, simulation.

図8は、気相成長装置に備えられる赤外線反射手段40の構成を概略的に示す平面図である。の気相成長装置は、赤外線反射手段22のかわりに、加熱手段であるヒータ26から離反するのに伴って赤外線反射率が高くなる赤外線反射手段40が設けられること以外は、前述の気相成長装置20に類似するので、全体の構成図を省略するとともに、対応する部分については同一の参照符号を付して説明を省略する。 FIG. 8 is a plan view schematically showing the configuration of the infrared reflecting means 40 provided in the vapor phase growth apparatus. Vapor deposition apparatus of this, instead of the infrared reflecting means 22, as the away from the heater 26 is a heating means, except that the infrared reflecting means 40 for infrared reflectance is high is provided, above the gas phase Since it is similar to the growth apparatus 20, the entire configuration diagram is omitted, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.

外線反射手段40は、反応管23の外壁面に接する側の面内で、赤外線反射率が変化することを特徴とする。さらに具体的には、赤外線反射手段40は、反応管23の外壁面に接して設けられる赤外線反射率が異なる複数(本形態では6つ)の第1〜第6赤外線反射部41a,41b,41c,41d,41e,41f(以後、特定の赤外線反射部を示す場合を除いて、赤外線反射部41と総称する)を含み、加熱手段であるヒータ26から離反するのに伴って赤外線反射率の高い赤外線反射部41が配置されることを特徴とする。 Infrared reflecting means 40 is in the plane of the side in contact with the outer wall surface of the reaction tube 23, wherein the infrared reflectance is changed. More specifically, the infrared reflecting means 40, first to sixth infrared reflective portion 41a of the plurality of infrared reflectance provided in contact with the outer wall surface of the reaction tube 23 is different (six in this form state), 41b, 41c, 41d, 41e, 41f (hereinafter collectively referred to as the infrared reflection part 41 except for the case where a specific infrared reflection part is shown), and the infrared reflectance of the infrared ray reflectivity as it is separated from the heater 26 as the heating means The high infrared reflective part 41 is arrange | positioned, It is characterized by the above-mentioned.

赤外線反射手段40は、前述の赤外線反射手段22と同様に、たとえば金属の薄板などで構成される。赤外線反射手段40は、反応管23の外壁面に接する側の面内で赤外線反射率が異なるように調整される。赤外線反射率の調整は、たとえば、つや消し、鏡面加工、乱反射加工などの加工方法によって部分的に表面状態を異ならせることによって実現できる。 Infrared reflecting means 40, like the infrared reflecting means 22 described above, and the like, for example, a metal thin plate. The infrared reflecting means 40 is adjusted so that the infrared reflectance is different within the surface in contact with the outer wall surface of the reaction tube 23. The adjustment of the infrared reflectance can be realized by, for example, partially changing the surface state by a processing method such as matting, mirror surface processing, or irregular reflection processing.

赤外線反射部41は、赤外線反射手段40の反射率に応じて決定される赤外線反射手段40の分割領域を示す。赤外線反射部41は、たとえば、第1赤外線反射部41a、第2赤外線反射部41b、第3赤外線反射部41c、第4赤外線反射部41d、第5赤外線反射部41e、第6赤外線反射部41fの6つの領域によって定められる。赤外線反射部41は、ヒータ26から近い順に、第1赤外線反射部41a、第2赤外線反射部41b、第3赤外線反射部41c、第4赤外線反射部41d、第5赤外線反射部41e、第6赤外線反射部41fが定められる。また赤外線反射部41は、赤外線反射率が低い順に、第1赤外線反射部41a、第2赤外線反射部41b、第3赤外線反射部41c、第4赤外線反射部41d、第5赤外線反射部41e、第6赤外線反射部41fが定められる。 The infrared reflecting portion 41 indicates a divided area of the infrared reflecting means 40 determined according to the reflectance of the infrared reflecting means 40 . Infrared reflecting portion 41, for example, the first infrared reflective portion 41a, a second infrared reflective portion 41b, a third infrared reflective portion 41c, a fourth infrared reflective portion 41d, the fifth infrared reflective portion 41e, a sixth infrared reflective portion 41f Are defined by the following six areas. The infrared reflection unit 41 is arranged in the order from the heater 26, the first infrared reflection unit 41a, the second infrared reflection unit 41b, the third infrared reflection unit 41c, the fourth infrared reflection unit 41d, the fifth infrared reflection unit 41e, and the sixth infrared ray. A reflection part 41f is defined. In addition, the infrared reflection unit 41 has the first infrared reflection unit 41a, the second infrared reflection unit 41b, the third infrared reflection unit 41c, the fourth infrared reflection unit 41d, the fifth infrared reflection unit 41e, Six infrared reflection parts 41f are defined.

このような赤外線反射手段40を用いることにより得られる効果を説明するために、まず、反応管23のヒータ26から受ける熱エネルギ分布および反応管23内の流速分布ならびに反応管23に形成される付着物32の状態を説明する。   In order to explain the effects obtained by using such an infrared reflecting means 40, first, the thermal energy distribution received from the heater 26 of the reaction tube 23, the flow velocity distribution in the reaction tube 23, and the attachment formed in the reaction tube 23. The state of the kimono 32 will be described.

図9は、ガス流過方向に直交する面を断面として見たときの反応管23と、反応管23の上面部材23aのヒータ26から受ける熱エネルギ分布とを示す図である。図9の縦軸で示す反応管壁面の熱エネルギは、反応管23を構成する石英がヒータ26から受ける熱エネルギであって、反応管23とヒータ26とを黒体とみなしたとき、黒体2面間の放射伝熱計算式から算出された熱エネルギである。放射伝熱計算式を、下記式(1)に示す。
Q=(EB1−EB2)×cosφ1×cosφ2/(πr2×s1×s2)
…(1)
ただし、Q;熱エネルギ
φ1;黒体A1が黒体A2から放射エネルギを受ける角度
φ2;黒体A2が黒体A1から放射エネルギを受ける角度
EB1;黒体A1の放射エネルギ
EB2;黒体A2の放射エネルギ
r;2黒体間の距離
S1;黒体A1の面積
S2;黒体A2の面積
FIG. 9 is a diagram showing the reaction tube 23 and the thermal energy distribution received from the heater 26 of the upper surface member 23a of the reaction tube 23 when the surface orthogonal to the gas flow direction is viewed as a cross section. The thermal energy of the reaction tube wall surface indicated by the vertical axis in FIG. 9 is the thermal energy received by the quartz constituting the reaction tube 23 from the heater 26, and when the reaction tube 23 and the heater 26 are regarded as black bodies, It is the heat energy calculated from the radiation heat transfer calculation formula between two surfaces. The formula for calculating radiant heat transfer is shown in the following formula (1).
Q = (EB1-EB2) × cos φ1 × cos φ2 / (πr2 × s1 × s2)
... (1)
Q: Thermal energy
φ1: Angle at which black body A1 receives radiant energy from black body A2
φ2: Angle at which black body A2 receives radiant energy from black body A1
EB1; Radiant energy of black body A1
EB2: Radiant energy of black body A2
r; distance between two black bodies
S1: Area of black body A1
S2: Area of black body A2

上記式(1)において、黒体A1がヒータ26であり、黒体A2が反応管23である。図9では、上記式(1)を用いて、反応管23の上面部材23aがヒータ26から受ける単位面積当りの熱エネルギを算出し、ヒータ26からの水平距離によって熱エネルギが異なる反応管23の熱エネルギ分布を示す。図9に示すように、反応管23上面部材23aの熱エネルギは、ヒータ26の上方部分であるヒータ領域においてはほぼ一定の高い値をとり、ヒータ26から離反するのに伴って低下する。   In the above formula (1), the black body A 1 is the heater 26 and the black body A 2 is the reaction tube 23. In FIG. 9, the thermal energy per unit area received by the upper surface member 23 a of the reaction tube 23 from the heater 26 is calculated using the above equation (1), and the thermal energy of the reaction tube 23 having different thermal energy depending on the horizontal distance from the heater 26 is calculated. The thermal energy distribution is shown. As shown in FIG. 9, the thermal energy of the upper surface member 23 a of the reaction tube 23 takes a substantially constant high value in the heater region, which is the upper part of the heater 26, and decreases as the distance from the heater 26 increases.

図10は、反応管23内におけるガスの流速分布を示す図である。図10の矢符42で示すように、ガスの流速は、反応管23の中央付近で大きくなり、側壁側に近づくのに伴って次第に小さくなる。   FIG. 10 is a view showing a gas flow velocity distribution in the reaction tube 23. As indicated by an arrow 42 in FIG. 10, the gas flow velocity increases near the center of the reaction tube 23 and gradually decreases as it approaches the side wall.

図11は図4に示す付着物32が付着する反応管23の上面部材23aと、ヒータ26との位置関係を示す図であり、図12は図11に示す付着物32が付着する反応管23の切断面線XII−XIIから見た断面図であり、図13は図11に示す付着物32が付着する反応管23の切断面線XIII−XIIIから見た断面図である。   FIG. 11 is a diagram showing the positional relationship between the heater 26 and the upper surface member 23a of the reaction tube 23 to which the deposit 32 shown in FIG. 4 adheres, and FIG. 12 shows the reaction tube 23 to which the deposit 32 shown in FIG. FIG. 13 is a cross-sectional view taken along the cut line XIII-XIII of the reaction tube 23 to which the deposit 32 shown in FIG. 11 adheres.

前述のように、気相反応は、ヒータ26によって加熱されるサセプタ25のガス流過方向上流側から下流側にかけて進行するので、付着物32は、反応管23の上面部材23aのヒータ26の上方付近から下流側にかけて形成される。また、図12に示すように、ガス流過方向に直交する面を断面として見ると、付着物32の厚みは、反応管23の上面部材中央付近で最も小さく、中央から離反するに従って大きくなる。さらに、図13に示すように、ガス流過方向に平行な面であって、反応管23の上面部材および下面部材に直交する面を断面として見ると、付着物32の厚みは、ヒータ26の上方付近で小さく、ガス排気口29側に近づくのに伴って大きくなる。   As described above, since the gas phase reaction proceeds from the upstream side to the downstream side in the gas flow direction of the susceptor 25 heated by the heater 26, the deposit 32 is located above the heater 26 of the upper surface member 23 a of the reaction tube 23. It is formed from the vicinity to the downstream side. Further, as shown in FIG. 12, when the surface perpendicular to the gas flow direction is viewed as a cross section, the thickness of the deposit 32 is the smallest near the center of the upper surface member of the reaction tube 23 and increases as the distance from the center increases. Furthermore, as shown in FIG. 13, when the surface parallel to the gas flow direction and perpendicular to the upper surface member and the lower surface member of the reaction tube 23 is viewed as a cross section, the thickness of the deposit 32 is It is small near the upper part and increases as it approaches the gas exhaust port 29 side.

図9および図10で示される反応管23のヒータ26から受ける熱エネルギ分布および反応管23内のガスの流速分布と、図12および図13で示される付着物32の形成状態とから、反応管23の壁面が高温となる箇所では付着物32が形成されにくく、また、ガスの流速が速い領域では付着物32が形成されにくいことが判る。付着物32は、前述のように、被処理基板24に成膜が行われる際の副生成物であり、たとえば、反応管23のヒータ26から離れた上流の領域では、伝わる熱エネルギが小さく気相反応を起こし得る温度条件を満たさないので、気相反応自体が起こりにくく、付着物32は形成され難い。   From the thermal energy distribution received from the heater 26 of the reaction tube 23 shown in FIGS. 9 and 10 and the flow velocity distribution of the gas in the reaction tube 23 and the formation state of the deposit 32 shown in FIGS. It can be seen that the deposits 32 are unlikely to be formed at locations where the wall surface 23 is hot, and the deposits 32 are unlikely to be formed in regions where the gas flow rate is high. As described above, the deposit 32 is a by-product when film formation is performed on the substrate to be processed 24. For example, in the upstream region away from the heater 26 of the reaction tube 23, the transmitted thermal energy is small and gas. Since the temperature condition that can cause the phase reaction is not satisfied, the gas phase reaction itself hardly occurs and the deposit 32 is not easily formed.

したがって、反応管23内壁に形成される付着物32は、その位置によって成長速度が異なり、成膜プロセスを続けると反応管23内壁に形成される付着物32に厚みのむらを発生する。このような付着物32の厚みのむらは、微小な変化であっても反応管23内のガスの流速分布および温度分布に大きく影響し、被処理基板24上に形成する薄膜の均一性が低下する恐れがある。   Therefore, the growth rate of the deposit 32 formed on the inner wall of the reaction tube 23 varies depending on the position, and when the film forming process is continued, the thickness of the deposit 32 formed on the inner wall of the reaction tube 23 is uneven. Such unevenness in the thickness of the deposit 32 greatly affects the flow velocity distribution and temperature distribution of the gas in the reaction tube 23 even if it is a minute change, and the uniformity of the thin film formed on the substrate to be processed 24 is lowered. There is a fear.

相成長装置に設けられる赤外線反射手段40は、付着物32が付着しやすい反応管23内壁の領域において赤外線反射率を高く、付着物32が付着しにくい反応管23内壁の領域において赤外線反射率を低くすることができるので、反応管23内壁に形成される付着物32の厚みむらを小さくすることができる。またこれによって、反応管23内部でのガスの流速分布の乱れおよび反応管23内部での温度分布をなくすことができるので、被処理基板24上への成膜を一層均一に行うことができる。 The infrared reflection means 40 provided in the vapor phase growth apparatus has a high infrared reflectance in the region of the inner wall of the reaction tube 23 where the deposit 32 is likely to adhere, and an infrared reflectance in the region of the inner wall of the reaction tube 23 where the deposit 32 is difficult to adhere. The thickness unevenness of the deposit 32 formed on the inner wall of the reaction tube 23 can be reduced. This also eliminates the disturbance of the gas flow velocity distribution inside the reaction tube 23 and the temperature distribution inside the reaction tube 23, so that film formation on the substrate to be processed 24 can be performed more uniformly.

なお、赤外線反射手段40は、ヒータ26から離反するのに伴って赤外線反射率の高い赤外線反射部41が配置されるような構成のみに限定されない。赤外線反射手段を構成する赤外線反射部材の配置は、たとえば、反応管23内におけるガスの流速分布に応じて定められてもよい。このような場合、赤外線反射手段は、反応管23の中央付近に赤外線反射率の低い赤外線反射部材を配置し、側壁側に近づくとともに次第に赤外線反射率が高くなるように赤外線反射部材を配置すればよい。   The infrared reflecting means 40 is not limited to a configuration in which the infrared reflecting portion 41 having a high infrared reflectivity is disposed as the infrared reflecting means 40 moves away from the heater 26. The arrangement of the infrared reflecting members constituting the infrared reflecting means may be determined according to the gas flow velocity distribution in the reaction tube 23, for example. In such a case, if the infrared reflecting means is arranged with an infrared reflecting member having a low infrared reflectance near the center of the reaction tube 23, and the infrared reflecting member is arranged so as to gradually increase as it approaches the side wall side. Good.

図14は本発明の実施の第形態である気相成長装置に備えられる赤外線反射手段50の構成を概略的に示す平面図であり、図15は赤外線反射手段50の部分断面図である。本実施形態の気相成長装置は、赤外線反射手段22のかわりに赤外線反射手段50が設けられること以外は、前述の気相成長装置20に類似するので、全体の構成図を省略するとともに、対応する部分については同一の参照符号を付して説明を省略する。 FIG. 14 is a plan view schematically showing the configuration of the infrared reflecting means 50 provided in the vapor phase growth apparatus according to the first embodiment of the present invention, and FIG. 15 is a partial cross-sectional view of the infrared reflecting means 50. The vapor phase growth apparatus of the present embodiment is similar to the above-described vapor phase growth apparatus 20 except that the infrared reflection means 50 is provided in place of the infrared reflection means 22, and thus the overall configuration diagram is omitted and the countermeasure is taken. About the part to attach, the same referential mark is attached | subjected and description is abbreviate | omitted.

本実施形態の赤外線反射手段50は、反応管23外壁面に接して設けられるシート状の赤外線反射部材51を含み、赤外線反射部材51には、貫通孔52が形成されることを特徴とする。赤外線反射部材51としては、前述の実施形態の赤外線反射手段22と同様に、たとえば金属の薄板などが用いられる。   The infrared reflecting means 50 of the present embodiment includes a sheet-like infrared reflecting member 51 provided in contact with the outer wall surface of the reaction tube 23, and the infrared reflecting member 51 is formed with a through hole 52. As the infrared reflecting member 51, for example, a metal thin plate or the like is used in the same manner as the infrared reflecting means 22 of the above-described embodiment.

赤外線反射部材51への貫通孔52の形成は、たとえば、パンチング加工、レーザ加工、エッチングなどの公知の加工方法により行われる。貫通孔52の形状は、丸状に限定されることなく、角状、スリット状など、どのような形状であってもよい。   Formation of the through hole 52 in the infrared reflecting member 51 is performed by a known processing method such as punching, laser processing, or etching. The shape of the through hole 52 is not limited to a round shape, and may be any shape such as a square shape or a slit shape.

また赤外線反射部材51としては、金属の薄板に限定されるものではなく、たとえば金属材料からなる薄膜などであってもよい。金属材料からなる薄膜への貫通孔52の形成は、たとえば、エッチングなどの公知の加工方法により行われる。貫通孔52を形成すべき部分を含む不要な部分にマスクを施し、赤外線反射部材51を形成することによって、貫通孔52を形成してもよい。   The infrared reflecting member 51 is not limited to a thin metal plate, and may be a thin film made of a metal material, for example. The through hole 52 is formed in the thin film made of a metal material by, for example, a known processing method such as etching. The through hole 52 may be formed by masking unnecessary portions including the portion where the through hole 52 is to be formed and forming the infrared reflecting member 51.

このような貫通孔52が形成される赤外線反射部材51を含む赤外線反射手段50によれば、貫通孔52の形成により、赤外線53を反射する面積を調整することができ、貫通孔52の部分から赤外線53を反応管23外部に放出させることができるので、反応管23内部の温度を上昇させ過ぎることなく好適な温度で被処理基板24上に成膜を行うことができる。   According to the infrared reflecting means 50 including the infrared reflecting member 51 in which such a through hole 52 is formed, the area for reflecting the infrared ray 53 can be adjusted by forming the through hole 52. Since the infrared rays 53 can be emitted to the outside of the reaction tube 23, film formation can be performed on the substrate 24 to be processed at a suitable temperature without excessively raising the temperature inside the reaction tube 23.

また、貫通孔52は、ヒータ26の上方付近では赤外線反射部材51に形成される貫通孔52の単位面積当りの面積を示す孔密度が大きく、ヒータ26からガス排気口29側に近づくのに伴って孔密度が小さくなるように形成されることが好ましい。貫通孔52がこのように形成されることによって、ヒータ26上方付近の付着物32の量が少ない領域の赤外線反射率を低く、ガス排気口29側の付着物32の量が多い領域の赤外線反射率を高くすることができるので、付着物32の厚みむらを小さくすることができる。また反応管23内部でのガスの流速分布の乱れを防止することができるので、被処理基板24上への成膜を一層均一に行うことができる。   Further, the through-hole 52 has a large hole density indicating the area per unit area of the through-hole 52 formed in the infrared reflecting member 51 in the vicinity of the upper portion of the heater 26, and as the heater 26 approaches the gas exhaust port 29 side. It is preferable that the pore density be reduced. By forming the through hole 52 in this way, the infrared reflectance of the region where the amount of the deposit 32 near the heater 26 is small is low, and the infrared reflection of the region where the amount of the deposit 32 on the gas exhaust port 29 side is large. Since the rate can be increased, the thickness unevenness of the deposit 32 can be reduced. In addition, since the disturbance of the gas flow velocity distribution inside the reaction tube 23 can be prevented, film formation on the substrate to be processed 24 can be performed more uniformly.

相成長装置20の反応炉21まわりの構成を簡略化して示す側面からみた断面図である。FIG. 3 is a cross-sectional view seen from the side showing the configuration around the reaction furnace 21 of the vapor phase growth apparatus 20 in a simplified manner. 赤外線反射手段22が設けられる反応管23の上面図である。It is a top view of the reaction tube 23 in which the infrared reflection means 22 is provided. 成膜プロセスの回数と付着物の付着領域の面積との関係を示す図である。It is a figure which shows the relationship between the frequency | count of a film-forming process, and the area of the adhesion area | region of a deposit. 赤外線反射手段22を設けないこと以外は気相成長装置20と同じ構成である気相成長装置を用いて成膜プロセスを行い、付着物32を付着させた反応管23の断面図である。It is sectional drawing of the reaction tube 23 which performed the film-forming process using the vapor phase growth apparatus which is the same structure as the vapor phase growth apparatus 20 except not providing the infrared reflection means 22, and made the deposit 32 adhere. 図4に示す反応管23の上面部材23aをサセプタ25側から見た図である。FIG. 5 is a view of an upper surface member 23a of the reaction tube 23 shown in FIG. 4 as viewed from the susceptor 25 side. 赤外線反射手段22を設ける気相成長装置20および図16に示す赤外線反射手段を備えない横型MOCVD装置1を用いたとき、被処理基板付近の温度が予め定める温度になるまでに要した時間をそれぞれ測定した結果を示す図である。When using a horizontal MOCVD apparatus 1 having no infrared reflective means shown in vapor phase growth apparatus 20 and 16 Ru provided an infrared reflecting means 22, the time required to reach a temperature at which the temperature of the target near the substrate is predetermined It is a figure which shows the result of having measured, respectively. 図1に示す気相成長装置20によって被処理基板を処理する回数であるプロセス回数と付着物32の厚みとの関係を示す図である。FIG. 2 is a diagram showing the relationship between the number of processes, which is the number of times a substrate to be processed is processed by the vapor phase growth apparatus 20 shown in FIG. 相成長装置に備えられる赤外線反射手段40の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the infrared reflective means 40 with which a vapor phase growth apparatus is equipped. ガス流過方向に直交する面を断面として見たときの反応管23と、反応管23の上面部材23aのヒータ26から受ける熱エネルギ分布とを示す図である。FIG. 3 is a diagram showing a reaction tube 23 and a thermal energy distribution received from a heater 26 of an upper surface member 23a of the reaction tube 23 when a surface perpendicular to the gas flow direction is viewed as a cross section. 反応管23内におけるガスの流速分布を示す図である。FIG. 4 is a view showing a gas flow velocity distribution in a reaction tube 23. 図4に示す付着物32が付着する反応管23の上面部材23aと、ヒータ26との位置関係を示す図である。FIG. 5 is a diagram showing a positional relationship between an upper surface member 23a of the reaction tube 23 to which the deposit 32 shown in FIG. 図11に示す付着物32が付着する反応管23の切断面線XII−XIIから見た断面図である。It is sectional drawing seen from the cut surface line XII-XII of the reaction tube 23 to which the deposit | attachment 32 shown in FIG. 11 adheres. 図11に示す付着物32が付着する反応管23の切断面線XIII−XIIIから見た断面図である。It is sectional drawing seen from the cut surface line XIII-XIII of the reaction tube 23 to which the deposit | attachment 32 shown in FIG. 11 adheres. 本発明の実施の第形態である気相成長装置に備えられる赤外線反射手段50の構成を概略的に示す平面図である。It is a top view which shows roughly the structure of the infrared reflection means 50 with which the vapor phase growth apparatus which is 1st Embodiment of this invention is equipped. 赤外線反射手段50の部分断面図である。3 is a partial cross-sectional view of infrared reflecting means 50. FIG. 従来の典型的な横型MOCVD装置1の反応炉2まわりの構成を説明する模式図である。It is a schematic diagram explaining the structure around the reaction furnace 2 of the conventional typical horizontal type | mold MOCVD apparatus 1. FIG. 成膜ステップにおいて反応管3の内壁に副生成物11が付着する状態を示す模式図である。FIG. 3 is a schematic diagram showing a state in which a by-product 11 adheres to the inner wall of a reaction tube 3 in a film forming step. 図16に示す横型MOCVD装置1によって1枚の被処理基板を処理する回数であるプロセス回数と付着物の厚みとの関係を示す図である。It is a figure which shows the relationship between the process frequency which is the frequency | count which processes the one to-be-processed substrate by the horizontal type MOCVD apparatus shown in FIG. 16, and the thickness of a deposit.

符号の説明Explanation of symbols

20 気相成長装置
21 反応炉
22,40,50 赤外線反射手段
23 反応管
24 被処理基板
25 サセプタ
26 ヒータ
27 ガス導入口
28 ガス導入方向
29 ガス排気口
30 ガス排気方向
31 開口部
32 付着物
41a,41b,41c,41d,41e,41f 赤外線反射部
42 ガスの流速
51 赤外線反射部材
52 貫通孔
53 赤外線
DESCRIPTION OF SYMBOLS 20 Vapor growth apparatus 21 Reactor 22, 40, 50 Infrared reflecting means 23 Reaction tube 24 Substrate 25 Susceptor 26 Heater 27 Gas inlet 28 Gas inlet 29 Gas exhaust 30 Gas exhaust 31 Opening 32 Deposit 41a , 41b, 41c, 41d, 41e, 41f Infrared reflecting portion 42 Gas flow velocity 51 Infrared reflecting member 52 Through hole 53 Infrared ray

Claims (5)

被処理基板が収容される反応管に成膜原料成分を含有するガスを被処理基板の成膜される面に沿う方向に流すようにして導入し、導入されるガスを加熱手段で加熱することによって反応させながら成膜原料成分を被処理基板上に成長させる気相成長装置において
反応管の外壁面に接するように設けられ、赤外線を反射し、反応管の外壁面に接する側の面内で、赤外線反射率が変化する赤外線反射手段を含み、
前記赤外線反射手段は、反応管外壁面に接して設けられ、貫通孔が形成されるシート状の赤外線反射部材を含むことを特徴とする気相成長装置。
Introducing a gas containing a film forming raw material component into a reaction tube in which the substrate to be processed is accommodated in a direction along the surface of the substrate to be processed which is to be formed, and heating the introduced gas by a heating means; in the vapor phase growth apparatus for growing on a substrate to be processed to film-forming ingredients while the reaction by,
Infrared reflecting means provided so as to be in contact with the outer wall surface of the reaction tube, reflecting infrared rays, and changing the infrared reflectance within the surface in contact with the outer wall surface of the reaction tube ,
It said infrared reflecting means, the reaction tube outer wall surface provided in contact, vapor deposition apparatus characterized by including Mukoto a sheet of infrared reflecting member through-hole is formed.
赤外線反射手段は、
反応管の内壁に付着する付着物の付着領域にわたって、反応管の外壁面に接するように設けられることを特徴とする請求項1記載の気相成長装置。
Infrared reflecting means
2. The vapor phase growth apparatus according to claim 1, wherein the vapor deposition apparatus is provided so as to be in contact with an outer wall surface of the reaction tube over an adhesion region of an adhesion material adhering to the inner wall of the reaction tube.
赤外線反射手段は、
加熱手段から離反するのに伴って赤外線反射率が高くなるように赤外線反射率が変化することを特徴とする請求項1または2記載の気相成長装置。
Infrared reflecting means
3. The vapor phase growth apparatus according to claim 1, wherein the infrared reflectance changes so that the infrared reflectance increases as the distance from the heating means increases.
被処理基板が収容される反応管の外壁面に、赤外線を反射する赤外線反射手段を設けるステップであって、反応管の外壁面に接する側の面内で、赤外線反射率が変化し、貫通孔が形成されるシート状の赤外線反射部材を含む赤外線反射手段を設けるステップと、
反応管に成膜原料成分を含有するガスを被処理基板の成膜される面に沿う方向に流すようにして導入するガス導入ステップと、
導入されるガスを加熱することによって反応させながら成膜原料成分を被処理基板上に成長させる成膜ステップとを含むことを特徴とする気相成長方法。
Infrared reflecting means for reflecting infrared rays is provided on the outer wall surface of the reaction tube in which the substrate to be processed is accommodated , and the infrared reflectance changes within the surface on the side in contact with the outer wall surface of the reaction tube. Providing an infrared reflecting means including a sheet-like infrared reflecting member on which is formed ;
A gas introduction step for introducing a gas containing a film forming raw material component into the reaction tube so as to flow in a direction along the surface of the substrate to be formed;
And a film forming step of growing a film forming raw material component on a substrate to be processed while reacting by introducing a gas to be introduced.
反応管の外壁面に赤外線反射手段を設けるステップにおいて、
赤外線反射手段は、
反応管の内壁に付着する付着物の付着領域にわたって設けられることを特徴とする請求項記載の気相成長方法。
In the step of providing infrared reflecting means on the outer wall surface of the reaction tube,
Infrared reflecting means
5. The vapor phase growth method according to claim 4 , wherein the vapor deposition method is provided over an adhesion region of an adhering substance adhering to the inner wall of the reaction tube.
JP2006043071A 2006-02-20 2006-02-20 Vapor growth apparatus and vapor growth method Expired - Fee Related JP4641268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043071A JP4641268B2 (en) 2006-02-20 2006-02-20 Vapor growth apparatus and vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043071A JP4641268B2 (en) 2006-02-20 2006-02-20 Vapor growth apparatus and vapor growth method

Publications (2)

Publication Number Publication Date
JP2007221076A JP2007221076A (en) 2007-08-30
JP4641268B2 true JP4641268B2 (en) 2011-03-02

Family

ID=38497985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043071A Expired - Fee Related JP4641268B2 (en) 2006-02-20 2006-02-20 Vapor growth apparatus and vapor growth method

Country Status (1)

Country Link
JP (1) JP4641268B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807505B2 (en) * 2011-10-14 2015-11-10 信越半導体株式会社 Epitaxial wafer manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259075A (en) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Device for producing oxide film
JPH04288820A (en) * 1991-03-06 1992-10-13 Mitsubishi Electric Corp Lamp heating apparatus
JPH05102077A (en) * 1991-10-08 1993-04-23 Toshiba Corp Manufacture of semiconductor device
JPH07161653A (en) * 1993-12-10 1995-06-23 Hitachi Ltd Heat-treating device
JPH07183291A (en) * 1993-12-24 1995-07-21 Sony Corp Method and apparatus for heat treatment
JP2001068415A (en) * 1999-08-24 2001-03-16 Nippon Sanso Corp Vapor-phase growth device
JP2007149774A (en) * 2005-11-24 2007-06-14 Sharp Corp Vapor phase deposition apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259075A (en) * 1989-03-31 1990-10-19 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Device for producing oxide film
JPH04288820A (en) * 1991-03-06 1992-10-13 Mitsubishi Electric Corp Lamp heating apparatus
JPH05102077A (en) * 1991-10-08 1993-04-23 Toshiba Corp Manufacture of semiconductor device
JPH07161653A (en) * 1993-12-10 1995-06-23 Hitachi Ltd Heat-treating device
JPH07183291A (en) * 1993-12-24 1995-07-21 Sony Corp Method and apparatus for heat treatment
JP2001068415A (en) * 1999-08-24 2001-03-16 Nippon Sanso Corp Vapor-phase growth device
JP2007149774A (en) * 2005-11-24 2007-06-14 Sharp Corp Vapor phase deposition apparatus

Also Published As

Publication number Publication date
JP2007221076A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
TWI570258B (en) Gas distribution showerhead with high emissivity surface
US7166165B2 (en) Barrier coating for vitreous materials
US9396909B2 (en) Gas dispersion apparatus
JP4576466B2 (en) Vapor growth apparatus and vapor growth method
US20070266932A1 (en) Vapor phase growth apparatus and method for vapor phase growth
JP2010059520A (en) Vapor deposition apparatus and vapor deposition method
JP2007194584A (en) Heating method and heating system for batch-type reaction chamber
JP2007149774A (en) Vapor phase deposition apparatus
US20170218507A1 (en) Heating apparatus and substrate processing apparatus having the same
TW202020240A (en) Multizone lamp control and individual lamp control in a lamphead
JP4692143B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP4641268B2 (en) Vapor growth apparatus and vapor growth method
JP4601701B2 (en) Vapor phase growth apparatus and gas supply method
JP4972356B2 (en) Vapor growth equipment
JP6054733B2 (en) Vapor growth equipment
JP2009249651A (en) Vapor deposition apparatus and vapor deposition method
JP2008294217A (en) Vapor phase growth device and vapor phase growth method
WO2009122790A1 (en) Substrate processing apparatus and substrate processing method
JP2008153519A (en) Vapor deposition apparatus, and vapor deposition method
JP2007238966A (en) Vapor deposition apparatus and vapor deposition method
JP2007035727A (en) Vapor phase deposition apparatus and vapor phase deposition method using same
JP2017190506A (en) Vapor growth apparatus and vapor growth method
JP2012079731A (en) Vapor phase epitaxial growth system and substrate temperature measuring method
JP2003086521A (en) Vapor phase growth unit and vapor phase growth method
KR20140062360A (en) Chemical vapor deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees