WO2009122790A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
WO2009122790A1
WO2009122790A1 PCT/JP2009/052613 JP2009052613W WO2009122790A1 WO 2009122790 A1 WO2009122790 A1 WO 2009122790A1 JP 2009052613 W JP2009052613 W JP 2009052613W WO 2009122790 A1 WO2009122790 A1 WO 2009122790A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier gas
substrate
gas
processing
gas supply
Prior art date
Application number
PCT/JP2009/052613
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 原島
英介 森崎
洋克 小林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2009122790A1 publication Critical patent/WO2009122790A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for performing predetermined processing on a substrate.
  • the substrate is generally heated to a high temperature (eg, 1000 ° C. or higher).
  • a high temperature eg, 1000 ° C. or higher.
  • Processing is performed (see Patent Documents 1 and 2).
  • a substrate holding unit susceptor
  • a substantially cylindrical processing container is used to hold the substrate to make the inside of the processing container a reduced-pressure atmosphere, and a predetermined gas (deposition gas) Etc.) are known to be supplied from one direction along the surface to be processed of the substrate.
  • the processing gas is thermally decomposed on the surface to be processed of the substrate, and a thin film having excellent crystallinity grows on the surface to be processed.
  • the in-plane temperature distribution of the substrate temperature affects the in-plane uniformity such as the crystallinity and film thickness of the thin film formed on the processing surface of the substrate and the carrier density in the film.
  • a resistance heater is provided around the substrate holder and the substrate is heated by heating the entire substrate holder to a high temperature by heater heating, or induction heating by a coil wound around the substrate holder is used. Then, there is one that heats the substrate by heating the entire substrate holding part to a high temperature.
  • the carrier gas and processing gas at a lower temperature for example, several tens to several hundreds of degrees C Flows from the upstream side of the substrate holding part toward the downstream side along the surface to be processed of the substrate, so that the temperature on the upstream side of the substrate holding part is lower than the temperature on the downstream side. For this reason, also on the surface to be processed of the substrate held by the substrate holding part, the temperature on the upstream side is lower than the temperature on the downstream side, and the in-plane uniformity of the substrate temperature is reduced.
  • the present invention has been made in view of the above problems, and its object is to heat the substrate by heating the substrate holder and form a predetermined gas flow along the surface to be processed of the substrate.
  • Substrate processing apparatus and substrate capable of improving temperature uniformity of the substrate holding part by suppressing a decrease in the upstream temperature of the substrate holding part and thus improving in-plane uniformity of the substrate temperature. It is to provide a processing method.
  • a substrate processing apparatus for performing a predetermined process on a substrate by forming a flow of a processing gas along a surface to be processed of the substrate.
  • a processing container for forming a gas flow path formed in a cylindrical shape from one end side to the other end side, a substrate holding portion provided in the middle of the gas flow path for holding the substrate, and the substrate Supplying the processing gas to the gas flow path from a substrate holding part heating section for heating the holding section to heat the substrate, and a processing gas supply nozzle provided upstream of the substrate holding section of the gas flow path
  • a carrier gas supply unit for supplying a carrier gas for transferring the process gas from a carrier gas supply nozzle provided on the upstream side of the process gas supply nozzle of the gas channel to the gas channel.
  • a substrate processing apparatus is characterized in that a carrier gas heating unit for heating the carrier gas supplied to the gas flow path is
  • the carrier gas supplied from the carrier gas supply nozzle is upstream of the substrate holding part, that is, the substrate holding part. Since the heating is performed before reaching the upstream side of the substrate, it is possible to suppress the decrease in the upstream temperature of the substrate holding unit as much as possible. Thereby, the uniformity of the temperature of the substrate holding part can be improved, and as a result, the in-plane uniformity of the substrate temperature can be improved. Further, since the temperature difference between the upstream side and the downstream side of the substrate holding unit can be controlled by controlling the heating temperature of the carrier gas by the carrier gas heating unit, the in-plane distribution of the substrate temperature can be controlled thereby.
  • the carrier gas supply nozzle and the process gas supply nozzle are separated, and the carrier gas is heated by the carrier gas heating unit upstream of the process gas supply nozzle, so that only the carrier gas is heated without heating the process gas. can do. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding portion.
  • the processing gas supply nozzle is configured to have a plurality of processing gas ejection ports arranged in the width direction of the gas flow path and opening toward the substrate holding portion
  • the carrier gas supply nozzle includes the gas You may comprise so that it may have several carrier gas jet nozzles which were arranged in the width direction of the flow path and opened toward the said board
  • the carrier gas heating unit is provided, for example, between the carrier gas supply nozzle and the processing gas supply nozzle, and is configured to heat the carrier gas ejected from each carrier gas ejection port.
  • the carrier gas heating unit between the carrier gas supply nozzle and the processing gas supply nozzle, only the carrier gas supplied from the upstream side without heating the processing gas supplied from the downstream side is provided. Can be heated. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding portion.
  • the carrier gas heating unit on the upstream side of the processing gas supply nozzle, the processing gas supplied from the processing gas supply nozzle does not touch the carrier gas heating unit. For this reason, it can prevent that process gas reacts with the surface of a carrier gas heating part, and a particle adheres to a carrier gas heating part.
  • the carrier gas heating unit is configured to heat the carrier gas by a long heater element disposed so as to extend along the arrangement direction of the carrier gas ejection ports, for example.
  • the long heater element is composed of, for example, a rod-shaped member. According to this, since the carrier gas ejected from each carrier gas ejection port can be uniformly heated, the in-plane uniformity of the substrate temperature can be further improved.
  • the heater element may be composed of a plurality of rod-shaped members, which may be arranged in parallel along the gas flow path, or may be composed of a plate-shaped member.
  • the carrier gas heating unit may heat the carrier gas by a coiled heater element housed in a groove formed on the inner wall of the processing container so as to surround the gas flow path. If comprised in this way, heat can be given to the carrier gas injected from each carrier gas outlet from four directions, and the heating efficiency of carrier gas can be improved more.
  • the carrier gas heating unit heats the carrier gas ejected from each carrier gas ejection port by a heater element provided in a flow path to each carrier gas ejection port in the carrier gas supply nozzle. It may be configured. In this case, it is preferable that the heater element is housed in a groove provided in the middle of the flow path of each carrier gas supply nozzle.
  • the carrier gas can be heated without being heated by the carrier gas heating section and ejected from each carrier gas ejection port. Further, since the carrier gas is heated in the carrier gas supply nozzle, the heating efficiency can be further improved.
  • the substrate processing apparatus further includes an upstream temperature sensor that detects a temperature upstream of the substrate holder, a downstream temperature sensor that detects a temperature downstream of the substrate holder, and the upstream temperature sensor; A control unit that controls the upstream side and the downstream side temperature of the substrate holding unit by controlling the output of the carrier gas heating unit based on each temperature detected by the downstream temperature sensor. Good.
  • the in-plane uniformity of the substrate temperature can be improved by automatically controlling the temperatures on the upstream side and the downstream side of the substrate holding part.
  • the in-plane distribution of the substrate temperature can be controlled by adjusting the temperature difference between the upstream side and the downstream side of the substrate holding portion in accordance with the type of substrate processing.
  • a substrate processing apparatus that performs a predetermined process on the substrate by forming a predetermined gas flow along a surface to be processed of the substrate.
  • the substrate processing apparatus is provided in the middle of the gas flow path, a processing vessel that is formed in a cylindrical shape and forms a gas flow path from one end side to the other end side in the inside thereof, A substrate holding unit for holding the substrate; a substrate holding unit heating unit for heating the substrate holding unit to heat the substrate; and the processing gas provided upstream of the substrate holding unit in the gas flow path.
  • a processing gas supply unit that supplies the processing gas from the supply nozzle to the gas flow path, and a carrier gas that is provided upstream of the processing gas supply nozzle in the gas flow path and transfers the processing gas from the carrier gas supply nozzle
  • the gas A carrier gas supply unit for supplying the gas to the channel; and a carrier gas heating unit for heating the carrier gas supplied to the gas channel on the upstream side of the processing gas supply nozzle of the gas channel.
  • the substrate holding part is heated and the carrier gas is heated and supplied, and the processing gas is supplied on the flow, the decrease in the temperature on the upstream side of the substrate holding part is suppressed. As a result, the uniformity of the temperature of the substrate holding part can be improved.
  • the substrate processing apparatus includes an upstream temperature sensor that detects a temperature on the upstream side of the substrate holding unit and a downstream temperature sensor that detects a temperature on the downstream side of the substrate holding unit.
  • a step of controlling the upstream and downstream temperatures of the substrate holding unit by controlling the output of the carrier gas heating unit based on each temperature detected by the temperature sensor and the downstream temperature sensor. Also good.
  • the temperature on the upstream side and the downstream side of the substrate holding unit can always be made uniform, and the temperature on the upstream side and the downstream side of the substrate holding unit can be adjusted to have a desired in-plane distribution.
  • 1 sccm is (10 ⁇ 6 / 60) m 3 / sec.
  • the processing gas flows along the processing target surface of the substrate from the upstream side to the downstream side of the substrate holding unit along the flow of the heated carrier gas.
  • the decrease can be suppressed, and the uniformity of the temperature of the substrate holder can be improved.
  • the in-plane uniformity of the substrate temperature can be improved.
  • the temperature difference between the upstream side and the downstream side of the substrate holding part can be controlled by controlling the heating temperature of the carrier gas, the in-plane distribution of the substrate temperature can thereby be controlled.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of a substrate processing apparatus 100 according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a partial schematic configuration in the substrate processing apparatus 100.
  • a substrate processing apparatus 100 that performs film formation processing by epitaxial growth on a semiconductor wafer hereinafter simply referred to as “wafer”.
  • a substrate processing apparatus 100 is formed in a cylindrical shape, a processing container 102 that forms a gas flow path from one end side to the other end side in the inside thereof, and is provided in the middle of the gas flow path.
  • a processing gas supply unit 200 that supplies processing gas from the nozzle 206 to the gas flow path, and a carrier gas that transfers the processing gas from the carrier gas supply nozzle 226 provided upstream of the processing gas supply nozzle 206 in the gas flow path.
  • a heating unit 240 is provided in a cylindrical shape, a processing container 102 that forms a gas flow path from one end side to the other end side in the inside
  • the processing container 102 is made of a material having high heat resistance and high corrosion resistance, such as aluminum, stainless steel, and quartz glass.
  • the processing container 102 is mainly composed of a container body 103 formed in, for example, a rectangular tube shape having both ends opened.
  • the upstream opening end of the container body 103 is closed by an upstream flange 104A where a wafer W loading / unloading port is formed, and the downstream opening end of the container body 103 is blocked by a downstream flange 104B where an exhaust port is formed. It is blocked.
  • the exhaust part 130 which exhausts the inside of the processing container 102 is connected to the exhaust port of the downstream flange 104B.
  • the exhaust unit 130 includes an exhaust device 132 including, for example, a vacuum pump.
  • the exhaust device 132 is connected to the exhaust port of the downstream flange 104 ⁇ / b> B through an exhaust pipe 134.
  • the exhaust pipe 134 is provided with a conductance variable valve 136.
  • a pressure sensor 138 for measuring the pressure in the processing container 102 is provided in the processing container 102.
  • the pressure sensor 138 and the conductance variable valve 136 are connected to the control unit 150.
  • the control unit 150 controls the opening of the conductance variable valve 136 based on the pressure value detected by the pressure sensor 138 to increase / decrease the exhaust amount from the processing container 102, so that the processing container 102 has a predetermined vacuum pressure. The pressure can be reduced.
  • the carrier gas from the carrier gas supply nozzle 226 and the processing gas from the processing gas supply nozzle 206 are transferred to a wafer W in a hot wall tube 112, which will be described later, constituting the substrate holding unit 108.
  • the processing gas and the carrier gas are supplied from the upstream flange 104A side in the processing container 102 and exhausted to the outside from the exhaust port of the downstream flange 104B, whereby a constant gas flow is generated in the processing container 102. It is formed.
  • a gas flow path here is formed in the processing container 102 from one end side to the other end side. That is, the gas flow path here is formed by the inner wall of the container main body 103 and the inner wall of the hot wall pipe 112 constituting the substrate holding unit 108.
  • a gate valve 106 for opening and closing the carry-in / out port is provided at the carry-in / out port of the wafer W of the upstream flange 104A.
  • the wafer W is transferred into and out of the processing chamber 102 via the gate valve 106 by a transfer arm (not shown).
  • the substrate holding unit 108 is roughly composed of a mounting table 110 on which the wafer W is mounted, and a hot wall tube (heated structure) 112 formed around the mounting table 110.
  • the substrate holding unit 108 (the mounting table 110 and the hot wall tube 112) is heated to a high temperature by a substrate holding unit heating unit 140 described later.
  • the heat insulating member 114 is interposed between the outer wall of the hot wall pipe 112 heated to a high temperature and the inner wall of the container body 103. This prevents heat from the hot wall tube 112 from escaping to the container body 103.
  • the mounting table 110 is formed in a substantially disc shape, for example, and is fixed to the inner bottom surface of the hot wall pipe 112.
  • the wafer W is loaded into the processing container 102 by a transfer mechanism (not shown) such as a transfer arm and placed on the substrate placement surface on the placement table 110.
  • a concave portion (not shown) that is slightly larger than the outer periphery of the wafer W is formed on the substrate mounting surface.
  • the wafer W is loaded by a transfer arm or the like, the wafer W is placed in the concave portion of the substrate mounting surface. It is mounted on the mounting table 110 so as to enter.
  • the wafer W is prevented from shifting even if a carrier gas or a processing gas flows along the surface of the wafer W.
  • the hot wall pipe 112 is slightly smaller than the inner wall of the processing container 102, and is formed in, for example, a rectangular tube shape having both ends opened, and is disposed along the longitudinal direction of the processing container 102. Thereby, the processing gas and the carrier gas flow from one end to the other end in the hot wall pipe 112 and flow along the surface to be processed of the wafer W.
  • the hot wall tube 112 is made of a material whose temperature is likely to rise by induction heating, for example, a high-density carbon material.
  • the heat insulating member 114 is made of, for example, a low density carbon material. It is preferable that the carbon material constituting the heat insulating member 114 has a remarkably large porosity relative to the carbon material constituting the hot wall tube 112. As a result, the heat of the hot wall pipe 112 that has become high temperature by induction heating is not transmitted to the container main body 103 of the processing container 102, and thermal damage or outgassing of the processing container 102 can be prevented.
  • the processing container 102 is provided with a substrate holder heating unit 140 that heats the substrate holder 108 to a high temperature.
  • the substrate holding unit heating unit 140 includes a coil 141 wound around the outside of the processing container 102.
  • the unit 108 is configured to be induction heated.
  • the coil 141 is wound in a range where the substrate holding part 108 is disposed outside the processing container 102.
  • a high frequency power source 142 is connected to the coil 141.
  • the shape of the mounting table 110 and the hot wall tube 112 and the arrangement of the heat insulating member 114 can be optimized so as to improve the in-plane uniformity of the temperature of the wafer W, and the position and the number of turns of the coil 141 can be adjusted accordingly. preferable.
  • the mounting table 110 and the hot wall tube 112 are induction heated. Therefore, heat is transmitted from the mounting table 110 to the wafer W and also from the hot wall pipe 112 having a larger volume, so that the wafer W can be heated more efficiently. Further, since the hot wall tube 112 is formed so as to surround the wafer W, the entire wafer W can be heated by radiant heat. As a result, the wafer W can be heated more uniformly. The wafer W is heated to 1600 ° C., for example.
  • the substrate holding unit 108 may be provided with temperature sensors for detecting the upstream and downstream temperatures, respectively.
  • a temperature sensor 116A is built in the upstream side of the mounting table 110 (for example, a portion near the opening on the upstream side of the hot wall pipe 112), and the downstream side of the mounting table 110 (for example, The temperature sensor 116B is disposed in a portion near the opening on the downstream side of the hot wall pipe 112.
  • the temperature sensors 116A and 116B are composed of, for example, thermocouples.
  • Each temperature sensor 116 ⁇ / b> A, 116 ⁇ / b> B is connected to the control unit 150.
  • control part 150 controls the output of the carrier gas heating part mentioned later based on the temperature of the upstream of the mounting base 110 detected from each temperature sensor 116A, 116B, for example.
  • the number of temperature sensors is not limited to the above, and three or more temperature sensors may be provided.
  • the processing gas supply unit 200 includes a processing gas supply source 202.
  • a processing gas supply nozzle 206 is connected to the processing gas supply source 202 via a processing gas supply pipe 208.
  • the processing gas supply pipe 208 is provided with a mass flow controller 210 that controls the flow rate of the processing gas and a valve 212 that opens and closes the processing gas supply pipe 208.
  • the mass flow controller 210 and the valve 212 are connected to the control unit 150.
  • the processing gas supply nozzle 206 is provided to be separated from the carrier gas supply nozzle 226 on the downstream side.
  • the processing gas supply nozzle 206 is disposed in the width direction of the gas flow path in the processing container 102.
  • the processing gas supply nozzle 206 is formed in an elongated shape according to the opening width on the upstream side of the hot wall pipe 112, for example, and is provided upright on the bottom of the inner wall of the processing container 102.
  • the tip of the processing gas supply nozzle 206 is bent toward the hot wall pipe 112, and a plurality of processing gas ejection ports 204 are formed. Specifically, the processing gas ejection ports 204 are arranged perpendicular to the gas flow path in the processing container 102 and open toward the substrate holding unit 108. These processing gas ejection ports 204 communicate with a processing gas supply pipe 208 through a flow path in the processing gas supply nozzle 206.
  • a film forming gas such as SiH 4 gas or C 3 H 8 gas is supplied as a processing gas.
  • a dopant gas such as N 2 , a dilution gas of the film forming gas, and the like may be supplied together with the film forming gas as necessary.
  • SiH 4 gas or C 3 H 8 gas is supplied as a film forming gas.
  • trimethylaluminum (TMA) gas or N 2 gas may be added to the processing gas to adjust the electrical characteristics of the SiC film grown on the wafer W.
  • the flow path in the processing gas supply nozzle 206 communicating with the processing gas ejection port 204 may be one system or a plurality of systems.
  • each processing gas jet port 204 ejects SiH 4 gas and C 3 H 8 gas.
  • the jetting nozzles alternately and configure the flow path of the processing gas supply nozzle 206 communicating with them to be a separate system.
  • the processing gas supply source 202 is also divided into two systems, one supplying SiH 4 gas and the other supplying C 3 H 8 gas, and is connected to the processing gas outlet 204 for supplying each processing gas. Each may be supplied to the road.
  • SiH 4 gas and C 3 H 8 gas ejected from each processing gas ejection port 204 can be mixed and supplied to the surface to be processed of the wafer W mounted on the mounting table 110.
  • the carrier gas supply unit 220 includes a carrier gas supply source 222.
  • a carrier gas supply nozzle 226 is connected to the carrier gas supply source 222 via a carrier gas supply pipe 228.
  • the carrier gas supply pipe 228 is provided with a mass flow controller 230 that controls the flow rate of the carrier gas and a valve 232 that opens and closes the carrier gas supply pipe 228.
  • the mass flow controller 230 and the valve 232 are connected to the control unit 150.
  • the carrier gas supply nozzle 226 is configured in substantially the same manner as the processing gas supply nozzle 206 and is arranged in parallel upstream of the processing gas supply nozzle 206.
  • the carrier gas supply nozzle 226 is formed in an elongated shape at least equal to or larger than the width of the processing gas supply nozzle 206 and is provided upright on the bottom of the inner wall of the processing container 102.
  • the tip of the carrier gas supply nozzle 226 is bent toward the hot wall pipe 112, and a plurality of carrier gas ejection ports 224 are formed.
  • the carrier gas ejection ports 224 are arranged perpendicular to the gas flow path in the processing container 102 and open toward the substrate holding unit 108.
  • These carrier gas outlets 224 communicate with the carrier gas supply pipe 228 through a flow path in the carrier gas supply nozzle 226.
  • H 2 gas is supplied from the carrier gas supply source 222.
  • the carrier gas is supplied at a larger flow rate than the processing gas, for example, at a flow rate of 1000 times or more the processing gas flow rate.
  • the processing gas supply nozzle 206 is located at one end side of the processing container 102, that is, upstream of the substrate holding part 108.
  • the carrier gas supply nozzle 226 is provided closer to the upstream flange 104A than the processing gas supply nozzle 206 is provided on the side flange 104A side. Therefore, in the processing container 102, the carrier gas supply nozzle 226, the processing gas supply nozzle 206, and the substrate holding unit 108 are arranged in this order from the upstream flange 104A to the gas flow path.
  • each processing gas outlet 204 and each carrier gas outlet 224 are arranged perpendicularly to the gas flow path in the width direction in the processing container 102, a uniform gas flow (layer) in the width direction of the gas flow path. Flow).
  • the carrier gas heating unit 240 is provided between the carrier gas supply nozzle 226 and the processing gas supply nozzle 206, for example, as shown in FIG. Thus, only the carrier gas can be heated without heating the processing gas by the carrier gas heating unit 240. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding unit 108.
  • the carrier gas heating unit 240 is composed of a long heater element.
  • the heater element 242 is made of a refractory metal material such as W, Mo, or Ta.
  • the heater element 242 is connected to a heater power supply 244 so that the output (temperature) of the heater element 242 can be changed according to the amount of power supplied from the heater power supply 244.
  • the heater power supply 244 is connected to the control unit 150, and the control unit 150 controls the amount of electric power applied to the heater element 242 based on a preset temperature of the heater element 242, so that the heater The temperature of the element 242 can be adjusted.
  • the heater element 242 is disposed between the processing gas supply nozzle 206 and the carrier gas supply nozzle 226 so as to extend along the arrangement direction of the plurality of carrier gas ejection ports 224.
  • the heater element 242 is accommodated in a groove 160 formed on the bottom of the inner wall of the processing container 102. Thereby, the heater element 242 can be provided in the processing container 102 without disturbing the flow of gas flowing in the processing container 102. A specific configuration example of the heater element 242 will be described later.
  • Each unit of the substrate processing apparatus 100 configured as described above is controlled by the control unit 150 described above.
  • the control unit 150 controls the output of the high-frequency power source 142 and the mass flow controllers 210 and 230, the valves 212 and 232, and the conductance variable valve 136 based on the pressure value detected by the pressure sensor 138.
  • control necessary for processing of the wafer W such as output control of the heater power supply 244 based on the temperatures detected by the temperature sensors 116A and 116B, and opening / closing control of the gate valve 106, is performed.
  • the substrate holding unit 108 is heated by induction heating by the coil 141 to heat the wafer W, and the carrier gas
  • H 2 gas is supplied as a carrier gas from the supply nozzle 226 and, for example, SiH 4 gas, C 3 H 8 gas, and N 2 are supplied as processing gases from the processing gas supply nozzle 206 to exhaust the inside of the processing vessel 102.
  • the inside of the processing vessel 102 is reduced to a predetermined vacuum pressure.
  • a carrier gas and a process gas flow are formed along the surface to be processed of the wafer W toward the substrate holding unit 108.
  • the processing gas is heated on the surface to be processed of the wafer W to cause a chemical reaction, and, for example, a SiC film (single crystal film) mainly composed of Si and C is epitaxially grown on the wafer W.
  • the carrier gas is supplied toward the substrate holding unit 108 without being heated, a carrier gas having a temperature much lower than that is blown onto the substrate holding unit 108 heated to a high temperature.
  • the temperature on the upstream side of the holding unit 108 is lower than the temperature on the downstream side.
  • the temperature on the upstream side is lower than the temperature on the downstream side, and the in-plane uniformity of the substrate temperature is reduced. End up.
  • an undesired polycrystalline film grows in a low-temperature region of the wafer W or a defect is generated in the crystal, so that a high-quality SiC single crystal film is formed over the entire surface to be processed of the wafer W. I can't.
  • the carrier gas is heated by the carrier gas heating unit 240 and supplied toward the substrate holding unit 108, thereby suppressing a decrease in the upstream temperature of the substrate holding unit 108.
  • the in-plane uniformity of the substrate temperature can be improved.
  • FIG. 3 is a partial longitudinal sectional view of the carrier gas heating unit.
  • the heater element 242 is accommodated in a groove 160 formed at the bottom of the inner wall of the processing container 102.
  • the heater element 242 is disposed between the carrier gas supply nozzle 226 and the processing gas supply nozzle 206 and is disposed so as to extend along the arrangement direction of the plurality of carrier gas ejection ports 224. Thereby, the heater element 242 can directly heat the carrier gas ejected from the plurality of carrier gas ejection ports 224.
  • the inner surface of the groove 160 is covered with a heat insulating member 162, and the surface of the heat insulating member 162 is covered with a cover member 164 made of SiC.
  • the heat insulating member 162 is made of, for example, a low-density carbon material.
  • the heater element 242 generates heat at, for example, 1000 to 2000 ° C. according to the electric power applied from the heater power supply 244.
  • a carrier gas indicated by a white arrow in FIG. 3
  • the heater element 242 that generates heat at a high temperature with respect to the carrier gas immediately after the ejection.
  • Heat indicated by broken arrows in FIG. 3) is transferred by convection or the like, and the carrier gas is heated.
  • the heating temperature of the carrier gas can be adjusted by controlling the power applied to the heater element 242 from the heater power supply 244.
  • the electric power applied to the heater element 242 is controlled according to the set temperature of the heater element 242 set in advance by the control unit 150, for example.
  • the set temperature of the heater element 242 is high.
  • the processing gas mixed on the downstream side is thermally decomposed before reaching the hot wall pipe 112.
  • the carrier gas is heated to 1000 ° C. or higher.
  • a case where the set temperature of the heater element 242 is set to 1000 to 2000 ° C. is taken as an example.
  • the heater element 242 in the groove portion 160 via the heat insulating member 162 and the cover member 164, even if electric power is applied to the heater element 242 and the temperature rises, the temperature of the groove portion 160 and the surrounding members increases. It is possible to prevent contamination from occurring.
  • the processing gas can be supplied into the hot wall pipe 112 in a stable carrier gas flow.
  • the carrier gas supply nozzle 226 and the processing gas supply nozzle 206 are arranged side by side in the direction of the gas flow path, and the heater element 242 is arranged between them.
  • the heat generated by the heater element 242 can be accurately transmitted to the carrier gas ejected from each carrier gas ejection port 224, while being ejected from each processing gas ejection port 204.
  • the process gas can be prevented from directly transferring heat. Therefore, it is possible to prevent the processing gas from being thermally decomposed by the heat generated by the heater element 242 and to generate particles, and to supply a high-quality processing gas into the hot wall pipe 112.
  • FIG. 4 is a flowchart showing a specific example of the film forming process according to the present embodiment.
  • the controller 150 performs the film forming process by controlling each part of the substrate processing apparatus 100 based on the flowchart.
  • the wafer W to be subjected to the film forming process is placed on the mounting table 110 in the processing container 102 by a transfer arm (not shown). With the gate valve 106 closed, the inside of the processing chamber 102 is reduced to a predetermined vacuum pressure by the exhaust unit 130, and the following film forming process is performed.
  • step S110 the high frequency power supply 142 is controlled to apply high frequency power to the coil 141, and the mounting table 110 and the hot wall tube 112 are induction heated.
  • the temperature of the mounting table 110 is measured using the temperature sensors 116A and 116B, and the high frequency power applied to the coil 141 is adjusted so that the temperature of the mounting table 110 becomes a predetermined temperature, for example, 1600 ° C.
  • the wafer W becomes substantially the same temperature as the mounting table 110.
  • the hot wall tube 112 is also induction heated, the entire wafer W surrounded by the hot wall tube 112 is heated uniformly.
  • step S120 the carrier gas supply unit 220 is controlled to supply the carrier gas into the processing vessel 102.
  • the mass flow controller 230 controls the flow rate of the carrier gas to, for example, 50 to 200 slm (standard liter / min).
  • the carrier gas ejected from the plurality of carrier gas ejection ports 224 of the carrier gas supply nozzle 226 is introduced into the hot wall pipe 112 from the upstream side.
  • the carrier gas flows to the processing surface of the wafer W placed on the mounting table 110 and is exhausted to the outside of the processing chamber 102.
  • a carrier gas flow is formed along the surface to be processed of the wafer W.
  • step S120 the carrier gas is supplied while being heated.
  • the heater power supply 244 is controlled to apply power to the heater element 242 to cause the heater element 242 to generate heat at, for example, 1000 to 2000 ° C.
  • the carrier gas ejected from the plurality of carrier gas ejection ports 224 is heated by receiving heat from the heater element 242 immediately after that.
  • the electric power applied to the heater element 242 is adjusted so that the measured values of the temperature sensor 116A and the temperature sensor 116B are equal or the difference between them is minimized.
  • step S130 the processing gas supply unit 200 is controlled to supply the processing gas into the processing container 102.
  • the flow rate of the processing gas is adjusted to 50 to 500 sccm, for example.
  • the processing gas ejected from the plurality of processing gas ejection ports 204 of the processing gas supply nozzle 206 rides on the flow of the carrier gas ejected from the plurality of carrier gas ejection ports 224 of the carrier gas supply nozzle 226 and flows into the hot wall pipe 112. It is introduced into the inside from the upstream side. At this time, since the inside of the processing chamber 102 is evacuated, the carrier gas and the processing gas flow to the processing surface of the wafer W mounted on the mounting table 110 and are exhausted to the outside of the processing chamber 102. Thus, the flow of the carrier gas and the processing gas is formed along the processing surface of the wafer W.
  • the processing gas such as SiH 4 gas and C 3 H 8 gas is heated and thermally decomposed, for example, an SiC single crystal film is epitaxially grown.
  • the temperature of the entire processing surface of the wafer W is uniform, a good SiC single crystal film can be formed over the entire processing surface of the wafer W.
  • step S130 the temperature of the mounting table 110 may be monitored using the temperature sensors 116A and 116B. This is because the in-plane uniformity of the temperature of the wafer W may be reduced depending on the flow rate and temperature of the processing gas supplied into the hot wall pipe 112 in step S130.
  • step S130 when the difference between the measured values of the temperature sensor 116A and the temperature sensor 116B becomes large, the power applied to the heater element 242 is readjusted so that the difference disappears or the difference becomes minimum. .
  • a predetermined process in this case, a film forming process
  • Such processing for the wafer ends when, for example, a predetermined time elapses when the SiC single crystal film on the wafer W reaches a predetermined thickness.
  • the application of high frequency power to the coil 141 and the application of power to the heater element 242 are stopped in step S140. Further, the supply of the processing gas and the carrier gas to the processing container 102 is stopped, and a series of film forming processes is completed.
  • the carrier gas supplied from the carrier gas supply nozzle 226 is upstream of the substrate holding unit 108. Since the heating is performed on the side, that is, before reaching the upstream side of the substrate holding unit 108, a decrease in the upstream temperature of the substrate holding unit 108 can be suppressed as much as possible. Thereby, the uniformity of the temperature of the substrate holding unit 108 can be improved, and consequently the in-plane uniformity of the substrate temperature can be improved. For example, when film formation is performed by epitaxial growth, a uniform single crystal film can be formed over the entire surface to be processed of the wafer W.
  • the temperature difference between the upstream side and the downstream side of the substrate holding unit 108 can be controlled by controlling the heating temperature of the carrier gas by the carrier gas heating unit 240, the in-plane distribution of the wafer temperature can be controlled thereby. For example, when the cleaning process in the processing container 102 is performed, a desired portion can be concentrated and cleaned by changing the temperature between the upstream side and the downstream side of the substrate holding unit 108.
  • the carrier gas supply nozzle 226 and the process gas supply nozzle 206 are separated, and the carrier gas is heated by the carrier gas heating unit 240 on the upstream side of the process gas supply nozzle 206, so that the carrier gas is not heated without heating the process gas. Only the gas can be heated. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding unit 108.
  • the carrier gas supplied at a flow rate of 100 times or more with respect to the flow rate of the processing gas is heated. Even if the gas is supplied, a decrease in the temperature of the entire gas can be suppressed.
  • start timing of steps S110 to S130 is not limited to the flowchart of FIG.
  • start timings of steps S110 to S130 may be switched or may be started simultaneously.
  • FIG. 5 is a perspective view showing another configuration example of the carrier gas heating unit 250.
  • the heater element 252 shown in FIG. 5 is disposed between the processing gas supply nozzle 206 and the carrier gas supply nozzle 226 so as to surround the gas flow path from the outside. By providing such a carrier gas heating unit 250, heat can be transmitted from four directions to the carrier gas, and the carrier gas can be heated more efficiently.
  • the heater element 252 is heated by electric power from the heater power supply 244.
  • the heater element 252 is accommodated in a groove 170 formed continuously on the bottom, side, and ceiling of the inner wall of the processing vessel 102. In this way, the flow of the carrier gas is not disturbed by the heater element 252 in the processing container 102. Therefore, the processing gas can be supplied toward the substrate holding unit 108 in a stable carrier gas flow.
  • the carrier gas heating unit 240 shown in FIG. 2 has been described with respect to the case where it is configured with one rod-shaped heater element 242, but is not limited thereto, and is configured with a plurality of rod-shaped heater elements 242. May be.
  • a plurality of (for example, three) rod-like heater elements 242A to 242C may be arranged on the inner wall of the processing vessel 102 along the gas flow path.
  • the groove portion 180 is sized to accommodate the heater elements 242A to 242C, for example.
  • the inner surface of the groove 180 is covered with a heat insulating member 182, and the surface of the heat insulating member 182 is covered with a cover member 184 made of SiC.
  • the heat insulating member 182 is made of, for example, a low-density carbon material.
  • the three heater elements 242A to 242C are disposed between the processing gas supply nozzle 206 and the carrier gas supply nozzle 226 and a plurality of carrier gases. It arrange
  • one heater element may be folded in a zigzag and accommodated in the groove portion 180.
  • a plate-like heater element 246 as shown in FIG. Even if this heater element 246 is used, the carrier gas can be heated within a short time by transferring heat from a wider range to the carrier gas.
  • the carrier gas heating unit 240 heats the carrier gas ejected from each carrier gas ejection port 224.
  • the present invention is not limited to this, and the carrier gas heating unit 240 is ejected from the carrier gas ejection port 224. It is also possible to heat before heating.
  • a rod-shaped heater element 242 is provided in a flow path 226a to each carrier gas outlet 224 in the carrier gas supply nozzle 226 to heat the carrier gas ejected from each carrier gas outlet 224. You may comprise as follows.
  • the heater element 242 shown in FIG. 8 is accommodated in a groove 260 formed in the inner wall of the flow path 226a up to the plurality of carrier gas outlets 224 in the carrier gas supply nozzle 226.
  • the groove 260 is formed so as to communicate with the plurality of flow paths 226a.
  • the groove 260 has an inner surface covered with a heat insulating member 262, and the surface of the heat insulating member 262 is covered with a cover member 264 made of SiC.
  • the heat insulating member 262 is made of, for example, a low-density carbon material.
  • the carrier gas flowing in each flow path 226a can be brought into contact with the surface of the heater element 242.
  • the heater element 242 generates heat to 1000 to 2000 ° C., for example, by electric power from the heater power supply 244. Thereby, a high-temperature carrier gas can be ejected from each carrier gas ejection port 224.
  • the heater element 242 in the carrier gas supply nozzle 226 By providing the heater element 242 in the carrier gas supply nozzle 226 in this way, it becomes easier to transfer heat from the heater element 242 to the carrier gas, so that the heating efficiency of the carrier gas can be further improved. Further, the gas flow in the gas flow path in the processing container 102 is not disturbed.
  • heat from the heater element 242 can be prevented from being transmitted to gases other than the carrier gas and various members disposed in the processing vessel 102. For this reason, generation
  • an undesired substance may be deposited on the mounting table and its periphery.
  • the present invention can also be applied to a cleaning process in which such deposits (deposits) are removed by dry etching.
  • the cleaning process for example, it is preferable to intentionally increase the temperature of a portion where there is a large amount of deposits than the temperature of other portions.
  • the gas to be used for cleaning can be heated before being introduced into the hot wall pipe 112. Therefore, the part to be cleaned is selectively heated to a high temperature.
  • the etching rate at that portion can be increased.
  • the flow rate and power consumption of the gas used for cleaning can be suppressed, and the time required for cleaning can be shortened.
  • the present invention is not limited to an epitaxial growth apparatus that grows a single crystal film on a wafer, but also a film forming apparatus that forms a predetermined film on a substrate such as a wafer, an etching processing apparatus that performs a dry etching process on a substrate, and the like. It can be applied to a substrate processing apparatus.
  • the processing vessel 102 and the hot wall tube 112 are both rectangular tubes, but may be cylindrical. Further, the present invention can also be applied to a substrate processing apparatus of the type in which the hot wall tube 112 and the heat insulating member 114 are omitted in the substrate holding unit 108 and the substrate holding unit 108 is configured only by the mounting table 110.
  • the present invention is applicable to a substrate processing apparatus and a substrate processing method for performing predetermined processing on a substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

At the time of forming a gas flow along a substrate surface to be processed by heating a substrate holding section to a high temperature, temperature reduction in the upstream of the substrate holding section due to gas supply is suppressed, and uniformity of temperature of the substrate holding section is improved. A substrate processing apparatus is provided with a processing container (102) wherein a gas flow is formed from one end to the other end; a substrate holding section (108), which is arranged on a certain position along a gas channel for such gas flow, and holds a wafer; a substrate holding section heating section (140) which heats the wafer by heating the substrate holding section; a processing gas supply nozzle (206) arranged in the upstream of the substrate holding section; a carrier gas supply nozzle (226) arranged in the upstream of the processing gas supply nozzle; and a carrier gas heating section (240) for heating a carrier gas supplied to the gas channel, in the upstream of the processing gas supply nozzle.

Description

基板処理装置,基板処理方法Substrate processing apparatus and substrate processing method
 本発明は,基板に所定の処理を施す基板処理装置および基板処理方法に関する。 The present invention relates to a substrate processing apparatus and a substrate processing method for performing predetermined processing on a substrate.
 例えば半導体ウエハなどの基板における被処理面の結晶上に結晶方位が揃った単結晶の薄膜を成長させる,所謂エピタキシャル成長による成膜処理などでは,一般に基板を高温(例えば1000℃以上)に加熱して処理が行われる(特許文献1,2参照)。このような処理を行う基板処理装置としては,略筒状の処理容器内に設けられた基板保持部(サセプタ)で基板を保持して処理容器内を減圧雰囲気にし,所定のガス(成膜ガスなど)を一方向から基板の被処理面に沿って供給するものが知られている。これにより,基板の被処理面上で処理ガスが熱分解してその被処理面上に結晶性の優れた薄膜が成長する。 For example, in a film-forming process by so-called epitaxial growth in which a single crystal thin film having a uniform crystal orientation is grown on a crystal of a surface to be processed in a substrate such as a semiconductor wafer, the substrate is generally heated to a high temperature (eg, 1000 ° C. or higher). Processing is performed (see Patent Documents 1 and 2). As a substrate processing apparatus for performing such processing, a substrate holding unit (susceptor) provided in a substantially cylindrical processing container is used to hold the substrate to make the inside of the processing container a reduced-pressure atmosphere, and a predetermined gas (deposition gas) Etc.) are known to be supplied from one direction along the surface to be processed of the substrate. As a result, the processing gas is thermally decomposed on the surface to be processed of the substrate, and a thin film having excellent crystallinity grows on the surface to be processed.
 このような基板処理装置では,基板温度の面内温度分布が基板の被処理面上に形成される薄膜の結晶性や膜厚,膜中のキャリア密度などの面内均一性に影響を与えるので,従来より基板の被処理面全体が均一に加熱されるように様々な工夫がなされている。例えば基板保持部の周囲に抵抗加熱ヒータを設けてヒータ加熱により基板保持部全体を高温に加熱することにより基板を加熱するものや,基板保持部の周囲に巻回されたコイルによる誘導加熱を利用して基板保持部全体を高温に加熱することにより基板を加熱するものがある。 In such a substrate processing apparatus, since the in-plane temperature distribution of the substrate temperature affects the in-plane uniformity such as the crystallinity and film thickness of the thin film formed on the processing surface of the substrate and the carrier density in the film. Conventionally, various ideas have been made so that the entire surface to be processed of the substrate is uniformly heated. For example, a resistance heater is provided around the substrate holder and the substrate is heated by heating the entire substrate holder to a high temperature by heater heating, or induction heating by a coil wound around the substrate holder is used. Then, there is one that heats the substrate by heating the entire substrate holding part to a high temperature.
特開平9-232275号公報JP-A-9-232275 特開2004-323900号公報JP 2004-323900 A
 しかしながら,たとえ基板保持部全体を均一に加熱したとしても,例えば1000℃以上の高温に加熱された基板保持部には,それよりも低い温度例えば数十~数百℃程度のキャリアガスと処理ガスが基板の被処理面に沿うように基板保持部の上流側から下流側に向けて流れるので,基板保持部の上流側の温度は下流側の温度に比して低下してしまう。このため,基板保持部に保持された基板の被処理面においても,その上流側の温度が下流側の温度に比して低下してしまい,基板温度の面内均一性が低下してしまう。 However, even if the entire substrate holder is uniformly heated, the carrier gas and processing gas at a lower temperature, for example, several tens to several hundreds of degrees C Flows from the upstream side of the substrate holding part toward the downstream side along the surface to be processed of the substrate, so that the temperature on the upstream side of the substrate holding part is lower than the temperature on the downstream side. For this reason, also on the surface to be processed of the substrate held by the substrate holding part, the temperature on the upstream side is lower than the temperature on the downstream side, and the in-plane uniformity of the substrate temperature is reduced.
 このように,基板温度の面内均一性が低下し,基板の被処理面の上流側に所望する温度よりも低い温度領域ができてしまうと,その温度領域では良好な処理結果が得られなくなる虞がある。例えば上述したように基板の被処理面にエピタキシャル成長による単結晶膜を形成する場合には,基板の被処理面のうち温度が低い領域では不所望の多結晶膜が成長してしまったり,結晶中に欠陥が生じたりする虞がある。これでは,基板の被処理面全域にわたって良質な単結晶膜を形成することができなくなり,結果として基板の歩留まりが低下してしまう。 As described above, when the in-plane uniformity of the substrate temperature is lowered and a temperature region lower than a desired temperature is formed on the upstream side of the surface to be processed, a favorable processing result cannot be obtained in that temperature region. There is a fear. For example, as described above, when a single crystal film is formed by epitaxial growth on the surface to be processed of the substrate, an undesired polycrystalline film grows in the low temperature region of the surface to be processed of the substrate, There is a risk of defects. This makes it impossible to form a high-quality single crystal film over the entire surface to be processed of the substrate, resulting in a decrease in substrate yield.
 本発明はこのような問題に鑑みてなされたもので,その目的とするところは,基板保持部を加熱して基板を加熱し,その基板の被処理面に沿って所定のガスの流れを形成する際に,基板保持部の上流側温度の低下を抑えて基板保持部の温度の均一性を向上させることができ,ひいては基板温度の面内均一性を向上させることができる基板処理装置および基板処理方法を提供することにある。 The present invention has been made in view of the above problems, and its object is to heat the substrate by heating the substrate holder and form a predetermined gas flow along the surface to be processed of the substrate. Substrate processing apparatus and substrate capable of improving temperature uniformity of the substrate holding part by suppressing a decrease in the upstream temperature of the substrate holding part and thus improving in-plane uniformity of the substrate temperature. It is to provide a processing method.
 上記課題を解決するために,本発明のある観点によれば,基板の被処理面に沿って処理ガスの流れを形成することによって,前記基板に対して所定の処理を施す基板処理装置であって,筒状に形成されその内部に一端側から他端側に向かうガス流路を形成する処理容器と,前記ガス流路の途中に設けられ,前記基板を保持する基板保持部と,前記基板保持部を加熱して前記基板を加熱する基板保持部加熱部と,前記ガス流路の前記基板保持部よりも上流側に設けられた処理ガス供給ノズルから前記処理ガスを前記ガス流路に供給する処理ガス供給部と,前記ガス流路の前記処理ガス供給ノズルよりも上流側に設けられたキャリアガス供給ノズルから前記処理ガスを移送するキャリアガスを前記ガス流路に供給するキャリアガス供給部と,前記ガス流路の前記処理ガス供給ノズルよりも上流側において,前記ガス流路に供給される前記キャリアガスを加熱するキャリアガス加熱部とを備えたことを特徴とする基板処理装置が提供される。 In order to solve the above problems, according to an aspect of the present invention, there is provided a substrate processing apparatus for performing a predetermined process on a substrate by forming a flow of a processing gas along a surface to be processed of the substrate. And a processing container for forming a gas flow path formed in a cylindrical shape from one end side to the other end side, a substrate holding portion provided in the middle of the gas flow path for holding the substrate, and the substrate Supplying the processing gas to the gas flow path from a substrate holding part heating section for heating the holding section to heat the substrate, and a processing gas supply nozzle provided upstream of the substrate holding section of the gas flow path And a carrier gas supply unit for supplying a carrier gas for transferring the process gas from a carrier gas supply nozzle provided on the upstream side of the process gas supply nozzle of the gas channel to the gas channel. And before In the upstream side of the process gas supply nozzle of the gas passage, a substrate processing apparatus is characterized in that a carrier gas heating unit for heating the carrier gas supplied to the gas flow path is provided.
 このような発明によれば,基板保持部を加熱してキャリアガスと処理ガスを供給する際に,キャリアガス供給ノズルから供給されるキャリアガスは,基板保持部よりも上流側で,すなわち基板保持部の上流側に達する前に加熱されるので,基板保持部の上流側温度の低下を極力抑えることができる。これにより,基板保持部の温度の均一性を向上させることができ,ひいては基板温度の面内均一性を向上させることができる。また,キャリアガス加熱部によってキャリアガスの加熱温度を制御することで,基板保持部の上流側と下流側の温度差を制御できるので,これにより基板温度の面内分布を制御できる。 According to such an invention, when supplying the carrier gas and the processing gas by heating the substrate holding part, the carrier gas supplied from the carrier gas supply nozzle is upstream of the substrate holding part, that is, the substrate holding part. Since the heating is performed before reaching the upstream side of the substrate, it is possible to suppress the decrease in the upstream temperature of the substrate holding unit as much as possible. Thereby, the uniformity of the temperature of the substrate holding part can be improved, and as a result, the in-plane uniformity of the substrate temperature can be improved. Further, since the temperature difference between the upstream side and the downstream side of the substrate holding unit can be controlled by controlling the heating temperature of the carrier gas by the carrier gas heating unit, the in-plane distribution of the substrate temperature can be controlled thereby.
 また,キャリアガス供給ノズルと処理ガス供給ノズルとを分けるとともに,処理ガス供給ノズルよりも上流側でキャリアガス加熱部によりキャリアガスを加熱するので,処理ガスを加熱することなく,キャリアガスのみを加熱することができる。これにより,処理ガスが基板保持部に達する前に熱分解してパーティクルが発生することを防止できる。 In addition, the carrier gas supply nozzle and the process gas supply nozzle are separated, and the carrier gas is heated by the carrier gas heating unit upstream of the process gas supply nozzle, so that only the carrier gas is heated without heating the process gas. can do. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding portion.
 また,上記処理ガス供給ノズルは,前記ガス流路の幅方向に配列され前記基板保持部に向けて開口した複数の処理ガス噴出口を有するように構成し,前記キャリアガス供給ノズルは,前記ガス流路の幅方向に配列され前記基板保持部に向けて開口した複数のキャリアガス噴出口を有するように構成してもよい。これにより,ガス流路の幅方向に一様なガスの流れ(層流)を形成できるので,基板の被処理面における上流側と下流側のみならず,幅方向の温度もより均一化することができる。これにより,基板温度の面内均一性をより向上させることができる。 Further, the processing gas supply nozzle is configured to have a plurality of processing gas ejection ports arranged in the width direction of the gas flow path and opening toward the substrate holding portion, and the carrier gas supply nozzle includes the gas You may comprise so that it may have several carrier gas jet nozzles which were arranged in the width direction of the flow path and opened toward the said board | substrate holding part. As a result, a uniform gas flow (laminar flow) can be formed in the width direction of the gas flow path, so that not only the upstream and downstream sides of the substrate surface to be processed, but also the temperature in the width direction is made more uniform. Can do. Thereby, the in-plane uniformity of the substrate temperature can be further improved.
 また,上記キャリアガス加熱部は,例えば前記キャリアガス供給ノズルと前記処理ガス供給ノズルとの間に設け,前記各キャリアガス噴出口から噴出されたキャリアガスを加熱するように構成する。このように,キャリアガス加熱部をキャリアガス供給ノズルと処理ガス供給ノズルとの間に設けることにより,下流側から供給される処理ガスを加熱することなく,その上流側から供給されるキャリアガスのみを加熱できる。これにより,処理ガスが基板保持部に達する前に熱分解してパーティクルが発生することを防止できる。また,キャリアガス加熱部を処理ガス供給ノズルよりも上流側に配置することにより,処理ガス供給ノズルから供給される処理ガスがキャリアガス加熱部に触れることもない。このため,処理ガスがキャリアガス加熱部の表面と反応してキャリアガス加熱部にパーティクルが付着することを防止できる。 Further, the carrier gas heating unit is provided, for example, between the carrier gas supply nozzle and the processing gas supply nozzle, and is configured to heat the carrier gas ejected from each carrier gas ejection port. In this way, by providing the carrier gas heating unit between the carrier gas supply nozzle and the processing gas supply nozzle, only the carrier gas supplied from the upstream side without heating the processing gas supplied from the downstream side is provided. Can be heated. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding portion. Further, by disposing the carrier gas heating unit on the upstream side of the processing gas supply nozzle, the processing gas supplied from the processing gas supply nozzle does not touch the carrier gas heating unit. For this reason, it can prevent that process gas reacts with the surface of a carrier gas heating part, and a particle adheres to a carrier gas heating part.
 また,前記キャリアガス加熱部は,例えば前記各キャリアガス噴出口の配列方向に沿って延びるように配設された長尺状のヒータエレメントにより前記キャリアガスを加熱するように構成される。この場合,長尺状のヒータエレメントは例えば棒状部材で構成される。これによれば,各キャリアガス噴出口から噴出されたキャリアガスを満遍なく加熱することができるため,基板温度の面内均一性をより向上させることができる。 Further, the carrier gas heating unit is configured to heat the carrier gas by a long heater element disposed so as to extend along the arrangement direction of the carrier gas ejection ports, for example. In this case, the long heater element is composed of, for example, a rod-shaped member. According to this, since the carrier gas ejected from each carrier gas ejection port can be uniformly heated, the in-plane uniformity of the substrate temperature can be further improved.
 また,上記ヒータエレメントは,複数の棒状部材で構成し,これらをそれぞれ前記ガス流路に沿って並設してもよく,また,板状部材で構成してもよい。このようにガス流路に沿った方向に広い範囲でヒータエレメントを設けることにより,各キャリアガス噴出口から噴出されたキャリアガスに,より広い範囲から熱を与えることができるので,キャリアガスの加熱効率を向上させることができる。なお,上記ヒータエレメントは,ガスの流れの妨げにならないように,前記処理容器の内壁に形成された溝部に収容されていることが好ましい。 Further, the heater element may be composed of a plurality of rod-shaped members, which may be arranged in parallel along the gas flow path, or may be composed of a plate-shaped member. By providing a heater element in a wide range in the direction along the gas flow path in this way, heat can be applied from a wider range to the carrier gas ejected from each carrier gas ejection port. Efficiency can be improved. In addition, it is preferable that the said heater element is accommodated in the groove part formed in the inner wall of the said process container so that the flow of gas may not be prevented.
 また,上記キャリアガス加熱部は,前記処理容器の内壁に前記ガス流路を囲むように形成された溝部に収容されたコイル状のヒータエレメントにより前記キャリアガスを加熱するようにしてもよい。このように構成すれば,各キャリアガス噴出口から噴出されたキャリアガスに四方から熱を与えることができ,キャリアガスの加熱効率をより向上させることができる。 In addition, the carrier gas heating unit may heat the carrier gas by a coiled heater element housed in a groove formed on the inner wall of the processing container so as to surround the gas flow path. If comprised in this way, heat can be given to the carrier gas injected from each carrier gas outlet from four directions, and the heating efficiency of carrier gas can be improved more.
 また,上記キャリアガス加熱部は,前記キャリアガス供給ノズル内において前記各キャリアガス噴出口までの流路に設けられたヒータエレメントにより,前記各キャリアガス噴出口から噴出するキャリアガスを加熱するように構成してもよい。この場合,前記ヒータエレメントは,前記各キャリアガス供給ノズルの流路の途中に設けられた溝部に収容されることが好ましい。 The carrier gas heating unit heats the carrier gas ejected from each carrier gas ejection port by a heater element provided in a flow path to each carrier gas ejection port in the carrier gas supply nozzle. It may be configured. In this case, it is preferable that the heater element is housed in a groove provided in the middle of the flow path of each carrier gas supply nozzle.
 これによれば,キャリアガス加熱部によって処理ガスを加熱することなくキャリアガスのみを加熱して各キャリアガス噴出口から噴出させることができる。また,キャリアガス供給ノズル内でキャリアガスを加熱するので,加熱効率をより一層向上させることができる。 According to this, only the carrier gas can be heated without being heated by the carrier gas heating section and ejected from each carrier gas ejection port. Further, since the carrier gas is heated in the carrier gas supply nozzle, the heating efficiency can be further improved.
 上記基板処理装置は,さらに,前記基板保持部の上流側の温度を検出する上流側温度センサと,前記基板保持部の下流側の温度を検出する下流側温度センサと,前記上流側温度センサと前記下流側温度センサにより検出された各温度に基づいて前記キャリアガス加熱部の出力を制御することにより前記基板保持部の上流側と下流側の温度を制御する制御部とを備えるようにしてもよい。これによれば,基板保持部の上流側と下流側の温度を自動的に制御して,基板温度の面内均一性を向上させることができる。また,例えば基板の処理の種類に応じて基板保持部の上流側と下流側の温度差を調整して,基板温度の面内分布を制御することもできる。 The substrate processing apparatus further includes an upstream temperature sensor that detects a temperature upstream of the substrate holder, a downstream temperature sensor that detects a temperature downstream of the substrate holder, and the upstream temperature sensor; A control unit that controls the upstream side and the downstream side temperature of the substrate holding unit by controlling the output of the carrier gas heating unit based on each temperature detected by the downstream temperature sensor. Good. According to this, the in-plane uniformity of the substrate temperature can be improved by automatically controlling the temperatures on the upstream side and the downstream side of the substrate holding part. Further, for example, the in-plane distribution of the substrate temperature can be controlled by adjusting the temperature difference between the upstream side and the downstream side of the substrate holding portion in accordance with the type of substrate processing.
 上記課題を解決するために,本発明の別の観点によれば,基板の被処理面に沿って所定のガスの流れを形成することによって,前記基板に対して所定の処理を施す基板処理装置の基板処理方法であって,前記基板処理装置は,筒状に形成されその内部に一端側から他端側に向かうガス流路を形成する処理容器と,前記ガス流路の途中に設けられ,前記基板を保持する基板保持部と,前記基板保持部を加熱して前記基板を加熱する基板保持部加熱部と,前記ガス流路の前記基板保持部よりも上流側に設けられた前記処理ガス供給ノズルから前記処理ガスを前記ガス流路に供給する処理ガス供給部と,前記ガス流路の前記処理ガス供給ノズルよりも上流側に設けられキャリアガス供給ノズルから前記処理ガスを移送するキャリアガスを前記ガス流路に供給するキャリアガス供給部と,前記ガス流路の前記処理ガス供給ノズルよりも上流側において,前記ガス流路に供給される前記キャリアガスを加熱するキャリアガス加熱部とを備え,前記基板保持部加熱部により前記基板保持部を加熱して前記基板を加熱する工程と,前記キャリアガス加熱部により加熱しつつ,前記キャリアガス供給ノズルからキャリアガスを供給する工程と,前記処理ガス供給ノズルから処理ガスを供給する工程とを有することを特徴とする基板処理方法が提供される。 In order to solve the above-described problems, according to another aspect of the present invention, a substrate processing apparatus that performs a predetermined process on the substrate by forming a predetermined gas flow along a surface to be processed of the substrate. In the substrate processing method, the substrate processing apparatus is provided in the middle of the gas flow path, a processing vessel that is formed in a cylindrical shape and forms a gas flow path from one end side to the other end side in the inside thereof, A substrate holding unit for holding the substrate; a substrate holding unit heating unit for heating the substrate holding unit to heat the substrate; and the processing gas provided upstream of the substrate holding unit in the gas flow path. A processing gas supply unit that supplies the processing gas from the supply nozzle to the gas flow path, and a carrier gas that is provided upstream of the processing gas supply nozzle in the gas flow path and transfers the processing gas from the carrier gas supply nozzle The gas A carrier gas supply unit for supplying the gas to the channel; and a carrier gas heating unit for heating the carrier gas supplied to the gas channel on the upstream side of the processing gas supply nozzle of the gas channel. A step of heating the substrate holding unit by heating the substrate holding unit by a holding unit heating unit, a step of supplying a carrier gas from the carrier gas supply nozzle while heating by the carrier gas heating unit, and the processing gas supply nozzle And a process gas supply step for supplying a substrate.
 このような本発明によれば,基板保持部を加熱し,キャリアガスを加熱して供給するとともに,その流れに乗せて処理ガスを供給するので,基板保持部の上流側温度の低下を抑えることができ,これにより基板保持部の温度の均一性を向上させることができる。 According to the present invention, since the substrate holding part is heated and the carrier gas is heated and supplied, and the processing gas is supplied on the flow, the decrease in the temperature on the upstream side of the substrate holding part is suppressed. As a result, the uniformity of the temperature of the substrate holding part can be improved.
 この場合,上記基板処理装置は,前記基板保持部の上流側の温度を検出する上流側温度センサと,前記基板保持部の下流側の温度を検出する下流側温度センサとを設け,前記上流側温度センサと前記下流側温度センサにより検出された各温度に基づいて前記キャリアガス加熱部の出力を制御することにより前記基板保持部の上流側と下流側の温度を制御する工程を有するようにしてもよい。これにより,常に基板保持部の上流側と下流側の温度を均一にすることができ,また基板保持部の上流側と下流側の温度を所望の面内分布になるように調整することもできる。なお,本明細書中1sccmは(10-6/60)m/secとする。 In this case, the substrate processing apparatus includes an upstream temperature sensor that detects a temperature on the upstream side of the substrate holding unit and a downstream temperature sensor that detects a temperature on the downstream side of the substrate holding unit. A step of controlling the upstream and downstream temperatures of the substrate holding unit by controlling the output of the carrier gas heating unit based on each temperature detected by the temperature sensor and the downstream temperature sensor. Also good. As a result, the temperature on the upstream side and the downstream side of the substrate holding unit can always be made uniform, and the temperature on the upstream side and the downstream side of the substrate holding unit can be adjusted to have a desired in-plane distribution. . In this specification, 1 sccm is (10 −6 / 60) m 3 / sec.
 本発明によれば,加熱されたキャリアガスの流れに乗って処理ガスが基板保持部の上流側から下流側に向けて基板の被処理面に沿って流れるので,基板保持部の上流側の温度低下を抑えることができ,基板保持部の温度の均一性を向上させることができる。これにより,基板温度の面内均一性を向上させることができる。また,キャリアガスの加熱温度を制御することで,基板保持部の上流側と下流側の温度差を制御できるので,これにより基板温度の面内分布を制御できる。 According to the present invention, the processing gas flows along the processing target surface of the substrate from the upstream side to the downstream side of the substrate holding unit along the flow of the heated carrier gas. The decrease can be suppressed, and the uniformity of the temperature of the substrate holder can be improved. Thereby, the in-plane uniformity of the substrate temperature can be improved. Further, since the temperature difference between the upstream side and the downstream side of the substrate holding part can be controlled by controlling the heating temperature of the carrier gas, the in-plane distribution of the substrate temperature can thereby be controlled.
本発明の実施形態にかかる基板処理装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the substrate processing apparatus concerning embodiment of this invention. 同実施形態にかかる基板処理装置の内部の概略構成を示す斜視図である。It is a perspective view which shows schematic structure inside the substrate processing apparatus concerning the embodiment. 図1に示す処理容器の一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of processing container shown in FIG. 同実施形態にかかる基板処理装置を用いて行われる成膜処理の具体例を示すフローチャートである。It is a flowchart which shows the specific example of the film-forming process performed using the substrate processing apparatus concerning the embodiment. 同実施形態におけるキャリアガス加熱部の他の構成例を示す斜視図である。It is a perspective view which shows the other structural example of the carrier gas heating part in the embodiment. 同実施形態におけるキャリアガス加熱部の他の構成例を示す図であって,3本の棒状のヒータエレメントを備えた場合の処理容器の一部を示す縦断面図である。It is a figure which shows the other structural example of the carrier gas heating part in the same embodiment, Comprising: It is a longitudinal cross-sectional view which shows a part of processing container at the time of providing the three rod-shaped heater elements. 同実施形態におけるキャリアガス加熱部の他の構成例を示す図であって,長尺板状のヒータエレメントを備えた場合の処理容器の一部を示す縦断面図である。It is a figure which shows the other structural example of the carrier gas heating part in the same embodiment, Comprising: It is a longitudinal cross-sectional view which shows a part of processing container at the time of providing a long plate-shaped heater element. 同実施形態におけるキャリアガス加熱部の他の構成例を示す図であって,キャリアガス供給ノズル内にヒータエレメントを備えた場合の構成例を示す縦断面図である。It is a figure which shows the other structural example of the carrier gas heating part in the embodiment, Comprising: It is a longitudinal cross-sectional view which shows the structural example at the time of providing the heater element in the carrier gas supply nozzle.
符号の説明Explanation of symbols
100   基板処理装置
102   処理容器
104A  上流側フランジ
104B  下流側フランジ
106   ゲートバルブ
108   基板保持部
110   載置台
112   ホットウォール管
114   断熱部材
116A,116B   温度センサ
130   排気部
132   排気装置
134   排気管
136   コンダクタンス可変バルブ
138   圧力センサ
140   基板保持加熱部
141   コイル
142   高周波電源
150   制御部
160   溝部
162   断熱部材
164   カバー部材
170   溝部
180   溝部
182   断熱部材
184   カバー部材
200   処理ガス供給部
202   処理ガス供給源
204   処理ガス噴出口
206   処理ガス供給ノズル
208   処理ガス供給管
210   マスフローコントローラ(MFC)
212   バルブ
220   キャリアガス供給部
222   キャリアガス供給源
224   キャリアガス噴出口
226   キャリアガス供給ノズル
226a  流路
228   キャリアガス供給管
230   マスフローコントローラ(MFC)
232   バルブ
240   キャリアガス加熱部
242   ヒータエレメント
244   ヒータ電源
246   ヒータエレメント
250   キャリアガス加熱部
252   ヒータエレメント
260   溝部
262   断熱部材
264   カバー部材
 W    ウエハ
DESCRIPTION OF SYMBOLS 100 Substrate processing apparatus 102 Processing container 104A Upstream side flange 104B Downstream side flange 106 Gate valve 108 Substrate holding part 110 Mounting base 112 Hot wall pipe 114 Thermal insulation member 116A, 116B Temperature sensor 130 Exhaust part 132 Exhaust apparatus 134 Exhaust pipe 136 Conductance variable valve 138 Pressure sensor 140 Substrate holding heating part 141 Coil 142 High frequency power supply 150 Control part 160 Groove part 162 Heat insulation member 164 Cover member 170 Groove part 180 Groove part 182 Heat insulation member 184 Cover member 200 Process gas supply part 202 Process gas supply source 204 Process gas outlet 206 Process gas supply nozzle 208 Process gas supply pipe 210 Mass flow controller (MFC)
212 Valve 220 Carrier gas supply unit 222 Carrier gas supply source 224 Carrier gas outlet 226 Carrier gas supply nozzle 226a Channel 228 Carrier gas supply pipe 230 Mass flow controller (MFC)
232 Valve 240 Carrier gas heating unit 242 Heater element 244 Heater power source 246 Heater element 250 Carrier gas heating unit 252 Heater element 260 Groove 262 Heat insulation member 264 Cover member W Wafer
 以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説明する。なお,本明細書および図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
(基板処理装置の構成例)
 まず,本発明の実施形態にかかる基板処理装置について図面を参照しながら説明する。図1は本発明の実施形態にかかる基板処理装置100の概略構成を示す縦断面図であり,図2は基板処理装置100内の一部の概略構成を示す斜視図である。ここでは,半導体ウエハ(以下,単に「ウエハ」という)に対してエピタキシャル成長による成膜処理を行う基板処理装置100を例に挙げて説明する。
(Configuration example of substrate processing equipment)
First, a substrate processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a schematic configuration of a substrate processing apparatus 100 according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a partial schematic configuration in the substrate processing apparatus 100. Here, a substrate processing apparatus 100 that performs film formation processing by epitaxial growth on a semiconductor wafer (hereinafter simply referred to as “wafer”) will be described as an example.
 図1に示すように,基板処理装置100は,筒状に形成されその内部に一端側から他端側に向かうガス流路を形成する処理容器102と,ガス流路の途中に設けられ,ウエハWを保持する基板保持部108と,基板保持部108を加熱してウエハWを加熱する基板保持部加熱部140と,ガス流路の基板保持部108よりも上流側に設けられた処理ガス供給ノズル206から処理ガスをガス流路に供給する処理ガス供給部200と,ガス流路の処理ガス供給ノズル206よりも上流側に設けられたキャリアガス供給ノズル226から処理ガスを移送するキャリアガスをガス流路に供給するキャリアガス供給部220と,ガス流路の処理ガス供給ノズル206よりも上流側において,ガス流路に供給されるキャリアガスを加熱するキャリアガス加熱部240とを備える。 As shown in FIG. 1, a substrate processing apparatus 100 is formed in a cylindrical shape, a processing container 102 that forms a gas flow path from one end side to the other end side in the inside thereof, and is provided in the middle of the gas flow path. A substrate holding unit 108 for holding W, a substrate holding unit heating unit 140 for heating the substrate holding unit 108 to heat the wafer W, and a processing gas supply provided upstream of the substrate holding unit 108 in the gas flow path A processing gas supply unit 200 that supplies processing gas from the nozzle 206 to the gas flow path, and a carrier gas that transfers the processing gas from the carrier gas supply nozzle 226 provided upstream of the processing gas supply nozzle 206 in the gas flow path. A carrier gas that heats the carrier gas supplied to the gas channel upstream of the carrier gas supply unit 220 that supplies the gas channel and the processing gas supply nozzle 206 of the gas channel. And a heating unit 240.
 以下,基板処理装置100の各部について具体的に説明する。処理容器102は,耐熱性および耐食性の高い材料,例えばアルミニウム,ステンレス鋼,石英ガラスなどで構成される。処理容器102は,主として例えば両端が開口された角筒状に形成された容器本体103からなる。容器本体103の上流側の開口端部はウエハWの搬出入口が形成される上流側フランジ104Aに閉塞され,容器本体103の下流側の開口端部は排気口が形成される下流側フランジ104Bにより閉塞されている。 Hereinafter, each part of the substrate processing apparatus 100 will be described in detail. The processing container 102 is made of a material having high heat resistance and high corrosion resistance, such as aluminum, stainless steel, and quartz glass. The processing container 102 is mainly composed of a container body 103 formed in, for example, a rectangular tube shape having both ends opened. The upstream opening end of the container body 103 is closed by an upstream flange 104A where a wafer W loading / unloading port is formed, and the downstream opening end of the container body 103 is blocked by a downstream flange 104B where an exhaust port is formed. It is blocked.
 下流側フランジ104Bの排気口には処理容器102内を排気する排気部130が接続されている。排気部130は,例えば真空ポンプなどを含む排気装置132を備える。排気装置132は下流側フランジ104Bの排気口と排気管134を介して接続されている。排気管134にはコンダクタンス可変バルブ136が設けられている。また,処理容器102内には,処理容器102内の圧力を測定する圧力センサ138が設けられている。これら圧力センサ138,コンダクタンス可変バルブ136は制御部150に接続されている。制御部150は,圧力センサ138によって検出された圧力値に基づいてコンダクタンス可変バルブ136の開度を制御して処理容器102内からの排気量を増減させ,処理容器102内を所定の真空圧力に減圧できるようになっている。 The exhaust part 130 which exhausts the inside of the processing container 102 is connected to the exhaust port of the downstream flange 104B. The exhaust unit 130 includes an exhaust device 132 including, for example, a vacuum pump. The exhaust device 132 is connected to the exhaust port of the downstream flange 104 </ b> B through an exhaust pipe 134. The exhaust pipe 134 is provided with a conductance variable valve 136. Further, a pressure sensor 138 for measuring the pressure in the processing container 102 is provided in the processing container 102. The pressure sensor 138 and the conductance variable valve 136 are connected to the control unit 150. The control unit 150 controls the opening of the conductance variable valve 136 based on the pressure value detected by the pressure sensor 138 to increase / decrease the exhaust amount from the processing container 102, so that the processing container 102 has a predetermined vacuum pressure. The pressure can be reduced.
 このような処理容器102内において,上記キャリアガス供給ノズル226からのキャリアガスと,上記処理ガス供給ノズル206からの処理ガスは,基板保持部108を構成する後述のホットウォール管112内のウエハWに向けて供給される。こうして,処理容器102内の上流側フランジ104A側寄りから処理ガス及びキャリアガスが供給され,下流側フランジ104Bの排気口から外部に排気されることで,処理容器102内に一定のガスの流れが形成される。このように,処理容器102内には,一端側から他端側に向けてガス流路(ここでは,処理ガス及びキャリアガスの流路)が形成される。すなわち,ここでのガス流路は容器本体103の内壁及び基板保持部108を構成するホットウォール管112の内壁によって形成される。 In such a processing container 102, the carrier gas from the carrier gas supply nozzle 226 and the processing gas from the processing gas supply nozzle 206 are transferred to a wafer W in a hot wall tube 112, which will be described later, constituting the substrate holding unit 108. Supplied towards In this way, the processing gas and the carrier gas are supplied from the upstream flange 104A side in the processing container 102 and exhausted to the outside from the exhaust port of the downstream flange 104B, whereby a constant gas flow is generated in the processing container 102. It is formed. Thus, a gas flow path (here, a flow path for the processing gas and the carrier gas) is formed in the processing container 102 from one end side to the other end side. That is, the gas flow path here is formed by the inner wall of the container main body 103 and the inner wall of the hot wall pipe 112 constituting the substrate holding unit 108.
 なお,上流側フランジ104AのウエハWの搬出入口には,この搬出入口を開閉するゲートバルブ106が設けられている。例えば図示しない搬送アームなどによってゲートバルブ106を介して処理容器102内にウエハWを搬出入するようになっている。 Note that a gate valve 106 for opening and closing the carry-in / out port is provided at the carry-in / out port of the wafer W of the upstream flange 104A. For example, the wafer W is transferred into and out of the processing chamber 102 via the gate valve 106 by a transfer arm (not shown).
 上記基板保持部108は,大別してウエハWが載置される載置台110と,この載置台110の周囲に形成されるホットウォール管(被加熱構造体)112からなる。基板保持部108(載置台110及びホットウォール管112)は,後述する基板保持部加熱部140により高温に加熱されるようになっている。このように高温に加熱されるホットウォール管112の外壁と容器本体103の内壁との間には断熱部材114を介在させている。これにより,ホットウォール管112からの熱が容器本体103に逃げないようにしている, The substrate holding unit 108 is roughly composed of a mounting table 110 on which the wafer W is mounted, and a hot wall tube (heated structure) 112 formed around the mounting table 110. The substrate holding unit 108 (the mounting table 110 and the hot wall tube 112) is heated to a high temperature by a substrate holding unit heating unit 140 described later. Thus, the heat insulating member 114 is interposed between the outer wall of the hot wall pipe 112 heated to a high temperature and the inner wall of the container body 103. This prevents heat from the hot wall tube 112 from escaping to the container body 103.
 載置台110は,例えば略円板状に形成され,ホットウォール管112の内側底面に固定されている。ウエハWは,搬送アームなどの搬送機構(図示せず)によって処理容器102内に搬入され,載置台110上の基板載置面に載置される。なお,例えば基板載置面にはウエハWの外周よりもやや大きめの図示しない凹部が形成されており,搬送アームなどでウエハWを搬入する際には,基板載置面の凹部にウエハWが入るように載置台110に載置される。こうして,ウエハWの表面に沿ってキャリアガスや処理ガスの流れが生じてもウエハWがずれないようになっている。 The mounting table 110 is formed in a substantially disc shape, for example, and is fixed to the inner bottom surface of the hot wall pipe 112. The wafer W is loaded into the processing container 102 by a transfer mechanism (not shown) such as a transfer arm and placed on the substrate placement surface on the placement table 110. For example, a concave portion (not shown) that is slightly larger than the outer periphery of the wafer W is formed on the substrate mounting surface. When the wafer W is loaded by a transfer arm or the like, the wafer W is placed in the concave portion of the substrate mounting surface. It is mounted on the mounting table 110 so as to enter. Thus, the wafer W is prevented from shifting even if a carrier gas or a processing gas flows along the surface of the wafer W.
 ホットウォール管112は,処理容器102の内壁よりも若干小さく,例えば両端が開口した角筒状に形成され,処理容器102の長手方向に沿って配設されている。これにより,処理ガス及びキャリアガスは,ホットウォール管112内の一端から他端に向けて流れ,ウエハWの被処理面に沿って流れる。ホットウォール管112は,誘導加熱によって温度が上昇しやすい材料,例えば高密度のカーボン材料で構成される。 The hot wall pipe 112 is slightly smaller than the inner wall of the processing container 102, and is formed in, for example, a rectangular tube shape having both ends opened, and is disposed along the longitudinal direction of the processing container 102. Thereby, the processing gas and the carrier gas flow from one end to the other end in the hot wall pipe 112 and flow along the surface to be processed of the wafer W. The hot wall tube 112 is made of a material whose temperature is likely to rise by induction heating, for example, a high-density carbon material.
 断熱部材114は例えば,低密度のカーボン材料で構成される。断熱部材114を構成するカーボン材料は,ホットウォール管112を構成するカーボン材料に対して,その空隙率が著しく大きいことが好ましい。これによって,誘導加熱によって高温になったホットウォール管112の熱が処理容器102の容器本体103に伝わらないようにして,処理容器102の熱破損やアウトガスなどを防止することができる。 The heat insulating member 114 is made of, for example, a low density carbon material. It is preferable that the carbon material constituting the heat insulating member 114 has a remarkably large porosity relative to the carbon material constituting the hot wall tube 112. As a result, the heat of the hot wall pipe 112 that has become high temperature by induction heating is not transmitted to the container main body 103 of the processing container 102, and thermal damage or outgassing of the processing container 102 can be prevented.
 処理容器102には,基板保持部108を高温に加熱する基板保持部加熱部140が設けられている。基板保持部加熱部140は,例えば図1に示すように処理容器102の外側に巻回したコイル141を有し,このコイル141に高周波電力を印加することにより高周波電磁誘導を利用して基板保持部108を誘導加熱するように構成される。コイル141は,処理容器102の外側に基板保持部108が配設されている範囲に巻回される。コイル141には高周波電源142が接続されている。 The processing container 102 is provided with a substrate holder heating unit 140 that heats the substrate holder 108 to a high temperature. For example, as shown in FIG. 1, the substrate holding unit heating unit 140 includes a coil 141 wound around the outside of the processing container 102. By applying high frequency power to the coil 141, the substrate holding unit 140 is held using high frequency electromagnetic induction. The unit 108 is configured to be induction heated. The coil 141 is wound in a range where the substrate holding part 108 is disposed outside the processing container 102. A high frequency power source 142 is connected to the coil 141.
 なお,載置台110やホットウォール管112の形状,断熱部材114の配置は,ウエハWの温度の面内均一性を高めるように最適化し,それに合わせてコイル141の位置や巻数も調整することが好ましい。 The shape of the mounting table 110 and the hot wall tube 112 and the arrangement of the heat insulating member 114 can be optimized so as to improve the in-plane uniformity of the temperature of the wafer W, and the position and the number of turns of the coil 141 can be adjusted accordingly. preferable.
 このような基板保持部加熱部140によれば,高周波電源142からコイル141に高周波電力が印加されると,載置台110およびホットウォール管112が誘導加熱される。したがって,ウエハWには載置台110から熱が伝えられ,さらに体積の大きいホットウォール管112からも熱が伝えられるため,ウエハWをより効率的に加熱することができる。また,ホットウォール管112は,ウエハWを囲むように形成されているため,ウエハWの全体を輻射熱によって加熱することができる。これによって,ウエハWをより均一に加熱することができる。ウエハWは,例えば1600℃に加熱される。 According to such a substrate holding part heating unit 140, when high frequency power is applied from the high frequency power source 142 to the coil 141, the mounting table 110 and the hot wall tube 112 are induction heated. Therefore, heat is transmitted from the mounting table 110 to the wafer W and also from the hot wall pipe 112 having a larger volume, so that the wafer W can be heated more efficiently. Further, since the hot wall tube 112 is formed so as to surround the wafer W, the entire wafer W can be heated by radiant heat. As a result, the wafer W can be heated more uniformly. The wafer W is heated to 1600 ° C., for example.
 なお,基板保持部108には上流側と下流側の温度をそれぞれ検出する温度センサを設けるようにしてもよい。具体的には例えば図1に示すように,載置台110の上流側(例えばホットウォール管112の上流側の開口部に近い部位)に温度センサ116Aを内蔵し,載置台110の下流側(例えばホットウォール管112の下流側の開口部に近い部位)に温度センサ116Bを配置する。温度センサ116A,116Bは,例えば熱電対で構成される。各温度センサ116A,116Bは,制御部150に接続されている。これにより,制御部150は,例えば各温度センサ116A,116Bから検出された載置台110の上流側と下流側の温度に基づいて後述するキャリアガス加熱部の出力を制御する。なお,温度センサの数は上記に限られるものではなく,3つ以上設けるようにしてもよい。 Note that the substrate holding unit 108 may be provided with temperature sensors for detecting the upstream and downstream temperatures, respectively. Specifically, as shown in FIG. 1, for example, a temperature sensor 116A is built in the upstream side of the mounting table 110 (for example, a portion near the opening on the upstream side of the hot wall pipe 112), and the downstream side of the mounting table 110 (for example, The temperature sensor 116B is disposed in a portion near the opening on the downstream side of the hot wall pipe 112. The temperature sensors 116A and 116B are composed of, for example, thermocouples. Each temperature sensor 116 </ b> A, 116 </ b> B is connected to the control unit 150. Thereby, the control part 150 controls the output of the carrier gas heating part mentioned later based on the temperature of the upstream of the mounting base 110 detected from each temperature sensor 116A, 116B, for example. The number of temperature sensors is not limited to the above, and three or more temperature sensors may be provided.
 ここで,上記処理ガス供給部200とキャリアガス供給部220の構成例について図1,図2を参照しながら説明する。先ず,処理ガス供給部200について説明する。図1に示すように,処理ガス供給部200は処理ガス供給源202を備える。処理ガス供給源202には,処理ガス供給ノズル206が処理ガス供給管208を介して接続されている。処理ガス供給管208には,処理ガスの流量を制御するマスフローコントローラ210,処理ガス供給管208を開閉するバルブ212が設けられている。マスフローコントローラ210およびバルブ212は制御部150に接続されている。 Here, configuration examples of the processing gas supply unit 200 and the carrier gas supply unit 220 will be described with reference to FIGS. First, the processing gas supply unit 200 will be described. As shown in FIG. 1, the processing gas supply unit 200 includes a processing gas supply source 202. A processing gas supply nozzle 206 is connected to the processing gas supply source 202 via a processing gas supply pipe 208. The processing gas supply pipe 208 is provided with a mass flow controller 210 that controls the flow rate of the processing gas and a valve 212 that opens and closes the processing gas supply pipe 208. The mass flow controller 210 and the valve 212 are connected to the control unit 150.
 処理ガス供給ノズル206は,キャリアガス供給ノズル226よりも下流側に離間して設けられている。処理ガス供給ノズル206は,処理容器102内のガス流路の幅方向に配置される。具体的には処理ガス供給ノズル206は,例えばホットウォール管112の上流側の開口幅に合わせて長尺状に形成され,処理容器102の内壁底部に起立して設けられている。 The processing gas supply nozzle 206 is provided to be separated from the carrier gas supply nozzle 226 on the downstream side. The processing gas supply nozzle 206 is disposed in the width direction of the gas flow path in the processing container 102. Specifically, the processing gas supply nozzle 206 is formed in an elongated shape according to the opening width on the upstream side of the hot wall pipe 112, for example, and is provided upright on the bottom of the inner wall of the processing container 102.
 処理ガス供給ノズル206の先端はホットウォール管112に向けて屈曲しており,複数の処理ガス噴出口204が形成されている。具体的にはこれら処理ガス噴出口204は,処理容器102内のガス流路に垂直に配列され基板保持部108に向かって開口している。これら処理ガス噴出口204は処理ガス供給ノズル206内の流路を介して処理ガス供給管208に連通している。 The tip of the processing gas supply nozzle 206 is bent toward the hot wall pipe 112, and a plurality of processing gas ejection ports 204 are formed. Specifically, the processing gas ejection ports 204 are arranged perpendicular to the gas flow path in the processing container 102 and open toward the substrate holding unit 108. These processing gas ejection ports 204 communicate with a processing gas supply pipe 208 through a flow path in the processing gas supply nozzle 206.
 処理ガス供給源202からは,処理ガスとして例えばSiHガス,Cガスなどの成膜ガスが供給される。処理ガスとしては,成膜ガスの他に,Nなどのドーパントガス,成膜ガスの希釈ガスなどを必要に応じて成膜ガスとともに供給するようにしてもよい。例えばSiCからなるウエハWの被処理面にSiC膜の薄膜をエピタキシャル成長させる成膜処理を行う場合には,例えば成膜ガスとしてSiHガス,Cガスを供給する。この場合,処理ガスにトリメチルアルミニウム(TMA)ガスやNガスを添加して,ウエハW上に成長するSiC膜の電気的特性を調整するようにしてもよい。 From the processing gas supply source 202, for example, a film forming gas such as SiH 4 gas or C 3 H 8 gas is supplied as a processing gas. As the processing gas, in addition to the film forming gas, a dopant gas such as N 2 , a dilution gas of the film forming gas, and the like may be supplied together with the film forming gas as necessary. For example, when performing a film forming process for epitaxially growing a thin film of a SiC film on a surface to be processed of a wafer W made of SiC, for example, SiH 4 gas or C 3 H 8 gas is supplied as a film forming gas. In this case, trimethylaluminum (TMA) gas or N 2 gas may be added to the processing gas to adjust the electrical characteristics of the SiC film grown on the wafer W.
 なお,処理ガス噴出口204に連通する処理ガス供給ノズル206内の流路は一系統であってもよく,複数系統であってもよい。例えば処理ガス供給ノズル206から複数種類の処理ガス例えばSiHガスとCガスを供給する場合には,各処理ガス噴出口204はSiHガスを噴出するものとCガスを噴出するものとを交互に配置し,これらに連通する処理ガス供給ノズル206の流路を別系統に構成してもよい。この場合,処理ガス供給源202も,SiHガスを供給するものとCガスを供給するものとの2系統に分けて,各処理ガスを供給する処理ガス噴出口204に連通する流路にそれぞれ供給するようにしてもよい。これにより,各処理ガス噴出口204から噴出されたSiHガスとCガスをバランスよく混合して載置台110に載置されているウエハWの被処理面に供給することができる。 The flow path in the processing gas supply nozzle 206 communicating with the processing gas ejection port 204 may be one system or a plurality of systems. For example, when a plurality of types of processing gases such as SiH 4 gas and C 3 H 8 gas are supplied from the processing gas supply nozzle 206, each processing gas jet port 204 ejects SiH 4 gas and C 3 H 8 gas. It is also possible to arrange the jetting nozzles alternately and configure the flow path of the processing gas supply nozzle 206 communicating with them to be a separate system. In this case, the processing gas supply source 202 is also divided into two systems, one supplying SiH 4 gas and the other supplying C 3 H 8 gas, and is connected to the processing gas outlet 204 for supplying each processing gas. Each may be supplied to the road. Thereby, SiH 4 gas and C 3 H 8 gas ejected from each processing gas ejection port 204 can be mixed and supplied to the surface to be processed of the wafer W mounted on the mounting table 110.
 次に,キャリアガス供給部220について説明する。図1に示すように,キャリガスガス供給部220はキャリアガス供給源222を備える。キャリアガス供給源222には,キャリアガス供給ノズル226がキャリガス供給管228を介して接続されている。キャリアガス供給管228には,キャリアガスの流量を制御するマスフローコントローラ230,キャリアガス供給管228を開閉するバルブ232が設けられている。マスフローコントローラ230およびバルブ232は制御部150に接続されている。 Next, the carrier gas supply unit 220 will be described. As shown in FIG. 1, the carrier gas supply unit 220 includes a carrier gas supply source 222. A carrier gas supply nozzle 226 is connected to the carrier gas supply source 222 via a carrier gas supply pipe 228. The carrier gas supply pipe 228 is provided with a mass flow controller 230 that controls the flow rate of the carrier gas and a valve 232 that opens and closes the carrier gas supply pipe 228. The mass flow controller 230 and the valve 232 are connected to the control unit 150.
 キャリアガス供給ノズル226は,処理ガス供給ノズル206とほぼ同様に構成され,処理ガス供給ノズル206よりも上流側に並設される。キャリアガス供給ノズル226は,少なくとも処理ガス供給ノズル206の幅と同様又はそれ以上の長尺状に形成され,処理容器102の内壁底部に起立して設けられている。 The carrier gas supply nozzle 226 is configured in substantially the same manner as the processing gas supply nozzle 206 and is arranged in parallel upstream of the processing gas supply nozzle 206. The carrier gas supply nozzle 226 is formed in an elongated shape at least equal to or larger than the width of the processing gas supply nozzle 206 and is provided upright on the bottom of the inner wall of the processing container 102.
 キャリアガス供給ノズル226の先端はホットウォール管112に向けて屈曲しており,複数のキャリアガス噴出口224が形成されている。具体的にはこれらキャリアガス噴出口224は,処理容器102内のガス流路に垂直に配列され基板保持部108に向かって開口している。これらキャリアガス噴出口224はキャリアガス供給ノズル226内の流路を介してキャリアガス供給管228に連通している。キャリアガス供給源222からは,例えばHガスなどが供給される。なお,キャリアガスは処理ガスよりも大流量で,例えば処理ガスの流量の1000倍以上の流量で供給される。 The tip of the carrier gas supply nozzle 226 is bent toward the hot wall pipe 112, and a plurality of carrier gas ejection ports 224 are formed. Specifically, the carrier gas ejection ports 224 are arranged perpendicular to the gas flow path in the processing container 102 and open toward the substrate holding unit 108. These carrier gas outlets 224 communicate with the carrier gas supply pipe 228 through a flow path in the carrier gas supply nozzle 226. For example, H 2 gas is supplied from the carrier gas supply source 222. The carrier gas is supplied at a larger flow rate than the processing gas, for example, at a flow rate of 1000 times or more the processing gas flow rate.
 処理容器102内における処理ガス供給ノズル206,キャリアガス供給ノズル226,および基板保持部108の位置関係については,処理ガス供給ノズル206は,基板保持部108から見て処理容器102の一端側すなわち上流側フランジ104A側に設けられており,キャリアガス供給ノズル226は,処理ガス供給ノズル206よりも更に上流側フランジ104A寄りに設けられている。したがって,処理容器102内では,上流側フランジ104Aからガス流路の方向に,キャリアガス供給ノズル226,処理ガス供給ノズル206,および基板保持部108が順に並ぶことになる。これによって,各処理ガス噴出口204から噴出された処理ガスは,各キャリアガス噴出口224から噴出されたキャリアガスの流れに乗って,ホットウォール管112の上流側からその内部に導かれる。また,各処理ガス噴出口204と各キャリアガス噴出口224は,処理容器102内の幅方向にガス流路に垂直に配列するので,ガス流路の幅方向に一様なガスの流れ(層流)を形成できる。 Regarding the positional relationship among the processing gas supply nozzle 206, the carrier gas supply nozzle 226, and the substrate holding part 108 in the processing container 102, the processing gas supply nozzle 206 is located at one end side of the processing container 102, that is, upstream of the substrate holding part 108. The carrier gas supply nozzle 226 is provided closer to the upstream flange 104A than the processing gas supply nozzle 206 is provided on the side flange 104A side. Therefore, in the processing container 102, the carrier gas supply nozzle 226, the processing gas supply nozzle 206, and the substrate holding unit 108 are arranged in this order from the upstream flange 104A to the gas flow path. As a result, the processing gas ejected from each processing gas ejection port 204 rides on the flow of the carrier gas ejected from each carrier gas ejection port 224 and is guided from the upstream side of the hot wall pipe 112 to the inside thereof. In addition, since each processing gas outlet 204 and each carrier gas outlet 224 are arranged perpendicularly to the gas flow path in the width direction in the processing container 102, a uniform gas flow (layer) in the width direction of the gas flow path. Flow).
 上記キャリアガス加熱部240は,例えば図1に示すように,キャリアガス供給ノズル226と処理ガス供給ノズル206の間に設けられる。これにより,キャリアガス加熱部240によって処理ガスを加熱することなくキャリアガスのみを加熱できる。これにより,処理ガスが基板保持部108に達する前に熱分解してパーティクルが発生することを防止できる。 The carrier gas heating unit 240 is provided between the carrier gas supply nozzle 226 and the processing gas supply nozzle 206, for example, as shown in FIG. Thus, only the carrier gas can be heated without heating the processing gas by the carrier gas heating unit 240. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding unit 108.
 キャリアガス加熱部240は,長尺状のヒータエレメントにより構成される。ヒータエレメント242は,例えばW,Mo,Taなどの高融点金属材料で構成される。ヒータエレメント242はヒータ電源244に接続され,ヒータ電源244から供給される電力の大きさに応じてヒータエレメント242の出力(温度)を変えることができるようになっている。具体的には例えばヒータ電源244は制御部150に接続されており,制御部150は,予め設定されたヒータエレメント242の設定温度に基づいてヒータエレメント242に印加する電力量を制御して,ヒータエレメント242の温度を調整できる。 The carrier gas heating unit 240 is composed of a long heater element. The heater element 242 is made of a refractory metal material such as W, Mo, or Ta. The heater element 242 is connected to a heater power supply 244 so that the output (temperature) of the heater element 242 can be changed according to the amount of power supplied from the heater power supply 244. Specifically, for example, the heater power supply 244 is connected to the control unit 150, and the control unit 150 controls the amount of electric power applied to the heater element 242 based on a preset temperature of the heater element 242, so that the heater The temperature of the element 242 can be adjusted.
 ヒータエレメント242は,処理ガス供給ノズル206とキャリアガス供給ノズル226との間に,複数のキャリアガス噴出口224の配列方向に沿って延びるように配設されている。ヒータエレメント242は,処理容器102の内壁の底部に形成された溝部160に収容されている。これにより,処理容器102内を流れるガスの流れを乱すことなく,ヒータエレメント242を処理容器102内に設けることができる。なお,ヒータエレメント242の具体的構成例については後述する。 The heater element 242 is disposed between the processing gas supply nozzle 206 and the carrier gas supply nozzle 226 so as to extend along the arrangement direction of the plurality of carrier gas ejection ports 224. The heater element 242 is accommodated in a groove 160 formed on the bottom of the inner wall of the processing container 102. Thereby, the heater element 242 can be provided in the processing container 102 without disturbing the flow of gas flowing in the processing container 102. A specific configuration example of the heater element 242 will be described later.
 このように構成された基板処理装置100の各部は,上述した制御部150によって制御される。例えば制御部150は,上述した高周波電源142の出力制御,圧力センサ138によって検出された圧力値に基づくマスフローコントローラ210,230,バルブ212,232,コンダクタンス可変バルブ136の制御を行う。その他,温度センサ116A,116Bによって検出された温度に基づくヒータ電源244の出力制御,ゲートバルブ106の開閉制御などウエハWの処理に必要な制御を行うようになっている。 Each unit of the substrate processing apparatus 100 configured as described above is controlled by the control unit 150 described above. For example, the control unit 150 controls the output of the high-frequency power source 142 and the mass flow controllers 210 and 230, the valves 212 and 232, and the conductance variable valve 136 based on the pressure value detected by the pressure sensor 138. In addition, control necessary for processing of the wafer W, such as output control of the heater power supply 244 based on the temperatures detected by the temperature sensors 116A and 116B, and opening / closing control of the gate valve 106, is performed.
 このような基板処理装置100においては,ウエハW上にエピタキシャル成長によりSiC膜を形成する処理を行う場合には,コイル141による誘導加熱によって基板保持部108を加熱してウエハWを加熱し,キャリアガス供給ノズル226からキャリアガスとして例えばHガスを供給するとともに,処理ガス供給ノズル206から処理ガスとして例えばSiHガス,Cガス,Nを供給し,処理容器102内を排気することによって処理容器102内を所定の真空圧に減圧する。すると,基板保持部108に向けてウエハWの被処理面に沿ったキャリアガスと処理ガスの流れが形成される。すると,ウエハWの被処理面で処理ガスが加熱されて化学反応を起こし,ウエハW上に例えばSiとCを主成分とするSiC膜(単結晶膜)がエピタキシャル成長する。 In such a substrate processing apparatus 100, when a process of forming an SiC film by epitaxial growth on the wafer W is performed, the substrate holding unit 108 is heated by induction heating by the coil 141 to heat the wafer W, and the carrier gas For example, H 2 gas is supplied as a carrier gas from the supply nozzle 226 and, for example, SiH 4 gas, C 3 H 8 gas, and N 2 are supplied as processing gases from the processing gas supply nozzle 206 to exhaust the inside of the processing vessel 102. Thus, the inside of the processing vessel 102 is reduced to a predetermined vacuum pressure. Then, a carrier gas and a process gas flow are formed along the surface to be processed of the wafer W toward the substrate holding unit 108. Then, the processing gas is heated on the surface to be processed of the wafer W to cause a chemical reaction, and, for example, a SiC film (single crystal film) mainly composed of Si and C is epitaxially grown on the wafer W.
 ところで,この場合,もしキャリアガスを加熱しないで基板保持部108に向けて供給すれば,高温に加熱された基板保持部108にはそれよりも遙かに低温のキャリアガスが吹き付けられるので,基板保持部108の上流側の温度は下流側の温度に比して低下してしまう。このため,基板保持部108に保持されたウエハWの被処理面においても,その上流側の温度が下流側の温度に比して低下してしまい,基板温度の面内均一性が低下してしまう。これでは,例えばウエハWの低温領域に不所望の多結晶膜が成長してしまったり,結晶中に欠陥が生じたりして,ウエハWの被処理面全域にわたって良質なSiC単結晶膜を形成することができなくなる。 By the way, in this case, if the carrier gas is supplied toward the substrate holding unit 108 without being heated, a carrier gas having a temperature much lower than that is blown onto the substrate holding unit 108 heated to a high temperature. The temperature on the upstream side of the holding unit 108 is lower than the temperature on the downstream side. For this reason, also on the surface to be processed of the wafer W held by the substrate holding unit 108, the temperature on the upstream side is lower than the temperature on the downstream side, and the in-plane uniformity of the substrate temperature is reduced. End up. In this case, for example, an undesired polycrystalline film grows in a low-temperature region of the wafer W or a defect is generated in the crystal, so that a high-quality SiC single crystal film is formed over the entire surface to be processed of the wafer W. I can't.
 そこで,本実施形態では,キャリアガス加熱部240によりキャリアガスを加熱して基板保持部108に向けて供給することにより,基板保持部108の上流側温度の低下を抑制することができる。これにより,基板温度の面内均一性を向上させることができる。 Therefore, in the present embodiment, the carrier gas is heated by the carrier gas heating unit 240 and supplied toward the substrate holding unit 108, thereby suppressing a decrease in the upstream temperature of the substrate holding unit 108. Thereby, the in-plane uniformity of the substrate temperature can be improved.
(キャリアガス加熱部の構成例)
 ここで,上述したようなキャリアガス加熱部240の具体的構成例について図面を参照しながら詳細に説明する。ここでは,キャリアガス加熱部240のヒータエレメント242を例えば高融点金属からなる棒状部材で構成した場合を例に挙げる。図3は,キャリアガス加熱部の部分縦断面図である。図3に示すように,ヒータエレメント242は,処理容器102の内壁の底部に形成された溝部160内に収容されている。また,ヒータエレメント242は,キャリアガス供給ノズル226と処理ガス供給ノズル206との間に配置され,複数のキャリアガス噴出口224の配列方向に沿って延びるように配置される。これにより,ヒータエレメント242は,複数のキャリアガス噴出口224から噴出されるキャリアガスを直接加熱することができる。
(Configuration example of carrier gas heating unit)
Here, a specific configuration example of the carrier gas heating unit 240 as described above will be described in detail with reference to the drawings. Here, the case where the heater element 242 of the carrier gas heating unit 240 is configured by a rod-shaped member made of, for example, a refractory metal will be described as an example. FIG. 3 is a partial longitudinal sectional view of the carrier gas heating unit. As shown in FIG. 3, the heater element 242 is accommodated in a groove 160 formed at the bottom of the inner wall of the processing container 102. The heater element 242 is disposed between the carrier gas supply nozzle 226 and the processing gas supply nozzle 206 and is disposed so as to extend along the arrangement direction of the plurality of carrier gas ejection ports 224. Thereby, the heater element 242 can directly heat the carrier gas ejected from the plurality of carrier gas ejection ports 224.
 溝部160の内側表面は断熱部材162で覆われており,さらにこの断熱部材162の表面はSiCで構成されたカバー部材164で覆われている。断熱部材162は,例えば低密度のカーボン材料で構成される。このような溝部160の内部にヒータエレメント242を収容することによって,ヒータエレメント242は,上記のように処理ガス供給ノズル206とキャリアガス供給ノズル226との間に,複数のキャリアガス噴出口224の配列方向に沿って延びるように配設されることになる。 The inner surface of the groove 160 is covered with a heat insulating member 162, and the surface of the heat insulating member 162 is covered with a cover member 164 made of SiC. The heat insulating member 162 is made of, for example, a low-density carbon material. By accommodating the heater element 242 in the groove 160, the heater element 242 has a plurality of carrier gas ejection ports 224 between the processing gas supply nozzle 206 and the carrier gas supply nozzle 226 as described above. It will be arranged to extend along the arrangement direction.
 ヒータエレメント242は,ヒータ電源244から印加される電力に応じて例えば1000~2000℃に発熱するようになっている。このとき,各キャリアガス噴出口224からキャリアガス(図3中にて白抜き矢印で示す)が噴出されると,その噴出直後のキャリアガスに対して,高温に発熱しているヒータエレメント242から対流などによって熱(図3中にて破線矢印で示す)が伝達して,キャリアガスが加熱される。 The heater element 242 generates heat at, for example, 1000 to 2000 ° C. according to the electric power applied from the heater power supply 244. At this time, when a carrier gas (indicated by a white arrow in FIG. 3) is ejected from each carrier gas ejection port 224, the heater element 242 that generates heat at a high temperature with respect to the carrier gas immediately after the ejection. Heat (indicated by broken arrows in FIG. 3) is transferred by convection or the like, and the carrier gas is heated.
 キャリアガスの加熱温度については,ヒータ電源244からヒータエレメント242に印加する電力を制御することによって調整できる。ヒータエレメント242に印加する電力は,例えば制御部150により予め設定されたヒータエレメント242の設定温度に応じて制御される。キャリアガスを効率よく加熱するためにはヒータエレメント242の設定温度が高い方が好ましいが,温度が高すぎると,下流側で混合される処理ガスがホットウォール管112に到達する前に熱分解してパーティクルが発生する虞もある。従って,基板保持部108の温度などに応じて最適な設定温度を決定することが好ましい。例えばヒータエレメント242の設定温度を400℃以上にしたり,1000℃以上にしてキャリアガスを加熱する。なお,ここではヒータエレメント242の設定温度を例えば1000~2000℃に設定する場合を例に挙げている。 The heating temperature of the carrier gas can be adjusted by controlling the power applied to the heater element 242 from the heater power supply 244. The electric power applied to the heater element 242 is controlled according to the set temperature of the heater element 242 set in advance by the control unit 150, for example. In order to efficiently heat the carrier gas, it is preferable that the set temperature of the heater element 242 is high. However, if the temperature is too high, the processing gas mixed on the downstream side is thermally decomposed before reaching the hot wall pipe 112. There is also a possibility that particles are generated. Therefore, it is preferable to determine the optimum set temperature according to the temperature of the substrate holding unit 108 or the like. For example, the set temperature of the heater element 242 is set to 400 ° C. or higher, or the carrier gas is heated to 1000 ° C. or higher. Here, a case where the set temperature of the heater element 242 is set to 1000 to 2000 ° C. is taken as an example.
 また,溝部160に断熱部材162およびカバー部材164を介してヒータエレメント242を収容することによって,そのヒータエレメント242に電力が印加されて高温になっても,溝部160およびその周辺の部材の温度上昇を抑制して,コンタミネーションの発生を防止することができる。 Further, by accommodating the heater element 242 in the groove portion 160 via the heat insulating member 162 and the cover member 164, even if electric power is applied to the heater element 242 and the temperature rises, the temperature of the groove portion 160 and the surrounding members increases. It is possible to prevent contamination from occurring.
 また,溝部160にヒータエレメント242がすべて埋設するように収容することによって,処理容器102内において,キャリアガスの流れがヒータエレメント242によって乱されることを防止できる。したがって,安定的なキャリアガスの流れに乗せて処理ガスをホットウォール管112内に供給することができる。 Further, by accommodating the heater element 242 so as to be embedded in the groove portion 160, the flow of the carrier gas can be prevented from being disturbed by the heater element 242 in the processing container 102. Therefore, the processing gas can be supplied into the hot wall pipe 112 in a stable carrier gas flow.
 また,本実施形態においては,キャリアガス供給ノズル226と処理ガス供給ノズル206は,ガス流路の方向に順に並んで配置されており,ヒータエレメント242はこれらの間に配設されている。このように各部材を配置することによって,各キャリアガス噴出口224から噴出されたキャリアガスにヒータエレメント242が発した熱を的確に伝えることができる一方で,各処理ガス噴出口204から噴出された処理ガスにはその熱が直接伝わらないようにすることができる。したがって,ヒータエレメント242が発した熱によって処理ガスが熱分解してパーティクルが発生することを防止でき,良質な処理ガスをホットウォール管112内に供給することができる。 In the present embodiment, the carrier gas supply nozzle 226 and the processing gas supply nozzle 206 are arranged side by side in the direction of the gas flow path, and the heater element 242 is arranged between them. By disposing each member in this manner, the heat generated by the heater element 242 can be accurately transmitted to the carrier gas ejected from each carrier gas ejection port 224, while being ejected from each processing gas ejection port 204. The process gas can be prevented from directly transferring heat. Therefore, it is possible to prevent the processing gas from being thermally decomposed by the heat generated by the heater element 242 and to generate particles, and to supply a high-quality processing gas into the hot wall pipe 112.
(基板処理の具体例)
 以上のように構成された本実施形態にかかる基板処理装置100を用いた基板処理の一例について図面を参照しながら詳細に説明する。ここでは基板処理装置100において,SiCからなるウエハW上にそれと同じ結晶構造を有するSiC膜をエピタキシャル成長させる成膜処理を行う場合に即して本実施形態の説明を行う。図4は,本実施形態にかかる成膜処理の具体例を示すフローチャートである。制御部150はフローチャートに基づいて基板処理装置100の各部を制御することによって成膜処理を行う。成膜処理を行うウエハWは,図示しない搬送アームによって処理容器102内の載置台110に載置される。ゲートバルブ106が閉じた状態で排気部130により処理容器102内は所定の真空圧に減圧され,以下の成膜処理が行われる。
(Specific examples of substrate processing)
An example of substrate processing using the substrate processing apparatus 100 according to the present embodiment configured as described above will be described in detail with reference to the drawings. Here, the present embodiment will be described in conjunction with the case where the substrate processing apparatus 100 performs a film forming process for epitaxially growing a SiC film having the same crystal structure on a SiC wafer W. FIG. 4 is a flowchart showing a specific example of the film forming process according to the present embodiment. The controller 150 performs the film forming process by controlling each part of the substrate processing apparatus 100 based on the flowchart. The wafer W to be subjected to the film forming process is placed on the mounting table 110 in the processing container 102 by a transfer arm (not shown). With the gate valve 106 closed, the inside of the processing chamber 102 is reduced to a predetermined vacuum pressure by the exhaust unit 130, and the following film forming process is performed.
 成膜処理では,まずステップS110にて,高周波電源142を制御してコイル141に高周波電力を印加し,載置台110およびホットウォール管112を誘導加熱する。その際,例えば温度センサ116A,116Bを用いて載置台110の温度を測定して,載置台110の温度が所定の温度例えば1600℃になるように,コイル141に印加する高周波電力を調整する。 In the film forming process, first, in step S110, the high frequency power supply 142 is controlled to apply high frequency power to the coil 141, and the mounting table 110 and the hot wall tube 112 are induction heated. At that time, for example, the temperature of the mounting table 110 is measured using the temperature sensors 116A and 116B, and the high frequency power applied to the coil 141 is adjusted so that the temperature of the mounting table 110 becomes a predetermined temperature, for example, 1600 ° C.
 載置台110が所定の温度に調整されると,ウエハWは載置台110とほぼ同じ温度になる。このとき,ホットウォール管112も誘導加熱されているため,これに囲まれているウエハW全体が均一に加熱される。 When the mounting table 110 is adjusted to a predetermined temperature, the wafer W becomes substantially the same temperature as the mounting table 110. At this time, since the hot wall tube 112 is also induction heated, the entire wafer W surrounded by the hot wall tube 112 is heated uniformly.
 続いてステップS120にて,キャリアガス供給部220を制御して処理容器102内にキャリアガスを供給する。このとき,マスフローコントローラ230を制御することによって,キャリアガスの流量を例えば50~200slm(standard liter/min)に調整する。 Subsequently, in step S120, the carrier gas supply unit 220 is controlled to supply the carrier gas into the processing vessel 102. At this time, by controlling the mass flow controller 230, the flow rate of the carrier gas is adjusted to, for example, 50 to 200 slm (standard liter / min).
 キャリアガス供給ノズル226の複数のキャリアガス噴出口224から噴出されたキャリアガスは,ホットウォール管112の上流側からその内部に導入される。このとき,処理容器102内は真空排気されているため,キャリアガスは載置台110に載置されたウエハWの被処理面に流れ,処理容器102の外部へ排気される。こうして,ウエハWの被処理面に沿ってキャリアガスの流れが形成される。 The carrier gas ejected from the plurality of carrier gas ejection ports 224 of the carrier gas supply nozzle 226 is introduced into the hot wall pipe 112 from the upstream side. At this time, since the inside of the processing chamber 102 is evacuated, the carrier gas flows to the processing surface of the wafer W placed on the mounting table 110 and is exhausted to the outside of the processing chamber 102. Thus, a carrier gas flow is formed along the surface to be processed of the wafer W.
 この場合,処理容器102内に処理ガスに比して大流量のキャリアガスが基板保持部108に向けて供給されると,上記ステップS110にて所定の温度に加熱されたウエハWの温度の面内均一性が低下する虞がある。例えば載置台110全体の温度を1600℃にした場合,ホットウォール管112内に大流量のキャリアガスを導入すると,基板保持部108の下流側ではあまり温度が低下せずに1600℃を維持するのに対して,上流側では例えば1400℃にまで大きく温度が低下する可能性がある。 In this case, when a carrier gas having a larger flow rate than the processing gas is supplied into the processing container 102 toward the substrate holding unit 108, the surface of the temperature of the wafer W heated to a predetermined temperature in step S110. There is a risk that the internal uniformity will decrease. For example, when the temperature of the entire mounting table 110 is 1600 ° C., if a large flow rate of carrier gas is introduced into the hot wall tube 112, the temperature is not lowered so much on the downstream side of the substrate holding unit 108 and the temperature is maintained at 1600 ° C. On the other hand, on the upstream side, there is a possibility that the temperature is greatly reduced to 1400 ° C., for example.
 このため,ステップS120では,キャリアガスを加熱しつつ供給する。具体的には,例えばヒータ電源244を制御してヒータエレメント242に電力を印加してヒータエレメント242を例えば1000~2000℃に発熱させる。これによって,複数のキャリアガス噴出口224から噴出されたキャリアガスは,その直後にヒータエレメント242からの熱を受けて加熱される。 For this reason, in step S120, the carrier gas is supplied while being heated. Specifically, for example, the heater power supply 244 is controlled to apply power to the heater element 242 to cause the heater element 242 to generate heat at, for example, 1000 to 2000 ° C. Thus, the carrier gas ejected from the plurality of carrier gas ejection ports 224 is heated by receiving heat from the heater element 242 immediately after that.
 なお,このとき温度センサ116A,116Bから得た測定結果に基づいて,ウエハWの被処理面全域の温度が均一であるか否かを判断するようにしてもよい。本実施形態においては,温度センサ116Aと温度センサ116Bの測定値が等しくなるように,またはその差が最小になるようにヒータエレメント242に印加する電力を調節する。 At this time, based on the measurement results obtained from the temperature sensors 116A and 116B, it may be determined whether or not the temperature of the entire surface to be processed of the wafer W is uniform. In the present embodiment, the electric power applied to the heater element 242 is adjusted so that the measured values of the temperature sensor 116A and the temperature sensor 116B are equal or the difference between them is minimized.
 次いで,ステップS130にて,処理ガス供給部200を制御して処理容器102内に処理ガスを供給する。このときマスフローコントローラ210を制御することによって,処理ガスの流量を例えば50~500sccmに調整する。 Next, in step S130, the processing gas supply unit 200 is controlled to supply the processing gas into the processing container 102. At this time, by controlling the mass flow controller 210, the flow rate of the processing gas is adjusted to 50 to 500 sccm, for example.
 処理ガス供給ノズル206の複数の処理ガス噴出口204から噴出された処理ガスは,キャリアガス供給ノズル226の複数のキャリアガス噴出口224から噴出されたキャリアガスの流れに乗って,ホットウォール管112の上流側からその内部に導入される。このとき,処理容器102内は真空排気されているため,キャリアガスと処理ガスは載置台110に載置されたウエハWの被処理面に流れ,処理容器102の外部へ排気される。こうして,ウエハWの被処理面に沿ってキャリアガスと処理ガスの流れが形成される。 The processing gas ejected from the plurality of processing gas ejection ports 204 of the processing gas supply nozzle 206 rides on the flow of the carrier gas ejected from the plurality of carrier gas ejection ports 224 of the carrier gas supply nozzle 226 and flows into the hot wall pipe 112. It is introduced into the inside from the upstream side. At this time, since the inside of the processing chamber 102 is evacuated, the carrier gas and the processing gas flow to the processing surface of the wafer W mounted on the mounting table 110 and are exhausted to the outside of the processing chamber 102. Thus, the flow of the carrier gas and the processing gas is formed along the processing surface of the wafer W.
 これにより,ウエハWの被処理面において,処理ガス例えばSiHガスとCガスが加熱され熱分解し,例えばSiC単結晶膜がエピタキシャル成長する。このとき,ウエハWの被処理面全域の温度が均一になっているため,ウエハWの被処理面全域にわたり良好なSiC単結晶膜を形成することができる。 Thereby, on the surface to be processed of the wafer W, the processing gas such as SiH 4 gas and C 3 H 8 gas is heated and thermally decomposed, for example, an SiC single crystal film is epitaxially grown. At this time, since the temperature of the entire processing surface of the wafer W is uniform, a good SiC single crystal film can be formed over the entire processing surface of the wafer W.
 なお,上記ステップS130においても継続して温度センサ116A,116Bを用いて載置台110の温度監視を行うようにしてもよい。このステップS130にてホットウォール管112内に供給される処理ガスの流量や温度などによっては,ウエハWの温度の面内均一性が低下し得るからである。ステップS130にて,温度センサ116Aと温度センサ116Bの測定値の差が大きくなったときには,その差がなくなるように,またはその差が最小になるようにヒータエレメント242に印加する電力を再調節する。これによって,ウエハWの温度の面内均一性を高く維持したまま,ウエハWに対する所定の処理(ここでは成膜処理)を施すことができる。 In step S130, the temperature of the mounting table 110 may be monitored using the temperature sensors 116A and 116B. This is because the in-plane uniformity of the temperature of the wafer W may be reduced depending on the flow rate and temperature of the processing gas supplied into the hot wall pipe 112 in step S130. In step S130, when the difference between the measured values of the temperature sensor 116A and the temperature sensor 116B becomes large, the power applied to the heater element 242 is readjusted so that the difference disappears or the difference becomes minimum. . Thus, a predetermined process (in this case, a film forming process) can be performed on the wafer W while maintaining the in-plane uniformity of the temperature of the wafer W high.
 このようなウエハに対する処理は,ウエハW上のSiC単結晶膜が所定の膜厚に達したところ,例えば所定時間の経過などで終了する。このようなウエハWに対する処理が終了すると,ステップS140にてコイル141に対する高周波電力の印加およびヒータエレメント242に対する電力の印加を停止する。また,処理容器102への処理ガスおよびキャリアガスの供給を停止して,一連の成膜処理を終了する。 Such processing for the wafer ends when, for example, a predetermined time elapses when the SiC single crystal film on the wafer W reaches a predetermined thickness. When such processing for the wafer W is completed, the application of high frequency power to the coil 141 and the application of power to the heater element 242 are stopped in step S140. Further, the supply of the processing gas and the carrier gas to the processing container 102 is stopped, and a series of film forming processes is completed.
 以上のように本実施形態によれば,基板保持部108を加熱してキャリアガスと処理ガスを供給する際に,キャリアガス供給ノズル226から供給されるキャリアガスは,基板保持部108よりも上流側で,すなわち基板保持部108の上流側に達する前に加熱されるので,基板保持部108の上流側温度の低下を極力抑えることができる。これにより,基板保持部108の温度の均一性を向上させることができ,ひいては基板温度の面内均一性を向上させることができる。例えばエピタキシャル成長により成膜処理を行う場合には,ウエハWの被処理面全域に均質な単結晶膜を形成することができる。 As described above, according to the present embodiment, when the substrate holding unit 108 is heated to supply the carrier gas and the processing gas, the carrier gas supplied from the carrier gas supply nozzle 226 is upstream of the substrate holding unit 108. Since the heating is performed on the side, that is, before reaching the upstream side of the substrate holding unit 108, a decrease in the upstream temperature of the substrate holding unit 108 can be suppressed as much as possible. Thereby, the uniformity of the temperature of the substrate holding unit 108 can be improved, and consequently the in-plane uniformity of the substrate temperature can be improved. For example, when film formation is performed by epitaxial growth, a uniform single crystal film can be formed over the entire surface to be processed of the wafer W.
 また,キャリアガス加熱部240によってキャリアガスの加熱温度を制御することで,基板保持部108の上流側と下流側の温度差を制御できるので,これによりウエハ温度の面内分布を制御できる。例えば処理容器102内のクリーニング処理を行う場合に,基板保持部108の上流側と下流側とで温度を変えることにより,所望の部位を集中してクリーニングすることができる。 Further, since the temperature difference between the upstream side and the downstream side of the substrate holding unit 108 can be controlled by controlling the heating temperature of the carrier gas by the carrier gas heating unit 240, the in-plane distribution of the wafer temperature can be controlled thereby. For example, when the cleaning process in the processing container 102 is performed, a desired portion can be concentrated and cleaned by changing the temperature between the upstream side and the downstream side of the substrate holding unit 108.
 また,キャリアガス供給ノズル226と処理ガス供給ノズル206とを分けるとともに,処理ガス供給ノズル206よりも上流側でキャリアガス加熱部240によりキャリアガスを加熱するので,処理ガスを加熱することなく,キャリアガスのみを加熱することができる。これにより,処理ガスが基板保持部108に達する前に熱分解してパーティクルが発生することを防止できる。 Further, the carrier gas supply nozzle 226 and the process gas supply nozzle 206 are separated, and the carrier gas is heated by the carrier gas heating unit 240 on the upstream side of the process gas supply nozzle 206, so that the carrier gas is not heated without heating the process gas. Only the gas can be heated. Thereby, it is possible to prevent generation of particles by thermal decomposition before the processing gas reaches the substrate holding unit 108.
 また,本実施形態においては,処理ガスの流量に対して100倍以上の大流量で供給されるキャリアガスのみを加熱するので,ガス全体の加熱効率は高く,またたとえキャリアガスより温度が低い処理ガスが供給されてもガス全体の温度の低下を抑制することができる。 Further, in the present embodiment, only the carrier gas supplied at a flow rate of 100 times or more with respect to the flow rate of the processing gas is heated. Even if the gas is supplied, a decrease in the temperature of the entire gas can be suppressed.
 なお,ステップS110~S130の開始のタイミングは,図4のフローチャートに限定されない。例えば,各ステップS110~S130の開始のタイミングを入れ替えてもよく,同時に開始するようにしてもよい。 Note that the start timing of steps S110 to S130 is not limited to the flowchart of FIG. For example, the start timings of steps S110 to S130 may be switched or may be started simultaneously.
(キャリアガス加熱部の他の構成例)
 次に,キャリアガス加熱部240の他の構成例について図面を参照しながら詳細に説明する。ここでは,キャリアガス加熱部240をコイル状のヒータエレメントにより構成した場合を例に挙げる。図5は,キャリアガス加熱部250の他の構成例を示す斜視図である。
(Other configuration examples of the carrier gas heating unit)
Next, another configuration example of the carrier gas heating unit 240 will be described in detail with reference to the drawings. Here, a case where the carrier gas heating unit 240 is configured by a coiled heater element will be described as an example. FIG. 5 is a perspective view showing another configuration example of the carrier gas heating unit 250.
 図5に示すヒータエレメント252は,処理ガス供給ノズル206とキャリアガス供給ノズル226との間で,上記ガス流路をその外側から囲むように配設されている。このようなキャリアガス加熱部250を備えることによって,キャリアガスに対して四方から熱を伝えることができ,キャリアガスをより効率よく加熱することができる。ヒータエレメント252はヒータ電源244からの電力によって加熱される。 The heater element 252 shown in FIG. 5 is disposed between the processing gas supply nozzle 206 and the carrier gas supply nozzle 226 so as to surround the gas flow path from the outside. By providing such a carrier gas heating unit 250, heat can be transmitted from four directions to the carrier gas, and the carrier gas can be heated more efficiently. The heater element 252 is heated by electric power from the heater power supply 244.
 また,ヒータエレメント252は,処理容器102の内壁の底部,側部,天井部に連続して形成された溝部170に収容されている。このようにすれば,処理容器102内において,キャリアガスの流れがヒータエレメント252によって乱されなくなる。したがって,安定的なキャリアガスの流れに乗せて処理ガスを基板保持部108に向けて供給できる。 In addition, the heater element 252 is accommodated in a groove 170 formed continuously on the bottom, side, and ceiling of the inner wall of the processing vessel 102. In this way, the flow of the carrier gas is not disturbed by the heater element 252 in the processing container 102. Therefore, the processing gas can be supplied toward the substrate holding unit 108 in a stable carrier gas flow.
 なお,図2に示すキャリアガス加熱部240は,1本の棒状のヒータエレメント242で構成した場合について説明したが,これに限定されるものではなく,複数本の棒状のヒータエレメント242で構成してもよい。例えば図6に示すように複数本(例えば3本)の棒状のヒータエレメント242A~242Cを処理容器102の内壁にガス流路に沿って並設してもよい。この場合,溝部180は,例えば各ヒータエレメント242A~242Cを収容可能な大きさにする。この溝部180は,上記溝部160と同様に,内側表面が断熱部材182で覆われており,さらにこの断熱部材182の表面はSiCで構成されたカバー部材184で覆われている。断熱部材182は,例えば低密度のカーボン材料で構成される。 The carrier gas heating unit 240 shown in FIG. 2 has been described with respect to the case where it is configured with one rod-shaped heater element 242, but is not limited thereto, and is configured with a plurality of rod-shaped heater elements 242. May be. For example, as shown in FIG. 6, a plurality of (for example, three) rod-like heater elements 242A to 242C may be arranged on the inner wall of the processing vessel 102 along the gas flow path. In this case, the groove portion 180 is sized to accommodate the heater elements 242A to 242C, for example. As with the groove 160, the inner surface of the groove 180 is covered with a heat insulating member 182, and the surface of the heat insulating member 182 is covered with a cover member 184 made of SiC. The heat insulating member 182 is made of, for example, a low-density carbon material.
 このように,3本のヒータエレメント242A~242Cを収容することによって,3本のヒータエレメント242A~242Cは,処理ガス供給ノズル206とキャリアガス供給ノズル226との間に,かつ,複数のキャリアガス噴出口224の配列方向に沿って延びるように配設される。 As described above, by accommodating the three heater elements 242A to 242C, the three heater elements 242A to 242C are disposed between the processing gas supply nozzle 206 and the carrier gas supply nozzle 226 and a plurality of carrier gases. It arrange | positions so that it may extend along the sequence direction of the jet nozzle 224. FIG.
 このようにヒータエレメントの本数を増やすことによって,各キャリアガス噴出口から噴出されたキャリアガスに,より広い範囲から熱を与えることができるので,キャリアガスの加熱効率を向上させることができる。なお,3本のヒータエレメント242A~242Cに代えて,1本のヒータエレメントをつづら折り状にして溝部180に収容するようにしてもよい。 By increasing the number of heater elements in this way, heat can be applied to the carrier gas ejected from each carrier gas ejection port from a wider range, so that the heating efficiency of the carrier gas can be improved. Instead of the three heater elements 242A to 242C, one heater element may be folded in a zigzag and accommodated in the groove portion 180.
 また,図6に示す3本のヒータエレメント242A~242Cに代えて,図7に示すような板状のヒータエレメント246を溝部180に収容するようにしてもよい。このヒータエレメント246を用いても,より広い範囲からキャリアガスに熱を伝達して,短時間のうちにキャリアガスを加熱することができるようになる。 Further, instead of the three heater elements 242A to 242C shown in FIG. 6, a plate-like heater element 246 as shown in FIG. Even if this heater element 246 is used, the carrier gas can be heated within a short time by transferring heat from a wider range to the carrier gas.
 なお,上記実施形態では,キャリアガス加熱部240を各キャリアガス噴出口224から噴出されたキャリアガスを加熱する場合について説明したが,これに限られるものではなく,キャリアガス噴出口224から噴出される前に加熱するようにしてもよい。例えば図8に示すように,キャリアガス供給ノズル226内において前記各キャリアガス噴出口224までの流路226aに棒状のヒータエレメント242を設け,各キャリアガス噴出口224から噴出するキャリアガスを加熱するように構成してもよい。 In the above-described embodiment, the case where the carrier gas heating unit 240 heats the carrier gas ejected from each carrier gas ejection port 224 has been described. However, the present invention is not limited to this, and the carrier gas heating unit 240 is ejected from the carrier gas ejection port 224. It is also possible to heat before heating. For example, as shown in FIG. 8, a rod-shaped heater element 242 is provided in a flow path 226a to each carrier gas outlet 224 in the carrier gas supply nozzle 226 to heat the carrier gas ejected from each carrier gas outlet 224. You may comprise as follows.
 図8に示すヒータエレメント242は,キャリアガス供給ノズル226において,複数のキャリアガス噴出口224までの流路226aの内壁に形成された溝部260に収容されている。この溝部260は,例えば複数の流路226aに連通するように形成されている。 The heater element 242 shown in FIG. 8 is accommodated in a groove 260 formed in the inner wall of the flow path 226a up to the plurality of carrier gas outlets 224 in the carrier gas supply nozzle 226. For example, the groove 260 is formed so as to communicate with the plurality of flow paths 226a.
 また,溝部260は,上記溝部160と同様に,内側表面が断熱部材262で覆われており,さらにこの断熱部材262の表面はSiCで構成されたカバー部材264で覆われている。断熱部材262は,例えば低密度のカーボン材料で構成される。 Further, like the groove 160, the groove 260 has an inner surface covered with a heat insulating member 262, and the surface of the heat insulating member 262 is covered with a cover member 264 made of SiC. The heat insulating member 262 is made of, for example, a low-density carbon material.
 このような溝部260に棒状のヒータエレメント242を収容することによって,各流路226a内を流れるキャリアガスをヒータエレメント242の表面に接触させることができる。ヒータエレメント242は,ヒータ電源244から電力により例えば1000~2000℃に発熱する。これによって,各キャリアガス噴出口224から高温のキャリアガスを噴出させることができる。 By accommodating the rod-shaped heater element 242 in such a groove 260, the carrier gas flowing in each flow path 226a can be brought into contact with the surface of the heater element 242. The heater element 242 generates heat to 1000 to 2000 ° C., for example, by electric power from the heater power supply 244. Thereby, a high-temperature carrier gas can be ejected from each carrier gas ejection port 224.
 このようにヒータエレメント242をキャリアガス供給ノズル226内に設けることによって,ヒータエレメント242からキャリアガスに熱を伝達させ易くなるため,キャリアガスの加熱効率をより向上させることができる。また,処理容器102内のガス流路のガスの流れを乱すこともない。 By providing the heater element 242 in the carrier gas supply nozzle 226 in this way, it becomes easier to transfer heat from the heater element 242 to the carrier gas, so that the heating efficiency of the carrier gas can be further improved. Further, the gas flow in the gas flow path in the processing container 102 is not disturbed.
 また,ヒータエレメント242をキャリアガス供給ノズル226内に設けることによって,ヒータエレメント242からの熱がキャリアガス以外のガスや処理容器102内に配置されている各種部材に伝わることを防止できる。このため,処理ガスの熱分解に起因するパーティクルの発生を防止できるとともに,処理容器102内の各種部材の熱破損やアウトガスなどを防止することができる。 Further, by providing the heater element 242 in the carrier gas supply nozzle 226, heat from the heater element 242 can be prevented from being transmitted to gases other than the carrier gas and various members disposed in the processing vessel 102. For this reason, generation | occurrence | production of the particle resulting from the thermal decomposition of process gas can be prevented, and the thermal breakage, outgas, etc. of the various members in the process container 102 can be prevented.
 なお,上記実施形態において,ウエハWに対して所定の処理を施すと載置台およびその周辺に不所望の物質が堆積する場合がある。本発明は,このようなデポジット(堆積物)をドライエッチングによって除去するクリーニング処理にも適用することができる。具体的には,クリーニング処理を行う際には,例えばデポジットが多い部位の温度をその他の部位の温度よりも意図的に高めることが好ましい。このような場合でも本発明によれば,クリーニングに用いるガスがホットウォール管112内に導入される前にそのガスを加熱することができるため,クリーニングを行おうとしている部位を選択的に高温にしてその部位におけるエッチングレートが高くなるようにできる。この結果,クリーニングに用いるガスの流量および消費電力を抑えることができるとともに,クリーニングにかかる時間を短縮することができる。 In the above embodiment, when a predetermined process is performed on the wafer W, an undesired substance may be deposited on the mounting table and its periphery. The present invention can also be applied to a cleaning process in which such deposits (deposits) are removed by dry etching. Specifically, when the cleaning process is performed, for example, it is preferable to intentionally increase the temperature of a portion where there is a large amount of deposits than the temperature of other portions. Even in such a case, according to the present invention, the gas to be used for cleaning can be heated before being introduced into the hot wall pipe 112. Therefore, the part to be cleaned is selectively heated to a high temperature. Thus, the etching rate at that portion can be increased. As a result, the flow rate and power consumption of the gas used for cleaning can be suppressed, and the time required for cleaning can be shortened.
 以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明は係る例に限定されない。当業者であれば,特許請求の範囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
 例えば本発明は,ウエハに単結晶膜を成長させるエピタキシャル成長装置だけでなく,ウエハなどの基板に所定の膜を成膜する成膜装置,基板に対してドライエッチング処理を行うエッチング処理装置など,各種基板処理装置に適用可能である。 For example, the present invention is not limited to an epitaxial growth apparatus that grows a single crystal film on a wafer, but also a film forming apparatus that forms a predetermined film on a substrate such as a wafer, an etching processing apparatus that performs a dry etching process on a substrate, and the like. It can be applied to a substrate processing apparatus.
 また,上記実施形態においては,処理容器102とホットウォール管112はともに角筒状であるが,円筒状であってもよい。さらに,基板保持部108においてホットウォール管112と断熱部材114が省略され,基板保持部108が載置台110だけで構成されたタイプの基板処理装置についても本発明の適用は可能である。 In the above embodiment, the processing vessel 102 and the hot wall tube 112 are both rectangular tubes, but may be cylindrical. Further, the present invention can also be applied to a substrate processing apparatus of the type in which the hot wall tube 112 and the heat insulating member 114 are omitted in the substrate holding unit 108 and the substrate holding unit 108 is configured only by the mounting table 110.
 本発明は,基板に所定の処理を施す基板処理装置および基板処理方法に適用可能である。
 
The present invention is applicable to a substrate processing apparatus and a substrate processing method for performing predetermined processing on a substrate.

Claims (11)

  1. 基板の被処理面に沿って処理ガスの流れを形成することによって,前記基板に対して所定の処理を施す基板処理装置であって,
     筒状に形成されその内部に一端側から他端側に向かうガス流路を形成する処理容器と,
     前記ガス流路の途中に設けられ,前記基板を保持する基板保持部と,
     前記基板保持部を加熱して前記基板を加熱する基板保持部加熱部と,
     前記ガス流路の前記基板保持部よりも上流側に設けられた処理ガス供給ノズルから前記処理ガスを前記ガス流路に供給する処理ガス供給部と,
     前記ガス流路の前記処理ガス供給ノズルよりも上流側に設けられたキャリアガス供給ノズルから前記処理ガスを移送するキャリアガスを前記ガス流路に供給するキャリアガス供給部と,
     前記ガス流路の前記処理ガス供給ノズルよりも上流側において,前記ガス流路に供給される前記キャリアガスを加熱するキャリアガス加熱部と,
    を備えたことを特徴とする基板処理装置。
    A substrate processing apparatus for performing a predetermined process on a substrate by forming a flow of a processing gas along a surface to be processed of the substrate,
    A processing vessel that is formed in a cylindrical shape and that forms a gas flow path from one end side to the other end side thereof;
    A substrate holding part that is provided in the middle of the gas flow path and holds the substrate;
    A substrate holding unit heating unit for heating the substrate holding unit to heat the substrate;
    A processing gas supply unit for supplying the processing gas to the gas flow channel from a processing gas supply nozzle provided on the upstream side of the substrate holding unit of the gas flow channel;
    A carrier gas supply unit for supplying a carrier gas for transferring the processing gas from a carrier gas supply nozzle provided upstream of the processing gas supply nozzle in the gas channel to the gas channel;
    A carrier gas heating section for heating the carrier gas supplied to the gas flow path on the upstream side of the processing gas supply nozzle of the gas flow path;
    A substrate processing apparatus comprising:
  2. 前記処理ガス供給ノズルは,前記ガス流路の幅方向に配列され前記基板保持部に向けて開口した複数の処理ガス噴出口を有し,
     前記キャリアガス供給ノズルは,前記ガス流路の幅方向に配列され前記基板保持部に向けて開口した複数のキャリアガス噴出口を有することを特徴とする請求項1に記載の基板処理装置。
    The processing gas supply nozzle has a plurality of processing gas jets that are arranged in the width direction of the gas flow path and open toward the substrate holding portion,
    2. The substrate processing apparatus according to claim 1, wherein the carrier gas supply nozzle has a plurality of carrier gas ejection ports arranged in a width direction of the gas flow path and opened toward the substrate holding portion.
  3. 前記キャリアガス加熱部は,前記キャリアガス供給ノズルと前記処理ガス供給ノズルとの間に設け,前記各キャリアガス噴出口から噴出されたキャリアガスを加熱するように構成したことを特徴とする請求項2に記載の基板処理装置。 The carrier gas heating section is provided between the carrier gas supply nozzle and the processing gas supply nozzle, and is configured to heat the carrier gas ejected from each of the carrier gas ejection ports. 2. The substrate processing apparatus according to 2.
  4. 前記キャリアガス加熱部は,前記各キャリアガス噴出口の配列方向に沿って延びるように配設された長尺状のヒータエレメントにより前記キャリアガスを加熱することを特徴とする請求項3に記載の基板処理装置。 The said carrier gas heating part heats the said carrier gas with the elongate heater element arrange | positioned so that it may extend along the sequence direction of each said carrier gas jet nozzle. Substrate processing equipment.
  5. 前記ヒータエレメントは,前記処理容器の内壁に形成された溝部に収容されていることを特徴とする請求項4に記載の基板処理装置。 The substrate processing apparatus according to claim 4, wherein the heater element is housed in a groove formed on an inner wall of the processing container.
  6. 前記キャリアガス加熱部は,前記処理容器の内壁に前記ガス流路を囲むように形成された溝部に収容されたコイル状のヒータエレメントにより前記キャリアガスを加熱することを特徴とする請求項3に記載の基板処理装置。 The said carrier gas heating part heats the said carrier gas with the coil-shaped heater element accommodated in the groove part formed in the inner wall of the said process container so that the said gas flow path might be enclosed. The substrate processing apparatus as described.
  7. 前記キャリアガス加熱部は,前記キャリアガス供給ノズル内において前記各キャリアガス噴出口までの流路に設けられたヒータエレメントにより,前記各キャリアガス噴出口から噴出するキャリアガスを加熱するように構成したことを特徴とする請求項1に記載の基板処理装置。 The carrier gas heating unit is configured to heat the carrier gas ejected from each carrier gas ejection port by a heater element provided in a flow path to each carrier gas ejection port in the carrier gas supply nozzle. The substrate processing apparatus according to claim 1.
  8. 前記ヒータエレメントは,前記各キャリアガス供給ノズルの流路を構成する内壁に形成された溝部に収容されることを特徴とする請求項7に記載の基板処理装置。 The substrate processing apparatus according to claim 7, wherein the heater element is accommodated in a groove formed in an inner wall constituting a flow path of each carrier gas supply nozzle.
  9. さらに,前記基板保持部の上流側の温度を検出する上流側温度センサと,
     前記基板保持部の下流側の温度を検出する下流側温度センサと,
     前記上流側温度センサと前記下流側温度センサにより検出された各温度に基づいて前記キャリアガス加熱部の出力を制御する制御部と,
    を備えたことを特徴とする請求項1に記載の基板処理装置。
    And an upstream temperature sensor for detecting the upstream temperature of the substrate holding unit;
    A downstream temperature sensor for detecting a downstream temperature of the substrate holding unit;
    A control unit for controlling the output of the carrier gas heating unit based on each temperature detected by the upstream temperature sensor and the downstream temperature sensor;
    The substrate processing apparatus according to claim 1, further comprising:
  10. 基板の被処理面に沿って所定のガスの流れを形成することによって,前記基板に対して所定の処理を施す基板処理装置の基板処理方法であって,
     前記基板処理装置は,筒状に形成されその内部に一端側から他端側に向かうガス流路を形成する処理容器と,前記ガス流路の途中に設けられ,前記基板を保持する基板保持部と,前記基板保持部を加熱して前記基板を加熱する基板保持部加熱部と,前記ガス流路の前記基板保持部よりも上流側に設けられた前記処理ガス供給ノズルから前記処理ガスを前記ガス流路に供給する処理ガス供給部と,前記ガス流路の前記処理ガス供給ノズルよりも上流側に設けられキャリアガス供給ノズルから前記処理ガスを移送するキャリアガスを前記ガス流路に供給するキャリアガス供給部と,前記ガス流路の前記処理ガス供給ノズルよりも上流側において,前記ガス流路に供給される前記キャリアガスを加熱するキャリアガス加熱部と,を備え,
     前記基板保持部加熱部により前記基板保持部を加熱して前記基板を加熱する工程と,
     前記キャリアガス加熱部により加熱しつつ,前記キャリアガス供給ノズルからキャリアガスを供給する工程と,
     前記処理ガス供給ノズルから処理ガスを供給する工程と,
    を有することを特徴とする基板処理方法。
    A substrate processing method of a substrate processing apparatus for performing a predetermined process on a substrate by forming a predetermined gas flow along a surface to be processed of the substrate,
    The substrate processing apparatus includes a processing container that forms a gas flow path that is formed in a cylindrical shape and extends from one end to the other end, and a substrate holding unit that is provided in the middle of the gas flow path and holds the substrate And the substrate holding part heating part for heating the substrate by heating the substrate holding part, and the processing gas from the processing gas supply nozzle provided on the upstream side of the substrate holding part in the gas flow path. A processing gas supply unit that supplies the gas flow path, and a carrier gas that is provided upstream of the processing gas supply nozzle in the gas flow path and that transfers the processing gas from the carrier gas supply nozzle is supplied to the gas flow path. A carrier gas supply unit; and a carrier gas heating unit that heats the carrier gas supplied to the gas flow channel upstream of the processing gas supply nozzle of the gas flow channel,
    Heating the substrate holding unit by heating the substrate holding unit by the substrate holding unit heating unit;
    Supplying a carrier gas from the carrier gas supply nozzle while heating by the carrier gas heating unit;
    Supplying a processing gas from the processing gas supply nozzle;
    A substrate processing method comprising:
  11. 前記基板処理装置は,前記基板保持部の上流側の温度を検出する上流側温度センサと,前記基板保持部の下流側の温度を検出する下流側温度センサとを設け,
     前記上流側温度センサと前記下流側温度センサにより検出された各温度に基づいて前記キャリアガス加熱部の出力を制御する工程を有することを特徴とする請求項10に記載の基板処理方法。
     
    The substrate processing apparatus includes an upstream temperature sensor that detects a temperature upstream of the substrate holding unit, and a downstream temperature sensor that detects a temperature downstream of the substrate holding unit,
    The substrate processing method according to claim 10, further comprising a step of controlling an output of the carrier gas heating unit based on each temperature detected by the upstream temperature sensor and the downstream temperature sensor.
PCT/JP2009/052613 2008-03-31 2009-02-17 Substrate processing apparatus and substrate processing method WO2009122790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008089411A JP2009246071A (en) 2008-03-31 2008-03-31 Substrate treatment device and substrate treatment method
JP2008-089411 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122790A1 true WO2009122790A1 (en) 2009-10-08

Family

ID=41135189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052613 WO2009122790A1 (en) 2008-03-31 2009-02-17 Substrate processing apparatus and substrate processing method

Country Status (2)

Country Link
JP (1) JP2009246071A (en)
WO (1) WO2009122790A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295935B (en) * 2012-02-22 2017-06-20 东京毅力科创株式会社 Substrate board treatment
KR101387518B1 (en) * 2012-08-28 2014-05-07 주식회사 유진테크 Apparatus for processing substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233521A (en) * 1987-03-23 1988-09-29 Nissan Motor Co Ltd Vapor phase reaction tube
JPH04127432A (en) * 1990-09-18 1992-04-28 Kyushu Electron Metal Co Ltd Normal-pressure cvd apparatus
JPH0878336A (en) * 1994-09-09 1996-03-22 Hitachi Ltd Reaction treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233521A (en) * 1987-03-23 1988-09-29 Nissan Motor Co Ltd Vapor phase reaction tube
JPH04127432A (en) * 1990-09-18 1992-04-28 Kyushu Electron Metal Co Ltd Normal-pressure cvd apparatus
JPH0878336A (en) * 1994-09-09 1996-03-22 Hitachi Ltd Reaction treatment apparatus

Also Published As

Publication number Publication date
JP2009246071A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US7858534B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
KR100688836B1 (en) Catalyst ehhanced chemical vapor depostion apparatus
KR101930527B1 (en) Gas distribution showerhead with high emissivity surface
JP4720266B2 (en) Film forming method, film forming apparatus, and computer program
US20120214317A1 (en) Substrate processing apparatus and method, and semiconductor device manufacturing method
WO2011114858A1 (en) Semiconductor thin-film manufacturing method, seminconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
US20090017638A1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP5919482B2 (en) Catalytic chemical vapor deposition apparatus, film forming method using the same, and surface treatment method for catalyst body
US7700054B2 (en) Substrate processing apparatus having gas side flow via gas inlet
WO2012115170A1 (en) Substrate processing device, method for producing substrate, and method for producing semiconductor device
EP1315854B1 (en) Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor
JPWO2012026241A1 (en) Semiconductor device manufacturing method and substrate processing apparatus
WO2009122790A1 (en) Substrate processing apparatus and substrate processing method
JP4971954B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and heating apparatus
JP2011100820A (en) Substrate treatment apparatus
CN101199039A (en) Film-forming and cleaning method
JP2013207057A (en) Substrate processing apparatus, substrate manufacturing method, and substrate processing apparatus cleaning method
US20140174364A1 (en) Heat treatment device
JP4703230B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP5052206B2 (en) CVD equipment
KR102492343B1 (en) Film formation device and film formation method
JP2008227143A (en) Substrate processing device
WO2021192005A1 (en) Substrate processing device, semiconductor device production method, recording medium and inner tube
JP2001345314A (en) Device and method for heat treatment
JP5783859B2 (en) Substrate processing apparatus and temperature control method for substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726565

Country of ref document: EP

Kind code of ref document: A1