JP2014022489A - Semiconductor light-emitting device with optical member - Google Patents

Semiconductor light-emitting device with optical member Download PDF

Info

Publication number
JP2014022489A
JP2014022489A JP2012158413A JP2012158413A JP2014022489A JP 2014022489 A JP2014022489 A JP 2014022489A JP 2012158413 A JP2012158413 A JP 2012158413A JP 2012158413 A JP2012158413 A JP 2012158413A JP 2014022489 A JP2014022489 A JP 2014022489A
Authority
JP
Japan
Prior art keywords
light
optical member
light emitting
emitting device
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012158413A
Other languages
Japanese (ja)
Other versions
JP6021485B2 (en
Inventor
Takayuki Motoyanagi
翔之 本柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Rubber Inc
Original Assignee
Asahi Rubber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Rubber Inc filed Critical Asahi Rubber Inc
Priority to JP2012158413A priority Critical patent/JP6021485B2/en
Publication of JP2014022489A publication Critical patent/JP2014022489A/en
Application granted granted Critical
Publication of JP6021485B2 publication Critical patent/JP6021485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device which can distribute light in a wide angle range while suppressing variations of illumination distribution on an irradiated surface by largely refracting a light flux in the vicinity of an optical axis of a semiconductor light-emitting element, in the light-emitting device including a light source with the semiconductor light-emitting element.SOLUTION: A light-emitting device includes: a light source having a semiconductor light-emitting element and a hemispherical transparent sealed body for sealing the semiconductor light-emitting element; and an optical member for controlling light distribution characteristics of light emitted by the semiconductor light-emitting element. The shape of the optical member includes: a concave inner contour for housing the hemispherical transparent sealed body, a bottom surface contour connected to the periphery of the inner contour, and an outer contour connected to the bottom surface contour. When a vertical axis with respect to a light-emitting surface in an emission center of the semiconductor light-emitting element is determined as an optical axis, an interval between a surface of the hemispherical transparent sealed body in an optical axis direction and the concave inner contour becomes the longest and an area forming an angle equal to or more than 45° from the emission center to the optical axis has a part with the shortest interval.

Description

本発明は、照射面における照度分布のバラつきを抑えながら広い配光角度で配光する、光学部材を備えた発光装置に関する。   The present invention relates to a light emitting device including an optical member that distributes light at a wide light distribution angle while suppressing variation in illuminance distribution on an irradiation surface.

近年、発光ダイオード(LED)を用いた半導体発光装置(以下、LEDパッケージとも呼ぶ)の用途が広がっている。具体的には、例えば、一般室内照明器具、車内灯のようなスポットライト、薄型テレビや情報端末機器に用いられるバックライト、広告パネルやサインパネル、自動車のテールランプ、街灯、交通信号機等で採用されている。   In recent years, applications of semiconductor light-emitting devices (hereinafter also referred to as LED packages) using light-emitting diodes (LEDs) are expanding. Specifically, for example, it is used in general indoor lighting fixtures, spotlights such as interior lights, backlights used in flat-screen TVs and information terminal devices, advertising panels and sign panels, automobile tail lamps, street lights, traffic lights, etc. ing.

従来、LEDパッケージとして、例えば、図10に示したような平面型のパッケージであるLEDパッケージ300が広く知られていた。このようなLEDパッケージ300は、LED素子301を収容する上面が開口した凹状の発光体収容部材302を有する。そして、LED素子301を収容する凹部は、表面が平面または中央部分がやや窪んだ輪郭を形成する透明封止体303で封止されている。このようにLED素子をパッケージにすることにより、回路基板への実装が容易になった。   Conventionally, as an LED package, for example, an LED package 300 that is a planar package as shown in FIG. 10 has been widely known. Such an LED package 300 has a concave light-emitting body accommodating member 302 whose upper surface that accommodates the LED element 301 is open. And the recessed part which accommodates LED element 301 is sealed by the transparent sealing body 303 which forms the outline where the surface is a plane or the center part was depressed a little. As described above, by mounting the LED element in a package, mounting on the circuit board is facilitated.

図10に示したような、LEDパッケージ300においては、図10中の矢印で示すように、LED素子301から発せられた光は、透明封止体303の内部及び界面で反射または屈折されることによりその光路が曲げられ、それにより、外部に出射する光の照射範囲が広くなる。このような平面型のパッケージは、図11に示すように、LED素子301の中心を通る光出射面に対して垂直な光軸を中心として、発光面の輝度が全方向でほぼ一定になるランバート配光を示す。ランバート配光においては、光軸とのなす角をαとした場合、光度分布はcos αに比例する。しかし、このような平面型のパッケージにおいては、透明封止体の内部で全反射を繰り返して乱反射される光が存在するために、光量を大幅にロスしてしまうという問題があった。   In the LED package 300 as shown in FIG. 10, the light emitted from the LED element 301 is reflected or refracted inside and at the interface of the transparent sealing body 303 as indicated by the arrow in FIG. 10. The optical path is bent by this, so that the irradiation range of the light emitted to the outside is widened. As shown in FIG. 11, such a planar package has a Lambertian pattern in which the luminance of the light emitting surface is substantially constant in all directions with the optical axis perpendicular to the light emitting surface passing through the center of the LED element 301 as the center. Indicates light distribution. In Lambert light distribution, the luminous intensity distribution is proportional to cos α, where α is the angle formed with the optical axis. However, in such a flat type package, there is a problem that the amount of light is greatly lost because there is light that is diffusely reflected by repeated total reflection inside the transparent sealing body.

このような平面型のパッケージの光量のロスの問題を解決した、光の取出効率が高いLEDパッケージとして、図12に示すような、サブマウント基板1bにマウントされたLED素子1aを半球状の透明封止体1cで封止してなるLEDパッケージ1が知られている。   As an LED package with high light extraction efficiency that solves the problem of light quantity loss of such a planar package, the LED element 1a mounted on the submount substrate 1b as shown in FIG. An LED package 1 formed by sealing with a sealing body 1c is known.

半球状の透明封止体1cを備えたLEDパッケージ1は、LED素子1aからの発光を透明封止体1cの内部に放射する。そして、放射された光は透明封止体1cの半球状の界面にほぼ直角に入射し、全反射されることなく透明封止体1cから出射する。このようなLEDパッケージ1によれば、平面型のパッケージで生じるような光量のロスが抑制される。   The LED package 1 provided with the hemispherical transparent sealing body 1c radiates light emitted from the LED element 1a into the transparent sealing body 1c. The emitted light is incident on the hemispherical interface of the transparent encapsulant 1c at a substantially right angle, and is emitted from the transparent encapsulant 1c without being totally reflected. According to such an LED package 1, the loss of light amount that occurs in a planar package is suppressed.

半球状の透明封止体を備えたLEDパッケージは、上述のように光量のロスは抑制されるが、次のような問題があった。図12の矢印に示すように、半球状の透明封止体1cから出射される光は、透明封止体1cから空気層である外部に出射するときに半球状の透明封止体1cの凸レンズ効果により、平面型のパッケージに比べて光軸方向に集光される傾向があった。具体的には、平面型のパッケージを備えたLEDパッケージは、図11に示すように、完全拡散するランバート配光になるように発光する。一方、半球状の透明封止体を備えたLEDパッケージは、図13に示すように、ランバート配光が崩れて光軸方向に集光し、相対的に光軸近傍の光量が多くなり、その周囲の光量が相対的に少なくなる。その結果、被照射面における照度のバラつきが大きくなるという問題があった。   The LED package provided with the hemispherical transparent sealing body has the following problems although the loss of the light amount is suppressed as described above. As shown by the arrows in FIG. 12, the light emitted from the hemispherical transparent encapsulant 1c is emitted from the transparent encapsulant 1c to the outside which is an air layer. Due to the effect, the light tends to be condensed in the optical axis direction as compared with the flat type package. Specifically, as shown in FIG. 11, the LED package including the planar package emits light so as to have a Lambertian light distribution that completely diffuses. On the other hand, as shown in FIG. 13, the LED package having a hemispherical transparent encapsulant collapses the Lambert light distribution and condenses in the optical axis direction, and the amount of light near the optical axis increases relatively. The amount of ambient light is relatively small. As a result, there has been a problem that the variation in illuminance on the irradiated surface increases.

例えば、下記特許文献1は、図14に示すような、半球状透明封止体198を備えたLED装置に空気層204を介して広角放射角レンズ202を組み合わせて配置することにより、広い角度範囲の配光を実現する発光装置188を開示する。   For example, Patent Document 1 below discloses a wide angular range by arranging a wide-angle radiation angle lens 202 in combination with an LED device having a hemispherical transparent sealing body 198 as shown in FIG. Disclosed is a light-emitting device 188 that realizes the light distribution.

また、例えば、下記特許文献2は、図15に示すように、基板上に配設されたLED素子201を、所定の形状の光入射面202a及び光出射面202bを有し、光出射面202bの光軸の中央部分に窪み202cを有するようなレンズ202で覆うことにより、LED素子201の発光をレンズ202の光入射面202a及び光出射面202bで屈折させることにより広い角度範囲の配光を実現することを提案している。なお、特許文献2はLED素子自身からの配光を制御したLED装置に関する技術である。   Further, for example, as shown in FIG. 15, the following Patent Document 2 includes an LED element 201 disposed on a substrate having a light incident surface 202 a and a light emitting surface 202 b having a predetermined shape, and a light emitting surface 202 b. By covering with a lens 202 having a recess 202c at the center of the optical axis, the light emitted from the LED element 201 is refracted by the light incident surface 202a and the light emitting surface 202b of the lens 202, thereby distributing light in a wide angular range. It is proposed to be realized. Patent Document 2 is a technique related to an LED device that controls light distribution from the LED element itself.

特表2010−519757号公報Special table 2010-519757 gazette 特開2009−44016号公報JP 2009-44016 A

特許文献1に開示されたような、従来の半球状の透明封止体を備えたLEDパッケージに光を大きく屈折させるためのレンズを配置する場合、図14に示したように、レンズ202の凹部の表面の輪郭を主たる屈折面として用い、凹部の表面に光束が入射するときの入射角を大きくするために、垂直に近いように立ち上がるような内壁を形成する必要があった。そして、立ち上がる内壁面を形成するために、レンズの高さを充分に確保する必要があった。このような場合、高さ方向の空間が少ない領域に設置しにくくなるという問題があった。すなわち、図14に示したようなレンズを備えた発光装置の場合、実装する領域に高さ方向に充分な空間が必要であった。   When a lens for largely refracting light is arranged in an LED package having a conventional hemispherical transparent sealing body as disclosed in Patent Document 1, as shown in FIG. In order to increase the incident angle when the light beam is incident on the surface of the concave portion, it is necessary to form an inner wall that rises close to the vertical. In order to form the rising inner wall surface, it is necessary to secure a sufficient lens height. In such a case, there is a problem that it is difficult to install in an area where there is little space in the height direction. That is, in the case of the light emitting device having the lens as shown in FIG. 14, a sufficient space in the height direction is necessary in the mounting region.

本発明は、半球状の透明封止体を備えた半導体発光装置において、半導体発光素子の光軸近傍の光束を大きく屈折させることにより、被照射面における照度分布のバラつきを抑えながら広い角度範囲に配光させることができる、厚みを抑えた光学部材を備えた発光装置を提供することを目的とする。   The present invention provides a semiconductor light emitting device having a hemispherical transparent encapsulant, which refracts a light beam in the vicinity of the optical axis of the semiconductor light emitting element so as to suppress a variation in illuminance distribution on the irradiated surface, and in a wide angle range. An object of the present invention is to provide a light-emitting device including an optical member that can distribute light and has a reduced thickness.

本発明の一局面は、半導体発光素子及び半導体発光素子を封止する半球状の透明封止体を備えた発光装置と、半導体発光素子から発光される光の配光特性を制御するための光学部材とを備え、透明封止体の表面と光学部材との間には透明封止体及び光学部材よりも屈折率が小さい層がさらに存在し、光学部材の形状は、透明封止体を収容するための凹状の内側輪郭と、光の出射面の輪郭を規定する外側輪郭とを備え、半導体発光素子の発光中心における発光面に対する垂直軸を光軸とし、光軸を含む面で切断した任意の縦断面において、発光中心から引いた該光軸に対して角度θを成す仮想直線を基準線とし、光軸と、基準線と内側輪郭の表面との交点における法線との成す角度をψとし、基準線と外側輪郭の表面との交点における法線との成す角度をδとした場合、0°≦θ≦45°の範囲で0≦δ≦30°であり、0°<θ≦15°好ましくは5°≦θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、θx>θの範囲ではθが大きくなるにつれてψ/θが増加し、θ>θxの範囲では少なくともθ=70°の範囲まではθが大きくなるにつれてψ/θが減少し、半球状透明封止体の表面と凹状の内側輪郭の表面との基準線上の距離は、θ=0°のとき最大になり、45°<θ≦70°の範囲の領域にその距離が最小になる角度θyを有する光学部材付発光装置である。0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、また、光学部材の出射面の形状を0°≦θ≦45°の範囲で0≦δ≦30°になるように規定することにより、光軸近傍の光束を大きく屈折させることができる。また、距離がθ=0°のとき最大になり、45°<θ≦70°の範囲の領域に距離が最小になる角度θを有することにより、相対的に光量が少ない半球状の透明封止体から出射する45°<θ≦70°の範囲の光束の配光角を広げることができる。その結果、広い配光範囲において被照射面における照度分布のバラつきを抑制することが出来る。 One aspect of the present invention is a light-emitting device including a semiconductor light-emitting element, a hemispherical transparent sealing body that seals the semiconductor light-emitting element, and an optical device for controlling light distribution characteristics of light emitted from the semiconductor light-emitting element A layer having a smaller refractive index than the transparent sealing body and the optical member, and the shape of the optical member accommodates the transparent sealing body. And an outer contour that defines the contour of the light emitting surface, and the optical axis is the vertical axis with respect to the light emitting surface at the light emitting center of the semiconductor light emitting element, and the optical axis is an arbitrary section cut by a plane including the optical axis In the vertical cross section, the imaginary straight line forming an angle θ with respect to the optical axis drawn from the light emission center is taken as a reference line, and the angle formed between the optical axis and the normal at the intersection of the reference line and the surface of the inner contour is ψ And the normal line at the intersection of the reference line and the outer contour surface. When the angle is δ, 0 ≦ δ ≦ 30 ° in the range of 0 ° ≦ θ ≦ 45 °, and ψ / θ is in the range of 0 ° <θ ≦ 15 °, preferably 5 ° ≦ θ ≦ 15 °. It has a maximum value (ψ / θ) becomes max angle θ x, θ x> ψ / θ increases as theta increases in the range of theta, at least theta = 70 ° range in the range of theta> theta x Until θ increases, ψ / θ decreases, and the distance on the reference line between the surface of the hemispherical transparent encapsulant and the surface of the concave inner contour becomes maximum when θ = 0 °, and 45 ° < The light emitting device with an optical member has an angle θy that minimizes the distance in a region in a range of θ ≦ 70 °. 0 ° has a <theta ≦ 15 ranges [psi / theta is the maximum value of ° (ψ / θ) becomes max angle theta x, and the scope of the shape of the exit surface of the optical member of 0 ° ≦ θ ≦ 45 ° By defining so that 0 ≦ δ ≦ 30 °, the light beam near the optical axis can be largely refracted. Further, by having an angle θ y that is maximized when the distance is θ = 0 ° and is minimized in an area in a range of 45 ° <θ ≦ 70 °, the hemispherical transparent seal having a relatively small amount of light. The light distribution angle of the light beam in the range of 45 ° <θ ≦ 70 ° emitted from the stationary body can be widened. As a result, variation in illuminance distribution on the irradiated surface can be suppressed in a wide light distribution range.

また、光学部材付発光装置においては、角度θにおける半球状の透明封止体の表面と凹状の内側輪郭の表面との基準線上における距離をD(θ)とした場合、D(θ)=Acos(Bθ)+C(式中、0≦θ≦70°、0≦A≦1、0≦B≦5、-1≦C≦1)で表され、θに対してD(θ)をプロットしたグラフにおいて、20<θ<45°の範囲に存在する変化点を境として、θが大きい側のA,B,Cそれぞれが、θが小さい側のA,B,Cそれぞれよりも小さくなることが好ましい。このような場合には、変化点よりも小さい範囲の角度範囲における凹状の内側輪郭の傾きが、変化点よりも大きい範囲の角度範囲における凹状の内側輪郭の傾きよりも大きくなる。その結果、光束を大きく曲げることができる。   In the light emitting device with an optical member, when the distance on the reference line between the surface of the hemispherical transparent sealing body and the surface of the concave inner contour at the angle θ is D (θ), D (θ) = Acos. (Bθ) + C (where 0 ≦ θ ≦ 70 °, 0 ≦ A ≦ 1, 0 ≦ B ≦ 5, −1 ≦ C ≦ 1), and D (θ) is plotted against θ. In the graph, A, B, and C on the larger θ side are smaller than A, B, and C on the smaller θ side, with a change point existing in the range of 20 <θ <45 ° as a boundary. preferable. In such a case, the inclination of the concave inner contour in the angle range smaller than the change point is larger than the inclination of the concave inner contour in the angle range larger than the change point. As a result, the luminous flux can be greatly bent.

また、外側輪郭は少なくとも0°≦θ≦45°の範囲において、光軸近傍に平面を含む、上に凸状の滑らかな曲面で構成されており、角度θの微小変化量Δθに対する角度δの微小変化量Δδの比をΔδ/Δθとした場合、0°≦θ≦20°の範囲で0≦Δδ/Δθ≦0.2であり、20°<θ≦45°の範囲で0.05≦Δδ/Δθ≦1.2であり、さらには、45°≦θ≦60°の範囲で0.5≦Δδ/Δθ≦1.8であることが好ましい。このような場合には、光軸近傍から発光する光束を光学部材の外側輪郭で屈折させ、照度のバラつきをより最適に抑制することができる点から好ましい。   Further, the outer contour is formed of a smooth curved surface that is convex upward and includes a plane in the vicinity of the optical axis in the range of at least 0 ° ≦ θ ≦ 45 °, and has an angle δ with respect to the minute change amount Δθ of the angle θ. When the ratio of the minute change Δδ is Δδ / Δθ, 0 ≦ Δδ / Δθ ≦ 0.2 in the range of 0 ° ≦ θ ≦ 20 °, and 0.05 ≦ in the range of 20 ° <θ ≦ 45 °. Δδ / Δθ ≦ 1.2, and further preferably 0.5 ≦ Δδ / Δθ ≦ 1.8 in the range of 45 ° ≦ θ ≦ 60 °. In such a case, the luminous flux emitted from the vicinity of the optical axis is preferably refracted by the outer contour of the optical member, and the variation in illuminance can be suppressed more optimally.

また、半導体発光素子の発光中心の表面を基準とし、半球状透明封止体の最大高さをH1、光学部材の最大高さをH2とした場合、H2/H1≦3である場合には、厚みを充分に薄くしながら、広い角度範囲の配光を維持することができる点から好ましい。   Further, when the maximum height of the hemispherical transparent encapsulant is H1 and the maximum height of the optical member is H2 based on the surface of the light emission center of the semiconductor light emitting element, and H2 / H1 ≦ 3, This is preferable because the light distribution in a wide angle range can be maintained while the thickness is sufficiently reduced.

また、角度θy±15°の範囲に最大相対光量を有する場合には、配光バラつきを充分に低減することができる点から好ましい。   Moreover, when it has the maximum relative light quantity in the range of angle (theta) y ± 15 degrees, it is preferable from the point which can fully reduce light distribution variation.

さらに、光軸との交点付近において、凹状の内側輪郭の曲率が、半球状の透明封止体の曲率よりも大きい場合には、半球状透明封止体により光軸付近に多く集光された光をより拡散させることができる点から好ましい。   Further, in the vicinity of the intersection with the optical axis, when the curvature of the concave inner contour is larger than the curvature of the hemispherical transparent encapsulant, the hemispherical transparent encapsulant concentrated much near the optical axis. This is preferable because light can be diffused more.

本発明の目的、特徴、局面、及び利点は、以下の詳細な説明及び添付する図面により、明白となる。   The objects, features, aspects and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明によれば、光軸中心付近の集光傾向が高い半球状透明封止体を備えたLED装置を用いて、被照射面における発光バラつきを抑えながら広い角度範囲の配光を実現することができる。   According to the present invention, a light distribution in a wide angle range is realized using an LED device including a hemispherical transparent encapsulant with a high concentration tendency near the center of the optical axis while suppressing variation in light emission on the irradiated surface. Can do.

図1(a)は本実施形態の光学部材付発光装置10の上面模式図、図1(b)は、図1(a)のA−A’断面の断面模式図であるFIG. 1A is a schematic top view of the light emitting device with an optical member 10 of the present embodiment, and FIG. 1B is a schematic cross-sectional view of the A-A ′ cross section of FIG. 図2は、光学部材付発光装置10の形状の詳細を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the details of the shape of the light emitting device 10 with an optical member. 図3は、光学部材付発光装置10の光の伝播方向の一例を説明する説明図である。FIG. 3 is an explanatory diagram for explaining an example of the light propagation direction of the light emitting device with an optical member 10. 図4は、光学部材付発光装置10のθに対するψ/θをプロットしたグラフを示す。FIG. 4 shows a graph in which ψ / θ is plotted with respect to θ of the light emitting device 10 with an optical member. 図5は、光学部材付発光装置10のθに対するδをプロットしたグラフを示す。FIG. 5 shows a graph plotting δ against θ of the light emitting device 10 with an optical member. 図6は、光学部材付発光装置10のθに対する半球状の透明封止体1cの表面と光学部材5の凹状の内側輪郭5aとの間の基準線上の距離Dをプロットしたグラフを示す。FIG. 6 shows a graph in which the distance D on the reference line between the surface of the hemispherical transparent encapsulant 1c and the concave inner contour 5a of the optical member 5 with respect to θ of the light emitting device 10 with the optical member is plotted. 図7は光学部材付発光装置10の照射パターンの光強度分布図の一例を示す。FIG. 7 shows an example of a light intensity distribution diagram of an irradiation pattern of the light emitting device 10 with an optical member. 図8は、光学部材付発光装置10の寸法の具体例を説明する説明図である。FIG. 8 is an explanatory view illustrating a specific example of the dimensions of the light emitting device with an optical member 10. 図9は、光学部材付発光装置10の裏面の形状例を説明する模式図である。FIG. 9 is a schematic diagram for explaining an example of the shape of the back surface of the light emitting device 10 with an optical member. 図10は、平面型のLEDパッケージの配光を説明する説明図である。FIG. 10 is an explanatory diagram for explaining the light distribution of the planar LED package. 図11は、平面型のLEDパッケージの照射パターンの光強度分布図の一例を示す。FIG. 11 shows an example of a light intensity distribution diagram of an irradiation pattern of a planar LED package. 図12は、半球状のLEDパッケージの配光を説明する説明図である。FIG. 12 is an explanatory diagram for explaining the light distribution of the hemispherical LED package. 図13は、半球状のLEDパッケージの照射パターンの光強度分布図の一例を示す。FIG. 13 shows an example of a light intensity distribution diagram of an irradiation pattern of a hemispherical LED package. 図14は、従来の発光装置の配光を説明する説明図である。FIG. 14 is an explanatory view illustrating light distribution of a conventional light emitting device. 図15は、従来の発光装置の配光を説明する説明図である。FIG. 15 is an explanatory view illustrating light distribution of a conventional light emitting device.

以下、本発明に係る光学部材付発光装置の一実施形態を図面を参照して説明する。図1は本実施形態の光学部材付発光装置10の模式図であり、図1(a)は上面図、図1(b)は、図1(a)のA−A’断面における断面図である。光学部材付発光装置10は、半導体発光素子であるLED素子1a及びLED素子1aを封止する半球状の透明封止体1cを備えたLED装置1と、LED素子1aから発光された光の配光を制御する光学部材5とを備える。   Hereinafter, an embodiment of a light emitting device with an optical member according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a light emitting device 10 with an optical member according to the present embodiment. FIG. 1A is a top view, and FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG. is there. The light emitting device with an optical member 10 includes an LED device 1 including a LED element 1a that is a semiconductor light emitting element and a hemispherical transparent sealing body 1c that seals the LED element 1a, and an arrangement of light emitted from the LED element 1a. And an optical member 5 for controlling light.

LED装置1は、サブマウント基板1bと、サブマウント基板1b上に実装されたLED素子1aと、LED素子1aを封止する半球状の透明封止体1cと、を備える。サブマウント基板1bは、その底面に、図略のリード端子を備える。LED素子1aとしては、従来から知られた紫外光、近紫外光、青色から赤色の領域の波長を示す可視光、近赤外光、赤外光等の波長領域の光を発するLED素子が特に限定なく用いられる。また、LED素子1aの表面やその近傍等には、LED素子1aから発光された光の波長を波長変換するための蛍光体層が設けられていてもよい。   The LED device 1 includes a submount substrate 1b, an LED element 1a mounted on the submount substrate 1b, and a hemispherical transparent sealing body 1c that seals the LED element 1a. The submount substrate 1b includes lead terminals (not shown) on the bottom surface. As the LED element 1a, conventionally known LED elements that emit light in a wavelength region such as ultraviolet light, near ultraviolet light, visible light indicating wavelengths in the blue to red region, near infrared light, infrared light, and the like are particularly preferable. Used without limitation. Moreover, the phosphor layer for wavelength-converting the wavelength of the light emitted from the LED element 1a may be provided on the surface of the LED element 1a or in the vicinity thereof.

透明封止体1cは、半球状の形状を有し、その外表面からLED素子1aの発光を出射する。このような半球状の透明封止体を備えるLED装置の具体例としては、例えば、直径2〜3mmの半球面の透明封止体を有する、日亜化学(株)製のNVSW119B、NVSL119Bや、直径3〜5mmの半球面の透明封止体を有する、日亜化学(株)製のNS9W383等が挙げられる。   The transparent encapsulant 1c has a hemispherical shape, and emits light emitted from the LED element 1a from the outer surface. As a specific example of the LED device provided with such a hemispherical transparent encapsulant, for example, NVSW119B, NVSL119B manufactured by Nichia Corporation having a hemispherical transparent encapsulant with a diameter of 2 to 3 mm, NS9W383 manufactured by Nichia Corporation, which has a hemispherical transparent sealing body with a diameter of 3 to 5 mm.

なお、本実施形態ではLED装置1として、サブマウント基板上に発光素子をマウントして、半球状の透明封止体で封止した発光装置を用いた例について代表例として説明する。このようなLED装置1の代わりに、一枚の基板上に、複数の発光素子を並べ、各発光素子をオーバーレイ成形によりそれぞれ半球状に封止して得られたLEDアレイに対して、上述したような光学部材を装着してもよい。この場合、光学部材としては、それぞれ独立した光学部材を装着しても、上述した光学部材を複数個一体化して形成されたレンズアレイとして装着してもよい。   In the present embodiment, as the LED device 1, an example using a light emitting device in which a light emitting element is mounted on a submount substrate and sealed with a hemispherical transparent sealing body will be described as a representative example. Instead of the LED device 1 as described above, an LED array obtained by arranging a plurality of light emitting elements on a single substrate and sealing each light emitting element in a hemispherical shape by overlay molding is described above. Such an optical member may be mounted. In this case, the optical member may be mounted as an independent optical member or as a lens array formed by integrating a plurality of the optical members described above.

光学部材は、例えば、注型成形、圧縮成形、射出成形等により成形される。透明封止体及び光学部材を形成するための透明材料としては、光透過性に優れた材料であれば、特に限定なく用いられる。具体的には、例えば、シリコーンゲル,シリコーンエラストマー,シリコーンゴム,硬質のシリコーン樹脂,シリコーン変性エポキシ樹脂,エポキシ樹脂,シリコーン変性アクリル樹脂,アクリル樹脂等の透明樹脂の他、有機ガラスや無機ガラス等が挙げられる。これらの中では、光透過性に優れ、また、鉛フリー半田を用いた高温リフロー実装の際のヒートショック等による応力を緩和し、耐変形性や耐変色性に優れたレンズが得られる点から、シリコーンエラストマーやシリコーンゴムやシリコーン樹脂が特に好ましい。また、透明樹脂は、本発明の効果を損なわない範囲で、必要に応じて、LED素子から発光される光の波長を変換することにより、発光色を変換するための蛍光体や、光を拡散させるための光拡散剤等を含んでもよい。   The optical member is molded by, for example, cast molding, compression molding, injection molding, or the like. The transparent material for forming the transparent sealing body and the optical member is not particularly limited as long as it is a material excellent in light transmittance. Specifically, for example, transparent resin such as silicone gel, silicone elastomer, silicone rubber, hard silicone resin, silicone modified epoxy resin, epoxy resin, silicone modified acrylic resin, acrylic resin, organic glass, inorganic glass, etc. Can be mentioned. Among these, from the point that it is excellent in light transmissivity, and the stress due to heat shock etc. at the time of high temperature reflow mounting using lead-free solder is eased, and a lens excellent in deformation resistance and discoloration resistance can be obtained. Particularly preferred are silicone elastomers, silicone rubbers and silicone resins. In addition, the transparent resin diffuses the phosphor for converting the emission color and the light by converting the wavelength of the light emitted from the LED element as necessary within the range not impairing the effect of the present invention. A light diffusing agent or the like may be included.

光学部材は、半導体発光素子から発光される光の光軸に対して光学的に軸対称になるような形状に形成されている場合には、半導体発光素子からの発光を光軸中心からその周囲に均質に配光させることができる点から好ましい。なお、用途に応じて、平面方向の特定の方向に配光させたい場合には、楕円形や光軸に非対称なまたは左右非対称な形状としてもよい。   When the optical member is formed in a shape that is optically symmetric with respect to the optical axis of the light emitted from the semiconductor light emitting element, the optical member emits light from the semiconductor light emitting element from the optical axis center to its periphery. It is preferable from the point that it can distribute light uniformly. Depending on the application, if it is desired to distribute light in a specific direction in the plane direction, an elliptical shape or an asymmetric shape with respect to the optical axis or a left-right asymmetric shape may be used.

図1(b)に示すように、光学部材5は、半球状の透明封止体1cを収容するための凹状の内側輪郭5aと、内側輪郭5aの周囲に連なる底面輪郭5bと、底面輪郭5bに連なる外側輪郭5cとを備える。また内側輪郭5aの開口部および底面輪郭5bには、必要に応じて、後述するようにLED装置1を固定するための嵌合形状を設けてもよい。   As shown in FIG. 1B, the optical member 5 includes a concave inner contour 5a for accommodating the hemispherical transparent sealing body 1c, a bottom contour 5b connected to the periphery of the inner contour 5a, and a bottom contour 5b. And an outer contour 5c. Moreover, you may provide the fitting shape for fixing the LED apparatus 1 so that it may mention later in the opening part of the inner side outline 5a, and the bottom face outline 5b.

図2は、光学部材付発光装置10の形状を説明するための、半球状の透明封止体1cの輪郭形状及び光学部材5の輪郭形状を説明する説明図である。また、図3は、光学部材付発光装置10の、LED素子1aから発光された光の伝播方向の一例を示す説明図である。   FIG. 2 is an explanatory diagram for explaining the contour shape of the hemispherical transparent sealing body 1 c and the contour shape of the optical member 5 for explaining the shape of the light emitting device with an optical member 10. Moreover, FIG. 3 is explanatory drawing which shows an example of the propagation direction of the light light-emitted from the LED element 1a of the light-emitting device 10 with an optical member.

図3に示すように、光学部材付発光装置10においては、透明封止体1cの輪郭により形成される界面(I)、空間Sと光学部材5との界面(II)、光学部材5と外部との界面(III)、の合計3つの界面が形成されている。各界面においては、スネルの法則に従って光が屈折される。LED素子1aから発光された光は透明封止体1cに入射した後、透明封止体1cの半球状の出射面である界面(I)から出射する。このとき、光束は界面(I)で光軸方向に集光するように屈折される。そして、屈折された光束は、透明封止体1cと凹状の内側輪郭5aとの間の空間S内を直進し、凹状の内側輪郭5aに到達し、空間Sと凹状の内側輪郭5aとの界面(II)で屈折されて、光学部材5に入射する。そして、光学部材5に入射した光束は光学部材5の外側輪郭5cにまで直進し、外側輪郭5cが形成する界面(III)で光軸との成す角が大きくなるように屈折されて、出射され、被照射面6を照射する。   As shown in FIG. 3, in the light emitting device with an optical member 10, the interface (I) formed by the outline of the transparent sealing body 1c, the interface (II) between the space S and the optical member 5, the optical member 5 and the outside And a total of three interfaces (III). At each interface, light is refracted according to Snell's law. The light emitted from the LED element 1a enters the transparent sealing body 1c and then exits from the interface (I) which is a hemispherical exit surface of the transparent sealing body 1c. At this time, the light beam is refracted so as to be condensed in the optical axis direction at the interface (I). The refracted light beam travels straight in the space S between the transparent sealing body 1c and the concave inner contour 5a, reaches the concave inner contour 5a, and the interface between the space S and the concave inner contour 5a. The light is refracted in (II) and enters the optical member 5. The light beam incident on the optical member 5 travels straight to the outer contour 5c of the optical member 5, and is refracted and emitted so that the angle formed with the optical axis is increased at the interface (III) formed by the outer contour 5c. The irradiated surface 6 is irradiated.

光学部材付発光装置10は、図2に示すように、光軸Lに対して角度θを成す、発光中心1a’から引いた仮想直線を基準線SDとし、光軸Lと、基準線SDと半球状透明封止体の表面輪郭との交点Aにおける法線との成す角度をφ、基準線SDと内側輪郭の表面との交点Bにおける法線との成す角度をψ、基準線SDと外側輪郭の表面との交点Cにおける法線との成す角度をδとした場合、次のような形状の特徴を有する。   As shown in FIG. 2, the light emitting device with an optical member 10 uses an imaginary straight line formed from the light emission center 1 a ′ that forms an angle θ with respect to the optical axis L as a reference line SD, and the optical axis L and the reference line SD. The angle formed by the normal line at the intersection A with the surface contour of the hemispherical transparent sealing body is φ, the angle formed by the normal line at the intersection B between the reference line SD and the surface of the inner contour is ψ, and the reference line SD and the outside When the angle formed with the normal line at the intersection C with the contour surface is δ, the following features are obtained.

図4に示すように、光学部材5の凹状の内側輪郭5aは、0°<θ≦15°、好ましくは5°≦θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、θx>θの範囲ではθが大きくなるにつれてψ/θが増加し、θ>θxの範囲ではθ=70°、好ましくは80°、さらに好ましくは90°の範囲まではθが大きくなるにつれてψ/θが減少している。ここで、ψ/θは、仮想的にLED素子1aから角度θで出射した光が、凹状の内側輪郭5aに入射するときの入射角を規定するパラメータであり、ψ/θが大きければ大きいほど、凹状の内側輪郭5aの界面における屈折角が大きくなることを示す。光学部材付発光装置10においては、0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有することにより、図3のEに示すように、凹状の内側輪郭5aの界面は、光軸近傍に集光した光を光軸からのなす角が大きくなるように屈折させることができる。 As shown in FIG. 4, the concave inner contour 5a of the optical member 5 has a maximum value (ψ / θ) max of ψ / θ within a range of 0 ° <θ ≦ 15 °, preferably 5 ° ≦ θ ≦ 15 °. has to become angle θ x, θ x> ψ / θ increases as theta increases in the range of θ, θ> θ is theta = 70 ° in the range of x, preferably 80 °, more preferably 90 ° Up to this range, ψ / θ decreases as θ increases. Here, ψ / θ is a parameter that defines an incident angle when light emitted from the LED element 1a at an angle θ is incident on the concave inner contour 5a, and the larger ψ / θ is, the larger the value is. This indicates that the refraction angle at the interface of the concave inner contour 5a is increased. In the light emitting device with an optical member 10, by having an angle θ x where ψ / θ is a maximum value (ψ / θ) max in a range of 0 ° <θ ≦ 15 °, as shown in E of FIG. The interface of the concave inner contour 5a can refract the light condensed in the vicinity of the optical axis so that the angle formed from the optical axis becomes large.

(ψ/θ)maxの値は、1.2〜8、さらには2〜5、とくには、2.5〜4、最も好ましくは3〜3.5程度であることが被照射面において均一度の高い照度分布を実現できる点から好ましい。なお、(ψ/θ)maxの値が、小さすぎる場合には、光軸近傍に集光した光が屈折される角度が小さくなり、その結果、拡散効果が小さくなり光軸近傍での照度が上昇することにより照度分布のバラつきが増加する傾向がある。また、大きすぎる場合には光軸近傍の光束が少なくなりすぎて過剰な拡散効果が得られて光軸近傍での照度が低下し照度分布のバラつきが増加する傾向がある。また、光軸近傍の0<θ<5°におけるψ/θの値は、1〜5、さらには2〜3、とくには2.5〜3程度であることが被照射面において光軸直上付近の配光を適度に残すことができる点から好ましい。 The value of (ψ / θ) max is 1.2 to 8, more preferably 2 to 5, particularly 2.5 to 4, and most preferably about 3 to 3.5. Is preferable from the viewpoint of realizing a high illuminance distribution. When the value of (ψ / θ) max is too small, the angle at which the light collected near the optical axis is refracted becomes small. As a result, the diffusion effect is reduced, and the illuminance near the optical axis is reduced. There is a tendency that the variation in illuminance distribution increases due to the increase. On the other hand, if it is too large, the light flux in the vicinity of the optical axis becomes too small and an excessive diffusion effect is obtained, and the illuminance in the vicinity of the optical axis tends to decrease and the variation in the illuminance distribution tends to increase. Further, the value of ψ / θ at 0 <θ <5 ° in the vicinity of the optical axis is about 1 to 5, more preferably about 2 to 3, and particularly about 2.5 to 3 near the optical axis on the irradiated surface. This is preferable from the viewpoint that the light distribution can be appropriately left.

図5に光学部材付発光装置10のθに対するδをプロットしたグラフを示す。図5のグラフに示すように、光学部材5の外側輪郭5cは、0°≦θ≦45°の範囲で0≦δ≦30°を満たすように規定される。図3のEに示すように、凹状の内側輪郭5aが、0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有する場合、凹状の内側輪郭5aの界面により、光軸近傍の光束は光軸に対する角度が大きくなるように屈折される。この場合において、光学部材5の外側輪郭5cの形状を、0°≦θ≦45°の範囲で0≦δ≦30°、さらには0≦δ≦20°を満たすように規定することにより、凹状の内側輪郭5aで屈折された光軸近傍の光束の外側輪郭5cの界面への入射角を大きくすることができ、その結果、光軸に対する角度が大きくなるように屈折される。 FIG. 5 shows a graph plotting δ with respect to θ of the light emitting device 10 with an optical member. As shown in the graph of FIG. 5, the outer contour 5c of the optical member 5 is defined so as to satisfy 0 ≦ δ ≦ 30 ° in the range of 0 ° ≦ θ ≦ 45 °. As shown in E of FIG. 3, the concave inner contour 5a is, if it has a 0 ° <θ ≦ 15 ranges [psi / theta is the maximum value of ° (ψ / θ) becomes max angle theta x, concave inner Due to the interface of the contour 5a, the light beam near the optical axis is refracted so that the angle with respect to the optical axis becomes large. In this case, by defining the shape of the outer contour 5c of the optical member 5 so as to satisfy 0 ≦ δ ≦ 30 ° and further 0 ≦ δ ≦ 20 ° in the range of 0 ° ≦ θ ≦ 45 °, The incident angle of the light beam near the optical axis refracted by the inner contour 5a to the interface of the outer contour 5c can be increased, and as a result, the light is refracted so that the angle with respect to the optical axis is increased.

光学部材5の外側輪郭5cは、光軸近傍が平面であり、少なくとも0°≦θ≦45°の範囲、さらには0°≦θ≦60°の範囲において、その平面に連続した、上に凸状の滑らかな曲面で構成されており、0°≦θ≦5°の範囲で0°≦δ≦5°であり、5°<θ≦30°の範囲で0°≦δ≦10°であり、30°<θ≦45°の範囲で2≦δ≦30°になり、とくには、45°<θ≦60°の範囲で5≦δ≦45°になるように形成されていることが好ましい。光学部材5の出射面である外側輪郭5cの形状をこのように規定することにより、光軸近傍の光束の光学部材5の出射面に対する入射角を充分に大きくすることができ、その結果、拡散方向に大きく屈折させることができる。   The outer contour 5c of the optical member 5 has a flat surface in the vicinity of the optical axis, and is continuously convex upward in the range of 0 ° ≦ θ ≦ 45 °, and further in the range of 0 ° ≦ θ ≦ 60 °. In the range of 0 ° ≦ θ ≦ 5 °, 0 ° ≦ δ ≦ 5 °, and in the range of 5 ° <θ ≦ 30 °, 0 ° ≦ δ ≦ 10 ° In the range of 30 ° <θ ≦ 45 °, 2 ≦ δ ≦ 30 °, and in particular, in the range of 45 ° <θ ≦ 60 °, 5 ≦ δ ≦ 45 ° is preferable. . By defining the shape of the outer contour 5c that is the exit surface of the optical member 5 in this way, the incident angle of the light beam near the optical axis with respect to the exit surface of the optical member 5 can be sufficiently increased, and as a result, diffusion It can be refracted greatly in the direction.

とくに、光学部材5の外側輪郭5cは、0°≦θ<10°の範囲においてδ=0°となるθの範囲を有することが好ましい。また、10°≦θ≦45°の範囲においては、θの増加に対してδが、連続的に増加していることが好ましい。さらに、0°≦θ≦45°の範囲においては、θが増加するときにδは減少しないことが好ましい。このような場合には、光軸近傍での照度を低下させすぎずに、効果的に、照度分布のバラつきを抑制することができる点から好ましい。   In particular, the outer contour 5c of the optical member 5 preferably has a range of θ where δ = 0 ° in a range of 0 ° ≦ θ <10 °. Further, in the range of 10 ° ≦ θ ≦ 45 °, it is preferable that δ continuously increases with an increase in θ. Furthermore, in the range of 0 ° ≦ θ ≦ 45 °, it is preferable that δ does not decrease when θ increases. In such a case, it is preferable from the viewpoint that variation in illuminance distribution can be effectively suppressed without excessively reducing the illuminance in the vicinity of the optical axis.

さらに、角度θの微小変化量Δθに対する角度δの微小変化量Δδの比をΔδ/Δθとした場合、0°≦θ≦20°の範囲で0≦Δδ/Δθ≦0.2であり、20°<θ≦45°の範囲で0.05≦Δδ/Δθ≦1.2であり、45°≦θ≦60°の範囲で0.5≦Δδ/Δθ≦1.8であるように規定されていることが好ましい。このような場合には集光方向の光を外側輪郭により屈折させて、照度のバラつきをより抑えることができる。   Further, when the ratio of the minute change amount Δδ of the angle δ to the minute change amount Δθ of the angle θ is Δδ / Δθ, 0 ≦ Δδ / Δθ ≦ 0.2 in the range of 0 ° ≦ θ ≦ 20 °, and 20 It is specified that 0.05 ≦ Δδ / Δθ ≦ 1.2 in the range of ° <θ ≦ 45 ° and 0.5 ≦ Δδ / Δθ ≦ 1.8 in the range of 45 ° ≦ θ ≦ 60 °. It is preferable. In such a case, the light in the condensing direction can be refracted by the outer contour, and variation in illuminance can be further suppressed.

図6は、本実施形態の光学部材付発光装置10の、角度θに対する、半球状の透明封止体1cの表面と凹状の内側輪郭5aの表面との基準線上における距離Dをプロットした一例である。図6に示すように、半球状の透明封止体1cの表面と凹状の内側輪郭5aの表面との距離Dは、θ=0°のとき最大になり、45°<θ≦70°の範囲、好ましくは50°<θ≦65°の範囲の領域にその距離が最小になる角度θを有する。なお、図6は、θ=55°のときの例である。なお、距離Dはθ>θの範囲では、少なくともθ<70°の範囲において、θの増加に伴ってDが徐々に大きくなるよう変化する。 FIG. 6 is an example in which the distance D on the reference line between the surface of the hemispherical transparent sealing body 1c and the surface of the concave inner contour 5a is plotted with respect to the angle θ of the light emitting device with an optical member 10 of the present embodiment. is there. As shown in FIG. 6, the distance D between the surface of the hemispherical transparent sealing body 1c and the surface of the concave inner contour 5a is maximum when θ = 0 °, and is in a range of 45 ° <θ ≦ 70 °. The angle θ y that minimizes the distance is preferably in a region in the range of 50 ° <θ ≦ 65 °. FIG. 6 shows an example when θ y = 55 °. Note that the distance D changes within a range of θ> θ y so that D gradually increases as θ increases in at least a range of θ <70 °.

図13に示したように、半球状の透明封止体を備えたLEDパッケージにおいては、光軸方向に集光する傾向があるために、45°<θ≦70°の範囲においては光量が相対的に少なくなる。このような範囲の光束はできるだけ光軸方向に集光しないように配光制御することが好ましい。半球状の透明封止体1cから出射した光は、透明封止体1cよりも屈折率の小さい空間Sに入射した場合、透明封止体1cと空間Sとの界面で光軸方向に屈折する。この場合、空間Sを直進する距離が長ければ長いほど、光軸方向に集光しやすくなる。従って、図3のFに示すように、45°<θ≦70°の範囲で出射した光束が空間Sを短い距離で通過して光学部材5に入射することにより、この領域の光束の配光を広くすることができる。   As shown in FIG. 13, in the LED package provided with the hemispherical transparent encapsulant, there is a tendency to condense in the optical axis direction, so that the light quantity is relative in the range of 45 ° <θ ≦ 70 °. Less. It is preferable to control the light distribution so that the light flux in such a range is not collected in the optical axis direction as much as possible. When the light emitted from the hemispherical transparent sealing body 1c enters the space S having a refractive index smaller than that of the transparent sealing body 1c, the light is refracted in the optical axis direction at the interface between the transparent sealing body 1c and the space S. . In this case, the longer the distance traveling straight through the space S, the easier it is to collect light in the optical axis direction. Therefore, as shown in FIG. 3F, the luminous flux emitted in the range of 45 ° <θ ≦ 70 ° passes through the space S at a short distance and enters the optical member 5, thereby distributing the luminous flux in this region. Can be widened.

半球状の透明封止体の表面と凹状の内側輪郭の表面との距離は、さらに具体的には、例えば、角度θにおける半球状の透明封止体の表面と凹状の内側輪郭の表面との基準線SD上における距離をD(θ)とした場合、D(θ)=Acos(Bθ)+C(式中、0≦θ≦70°、0≦A≦1、0≦B≦5、-1≦C≦1)で表され、θに対してD(θ)をプロットしたグラフにおいて、20<θ<45°の範囲に存在する変化点を境として、θが大きい側のA,B,Cそれぞれが、θが小さい側のA,B,Cそれぞれよりも小さくなることが好ましい。なお、図6のグラフにおいては、変化点Xはθ=28.9°に存在し、0<θ<28.9°において、D(θ)=0.3cos(3.8θ)+0.45、28.9°≦θ≦85°において、D(θ)=0.23cos(3.3θ)+0.37で表される。このような場合には、凹状の内側輪郭の傾きを表すθの微小変化量Δθに対するD(θ)の微小変化量ΔD(θ)の比をΔD(θ)/Δθとした場合、変化点Xよりも小さい範囲の角度範囲におけるΔD(θ)/Δθの最大値が、変化点Xよりも大きい範囲の角度範囲におけるΔD(θ)/Δθの最大値よりも大きくなる。   More specifically, the distance between the surface of the hemispherical transparent encapsulant and the surface of the concave inner contour is, for example, the surface of the hemispherical transparent encapsulant at the angle θ and the surface of the concave inner contour. When the distance on the reference line SD is D (θ), D (θ) = Acos (Bθ) + C (where 0 ≦ θ ≦ 70 °, 0 ≦ A ≦ 1, 0 ≦ B ≦ 5, − 1 ≦ C ≦ 1), and a graph in which D (θ) is plotted with respect to θ, A, B, Each C is preferably smaller than each of A, B, and C on the side where θ is small. In the graph of FIG. 6, the change point X exists at θ = 28.9 °, and D (θ) = 0.3 cos (3.8θ) +0.45 when 0 <θ <28.9 °. 28.9 ° ≦ θ ≦ 85 °, D (θ) = 0.23 cos (3.3θ) +0.37. In such a case, when the ratio of the minute change amount ΔD (θ) of D (θ) to the minute change amount Δθ of θ representing the inclination of the concave inner contour is ΔD (θ) / Δθ, the change point X The maximum value of ΔD (θ) / Δθ in the smaller angle range is larger than the maximum value of ΔD (θ) / Δθ in the angular range larger than the change point X.

このような変化点Xの存在により、θ>45°の角度θでその距離が最も短くなる。このような形状によれば、θ>45°の角度θで半球状の透明封止体1cの表面と光学部材5の凹状の内側輪郭5aの表面とが最近接する。この領域においては、図3のFに示すように、半球状の透明封止体1cから出射した光が光軸方向に屈折されて空間Sを進行するが、空間Sにおける光路が短いまま、凹状の内側輪郭5aの表面に入射して光軸に対して成す角度が大きくなる方向に光路が曲げられる。これにより角度θ近傍の角度で透明封止体1cから出射された光は、光軸に平行な方向への直進距離を最小限にして光学部材内に屈折により入射し、光学部材内を直進して外側輪郭5cの光軸からの距離が離れた位置に到達し、さらに光学部材5の出射面における屈折により光軸とのなす角をさらに大きくして出射する。すなわち、θ>45°で出射した集光方向に屈折された光を、集光方向にほとんど進行させないうちに、凹状の内側輪郭5aの界面で拡散方向に屈折させることができる。 Due to the presence of such a change point X, the distance becomes the shortest at an angle θ y of θ> 45 °. According to such a shape, theta> 45 and ° angle theta surface y hemispherical transparent encapsulant 1c and concave inner contour 5a of the surface of the optical member 5 is closest. In this region, as shown in FIG. 3F, the light emitted from the hemispherical transparent sealing body 1c is refracted in the direction of the optical axis and travels through the space S. The optical path is bent in the direction in which the angle formed with respect to the inner contour 5a and the angle formed with respect to the optical axis increases. Thereby angle light emitted from the transparent encapsulant 1c near the angle theta y is to minimize the rectilinear length of the direction parallel to the optical axis enters by refraction in the optical element, straight through the optical member As a result, the outer contour 5c reaches a position away from the optical axis, and the angle formed with the optical axis is further increased due to refraction at the exit surface of the optical member 5. That is, the light refracted in the condensing direction emitted at θ> 45 ° can be refracted in the diffusing direction at the interface of the concave inner contour 5a before proceeding almost in the condensing direction.

凹状の内側輪郭5aと透明封止体1cの外表面との間の距離は、透明封止体1cの大きさによって適宜調整されるが、具体的には、例えば、半球状封止体の底面の直径が2〜3mm程度であるとき、半球状の透明封止体1cの表面と凹状の内側輪郭5aとの間隔の最も短くなる角度θでの距離が、5〜1000μm、さらには10〜500μm、とくには、50〜300μm程度であることが好ましい。間隔の最も短くなる角度θでの距離が長すぎる場合には、光学部材5の全体形状も大きくなる傾向がある。 The distance between the concave inner contour 5a and the outer surface of the transparent sealing body 1c is appropriately adjusted depending on the size of the transparent sealing body 1c. Specifically, for example, the bottom surface of the hemispherical sealing body Is about 2 to 3 mm, the distance between the surface of the hemispherical transparent sealing body 1c and the concave inner contour 5a at the angle θ y that makes the shortest is 5 to 1000 μm, It is preferably about 500 μm, particularly about 50 to 300 μm. If the distance at the angle θ y at which the interval is the shortest is too long, the overall shape of the optical member 5 tends to increase.

また、半球状の透明封止体1cの表面と凹状の内側輪郭5aとの距離の最も長い部分であるθ=0°における距離Dも透明封止体1cの大きさによって適宜調整されるが、具体的には、例えば、半球状封止体の底面の直径が2〜3mm程度であるときは、400〜5000μm、さらには、400〜2000μmさらには、500〜1000μm程度であることが好ましい。θ=0°における距離が長すぎる場合には、光学部材5の高さが高くなる傾向がある。また、θ=0°における距離が短すぎる場合には、光軸に対して発光中心から45°以内の角度を成す領域の界面(II)の傾きが緩やかになり、その結果、界面(II)に対する光の入射角が小さくなる傾向がある。   Further, the distance D at θ = 0 °, which is the longest distance between the surface of the hemispherical transparent encapsulant 1c and the concave inner contour 5a, is appropriately adjusted depending on the size of the transparent encapsulant 1c. Specifically, for example, when the diameter of the bottom surface of the hemispherical sealing body is about 2 to 3 mm, it is preferably about 400 to 5000 μm, further about 400 to 2000 μm, and further about 500 to 1000 μm. When the distance at θ = 0 ° is too long, the height of the optical member 5 tends to increase. When the distance at θ = 0 ° is too short, the inclination of the interface (II) in the region that forms an angle within 45 ° from the emission center with respect to the optical axis becomes gentle, and as a result, the interface (II) There is a tendency that the incident angle of light with respect to becomes smaller.

また、θ=0°における距離とθ=θにおける距離の比率も透明封止体1cの大きさによって適宜調整されるが、具体的には、例えば、半球状封止体の底面の直径が2〜3mm程度であるとき、D(0°)/D(θ)=1.1〜500、さらには、1.3〜20、さらには、2〜10程度であることが、光軸に対して45°以上の角度を成す領域における界面(II)の傾きを充分に大きくすることができるために、界面(II)に対する光の入射角が大きくできる点から好ましい。 Also, is adjusted appropriately depending on the size of theta = 0 the ratio of a distance in the distance and theta = theta y in ° transparency encapsulant 1c, specifically, for example, the bottom surface of the hemispherical sealing member diameter When it is about 2 to 3 mm, D (0 °) / D (θ y ) = 1.1 to 500, further 1.3 to 20, and more preferably about 2 to 10 On the other hand, since the inclination of the interface (II) in a region having an angle of 45 ° or more can be sufficiently increased, it is preferable from the viewpoint that the incident angle of light with respect to the interface (II) can be increased.

上述のように光学部材付発光装置10においては、透明封止体1cの輪郭により形成される界面(I)、空間Sと光学部材5との界面(II)、光学部材5と外部との界面(III)、の合計3つの界面を相互に関連付けて配光調整されている。従って、光学部材5の高さが高くなることを抑制しながら、照射面における照度分布のバラつきを抑えて広い配光角度で配光することができる。具体的には、例えば、図2を参照して、LED素子1aの表面から透明封止体1cの最大高さをH1、LED素子1aの表面から光学部材5の最大高さをH2とした場合、H2/H1≦3、さらにはH2/H1≦2.5、のような透明封止体1cの高さに比べて光学部材5の高さがそれほど高くなくても、透明封止体1cから出射されるほぼすべての光が充分に制御される。   As described above, in the light emitting device with an optical member 10, the interface (I) formed by the outline of the transparent sealing body 1c, the interface (II) between the space S and the optical member 5, and the interface between the optical member 5 and the outside. The light distribution is adjusted by correlating a total of three interfaces (III). Therefore, it is possible to perform light distribution with a wide light distribution angle while suppressing an increase in the height of the optical member 5 and suppressing variations in illuminance distribution on the irradiation surface. Specifically, for example, referring to FIG. 2, when the maximum height of the transparent sealing body 1c from the surface of the LED element 1a is H1, and the maximum height of the optical member 5 from the surface of the LED element 1a is H2. H2 / H1 ≦ 3, and even H2 / H1 ≦ 2.5, even if the height of the optical member 5 is not so high compared to the height of the transparent sealing body 1c, the transparent sealing body 1c Almost all the emitted light is well controlled.

また、光学部材5の高さが高くなることを抑制するために、光学部材5の光軸上における凹状の内側輪郭5aと外側輪郭5cとの距離、すなわち、光軸における光学部材の厚みをtとし、LED装置1の半球状透明封止体の底面の直径をWとしたとき、t/W≦0.13が成り立つよう調整することが好ましい。t/Wを0.13以下とすることで所望の外側輪郭形状を維持し、かつ、光学部材内を伝播する光の通過距離を最小限に抑えることができる。このため光学部材全体の厚みおよび直径の小型化を行なうことができる。   In order to prevent the height of the optical member 5 from increasing, the distance between the concave inner contour 5a and the outer contour 5c on the optical axis of the optical member 5, that is, the thickness of the optical member on the optical axis is set to t. And the diameter of the bottom surface of the hemispherical transparent encapsulant of the LED device 1 is preferably adjusted so that t / W ≦ 0.13 holds. By setting t / W to 0.13 or less, a desired outer contour shape can be maintained, and the passage distance of light propagating through the optical member can be minimized. For this reason, the thickness and diameter of the entire optical member can be reduced.

なお、光学部材付発光装置10は、図1(b)に示すように、光軸近傍において、凹状の内側輪郭5aの曲率が半球状の透明封止体1cの曲率よりも大きくなるように形成されている。このように形成することにより、光軸近傍の光量をより光軸とのなす角が大きい方向へ拡散させることができる。   In addition, as shown in FIG.1 (b), the light-emitting device 10 with an optical member is formed so that the curvature of the concave inner outline 5a is larger than the curvature of the hemispherical transparent sealing body 1c in the vicinity of the optical axis. Has been. By forming in this way, the amount of light in the vicinity of the optical axis can be diffused in a direction where the angle formed with the optical axis is larger.

透明封止体1c、凹状の内側輪郭5aと透明封止体1cの外表面との間の空間S、及び光学部材5の各屈折率は、要求される配光特性により適宜設定されるが、空間Sの屈折率が最も小さい。このような観点から空間Sとしては、空気層か低屈折率の透明材料層が選ばれる。さらに具体的には、空間Sの屈折率は、透明封止体1c及び光学部材5の屈折率に対して、0.2以上、さらには0.3以上小さいことが好ましい。   Each refractive index of the transparent sealing body 1c, the space S between the concave inner contour 5a and the outer surface of the transparent sealing body 1c, and the optical member 5 is appropriately set according to the required light distribution characteristics. The refractive index of the space S is the smallest. From such a viewpoint, as the space S, an air layer or a transparent material layer having a low refractive index is selected. More specifically, the refractive index of the space S is preferably smaller than the refractive index of the transparent encapsulant 1c and the optical member 5 by 0.2 or more, and more preferably by 0.3 or more.

図7に、光学部材付発光装置10の照射パターンの光強度分布図の一例を示す。なお、図7に示した照射パターンは、図8に示したような寸法の光学部材付発光装置10により得られた。   In FIG. 7, an example of the light intensity distribution figure of the irradiation pattern of the light-emitting device 10 with an optical member is shown. In addition, the irradiation pattern shown in FIG. 7 was obtained by the light emitting device 10 with an optical member having a dimension as shown in FIG.

すなわち、図8を参照して、光学部材5は上面視したときに略円状のレンズ形状であり、その直径は8.0mm、LED素子1aの上面を基準とした最大高さは2.4mm、底面の内径は3.5mmである。また、その外形は図4〜図6のグラフで特定され、(ψ/θ)maxになる角度θxは10°、変化点Xは28.9°に存在し、半球状の透明封止体の表面と凹状の内側輪郭との距離が最も短くなる角度θは55°であり、そのときの距離は0.14mmであった。また、凹状の内側輪郭の天面の曲率半径R1は0.654mmであった。さらに、光学部材5の屈折率は1.41であった。 That is, with reference to FIG. 8, the optical member 5 has a substantially circular lens shape when viewed from above, the diameter thereof is 8.0 mm, and the maximum height with respect to the upper surface of the LED element 1a is 2.4 mm. The inner diameter of the bottom surface is 3.5 mm. Further, the outer shape is specified by the graphs of FIGS. 4 to 6, the angle θ x at which (ψ / θ) max is 10 °, the change point X is 28.9 °, and a hemispherical transparent sealing body The angle θ at which the distance between the surface and the concave inner contour becomes the shortest was 55 °, and the distance at that time was 0.14 mm. The curvature radius R1 of the top surface of the concave inner contour was 0.654 mm. Furthermore, the refractive index of the optical member 5 was 1.41.

一方、LED装置1は、一辺1mmの正方形のLED素子を備え、半球状の透明封止体は高さ1.44mm、底面の直径は2.54mmであり、半球の曲率半径R2は1.25mmであり、光軸方向において、半球状の透明封止体の天面から凹状の内側輪郭までの距離は0.75mmであり、透明封止体の屈折率は1.52であった。   On the other hand, the LED device 1 includes a square LED element having a side of 1 mm, a hemispherical transparent sealing body having a height of 1.44 mm, a bottom surface diameter of 2.54 mm, and a hemispherical radius of curvature R2 of 1.25 mm. In the optical axis direction, the distance from the top surface of the hemispherical transparent encapsulant to the concave inner contour was 0.75 mm, and the refractive index of the transparent encapsulant was 1.52.

図7に示すように、光学部材付発光装置10においては、光軸に対して、+65°及び−65°付近に最大相対光量が存在するように配光制御されている。そして、θ=0°における相対強度は、−65°付近の最大ピーク強度1に対して0.22程度になっている。また、±30°付近における相対強度は、0.3程度になっている。また、±80°付近で0.4程度、±50°付近で0.6程度になっており、広い範囲で比較的バラつきが小さい配光であることが示されている。これは、図13に示した半球状封止体を備えたLEDパッケージの配光と比べると、光学部材付発光装置10においては、明らかに光軸方向の集光が抑制され、広い配光域で照度が均一化されていることがわかる。   As shown in FIG. 7, in the light emitting device with an optical member 10, light distribution is controlled so that the maximum relative light amount exists in the vicinity of + 65 ° and −65 ° with respect to the optical axis. The relative intensity at θ = 0 ° is about 0.22 with respect to the maximum peak intensity 1 near −65 °. Further, the relative intensity in the vicinity of ± 30 ° is about 0.3. Moreover, it is about 0.4 at around ± 80 ° and about 0.6 at around ± 50 °, indicating that the light distribution is relatively small in a wide range. Compared with the light distribution of the LED package provided with the hemispherical sealing body shown in FIG. 13, in the light emitting device with an optical member, condensing in the optical axis direction is clearly suppressed, and a wide light distribution range is obtained. It can be seen that the illuminance is uniform.

なお、図7においては、+65°及び−65°付近に最大相対光量が存在するように配光制御されている。一例として、図6に示すように、光学部材付発光装置10においては、半球状透明封止体1cの表面と凹状の内側輪郭の表面5aとの距離が最も短くなるθyは55°である。このように、本実施形態の光学部材付発光装置10においては、最大相対光量を示す角度は、θy±15°、さらにはθy±10°の絶対値の角度付近に位置することが好ましい。このような場合には、配光バラつきを充分に低減することができる点からとくに好ましい。   In FIG. 7, the light distribution is controlled so that the maximum relative light quantity exists in the vicinity of + 65 ° and −65 °. As an example, as shown in FIG. 6, in the light emitting device with an optical member 10, θy at which the distance between the surface of the hemispherical transparent sealing body 1 c and the surface 5 a of the concave inner contour is the shortest is 55 °. As described above, in the light emitting device with an optical member 10 of the present embodiment, the angle indicating the maximum relative light amount is preferably located in the vicinity of the angle of the absolute value of θy ± 15 °, further θy ± 10 °. In such a case, it is particularly preferable from the viewpoint that variation in light distribution can be sufficiently reduced.

なお、光学部材5の底面輪郭5bを含む底面には反射膜を形成してもよい。このような反射膜を形成することにより、発光素子から生じた光軸に対して成す角度の大きいわずかな光や、光学部材5の内部で生じた迷光を出射面側に反射させて、光取り出し効率を向上させることができる。このような反射膜としては、白色フィラーを含有する樹脂組成物からなる白色反射膜や、金属反射膜が挙げられる。   Note that a reflective film may be formed on the bottom surface of the optical member 5 including the bottom surface contour 5b. By forming such a reflection film, a slight light having a large angle with respect to the optical axis generated from the light emitting element or stray light generated inside the optical member 5 is reflected to the emission surface side to extract light. Efficiency can be improved. Examples of such a reflective film include a white reflective film made of a resin composition containing a white filler, and a metal reflective film.

以上、本実施形態に係る光学部材付発光装置の基本構成及びその効果について説明した。本実施形態の光学部材付発光装置においては、LED装置等の半導体発光装置に光学部材を装着する方法は、特に限定されず、例えば、下記に説明するように、光学部材にサブマウント基板を固定するような嵌合形状を設けたり、接着剤で接着したり、スナップフィット形状等の係合部を設けるなど特に限定されない。また、半球状の透明封止体1cの表面と光学部材5との間の層が低屈折率の透明樹脂層である場合には、光学部材と低屈折率樹脂層を同時成形もしくはそれぞれ個別に成形したのち嵌合させ、更にその後LEDパッケージと接着剤を使用した接着を行なってもよく、また光学部材5とLEDパッケージ間を低屈折率かつ透明の接着剤で満たしても良い。   The basic configuration and the effect of the light emitting device with an optical member according to the present embodiment have been described above. In the light emitting device with an optical member of the present embodiment, the method for attaching the optical member to the semiconductor light emitting device such as the LED device is not particularly limited. For example, as described below, the submount substrate is fixed to the optical member. There is no particular limitation such as providing such a fitting shape, bonding with an adhesive, or providing an engaging portion such as a snap-fit shape. When the layer between the surface of the hemispherical transparent encapsulant 1c and the optical member 5 is a low refractive index transparent resin layer, the optical member and the low refractive index resin layer are formed simultaneously or individually. After the molding, they may be fitted together, and then the LED package may be bonded with an adhesive, or the optical member 5 and the LED package may be filled with a low refractive index and transparent adhesive.

光学部材にサブマウント基板を固定するような嵌合形状を設ける場合について、図9を参照してその一例を説明する。図9(a)は、本実施形態の光学部材の一例である光学部材25にLED装置1を装着する前の状態であり、図9(b)は装着後の状態である。本実施形態はサブマウント基板に発光素子が1つの場合を示すが、同一基板上に複数の発光素子が実装されている光源にも同様に適用できる。   An example of providing a fitting shape for fixing the submount substrate to the optical member will be described with reference to FIG. FIG. 9A shows a state before the LED device 1 is mounted on the optical member 25 which is an example of the optical member of the present embodiment, and FIG. 9B shows a state after the mounting. Although this embodiment shows a case where the sub-mount substrate has one light emitting element, it can be similarly applied to a light source in which a plurality of light emitting elements are mounted on the same substrate.

光学部材25は、その底面にLED装置1を支持するためのフランジ部分26を備える。図9(a)に示すように、フランジ部分26は、光学部材25の凹部にLED装置1の半球状の透明封止体1cを侵入させるように、該凹部に連接するような掘り込み溝26aが形成されている。掘り込み溝26aは、例えば、サブマウント基板1bが四角形の場合、サブマウント基板の4辺で基板を固定するような嵌合形状26bを有する。また、サブマウント基板1bに端子極性の方向を示すようなアノードマークやカソードマークの形状が形成されている場合、フランジ部分26の角部分に判別用の切り欠き形状を付与しても良い。このような形状によれば、LED装置1の端子極性の方向を容易に合わせることができる。   The optical member 25 includes a flange portion 26 for supporting the LED device 1 on the bottom surface thereof. As shown in FIG. 9A, the flange portion 26 has a digging groove 26a that is connected to the concave portion of the optical member 25 so that the hemispherical transparent sealing body 1c of the LED device 1 enters the concave portion of the optical member 25. Is formed. For example, when the submount substrate 1b is square, the digging groove 26a has a fitting shape 26b that fixes the substrate on four sides of the submount substrate. Moreover, when the shape of the anode mark or the cathode mark indicating the terminal polarity direction is formed on the submount substrate 1b, a notch shape for determination may be given to the corner portion of the flange portion 26. According to such a shape, the direction of the terminal polarity of the LED device 1 can be easily adjusted.

また、半球状の透明封止体1cの表面と光学部材5との間の層が空気層である場合には、図9に示すように、掘り込み溝26aの一部として、光学部材25の凹部の内部を密閉せず、外部に連通するような通気孔26cを設けてもよい。半球状の透明封止体1cの表面と光学部材5との間の層が空気層である場合、光学部材付発光装置を回路基板に実装するときにリフロー工程を通過させる場合、リフロー時に掛かる熱により、空気が膨張する。空気層が密閉されている場合、膨張した空気により、LED装置1の半球状の透明封止体1cに対する光学部材2の位置が所定の位置からずれたり、また、光学部材25をLED装置1のサブマウント基板1bに接着している場合には、空気層の膨張により光学部材が剥離したりするおそれがある。上述したような通気孔26cを設けた場合には、膨張した空気を外部に逃がすことができるために、上述したような光学部材5の位置ズレや、剥離を抑制することができる。   Further, when the layer between the surface of the hemispherical transparent encapsulant 1c and the optical member 5 is an air layer, as shown in FIG. 9, as a part of the digging groove 26a, the optical member 25 You may provide the vent hole 26c which does not seal the inside of a recessed part, but communicates with the exterior. When the layer between the surface of the hemispherical transparent encapsulant 1c and the optical member 5 is an air layer, when the reflow process is passed when the light emitting device with an optical member is mounted on a circuit board, the heat applied during the reflow As a result, the air expands. When the air layer is sealed, the expanded air causes the position of the optical member 2 relative to the hemispherical transparent sealing body 1c of the LED device 1 to deviate from a predetermined position, and the optical member 25 is When bonded to the submount substrate 1b, the optical member may peel off due to expansion of the air layer. In the case where the vent hole 26c as described above is provided, the expanded air can be released to the outside, so that the positional displacement and peeling of the optical member 5 as described above can be suppressed.

また、上記のような嵌合形状により、光学部材にサブマウント基板を固定する場合においては接着剤で固定してもよい。接着剤の種類は低屈折率の接着剤であれば特に限定されないが、例えば、シリコーン系接着剤等の耐熱性及び耐変色性を有するような透明接着剤であることが好ましい。なお、接着剤で固定する場合には、サブマウント基板の表面に接着部から溢れ出した接着剤が付着することを防ぐために、図9(a)に示すように掘り込み溝26aの一部として、溢れた接着剤を収容するための窪み26dを設けてもよい。   Moreover, when fixing a submount board | substrate to an optical member by the above fitting shapes, you may fix with an adhesive agent. The type of the adhesive is not particularly limited as long as it is a low refractive index adhesive, but for example, a transparent adhesive having heat resistance and discoloration resistance such as a silicone adhesive is preferable. In the case of fixing with an adhesive, in order to prevent the adhesive overflowing from the adhesive portion from adhering to the surface of the submount substrate, as shown in FIG. A recess 26d for accommodating the overflowing adhesive may be provided.

1 LED装置
1a LED素子
1b サブマウント基板
1c 半球状透明封止体
5,25 光学部材
5a 内側輪郭
5b 底面輪郭
5c 外側輪郭
6 被照射面
10 光学部材付発光装置
26 フランジ部分
26a 掘り込み溝
26b 嵌合形状
26c 通気孔
26d 接着剤を収容するための窪み
A、B、C 交点
L 光軸
S 空間
SD 基準線
X 変化点
DESCRIPTION OF SYMBOLS 1 LED apparatus 1a LED element 1b Submount board | substrate 1c Hemispherical transparent sealing body 5,25 Optical member 5a Inner outline 5b Bottom outline 5c Outer outline 6 Irradiated surface 10 Light-emitting device with an optical member 26 Flange part 26a Digging groove 26b Fit Combined shape 26c Vent hole 26d Depression for accommodating adhesive A, B, C Intersection L Optical axis S Space SD Reference line X Change point

Claims (9)

半導体発光素子及び前記半導体発光素子を封止する半球状の透明封止体を備えた発光装置と、前記半導体発光素子から発光される光の配光特性を制御するための光学部材とを備え、
前記透明封止体の表面と前記光学部材との間には前記透明封止体及び前記光学部材よりも屈折率が小さい層がさらに存在し、
前記光学部材の形状は、
前記半球状の透明封止体を収容するための凹状の内側輪郭と、光の出射面の輪郭を規定する外側輪郭とを備え、
前記半導体発光素子の発光中心における発光面に対する垂直軸を光軸とし、前記光軸を含む面で切断した任意の縦断面において
前記発光中心から引いた該光軸に対して角度θを成す仮想直線を基準線とし、前記光軸と、前記基準線と前記内側輪郭の表面との交点における法線との成す角度をψとし、前記基準線と前記外側輪郭の表面との交点における法線との成す角度をδとした場合、
0°≦θ≦45°の範囲で0≦δ≦30°であり、
0°<θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有し、
θx>θの範囲ではθが大きくなるにつれてψ/θが増加し、θ>θxの範囲では少なくともθ=70°の範囲まではθが大きくなるにつれてψ/θが減少し、
前記半球状透明封止体の表面と前記凹状の内側輪郭の表面との前記基準線上の距離は、θ=0°のとき最大になり、45°<θ≦70°の範囲の領域に前記距離が最小になる角度θを有することを特徴とする光学部材付発光装置。
A light emitting device including a semiconductor light emitting element and a hemispherical transparent sealing body that seals the semiconductor light emitting element, and an optical member for controlling the light distribution characteristics of light emitted from the semiconductor light emitting element,
Between the surface of the transparent encapsulant and the optical member, there is further a layer having a refractive index smaller than that of the transparent encapsulant and the optical member,
The shape of the optical member is
A concave inner contour for accommodating the hemispherical transparent sealing body, and an outer contour defining the contour of the light exit surface,
An imaginary straight line forming an angle θ with respect to the optical axis drawn from the light emission center in an arbitrary longitudinal section cut along a plane including the optical axis, with the vertical axis with respect to the light emission surface at the light emission center of the semiconductor light emitting element. Is the reference line, the angle between the optical axis and the normal line at the intersection of the reference line and the surface of the inner contour is ψ, and the normal line at the intersection of the reference line and the surface of the outer contour is If the angle formed is δ,
0 ≦ δ ≦ 30 ° in the range of 0 ° ≦ θ ≦ 45 °,
An angle θ x where ψ / θ is a maximum value (ψ / θ) max in a range of 0 ° <θ ≦ 15 °,
In the range of θ x > θ, ψ / θ increases as θ increases, and in the range of θ> θ x ψ / θ decreases as θ increases up to at least the range of θ = 70 °,
The distance on the reference line between the surface of the hemispherical transparent encapsulant and the surface of the concave inner contour is maximum when θ = 0 °, and the distance is within the range of 45 ° <θ ≦ 70 °. A light-emitting device with an optical member, characterized in that the angle θ y has a minimum value.
角度θにおける、前記半球状の透明封止体の表面と凹状の内側輪郭の表面との基準線上における距離をD(θ)とした場合、
D(θ)=Acos(Bθ)+C(式中、0≦θ≦70°、0≦A≦1、0≦B≦5、-1≦C≦1)で表され、
前記θに対してD(θ)をプロットしたグラフにおいて、20<θ<45°の範囲に存在する変化点を境として、前記θが大きい側のA,B,Cそれぞれが、前記θが小さい側のA,B,Cそれぞれよりも小さい請求項1に記載の光学部材付発光装置。
When the distance on the reference line between the surface of the hemispherical transparent sealing body and the surface of the concave inner contour at an angle θ is D (θ),
D (θ) = Acos (Bθ) + C (where 0 ≦ θ ≦ 70 °, 0 ≦ A ≦ 1, 0 ≦ B ≦ 5, −1 ≦ C ≦ 1),
In the graph in which D (θ) is plotted against θ, A, B, and C on the side where the θ is large, with the change point existing in the range of 20 <θ <45 ° as a boundary, the θ is small. The light emitting device with an optical member according to claim 1, which is smaller than each of A, B, and C on the side.
前記外側輪郭は、少なくとも0°≦θ≦45°の範囲において、平面を含む、上に凸状の滑らかな曲面であり、角度θの微小変化量Δθに対する角度δの微小変化量Δδの比をΔδ/Δθとした場合、0°≦θ≦20°の範囲で0≦Δδ/Δθ≦0.2であり、20°<θ≦45°の範囲で0.05≦Δδ/Δθ≦1.2である請求項1または2に記載の光学部材付発光装置。   The outer contour is an upward convex smooth curved surface including a plane in a range of at least 0 ° ≦ θ ≦ 45 °, and the ratio of the minute change amount Δδ of the angle δ to the minute change amount Δθ of the angle θ. In the case of Δδ / Δθ, 0 ≦ Δδ / Δθ ≦ 0.2 in the range of 0 ° ≦ θ ≦ 20 °, and 0.05 ≦ Δδ / Δθ ≦ 1.2 in the range of 20 ° <θ ≦ 45 °. The light emitting device with an optical member according to claim 1 or 2. 前記半導体発光素子の発光中心の表面を基準とし、前記半球状透明封止体の最大高さをH1、前記光学部材の最大高さをH2とした場合、H2/H1≦3である請求項1〜3の何れか1項に記載の光学部材付発光装置。   2. When the maximum height of the hemispherical transparent encapsulant is H1 and the maximum height of the optical member is H2 with respect to the surface of the light emission center of the semiconductor light emitting element, H2 / H1 ≦ 3. The light emitting device with an optical member according to any one of? 角度θ±15°の範囲に最大相対光量を有する請求項1〜4の何れか1項に記載の光学部材付発光装置。 5. The light emitting device with an optical member according to claim 1, wherein the light emitting device has a maximum relative light amount in a range of an angle θ y ± 15 °. 前記屈折率が小さい層は、空気層である請求項1〜5の何れか1項に記載の光学部材付発光装置。   The light emitting device with an optical member according to claim 1, wherein the layer having a low refractive index is an air layer. 前記屈折率が小さい層の屈折率は、前記半球状透明封止体の屈折率よりも0.3以上小さい請求項1〜5の何れか1項に記載の光学部材付発光装置。   The light emitting device with an optical member according to claim 1, wherein a refractive index of the layer having a small refractive index is 0.3 or more smaller than a refractive index of the hemispherical transparent encapsulant. 5°≦θ≦15°の範囲にψ/θが最大値(ψ/θ)maxになる角度θxを有する請求項1〜7の何れか1項に記載の光学部材付発光装置。 5 ° ≦ θ ≦ 15 ranges [psi / theta is the maximum value of ° (ψ / θ) optical element with the light-emitting device according to any one of claims 1 to 7 having an angle theta x becomes max. 前記光軸との交点付近において、前記凹状の内側輪郭の曲率が、前記半球状の透明封止体の曲率よりも大きい請求項1〜8の何れか1項に記載の光学部材付発光装置。   The light emitting device with an optical member according to any one of claims 1 to 8, wherein a curvature of the concave inner contour is larger than a curvature of the hemispherical transparent sealing body in the vicinity of an intersection with the optical axis.
JP2012158413A 2012-07-17 2012-07-17 Semiconductor light emitting device with optical member Active JP6021485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158413A JP6021485B2 (en) 2012-07-17 2012-07-17 Semiconductor light emitting device with optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158413A JP6021485B2 (en) 2012-07-17 2012-07-17 Semiconductor light emitting device with optical member

Publications (2)

Publication Number Publication Date
JP2014022489A true JP2014022489A (en) 2014-02-03
JP6021485B2 JP6021485B2 (en) 2016-11-09

Family

ID=50197061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158413A Active JP6021485B2 (en) 2012-07-17 2012-07-17 Semiconductor light emitting device with optical member

Country Status (1)

Country Link
JP (1) JP6021485B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133685A1 (en) * 2014-03-06 2015-09-11 Seoul Semiconductor Co., Ltd. Backlight module with mjt led and backlight unit incluing the same
US20170019968A1 (en) 2014-03-06 2017-01-19 Seoul Semiconductor Co., Ltd. Backlight module with mjt led and backlight unit including the same
US9803829B2 (en) 2014-03-28 2017-10-31 Asahi Rubber, Inc. Light distribution lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142684A (en) * 1986-12-05 1988-06-15 Hitachi Ltd Light-emitting diode device
JP2005354545A (en) * 2004-06-14 2005-12-22 Agilent Technol Inc Socket
WO2011033407A2 (en) * 2009-09-17 2011-03-24 Koninklijke Philips Electronics N.V. Led module with high index lens
JP2011233315A (en) * 2010-04-27 2011-11-17 Hitachi Ltd Optical sheet, light source module, lighting system using light source module, liquid crystal display, and image display device
JP2012064654A (en) * 2010-09-14 2012-03-29 Enplas Corp Light-emitting device, lighting apparatus, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142684A (en) * 1986-12-05 1988-06-15 Hitachi Ltd Light-emitting diode device
JP2005354545A (en) * 2004-06-14 2005-12-22 Agilent Technol Inc Socket
WO2011033407A2 (en) * 2009-09-17 2011-03-24 Koninklijke Philips Electronics N.V. Led module with high index lens
JP2011233315A (en) * 2010-04-27 2011-11-17 Hitachi Ltd Optical sheet, light source module, lighting system using light source module, liquid crystal display, and image display device
JP2012064654A (en) * 2010-09-14 2012-03-29 Enplas Corp Light-emitting device, lighting apparatus, and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133685A1 (en) * 2014-03-06 2015-09-11 Seoul Semiconductor Co., Ltd. Backlight module with mjt led and backlight unit incluing the same
US20170019968A1 (en) 2014-03-06 2017-01-19 Seoul Semiconductor Co., Ltd. Backlight module with mjt led and backlight unit including the same
US9853189B2 (en) 2014-03-06 2017-12-26 Seoul Semiconductor Co., Ltd. Backlight module with MJT LED and backlight unit including the same
US10264632B2 (en) 2014-03-06 2019-04-16 Seoul Semiconductor Co., Ltd. Backlight module with MJT LED and backlight unit including the same
US10278243B2 (en) 2014-03-06 2019-04-30 Seoul Semiconductor Co., Ltd. Backlight module with MJT LED and backlight unit including the same
US10292216B2 (en) 2014-03-06 2019-05-14 Seoul Semiconducter Co., Ltd. Backlight module with MJT LED and backlight unit including the same
US9803829B2 (en) 2014-03-28 2017-10-31 Asahi Rubber, Inc. Light distribution lens

Also Published As

Publication number Publication date
JP6021485B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP5325639B2 (en) Light emitting device
KR101981717B1 (en) Lighting device
JP5849193B2 (en) Light emitting device, surface light source, liquid crystal display device, and lens
TWI426625B (en) Light emitting unit
US9169980B2 (en) Lighting device and display device
US9039222B2 (en) Backlight module with light-guiding portions
TWI537523B (en) Optical lens and lighting element using the same
US20220052237A1 (en) Surface shielding assembly for led package
JP2012195350A (en) Light-emitting device and method of manufacturing the same
JP2006278309A (en) Lighting system
US10678036B2 (en) Optical device and light source module including the same
EP3078903B1 (en) Lighting module
JP2013183078A (en) Led apparatus with lens and multidirectional illumination apparatus
US11353193B2 (en) Lighting module and lighting device comprising same
JP6021485B2 (en) Semiconductor light emitting device with optical member
KR20150075215A (en) Led package for illumination
KR20140095913A (en) Light emitting module and light apparatus having thereof
US9966413B2 (en) Light-emitting diode module and lamp using the same
KR20150137959A (en) Secondary optical element and light source module
US20130285094A1 (en) Light emitting diode light source device
KR20130103080A (en) Led illumination apparatus
KR102172685B1 (en) Lighting Device
US20220390088A1 (en) Lighting module, lighting device and lamp
JP2013149835A (en) Light source and light-emitting device
KR101315702B1 (en) Lighting module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250