JP2014020869A - 圧電デバイス - Google Patents

圧電デバイス Download PDF

Info

Publication number
JP2014020869A
JP2014020869A JP2012158572A JP2012158572A JP2014020869A JP 2014020869 A JP2014020869 A JP 2014020869A JP 2012158572 A JP2012158572 A JP 2012158572A JP 2012158572 A JP2012158572 A JP 2012158572A JP 2014020869 A JP2014020869 A JP 2014020869A
Authority
JP
Japan
Prior art keywords
piezoelectric device
reinforcing plate
diaphragm
flexible
flexible portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012158572A
Other languages
English (en)
Inventor
Mutsumi Kitagawa
睦 北川
Kosei Onishi
孝生 大西
Kazuyoshi Shibata
和義 柴田
Tatsuro Takagaki
達朗 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2012158572A priority Critical patent/JP2014020869A/ja
Publication of JP2014020869A publication Critical patent/JP2014020869A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】例えば加速度センサや角速度センサ等のセンシング素子として用いた場合に、加速度や角速度の検出精度を向上させることができ、しかも、使用時の信頼性を向上させることができる圧電デバイスを提供する。
【解決手段】圧電デバイス10は、環状溝18を有する1つの圧電体20にて構成され、外側に位置する支持部22、内側に位置する錘部24、支持部22と錘部24の間に位置する可撓部26とを一体に有する素子本体12と、第1境界部分28a及び/又は第2境界部分28bに設けられた補強板14と、可撓部26の下面と対向する位置に設けられた振動板16とを有する。
【選択図】図1

Description

本発明は、圧電デバイスに関し、例えば加速度センサや角速度センサとして用いて好適な圧電デバイスに関する。
近時、加速度センサとして、特許文献1及び2に記載のセンサが知られている。特許文献1記載の加速度センサは、2層の圧電体で構成されて前記2層の圧電体それぞれの表面と前記2層の圧電体間に電極を有する梁と、前記梁の基端部を固定するベース部材と、前記梁の先端部に固定された錘とを備えた加速度センサである。特許文献2記載の加速度センサは、軸直角断面の1/2以上が圧電体で形成された梁部と、該梁部の一端側によって支持された錘部と、梁部の他端側を支持する支持台部と、梁部の圧電体に発生する分極電圧を取り出すための電極部とを備える圧電型加速度センサである。
さらに、特許文献3及び4に記載の力センサも知られている。力センサは、外部から重錘に作用する直接的な力、加速度による慣性力、磁気による引力といった物理量に対応した力により可撓板が撓むように構成されており、可撓板の撓みに応じて圧電体に発生する電荷を検出することで、重錘に作用した物理量(力)の方向及び大きさを検出することができる。
特許文献3記載の力センサは、中空部を有する支台と、少なくとも1個の検知素子を有し、且つ、支台の中空部に横架された可撓板と、支台の中空部において可撓板に釣支された作用体から構成され、特に、作用体の外周と支台の内周との間の任意の位置、例えば中央部から、作用体の外周へ向けて、及び/又は支台の内周へ向けて、可撓板の強度を傾斜的に高強度化して構成している。
特許文献4記載の力センサは、中空部を有する支台と、少なくとも1個の検知素子が配設され、且つ、支台の中空部に横架された可撓板と、支台の中空部において可撓板に釣支された作用体を備えた耐衝撃型力センサである。特に、可撓板よりも振動の減衰が大きい衝撃吸収材を、作用体の少なくとも一部と支台の中空部壁面の少なくとも一部に接触するように着設して構成されている。
また、加速度センサや角速度センサとして使用することができるセンサとして、特許文献5に記載の加速度・角速度センサが知られている。このセンサは、円盤状の圧電素子の上面に複数の上部電極が配置され、圧電素子の下面には、複数の上部電極の下方に対応する位置に、環状溝が形成されている。この環状溝の外側部分が周囲部とされ、環状溝の内側部分が中心部(錘り)とされ、その間の薄肉の部分が可撓部とされている。圧電素子の下面には、下部電極が形成されている。そして、加速度により錘りに力が作用すると、可撓部が撓み、複数の上部電極に所定の電荷が発生するので、作用した加速度を検出することができる。複数の上部電極に所定の交流信号を供給すると、錘りが所定方向に振動するので、錘りに作用したコリオリ力に基づき角速度を検出することができる。
特開2001−133476号公報 特開2009−031048号公報 特開2000−193544号公報 特開2001−004657号公報 特開平08−094661号公報
しかしながら、特許文献1〜4に記載のセンサは、各々の部材を一体化する場合に、部材同士を接合あるいは接着する必要があり、部材間に接合層が存在することとなる。接合層は、制振作用があり、固体表面の振動の振動エネルギーを熱エネルギーに変換することから、損失係数が大きく、そのため、振動エネルギーの減衰につながり、センサを共振させることが困難になったり、共振させるまでに時間がかかり、検出遅延の原因となる。
特許文献5に記載のセンサは、電極層が下面から溝部全体にわたって形成されていることから、変形時に電極層が剥離したり、破れるおそれがある。この場合、電極の抵抗値の変化につながり、検出精度のばらつきや低下をもたらす。また、上部電極に交流電圧を印加することによって可撓部が変位し、この変位運動が錘りに伝わり、錘りにおいて振動が発生するが、可撓部の変位運動による曲げ荷重が周囲部と可撓部との境界部分並びに錘りと可撓部との境界部分に繰り返し加わり、これら境界部分で破断するおそれがある。このように、特許文献5記載のセンサは、使用時の信頼性が低下するおそれがある。
本発明はこのような課題を考慮してなされたものであり、例えば加速度センサや角速度センサ等のセンシング素子として用いた場合に、加速度や角速度の検出精度を向上させることができ、しかも、使用時の信頼性を向上させることができる圧電デバイスを提供することを目的とする。
[1] 本発明に係る圧電デバイスは、環状溝を有する1つの圧電体にて構成され、外側に位置する支持部、内側に位置する錘部、支持部と錘部の間に位置する可撓部とを一体に有する素子本体と、少なくとも前記支持部と前記可撓部との第1境界部分、あるいは少なくとも前記錘部と前記可撓部との第2境界部分に設けられた補強板と、前記可撓部の下面と対向する位置に設けられた振動板とを有することを特徴とする。
[2] 本発明において、前記補強板は、少なくとも前記支持部と前記可撓部との第1境界部分及び前記錘部と前記可撓部との第2境界部分に設けられていてもよい。
[3] この場合、前記補強板は、前記第1境界部分、前記可撓部の下面及び前記第2境界部分にかけて形成され、前記振動板は、前記補強板の下面に設けられていてもよい。
[4] 本発明において、前記素子本体のうち、前記環状溝が形成されていない主面に上部電極が形成され、前記補強板は下部電極を兼ねるようにしてもよい。
[5] この場合、複数の前記上部電極は、前記錘部を駆動するための駆動用電極と、前記錘部の変位を検出するための検出用電極とを有するようにしてもよい。
[6] あるいは、複数の前記上部電極は、前記錘部の変位を検出するための検出用電極のみを有するようにしてもよい。
[7] [4]〜[6]において、前記補強板の一部は、前記素子本体の外表面まで延在し、前記下部電極のリード電極を構成するようにしてもよい。
[8] 本発明において、前記補強板及び前記振動板の合計厚みと前記可撓部の厚みは、前記可撓部と前記補強板と前記振動板とで構成される梁を曲げた際の材料力学上の中立軸が前記振動板側に位置するように規定されていてもよい。
[9] この場合、前記中立軸が前記可撓部と前記補強板との境界部分に位置するときの前記補強板と前記振動板の合計厚みを基準合計厚みとしたとき、
前記補強板及び前記振動板の合計厚みは前記基準合計厚み以上であることが好ましい。
[10] 本発明において、前記補強板及び前記振動板の構成材料が金(Au)であり、前記可撓部の厚みtaが1〜100μmであり、前記補強板及び前記振動板の合計厚みtbと前記可撓部の厚みtaとの比(tb/ta)が0.76以上であってもよい。
[11] この場合、前記比(tb/ta)が0.80以上であることが好ましい。
[12] 本発明において、前記補強板及び前記振動板の構成材料が銅(Cu)であり、前記可撓部の厚みtaが1〜100μmであり、前記補強板及び前記振動板の合計厚みtbと前記可撓部の厚みtaとの比(tb/ta)が0.62以上であってもよい。
[13] この場合、前記比(tb/ta)が0.66以上であることが好ましい。
本発明に係る圧電デバイスによれば、例えば加速度センサや角速度センサ等のセンシング素子として用いた場合に、加速度や角速度の検出精度を向上させることができ、しかも、使用時の信頼性を向上させることができる。
図1Aは本実施の形態に係る圧電デバイスを上面から示す図(平面図)であり、図1AにおけるIB−IB線上の断面図である。 各素材(PZT、ZrO(ジルコニア)、Al(アルミナ)、Cu(銅)、Si(シリコン))の変形速度(μm/sec)に対する損失係数の変化を示すグラフである。 図3Aは可撓部と補強板と振動板とで構成される梁を曲げた際の材料力学上の中立軸が振動板に位置する場合の例を一部省略して示す断面図であり、図3Bは中立軸が可撓部と補強板との境界に位置する場合の例を一部省略して示す断面図である。 図4Aは梁の中央部分に荷重をかけて梁を曲げた状態(撓ませた状態)を示す模式図であり、図4Bは梁の微小領域における変形と中立軸の位置を示す模式図であり、図4Cは中立面と対称面を説明するための図である。 可撓部の厚みに対する膜厚比(振動板の基準厚みtc/可撓部の厚みta)の変化を、振動板の材質に応じて示すグラフである。 図6A〜図6Cは本実施の形態に係る圧電デバイスの製造方法の一例を示す工程図である。 図7Aは第1変形例に係る圧電デバイスを示す断面図であり、図7Bは第2変形例に係る圧電デバイスを示す断面図である。 第3変形例に係る圧電デバイスを示す断面図である。 図9Aは実施例1の検出感度を示すグラフであり、図9Bは参考例1の検出感度を示すグラフである。 図10Aは比較例1係る圧電デバイスを上面から示す図(平面図)であり、図10Bは図10AにおけるXB−XB線上の断面図である。 比較例1の検出感度を示すグラフである。 実施例1及び参考例1について、交流電圧(周波数>fa、振幅A)を印加して、コリオリ力Fz(測定値)を検出し、その後、交流電圧の印加を停止するという作業を繰り返し行った場合の検出感度の変化を示すグラフである。
以下、本発明に係る圧電デバイスを例えば加速度センサや角速度センサ等のセンシング素子に適用させた実施の形態例を図1A〜図12を参照しながら説明する。
本実施の形態に係る圧電デバイス10は、図1A及び図1Bに示すように、素子本体12と、補強板14と、振動板16とを有する。
素子本体12は、環状溝18を有する1つの圧電体20にて構成され、且つ、外側に位置する支持部22、内側に位置する錘部24、支持部22と錘部24の間に位置する薄肉の可撓部26とを一体に有する。補強板14は、支持部22と可撓部26との第1境界部分28a、可撓部26の下面及び錘部24と可撓部26との第2境界部分28bにかけて連続して設けられている。振動板16は、環状溝18の底部であって、且つ、可撓部26の下面と対向する位置に設けられている。
図1Aの例では、素子本体12を上面から見た平面形状を円形としているが、四角形状(正方形、長方形)、多角形状(六角形、八角形等)でもよい。また、環状溝18は、図1A及び図1Bの例では、素子本体12の平面形状に合わせて円環状としているが、四角形の環状でもよいし、多角形の環状でもよい。
素子本体12を構成する圧電体20は、例えばジルコン酸チタン酸鉛(PZT)やマグネシウムニオブ酸鉛(PMN)、ニッケルニオブ酸鉛(PNN)等の圧電特性に優れた圧電セラミックスが好適に用いられる。なお、本実施の形態において、圧電体20としては、圧電材料若しくは電歪材料のいずれを用いても構わない。また、圧電体20の気孔率は20%以下であることが好ましく、10%以下であることがさらに好ましい。気孔率が高すぎると十分な圧電/電歪特性を得ることが困難となるからである。なお、気孔率は、圧電体20の断面を脱粒しないように鏡面研磨し、その断面をSEM等を用いて観察した場合の視野面積に対して気孔部分の面積が占める割合で規定した。
また、素子本体12は、後述するが、複数枚のセラミックグリーンシートを積層してなるセラミック積層体を焼成一体化することで作製することができる。補強板14は、素子本体12を作製するための上述した複数のセラミックグリーンシートのうち、環状溝18の底部となるグリーンシートの上面に形成された例えばAu(金)、Ag(銀)、Cu(銅)、Al(アルミニウム)等の金属あるいは合金のペースト(金属ペースト)をセラミック積層体と共に焼成一体化することで作製される。振動板16は、例えばAu、Ag、Cu、Al等の金属あるいは合金にて構成することができる。この場合、スパッタあるいはCVD(化学気相成長法)等による金属層や、無電解めっきや電解めっき等による金属めっき層等を用いることができる。なお、振動板16は、環状溝18から素子本体12の下面全体にわたって形成されることはない。
また、この圧電デバイス10は、素子本体12のうち、環状溝18が形成されていない主面12a(図1A及び図1Bの例では上面)に複数の上部電極30(この例では、第1上部電極30a〜第5上部電極30e)が形成されている。上部電極30は、スクリーン印刷法、スパッタ法等が好適に用いられる。補強板14と振動板16は、第1上部電極30a〜第5上部電極30eの共通の対向電極(下部電極32)を兼用する。
上部電極30の電極材としては、Ag、Au、Pd(パラジウム)、Pt(白金)あるいはこれらの合金を用いることが好ましい。特に、PdやPtといった高融点金属を用いた場合には、圧電体20との同時焼成が容易であると共に、可撓部26等との一体焼成も容易に行うことができ、好ましい。その他、銅(Cu)やニッケル(Ni)、アルミニウム(Al)等、種々の金属材料を電極及び電極リードとして用いることができる。
上部電極30は、図1Aに示すように、素子本体12の中心軸34(「+」で示す)を中心とした円環状の第1上部電極30aと、第1上部電極30aの外周側に位置し、同じく素子本体12の中心軸34を中心とした円弧状(図の例では円環を1/4にした円弧状)の第2上部電極30b〜第5上部電極30eとを有する。この場合、素子本体12の主面12aにXY平面を定義したとき、第2上部電極30b及び第3上部電極30cは、各円弧の長さ方向中心をX軸が横切るように配置され、第4上部電極30d及び第5上部電極30eは、各円弧の長さ方向中心をY軸が横切るように配置される。
第1上部電極30aは、錘部24と可撓部26との第2境界部分28bの上方にかかるように形成され、第2上部電極30b〜第5上部電極30eは、支持部22と可撓部26との第1境界部分28aの上方にかかるように形成される。
一方、振動板16の平面形状は、環状溝18の底部の形状と同一形状でもよいし、幅が環状溝18の底部の幅よりも狭い相似形であってもよい。また、振動板16の側部(支持部22及び錘部24と対向する部分)が素子本体12の下面に向かって一部盛り上がっていてもよい。
補強板14の平面形状は、環状部分14aと、該環状部分14aの一部から素子本体12の外周面(外表面)まで延びる帯状部分14bとを有する。環状部分14aの幅は環状の振動板16の幅よりも広く設定されている。帯状部分14bは、下部電極32のリード電極として兼用させることができる。
圧電デバイス10による加速度の検出原理及び角速度の検出原理は、上述した特許文献5(特開平08−094661号公報)に記載された原理とほぼ同じであるため、その重複説明を省略するが、以下に概略を説明する。
先ず、加速度の検出について説明する。加速度の検出を行うには、圧電デバイス10を振動させる必要はない。錘部24の重心に作用するX軸方向の力fxは、第3上部電極30cに発生した電荷の量と第2上部電極30bに発生した電荷の量との差を求めることによって得られる。同様に、錘部24の重心に作用するY軸方向の力fyは、第5上部電極30eに発生した電荷と第4上部電極30dに発生した電荷との差を求めることによって得られる。同様に、錘部24の重心に作用するZ軸方向の力fzは、第1上部電極30aに発生した電荷の量により求めることができる。なお、錘部24の重心に作用したX軸方向の力、Y軸方向の力及びZ軸方向の力としては、加速度に起因する力fx、fy及びfzも、角速度に起因するコリオリ力Fx、Fy及びFzも同等であり、瞬時に検出される力としては区別できない。
そして、加速度に起因した力fと加速度αとの間には、錘部24の質量mに基づいて、f=m・αの関係があるため、得られた力fx,fy,fzに基づき、各軸方向の加速度αx,αy,αzを検出することができる。
次に、角速度の検出原理について説明する。角速度の検出においては、圧電デバイス10を振動させることが必要となる。従って、先ず、圧電デバイス10への振動の付与について簡単に説明する。
下部電極32(補強板14及び振動板16)と第3上部電極30cとの間に交流電圧を印加すると共に、下部電極32と第2上部電極30bとの間に、交流電圧とは逆位相の交流電圧を印加するようにすれば、錘部24はX軸に沿って振動することになる。すなわち、上述した交流電圧の印加により、圧電デバイス10に対してX軸方向の振動Sxを与えることが可能になる。この振動Sxの周波数は、与える交流電圧の周波数によって制御可能であり、この振動Sxの振幅は、与える交流電圧の振幅値によって制御可能である。
同様に、下部電極32と第5上部電極30eとの間、及び下部電極32と第4上部電極30dとの間に、それぞれ互いに位相が逆転した交流電圧を供給することにより、錘部24をY軸方向に振動させることができる。すなわち、上述した交流電圧の印加により、圧電デバイス10に対してY軸方向の振動Syを与えることが可能になる。
同様に、下部電極32と第1上部電極30aとの間に、交流電圧を印加すれば、錘部24はZ軸に沿って振動することになる。すなわち、圧電デバイス10に対してZ軸方向の振動Szを与えることが可能になる。
そして、圧電デバイス10に対してZ軸方向の振動Szを与えた状態で、Y軸方向に作用するコリオリ力Fyを検出することで、関係式Fy=2m・vz・ωxに基づいて、X軸まわりの角速度ωxを得ることができる。ここで、mは錘部24の質量であり、vzは錘部24のZ軸方向の瞬間速度である。そこで、第1上部電極30aと下部電極32との間に交流電圧を印加して、錘部24をZ軸方向に励振した状態にし、このとき、第5上部電極30e及び第4上部電極30dに発生する電荷の量からY軸方向に作用したコリオリ力Fyを得ることで、X軸まわりの角速度ωxを演算により求めることができる。
同様に、圧電デバイス10に対してX軸方向の振動Sxを与えた状態で、Z軸方向に作用するコリオリ力Fzを検出することで、関係式Fz=2m・vx・ωyに基づいて、Y軸まわりの角速度ωyを得ることができる。vxは錘部24のX軸方向の瞬間速度である。そこで、第3上部電極30cと下部電極32との間、及び第2上部電極30bと下部電極32との間に、それぞれ逆位相の交流電圧を印加して、錘部24をX軸方向に励振した状態にし、このとき第1上部電極30aに発生する電荷の量からZ軸方向に作用したコリオリ力Fzを得ることで、Y軸まわりの角速度ωyを演算により求めることができる。
同様に、圧電デバイス10に対してY軸方向の振動Syを与えた状態で、X軸方向に作用するコリオリ力Fxを検出することで、関係式Fx=2m・vy・ωzに基づいて、Z軸まわりの角速度ωzを得ることができる。ここで、vyは錘部24のY軸方向の瞬間速度である。そこで、第5上部電極30eと下部電極32との間、及び第4上部電極30dと下部電極32との間に、それぞれ逆位相の交流電圧を印加して、錘部24をY軸方向に励振した状態にし、このとき第3上部電極30c及び第2上部電極30bに発生する電荷の量からX軸方向に作用したコリオリ力Fxを得ることで、Z軸まわりの角速度ωzを演算により求めることができる。
このように、圧電デバイス10は、素子本体12を構成する支持部22、可撓部26及び錘部24が、1つの圧電体20で一体に形成されていることから、支持部22、可撓部26及び錘部24を接合したり接着する必要がなく、支持部22及び可撓部26間、可撓部26及び錘部24間等に接合層が存在しない。
一般に、部材間の接合層は、制振作用があり、固体表面の振動の振動エネルギーを熱エネルギーに変換し、固体表面の振動を小さくする働きがある。この制振作用(特性)の評価指標の1つとして損失係数がある。損失係数は、弾性係数E’、損失弾性係数E’’の比(E’’/E’)で表される。損失係数が大きいほど振動エネルギーを熱エネルギーに変換するため、振動エネルギーの減衰につながり、圧電デバイスを共振させることが困難になったり、共振させるまでに時間がかかり、検出遅延の原因となる。
ここで、各素材の損失係数についての評価を以下に示す。素材は、PZT、ZrO(ジルコニア)、Al(アルミナ)、Cu(銅)、Si(シリコン)を用いた。
(評価方法)
各素材の損失係数を評価するにあたって、測定装置として動的粘弾性測定装置(ユービーエム社製)を用いた。測定方法は3点曲げ方式を採用した試料(サンプル)の形状は短冊状(幅5mm×長さ40mm×厚み0.15〜0.5mm)とした。そして、素材に3点曲げ方式で動的歪み(定常的な正弦波歪み)を与え、そのときの応答応力を検出し、入力した正弦波歪みと応答応力(正弦波応力)との位相差から損失係数(tanδ)を計測した。
(評価結果)
変形速度(μm/sec)を変えて、各素材(PZT、ZrO(ジルコニア)、Al(アルミナ)、Cu(銅)、Si(シリコン))の損失係数を計測した。計測結果を図2に示す。なお、変形速度は、周波数(Hz)×歪量(μm)を示す。図2において、PZTの結果を「△」、ZrOを「□」、Alを「○」、Cuを「+」、Siを「◇」のプロットで示す。
測定結果のうち、センシング素子として使用する圧電デバイス10の作動時における近似の変形速度である20(μm/sec)のときの各素材の損失係数を下記表1に示す。
Figure 2014020869
上述したように、本実施の形態では、接合層が存在しないため、圧電デバイス10全体の損失係数が小さく、圧電デバイス10に与えられた振動を効率よく錘部24に伝えることができ、圧電デバイス10を容易に共振させることができる。これは、コリオリ力の検出精度(角速度の検出精度)を向上させることができ、しかも、早期に角速度の検出を行うことができる。また、特許文献5と異なり、電極層が素子本体12の下面から環状溝18全体にわたって形成されることがないため、可撓部26の変形時や錘部24の振動時に電極層が剥離したり、破れるということがない。しかも、可撓部26の変位運動による曲げ荷重が繰り返し加わる部分、すなわち、支持部22と可撓部26との第1境界部分28a並びに錘部24と可撓部26との第2境界部分28bにかけて補強板14を設けることで、圧電デバイス10の抗折強度を高めるようにしたので、繰り返し荷重による第1境界部分28a及び第2境界部分28bでの破断を阻止することができ、使用時の信頼性を高めることができる。また、補強板14の帯状部分14bを下部電極32のリード電極として兼用させることができるため、リード電極の配線のための領域を別途確保する等の必要がなくなり、設計の自由度が上がる。これは、様々な加速度センサや角速度センサの構造を効率よく設計することができることにつながる。
さらに、圧電デバイス10は、図3Aに示すように、可撓部26の厚みtaと、補強板14及び振動板16の合計厚みtbは、可撓部26と補強板14と振動板16とで構成される梁36を曲げた際の材料力学上の中立軸38が振動板16側に位置するように規定されている。振動板16側に位置するとは、圧電体20のうち、圧電体20の厚み方向中心部分から補強板14にかけての部分、圧電体20と補強板14との境界部分、補強板14、又は振動板16に中立軸38が位置することを示す。
ここで、中立軸38について以下に説明する。先ず、図4Aに示すように、横断面が左右対称の1つの梁36の曲げ変形における該梁36の微小領域36aでの曲げ変形を考える。図4Bに示すように、曲げモーメントMによって微小領域36aはほぼ均一に円弧状に曲がるとする。微小領域36aのうち、曲げ変形の内側(凹部側)は圧縮応力により縮み、曲げ変形の外側(凸部側)は、引張応力により伸びている。この曲げ変形が弾性範囲内においては、円弧の中心Oからの距離によって線形的に圧縮から引張へと変化する(図4C参照)。このとき、梁36の長手方向の垂直応力及びひずみがゼロとなる場所がある。微小領域36aの両端の仮想断面は静的な力の釣り合いにより回転しないから、このような場所から曲げ変形の内側(凹部側)の圧縮力と曲げ変形の外側(凹部側)の引張力は釣り合っているといえ、この場所を中立面40(図4C参照)という。そして、前提として横断面は左右対称としていることから、中立面40とその対称面42の交差する線を中立軸38という。図4Bに示すように、この中立軸38を円弧とする曲率半径をR、円弧のなす角をdθとしたとき、中立軸の長さLAAは、
AA=R・dθ
である。
そして、圧電デバイス10では、可撓部26と補強板14と振動板16とで構成される梁36において、中立軸38が可撓部26と補強板14との境界部分に位置するときの補強板14及び振動板16の合計厚みtbを基準合計厚みtcとしたとき、合計厚みtbは基準合計厚みtc以上である。
具体的に、可撓部26の厚みtaとして好ましい範囲である1〜100μmに基づき、補強板14及び振動板16の基準合計厚みtc(振動板16等の基準合計厚みtc)と可撓部26の厚みtaとの比(tc/ta)をシミュレーションで確認した結果を下記表2及び図5に示す。
Figure 2014020869
補強板14及び振動板16の構成材料を金(Au)とした場合は、図5の実線L1に示すように、可撓部26の厚みtaをx、膜厚比(tc/ta)をyとしたとき、膜厚比は、y=−0.00039x+0.79689に示す直線上に存在する。例えば可撓部26の厚みtaが1μmのとき、膜厚比(tc/ta)は0.80であり、可撓部26の厚みtaが100μmのとき、膜厚比(tc/ta)は0.76である。このことから、補強板14及び振動板16の合計厚みtbと可撓部26の厚みtaとの比(tb/ta)は0.76以上であればよい。もちろん、膜厚比(tb/ta)が0.80以上であれば、可撓部26の好ましい厚み範囲(1〜100μm)にわたって適用可能となる。より厳密には、補強板14及び振動板16の合計厚みtbは、x(−0.00039x+0.79689)μm以上にすればよい。
補強板14及び振動板16の構成材料を銅(Cu)とした場合は、図5の実線L2に示すように、可撓部26の厚みtaをx、膜厚比(tc/ta)をyとしたとき、膜厚比は、y=−0.00040x+0.65557に示す直線上に存在する。例えば可撓部26の厚みtaが1μmのとき、膜厚比(tc/ta)は0.66であり、可撓部26の厚みtaが100μmのとき、膜厚比(tc/ta)は0.62である。このことから、補強板14及び振動板16の合計厚みtbと可撓部26の厚みtaとの比(tb/ta)は0.62以上であればよい。もちろん、膜厚比(tb/ta)が0.66以上であれば、可撓部26の好ましい厚み範囲(1〜100μm)にわたって適用可能となる。より厳密には、補強板14及び振動板16の合計厚みtbは、x(−0.00040x+0.65557)μm以上にすればよい。
補強板14及び振動板16の合計厚みtbの上限値は、錘部24の質量や、可撓部26と補強板14と振動板16とによる梁36の剛性等に応じて設定することができ、例えば200μm以下、150μm以下、100μm以下、50μm以下を好ましく採用することができる。
上述のように、可撓部26の厚みtaと、補強板14及び振動板16の合計厚みtbを、可撓部26と補強板14と振動板16とで構成される梁36を曲げた際の材料力学上の中立軸38が振動板16側に位置するように規定することで、可撓部26には、曲げ方向に応じて圧縮応力又は引張応力のいずれかが加わり、圧縮応力及び引張応力が混在することがなく、しかも、圧縮応力と引張応力とが打ち消し合うこともない。従って、例えば角速度の検出において、上部電極30に印加される交流電圧の周波数及び振幅に応じた振動を忠実に錘部24に与えることができ、これにより、圧電デバイス10に作用したコリオリ力を精度よく得ることができ、角速度の検出精度を向上させることができる。また、圧縮応力又は引張応力が線形的に低下する部分に可撓部26と補強板14との境界が位置することになるため、補強板14が可撓部26から剥離しにくくなり、別途接合のための層を介在させる必要がない。特に、図3Bに示すように、補強板14及び振動板16の合計厚みtbを基準合計厚みtcにすることで、可撓部26と補強板14との境界に中立軸38が位置することになるため、可撓部26と補強板14との境界における応力や歪がゼロとなり、圧電デバイス10の抗折強度をさらに高めることができると共に、補強板14が可撓部26から剥離することを確実に防止することができる。
ここで、圧電デバイス10の製造方法を図6A〜図6Cを参照しながら説明する。
先ず、図6Aに示すように、複数のグリーンシート44を積層して、圧電体20の上部(可撓部26を含む部分)を構成する第1積層体46aを作製する。もちろん、第1積層体46aを1枚のグリーンシートを成形して作製してもよい。
その後、図6Bに示すように、第1積層体46aの一主面に、補強板14(環状部分14a及び帯状部分14b)を構成する金属膜48を形成する。例えばAuの有機金属化合物(レジネート)によるペーストを塗布する。
その後、図6Cに示すように、第1積層体46aの一主面の外周部に複数の円環状のグリーンシート50を積層し、中央部に複数の例えば円形のグリーンシート52を積層して、第1積層体46a上に支持部22及び錘部24を構成する第2積層体46bを積層する。これによって、第1積層体46aと第2積層体46bからなるセラミック積層体46(焼成前の圧電体20の前駆体)が作製される。なお、第2積層体46bについても、1枚のグリーンシートを成形して作製してもよい。
その後、セラミック積層体46を、高温900〜1600℃で焼成することで、図1Bに示すように、環状溝18を有し、補強板14が形成された圧電体20(素子本体12)が作製される。
そして、図1A及び図1Bに示すように、例えばAu、Ag、Cu、Al等の金属あるいは合金のスパッタあるいはCVD(化学気相成長法)、又はAu、Cu等の電解めっき等を行って、環状溝18の底部に存する補強板14を被覆するように振動板16を形成する。その後、素子本体12の主面12aに上部電極30(第1上部電極30a〜第5上部電極30e)を形成することで、圧電デバイス10が完成する。
この製造方法によれば、素子本体12の第1境界部分28a、可撓部26の下面及び第2境界部分28bにかけて補強板14が形成され、且つ、補強板14の下面に振動板16が形成された圧電デバイス10を簡単に作製することができる。
次に、本実施の形態に係る圧電デバイス10のいくつかの変形例について図7A〜図8を参照しながら説明する。
第1変形例に係る圧電デバイス10aは、図7Aに示すように、上述した圧電デバイス10とほぼ同様の構成を有するが、補強板14が支持部22と可撓部26との第1境界部分28aのみに形成されている点で異なる。もちろん、リード電極(帯状部分14b)を形成するようにしてもよい。振動板16は、補強板14の一部と可撓部26の下面にわたって形成される。
第2変形例に係る圧電デバイス10bは、図7Bに示すように、上述した圧電デバイス10とほぼ同様の構成を有するが、補強板14が錘部24と可撓部26との第2境界部分28bのみに形成されている点で異なる。
第3変形例に係る圧電デバイス10cは、図8に示すように、上述した圧電デバイス10とほぼ同様の構成を有するが、第1境界部分28aと第2境界部分28bのみに形成されている点で異なる。もちろん、リード電極(帯状部分14b)を形成するようにしてもよい。
上述した第1変形例〜第3変形例に係る圧電デバイス10a〜10cは、可撓部26の厚みtaと、補強板14及び振動板16の合計厚みtbとの関係において、補強板14の厚みを0μmとして設定することができ、可撓部26と振動板16とで構成される梁36を曲げた際の材料力学上の中立軸38が振動板16側に位置するように規定される。
上述の例では、本実施の形態に係る圧電デバイス10を加速度センサや角速度センサ等のセンシング素子に適用した場合を示したが、振動発生の原理からもわかるように、アクチュエータとして適用できることはもちろんである。
[第1実施例]
実施例1、参考例1及び比較例1について、X軸方向の振動Sxを与えた状態で、Z軸方向に作用するコリオリ力Fzを検出する実験を行い、振動Sxの周波数の違いによる両者の検出感度の変化を確認した。
(実施例1)
実施例1に係る圧電デバイスは、図1A及び図1Bに示す本実施の形態に係る圧電デバイス10と同様の構成を有する。可撓部26の厚みtaを20μm、補強板14及び振動板16の構成材料を金(Au)、補強板14及び振動板16の合計厚みtbを16μmとした。膜厚比(tb/tc)は0.8である。
図1Aに示すように、第3上部電極30cと下部電極32との間、及び第2上部電極30bと下部電極32との間に、それぞれ交流電源を接続し、第1上部電極30aと下部電極32間に電荷/電圧変換回路を接続した。電荷/電圧変換回路は、第1上部電極30aに発生する電荷量を、下部電極32の電位を基準電位(例えば接地電位)としたときの電圧値、すなわち、コリオリ力Fzの検出値に変換する回路である。
そして、実施例1に係る圧電デバイスを、Y軸を回転軸として一定の角速度で回転運動させる。角速度は予め設定された既知の値であり、従って、Z軸方向に作用するコリオリ力Fzもわかっている。この予め判明しているコリオリ力Fzを基準値とする。この状態で、第3上部電極30cと下部電極32との間、及び第2上部電極30bと下部電極32との間に、それぞれ逆位相の交流電圧(周波数fa、振幅A)を印加して、錘部24をX軸方向に励振した状態にし、このとき電荷/電圧変換回路から出力される電圧値からZ軸方向に作用するコリオリ力Fz(測定値)を検出した。このときの検出感度を、下記式(1)に基づいて、測定値と基準値との比の対数を10倍にして表した(デシベル表記)。
検出感度[dB]=10log10(測定値/基準値) ……(1)
上述と同様にして、交流電圧(周波数fb(>fa)、振幅A)を印加した場合のコリオリ力Fz(測定値)を検出し、このときの検出感度を式(1)に基づいて求めた。
振動Sxの周波数fa及びfbによる実施例1の検出感度の違いを図9AのプロットA1及びA2に示す。周波数faの振動を加えた場合の検出感度は−2.5[dB]であり、周波数fb(>fa)の振動を加えた場合の検出感度は−3.0[dB]であった。
(参考例1)
参考例1に係る圧電デバイスは、補強板14を形成しなかったこと以外は、上述した実施例1と同様の構成を有する。この場合、可撓部26の厚みtaを20μm、振動板16の構成材料を金(Au)、補強板14及び振動板16の合計厚みtbを16μmとした。
上述した実施例1と同様にして、交流電圧(周波数fa、振幅A)及び(交流電圧(周波数fb(>fa)、振幅A)を印加した場合の各コリオリ力Fz(測定値)を検出し、このときの検出感度を式(1)に基づいて求めた。
振動Sxの周波数fa及びfbによる参考例1の検出感度の違いを図9BのプロットB1及びB2に示す。周波数faの振動を加えた場合の検出感度は−2.5[dB]、周波数fb(>fa)の振動を加えた場合の検出感度は−3.0[dB]であり、実施例1とほぼ同じであった。
(比較例1)
比較例1に係る圧電デバイス100は、図10A及び図10Bに示すように、環状溝102を有する1つのセラミック構成体104にて構成され、且つ、外側に位置する支持部106、内側に位置する錘部108、支持部106と錘部108の間に位置する薄肉の可撓部110とを一体に有する素子本体112と、該素子本体112上に設置された圧電素子114とを有する。圧電素子114は、圧電体116と下部電極118と上部電極120とを有する。上部電極120は、本実施の形態に係る圧電デバイス10と同様の形状を有する第1上部電極120a〜第5上部電極120eを有する。
実施例1の場合と同様に、第3上部電極120cと下部電極118との間、及び第2上部電極120bと下部電極118との間に、それぞれ交流電源を接続し、第1上部電極120aと下部電極118間に電荷/電圧変換回路を接続した。
そして、上述した実施例1と同様に、比較例1に係る圧電デバイス100を、Y軸を回転軸として一定の角速度(既知)で回転運動させ、この状態で、第3上部電極120cと下部電極118との間、及び第2上部電極120bと下部電極118との間に、それぞれ逆位相の交流電圧(周波数fa、振幅A)を印加して、錘部108をX軸方向に励振した状態にし、このとき電荷/電圧変換回路から出力される電圧値からZ軸方向に作用するコリオリ力Fz(測定値)を検出し、このときの検出感度を上述した式(1)に基づいて求めた。
さらに、上述と同様にして、交流電圧(周波数fb(>fa)、振幅A)を印加した場合のコリオリ力Fz(測定値)を検出し、このときの検出感度を式(1)に基づいて求めた。
振動Sxの周波数fa及びfbによる比較例1の検出感度の違いを図11のプロットR1及びR2に示す。周波数faの振動を加えた場合の検出感度は−10.0[dB]であり、周波数fbの振動を加えた場合の検出感度は−32.0[dB]であった。
<考察>
図9A及び図9Bの結果から、実施例1及び参考例1は高い検出感度を得ることができ、しかも、検出感度が振動Sxの周波数にほとんど依存しないことがわかる。これは、部材同士の接合や接着が不要で、部材間に接合層が存在しないことから、圧電デバイス10全体の損失係数が小さく、振動の周波数に関わらず圧電デバイス10を容易に共振できていることによるものと考えられる。従って、実施例1及び参考例1は比較例1と比してコリオリ力の検出精度(角速度の検出精度)が向上していることは明らかである。
[第2実施例]
上述した実施例1及び参考例1について、交流電圧(周波数>fa、振幅A)を印加して、コリオリ力Fz(測定値)を検出し、その後、交流電圧の印加を停止するという作業を繰り返し行った場合の検出感度の変化を確認した。その結果を図12に示す。
図12の結果から、参考例1では、ある時間Txが経過した時点tdから検出感度が低下し始め、その後、時間の経過に伴って徐々に検出感度が低下した。これは、可撓部26の変位運動による曲げ荷重が支持部22と可撓部26との第1境界部分28a並びに錘部24と可撓部26との第2境界部分28bに繰り返し加わり、これら第1境界部分28a及び第2境界部分28bで疲労あるいは一部破断が生じたからと考えられる。一方、実施例1は、時間Txが経過しても検出感度の低下はみられなかった。このことから、補強板14の存在によって、実施例1の抗折強度が向上していることがわかる。
[第3実施例]
実施例11〜16について、可撓部26の厚みta並びに補強板14及び振動板16の合計厚みtbを変化させた場合の検出感度の違いを確認した。
(実施例11)
実施例11は、合計厚みtbを10μm、可撓部26の厚みtaを20μmにして、膜厚比(tb/ta)を0.5としたこと以外は、上述した実施例1と同様の構成を有する。
(実施例12)
実施例12は、合計厚みtbを20μm、可撓部26の厚みtaを20μmにして、膜厚比(tb/ta)を1.0としたこと以外は、上述した実施例1と同様の構成を有する。
(実施例13)
実施例13は、合計厚みtbを40μm、可撓部26の厚みtaを40μmにして、膜厚比(tb/ta)を1.0としたこと以外は、上述した実施例1と同様の構成を有する。
(実施例14)
実施例14は、合計厚みtbを30μm、可撓部26の厚みtaを20μmにして、膜厚比(tb/ta)を1.5としたこと以外は、上述した実施例1と同様の構成を有する。
(実施例15)
実施例15は、合計厚みtbを20μm、可撓部26の厚みtaを10μmにして、膜厚比(tb/ta)を2.0としたこと以外は、上述した実施例1と同様の構成を有する。
(実施例16)
実施例16は、合計厚みtbを40μm、可撓部26の厚みtaを20μmにして、膜厚比(tb/ta)を2.0としたこと以外は、上述した実施例1と同様の構成を有する。
<評価>
上述した第1実施例と同様に、交流電圧(周波数>fa、振幅A)を印加して、コリオリ力Fz(測定値)を検出した。実施例11〜16の内訳及び検出感度の結果を下記表3に示す。
Figure 2014020869
<考察>
補強板14及び振動板16の合計厚みtbが基準合計厚みtc以上である実施例12〜16のうち、実施例12、14〜16は、それぞれ検出感度が、−1.39[dB]、−0.56[dB]、1.48[dB]及び−1.19[dB]と良好であった。特に、可撓部26の厚みtaと、補強板14及び振動板16の合計厚みtbとの合計が30μmであって、膜厚比(tb/ta)が2.0である実施例15は、検出感度が1.48[dB]であり、最も良好であった。一方、実施例11及び13は、それぞれ検出感度が−4.54[dB]及び−6.60[dB]で、上述した第1実施例の比較例1よりも良好であったが、実施例12、14〜16よりは検出感度が低くかった。これは、先ず、実施例11については、合計厚みtbが基準合計厚みtcよりも小さいことから、可撓部26において圧縮応力と引張応力が混在し、また、圧縮応力と引張応力とが打ち消し合う部分もあるため、上部電極30に印加される交流電圧の周波数及び振幅に応じた振動が忠実に錘部24に伝達されなかったことによるものと考えられる。実施例13については、可撓部26の厚みtaと、補強板14及び振動板16の合計厚みtbとの合計が80μmであり、全体の膜厚が大きいことによるものと考えられる。
なお、本発明に係る圧電デバイスは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
10、10a〜10c…圧電デバイス
12…素子本体 14…補強板
16…振動板 18…環状溝
20…圧電体 22…支持部
24…錘部 26…可撓部
28a…第1境界部分 28b…第2境界部分
30…上部電極
30a〜30e…第1上部電極〜第5上部電極
32…下部電極 34…中心軸
36…梁 38…中立軸

Claims (13)

  1. 環状溝を有する1つの圧電体にて構成され、外側に位置する支持部、内側に位置する錘部、支持部と錘部の間に位置する可撓部とを一体に有する素子本体と、
    少なくとも前記支持部と前記可撓部との第1境界部分、あるいは少なくとも前記錘部と前記可撓部との第2境界部分に設けられた補強板と、
    前記可撓部の下面と対向する位置に設けられた振動板とを有することを特徴とする圧電デバイス。
  2. 請求項1記載の圧電デバイスにおいて、
    前記補強板は、少なくとも前記支持部と前記可撓部との第1境界部分及び前記錘部と前記可撓部との第2境界部分に設けられていることを特徴とする圧電デバイス。
  3. 請求項2記載の圧電デバイスにおいて、
    前記補強板は、前記第1境界部分、前記可撓部の下面及び前記第2境界部分にかけて形成され、
    前記振動板は、前記補強板の下面に設けられていることを特徴とする圧電デバイス。
  4. 請求項1〜3のいずれか1項に記載の圧電デバイスにおいて、
    前記素子本体のうち、前記環状溝が形成されていない主面に上部電極が形成され、
    前記補強板は下部電極を兼ねることを特徴とする圧電デバイス。
  5. 請求項4記載の圧電デバイスにおいて、
    複数の前記上部電極は、前記錘部を駆動するための駆動用電極と、前記錘部の変位を検出するための検出用電極とを有することを特徴とする圧電デバイス。
  6. 請求項4記載の圧電デバイスにおいて、
    複数の前記上部電極は、前記錘部の変位を検出するための検出用電極のみを有することを特徴とする圧電デバイス。
  7. 請求項4〜6のいずれか1項に記載の圧電デバイスにおいて、
    前記補強板の一部は、前記素子本体の外表面まで延在し、前記下部電極のリード電極を構成することを特徴とする圧電デバイス。
  8. 請求項1〜7のいずれか1項に記載の圧電デバイスにおいて、
    前記補強板及び前記振動板の合計厚みと前記可撓部の厚みは、前記可撓部と前記補強板と前記振動板とで構成される梁を曲げた際の材料力学上の中立軸が前記振動板側に位置するように規定されていることを特徴とする圧電デバイス。
  9. 請求項8記載の圧電デバイスにおいて、
    前記中立軸が前記可撓部と前記補強板との境界部分に位置するときの前記補強板と前記振動板の合計厚みを基準合計厚みとしたとき、
    前記補強板及び前記振動板の合計厚みは前記基準合計厚み以上であることを特徴とする圧電デバイス。
  10. 請求項1〜9のいずれか1項に記載の圧電デバイスにおいて、
    前記補強板及び前記振動板の構成材料が金(Au)であり、
    前記可撓部の厚みtaが1〜100μmであり、
    前記補強板及び前記振動板の合計厚みtbと前記可撓部の厚みtaとの比(tb/ta)が0.76以上であることを特徴とする圧電デバイス。
  11. 請求項10記載の圧電デバイスにおいて、
    前記比(tb/ta)が0.80以上であることを特徴とする圧電デバイス。
  12. 請求項1〜9のいずれか1項に記載の圧電デバイスにおいて、
    前記補強板及び前記振動板の構成材料が銅(Cu)であり、
    前記可撓部の厚みtaが1〜100μmであり、
    前記補強板及び前記振動板の合計厚みtbと前記可撓部の厚みtaとの比(tb/ta)が0.62以上であることを特徴とする圧電デバイス。
  13. 請求項12記載の圧電デバイスにおいて、
    前記比(tb/ta)が0.66以上であることを特徴とする圧電デバイス。
JP2012158572A 2012-07-17 2012-07-17 圧電デバイス Pending JP2014020869A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012158572A JP2014020869A (ja) 2012-07-17 2012-07-17 圧電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158572A JP2014020869A (ja) 2012-07-17 2012-07-17 圧電デバイス

Publications (1)

Publication Number Publication Date
JP2014020869A true JP2014020869A (ja) 2014-02-03

Family

ID=50195925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012158572A Pending JP2014020869A (ja) 2012-07-17 2012-07-17 圧電デバイス

Country Status (1)

Country Link
JP (1) JP2014020869A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219377A (zh) * 2017-06-09 2017-09-29 西人马(厦门)科技有限公司 电荷输出元件、装配方法及压电加速度传感器
JPWO2019073766A1 (ja) * 2017-10-12 2020-11-05 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219377A (zh) * 2017-06-09 2017-09-29 西人马(厦门)科技有限公司 电荷输出元件、装配方法及压电加速度传感器
WO2018223828A1 (zh) * 2017-06-09 2018-12-13 西人马(厦门)科技有限公司 电荷输出元件、装配方法及压电加速度传感器
CN107219377B (zh) * 2017-06-09 2019-09-03 西人马联合测控(泉州)科技有限公司 电荷输出元件、装配方法及压电加速度传感器
JPWO2019073766A1 (ja) * 2017-10-12 2020-11-05 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置
JP7017578B2 (ja) 2017-10-12 2022-02-08 富士フイルム株式会社 発電素子の製造方法、発電素子及び発電装置
US11751478B2 (en) 2017-10-12 2023-09-05 Fujifilm Corporation Method of manufacturing power generation element, power generation element, and power generation apparatus

Similar Documents

Publication Publication Date Title
JP6010774B2 (ja) 慣性力検出素子とそれを用いた慣性力センサ
JP5713737B2 (ja) ノイズを低減した力センサ
US9366687B2 (en) Angular velocity detecting device
JP2010096538A (ja) 角速度センサ
JP2014020869A (ja) 圧電デバイス
JP6330501B2 (ja) 振動型角速度センサ
WO2018003692A1 (ja) 物理量センサ
JP6455751B2 (ja) Mems圧電センサ
JP2012149961A (ja) 振動ジャイロ
Kou et al. Design and fabrication of a novel MEMS vibrating ring gyroscope
JP2001133476A (ja) 加速度センサ
JP2014020867A (ja) 圧電デバイス
JP2012112819A (ja) 振動ジャイロ
JP6076634B2 (ja) センシング素子
JP2010145315A (ja) 振動ジャイロスコープ
JP2009092396A (ja) 振動式センサ
JP2006153481A (ja) 力学量センサ
JP5976893B1 (ja) センサ
WO2016067543A1 (ja) 振動型角速度センサ
JP2016070739A (ja) センサ
JP6988367B2 (ja) 物理量センサ
WO2014061247A1 (ja) 角速度センサ
JP5522351B2 (ja) 物理量センサー
Kang et al. Size effect on dynamic characteristics of piezoelectric micromachined ultrasonic transducers
JP2011127913A (ja) 振動ジャイロ