JP2014020839A - Segregation evaluation method and segregation evaluation device by emission spectrometric analysis - Google Patents
Segregation evaluation method and segregation evaluation device by emission spectrometric analysis Download PDFInfo
- Publication number
- JP2014020839A JP2014020839A JP2012157831A JP2012157831A JP2014020839A JP 2014020839 A JP2014020839 A JP 2014020839A JP 2012157831 A JP2012157831 A JP 2012157831A JP 2012157831 A JP2012157831 A JP 2012157831A JP 2014020839 A JP2014020839 A JP 2014020839A
- Authority
- JP
- Japan
- Prior art keywords
- segregation
- scanning
- analysis
- discharge
- evaluated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005204 segregation Methods 0.000 title claims abstract description 76
- 238000004458 analytical method Methods 0.000 title claims abstract description 62
- 238000011156 evaluation Methods 0.000 title claims abstract description 24
- 238000013507 mapping Methods 0.000 claims abstract description 19
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 17
- 239000010959 steel Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000011002 quantification Methods 0.000 claims description 12
- 238000004611 spectroscopical analysis Methods 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 238000001636 atomic emission spectroscopy Methods 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 238000000295 emission spectrum Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 34
- 239000000523 sample Substances 0.000 abstract description 22
- 238000004445 quantitative analysis Methods 0.000 abstract description 9
- 208000028659 discharge Diseases 0.000 description 100
- 238000005259 measurement Methods 0.000 description 21
- 238000011109 contamination Methods 0.000 description 13
- 238000009826 distribution Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000011088 calibration curve Methods 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本発明は、鉄鋼材料、特に鋼の連続鋳造鋳片や厚鋼板の内部品質を評価する発光分光分析による偏析評価方法および偏析評価装置に関する。 The present invention relates to a segregation evaluation method and segregation evaluation apparatus by emission spectroscopic analysis for evaluating the internal quality of a steel material, particularly a continuous cast slab of steel or a thick steel plate.
鋼の連続鋳造鋳片(以下、鋳片と略記)や鋳片を素材とする厚鋼板の分野においては、連続鋳造時に形成される鋳片中心部の偏析(中心偏析)が製品品質に大きく影響することが知られている。そこで、この中心偏析を軽減するための技術が多数開発されている。一方、中心偏析の評価方法については、幾つかの技術が知られている。具体的には、マクロプリント法、ドリル分析法、スライス分析法、スパーク放電発光分析法などを鋳片ごとに採取されたサンプルに適用することで、中心偏析が評価されている。 In the field of steel continuous cast slabs (hereinafter abbreviated as slabs) and thick steel plates made from cast slabs, segregation at the center of the slab formed during continuous casting (center segregation) has a significant effect on product quality. It is known to do. Therefore, many techniques for reducing this center segregation have been developed. On the other hand, several techniques are known for evaluating the center segregation. Specifically, center segregation is evaluated by applying a macro print method, a drill analysis method, a slice analysis method, a spark discharge emission analysis method, or the like to a sample collected for each slab.
マクロプリント法は、鋳片の切断面を研磨し、偏析部をピクリン酸などの腐食液により腐食させてからインクなどを染み込ませた後、一旦、表面のインクを拭き取り、腐食部に残ったインクをセロハン紙などに写し取り、偏析の発生状況を可視化する方法である。しかしながら、マクロプリント法は、鋳片サンプル全体の偏析を把握できる点では有効であるが、得られるプリントの濃度が腐食や研磨の状況に左右されるために、偏析の定量化が困難である。 In the macro printing method, the cut surface of the slab is polished, the segregated part is corroded with a corrosive liquid such as picric acid, and then ink is soaked. Then, the ink on the surface is once wiped off, and the ink remaining in the corroded part This is a method of visualizing the occurrence of segregation by copying the material on cellophane paper. However, the macro print method is effective in that it can grasp the segregation of the entire slab sample, but the segregation of the segregation is difficult because the concentration of the obtained print depends on the state of corrosion and polishing.
ドリル分析法は、マクロプリント法などにより中心偏析部を特定し、この中心偏析部の複数の分析点からドリルで切粉サンプルを採取し、この切粉を分析する方法である。また、スライス分析法は、鋳片などを厚さ方向に順次スライスして採取した切粉の成分を分析し、厚さ方向の成分の濃度分布を得る方法である。しかしながら、ドリル分析法やスライス分析法によれば、偏析の定量評価が可能であるが、試料採取などの前処理に長時間を要する。 The drill analysis method is a method in which a center segregation part is specified by a macro print method or the like, a chip sample is collected from a plurality of analysis points of the center segregation part with a drill, and the chip is analyzed. The slice analysis method is a method of obtaining a concentration distribution of components in the thickness direction by analyzing the components of chips obtained by sequentially slicing a slab or the like in the thickness direction. However, according to the drill analysis method and the slice analysis method, it is possible to quantitatively evaluate the segregation, but it takes a long time for preprocessing such as sampling.
特許文献1には、スパーク放電発光分析法を用いて鋳片分析面の複数の分析点を分析し、偏析度を定量評価する技術が開示されている。しかしながら、この技術によれば、分析面全体を測定していないため、偏析度を正確に評価できない可能性がある。
以上のように、従来の各種評価方法では、偏析度を迅速かつ定量的に評価することが困難である。このため、近年では、特許文献2や非特許文献1に記載のEPMA(電子線プローブX線マイクロアナライザー)やスパーク放電発光分析法を用いたマッピング分析技術による評価方法が提案されている。
As described above, it is difficult to quickly and quantitatively evaluate the degree of segregation with various conventional evaluation methods. For this reason, in recent years, an evaluation method using a mapping analysis technique using an EPMA (electron probe X-ray microanalyzer) or a spark discharge emission analysis described in
特許文献2に記載のEPMA法を用いたマッピング分析技術による偏析度評価では、鋳片サンプル全面を分析し、偏析のマクロ観を把握できると共に、結果も数値化できる利点がある。しかしながら、EPMA法では、電子線照射によって試料表面にカーボン(C)が堆積することによる鋼材強度への影響が大きく、偏析度評価において重要な偏析元素であるCの定量分析が困難である。また、0.01wt%以下の低濃度元素の定量に限界がある。
In the segregation degree evaluation by the mapping analysis technique using the EPMA method described in
一方、非特許文献1に記載の試料を連続的に走査しながらスパーク放電発光分析を行うマッピング分析技術(OPA(Original Position statistic distribution Analysis)法)は、マクロ偏析を迅速かつ定量的に評価できる技術として期待されている。しかしながら、OPA法により偏析度を定量的に評価するためには、同一分析面上を複数回繰返し走査し、コンタミネーションなどの表面汚染や初期の不安定放電の影響が低減した後の発光データを用いる必要があるため、分析に長時間を要する。
On the other hand, mapping analysis technology (OPA (Original Position statistic distribution Analysis) method) that performs spark discharge emission analysis while continuously scanning the sample described in Non-Patent
本発明は、上記に鑑みてなされたものであって、EPMA法では評価困難なCや0.01wt%以下の低濃度元素の偏析度を迅速かつ定量的に評価可能な発光分光分析による偏析評価方法および偏析評価装置を提供することを目的とする。 The present invention has been made in view of the above. Segregation evaluation by emission spectroscopic analysis capable of quickly and quantitatively evaluating the segregation degree of C and low concentration elements of 0.01 wt% or less which are difficult to evaluate by the EPMA method. An object is to provide a method and a segregation evaluation apparatus.
上述した課題を解決し、目的を達成するために、本発明に係る発光分光分析による偏析評価方法は、偏析について評価しようとする部分を含む鉄鋼材料をスパーク放電を発生する電極に対し連続的に走査させながら、偏析について評価しようとする部分を含む領域のスパーク放電発光分光分析による偏析元素の濃度マッピング分析を行い、偏析を定量的に評価する方法であって、同一走査線上を2回以上繰返し走査し、かつ、予備走査時と定量のための本走査時とで、放電エネルギーと走査速度との少なくとも一方を変更することを特徴とする。 In order to solve the above-described problems and achieve the object, the method for evaluating segregation by emission spectroscopic analysis according to the present invention continuously applies a steel material including a portion to be evaluated for segregation to an electrode that generates a spark discharge. This is a method of quantitatively evaluating segregation by performing concentration mapping analysis of segregation elements by spark discharge emission spectroscopic analysis of a region including a portion to be evaluated for segregation while scanning, and repeatedly performing segregation on the same scanning line twice or more. The scanning is performed, and at least one of the discharge energy and the scanning speed is changed between the preliminary scanning and the main scanning for quantification.
また、本発明に係る発光分光分析による偏析評価方法は、上記発明において、走査距離1mmあたりの合計放電エネルギー量が60Jを超える予備走査の後に、前記放電エネルギーと走査速度との少なくとも一方を変更して走査することにより濃度マッピング分析を行うことを特徴とする。 Further, the segregation evaluation method by emission spectroscopic analysis according to the present invention is the above invention, wherein, in the above invention, after the preliminary scanning in which the total discharge energy amount per 1 mm of the scanning distance exceeds 60 J, at least one of the discharge energy and the scanning speed is changed. And performing density mapping analysis by scanning.
また、本発明に係る発光分光分析による偏析評価方法は、上記発明において、前記偏析元素には、C,P,Mn,Nb,S,Ti,Cu,Mo,VおよびNiのうちの少なくとも一つの元素が含まれることを特徴とする。 Moreover, the segregation evaluation method by emission spectroscopic analysis according to the present invention is the above invention, wherein the segregation element includes at least one of C, P, Mn, Nb, S, Ti, Cu, Mo, V, and Ni. It is characterized by containing elements.
また、本発明に係る発光分光分析による偏析評価装置は、偏析について評価しようとする部分を含む鉄鋼材料をスパーク放電を発生する電極に対し連続的に走査させながら、偏析について評価しようとする部分を含む領域のスパーク放電発光分光分析による偏析元素の濃度マッピング分析を行い、偏析を定量的に評価する装置であって、同一走査線上を2回以上繰返し走査し、かつ、予備走査時と定量のための本走査時とで、放電エネルギーと走査速度との少なくとも一方を変更する手段を備えることを特徴とする。 Further, the segregation evaluation apparatus by emission spectroscopic analysis according to the present invention includes a part to be evaluated for segregation while continuously scanning a steel material including a part to be evaluated for segregation with respect to an electrode that generates a spark discharge. An apparatus for quantitatively evaluating segregation by performing concentration mapping analysis of segregated elements by spark discharge optical emission spectrometry of the included area, repeatedly scanning the same scanning line two or more times, and for preliminary scanning and quantification It is characterized by comprising means for changing at least one of the discharge energy and the scanning speed during the main scanning.
本発明によれば、EPMA法では評価困難なCや0.01wt%以下の低濃度元素の偏析度を迅速かつ定量的に測定することができる。 According to the present invention, it is possible to quickly and quantitatively measure the segregation degree of C or a low concentration element of 0.01 wt% or less which is difficult to evaluate by the EPMA method.
以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.
本発明は、スパーク放電を発生する電極に対し試料を連続的に走査させながら、偏析部を含む領域に対してスパーク放電発光分析法によるマッピング分析を行う分析法において、元素濃度の定量評価に影響を与える因子を明らかにし、各因子の影響を抑制するために最適な走査条件および放電条件でマッピング分析することにより各元素の定量マッピング分析を可能とするものである。 The present invention has an effect on quantitative evaluation of element concentration in an analysis method that performs mapping analysis by a spark discharge emission spectrometry method on a region including a segregation part while continuously scanning a sample with respect to an electrode that generates a spark discharge. The quantitative mapping analysis of each element is made possible by clarifying the factor that gives the effect and performing mapping analysis under the optimum scanning conditions and discharge conditions in order to suppress the influence of each factor.
スパーク放電発光分析においては、通常は試料を走査することなく数mmφの領域に繰り返しスパーク放電を行い、数百回以上の放電により発生する発光信号をデータ処理している。この際、試料表面の汚染除去および安定放電にいたるまでの不良データを棄却するために、1秒程度の予備放電を実施している。 In the spark discharge emission analysis, usually, a spark discharge is repeatedly performed in an area of several mmφ without scanning a sample, and a light emission signal generated by discharge several hundred times or more is processed. At this time, a preliminary discharge of about 1 second is carried out in order to reject defective data until the sample surface is decontaminated and a stable discharge is reached.
一方、試料を走査しながらスパーク放電発光分析を行う場合、1回目から数回目までの走査では試料の未放電領域に対する初期の放電であるため、発光情報には試料の表面汚染の情報が含まれることは避けられない。そこで、同一分析面上を多数回繰返し走査し、表面汚染の影響や初期の不安定放電の影響が低減した後の発光データを用いることで安定した発光強度を得て、得られた発光強度から検量線法などにより各元素の濃度を定量的に評価することが可能となる。しかしながら、同一分析面上を多数回繰返し走査することは、定量分析の精度を向上させるものの、分析に長時間を要し、迅速に広域の偏析度を評価できなくなる。 On the other hand, when performing spark discharge emission analysis while scanning the sample, the first to several scans are the initial discharge for the undischarged region of the sample, and thus the emission information includes information on the surface contamination of the sample. It is inevitable. Therefore, by repeatedly scanning the same analysis surface many times, using the emission data after reducing the effects of surface contamination and initial unstable discharge, obtain stable emission intensity, and from the obtained emission intensity The concentration of each element can be quantitatively evaluated by a calibration curve method or the like. However, repeated scanning on the same analysis surface many times improves the accuracy of quantitative analysis, but requires a long time for the analysis, and the segregation degree over a wide area cannot be evaluated quickly.
したがって、偏析度を迅速かつ定量的に評価するためには、できるだけ少ない走査回数で試料の分析面を表面汚染の影響や初期の不安定放電の影響がない状態とすることが重要となる。なお、分析面が安定するまでの走査中の放電による発光信号は偏析度の評価には使用されないので、分析に最適な放電条件と異なる条件とすることが可能である。 Therefore, in order to evaluate the segregation degree quickly and quantitatively, it is important that the analysis surface of the sample is made free from the influence of surface contamination and the influence of the initial unstable discharge with as few scans as possible. In addition, since the light emission signal due to the discharge during the scanning until the analysis surface is stabilized is not used for the evaluation of the segregation degree, it is possible to set the conditions different from the optimum discharge conditions for the analysis.
ここで、放電エネルギーを高くすると、元素によっては、バックグラウンドの上昇や発光強度の飽和などを引き起こすため、定量分析に最適な条件とはいえない。しかし、放電エネルギーが高い場合、一放電あたりの試料蒸発量が増し、表面汚染の除去(表面清浄化)を迅速に行うことができる。 Here, when the discharge energy is increased, depending on the element, the background is increased and the emission intensity is saturated. Therefore, it is not an optimal condition for quantitative analysis. However, when the discharge energy is high, the amount of sample evaporation per discharge increases, and surface contamination can be quickly removed (surface cleaning).
そこで、表面清浄化のための初期の予備走査では高い放電エネルギーの放電条件とし、表面汚染や初期の不安定放電の影響を迅速に取り除き、その後の定量のための本走査では各元素の定量分析に最適な放電エネルギーの放電条件とすることで、迅速に元素の定量マッピング分析が可能となる。さらに、走査速度についても定量に最適な走査速度よりも速い走査速度の予備走査で予備処理を行ない表面汚染などを除去することができる。このような方法による発光分光分析で迅速かつ精度のよい偏析評価が可能となる。 Therefore, in the initial preliminary scan for surface cleaning, discharge conditions with high discharge energy are used, the effects of surface contamination and initial unstable discharge are quickly removed, and in the main scan for subsequent determination, each element is quantitatively analyzed. By setting the discharge conditions with the optimum discharge energy, quantitative mapping analysis of elements can be performed quickly. Furthermore, as for the scanning speed, preliminary processing can be performed by preliminary scanning at a scanning speed faster than the scanning speed optimum for quantification to remove surface contamination and the like. Rapid and accurate segregation evaluation becomes possible by emission spectroscopic analysis by such a method.
図1(a)〜(c)はそれぞれ、放電エネルギーの変化に伴うC,P,Mnの検量線(濃度と発光強度比との関係)の変化を示す図である。分析部分の表面清浄化のために、試料を走査せずに同一の場所に対し、放電エネルギー75mJ、放電繰返し周波数200Hzで10秒間放電処理を繰り返した(予備処理)。その後、その分析部分に対し、放電エネルギーを75mJ、200mJ、240mJに変更してC、P、Mnの定量を行なった(本測定)。 FIGS. 1A to 1C are diagrams showing changes in calibration curves (relationship between concentration and emission intensity ratio) of C, P, and Mn with changes in discharge energy. In order to clean the surface of the analysis portion, the discharge treatment was repeated for 10 seconds at a discharge energy of 75 mJ and a discharge repetition frequency of 200 Hz for the same place without scanning the sample (preliminary treatment). Thereafter, the discharge energy was changed to 75 mJ, 200 mJ, and 240 mJ for the analyzed portion, and C, P, and Mn were quantified (this measurement).
図1(a)に示すように、Cでは定量の際の放電エネルギーの増加に伴い発光強度比が大きくなる。一方、図1(b)に示すように、Pでは放電エネルギーの増加に伴いバックグラウンドの上昇により低濃度域における精度が低下し、図1(c)に示すように、Mnでは放電エネルギーの増加に伴い発光強度比の飽和により高濃度域における精度が低下する。一般的に放電エネルギーが低くなり過ぎると分析感度が低下してしまうので、図1に示した結果より、定量時(本測定時)の放電エネルギーは75mJ程度が好ましい。これは、試料を連続的に走査させながら、偏析部を含む領域に対してマッピング分析を行う本発明の分析法においても好適な条件であり、適用することが望ましい。 As shown in FIG. 1A, in C, the emission intensity ratio increases as the discharge energy increases during quantification. On the other hand, as shown in FIG. 1 (b), in P, the accuracy in the low-concentration region decreases due to an increase in the background as the discharge energy increases, and as shown in FIG. 1 (c), the discharge energy increases in Mn. Accordingly, the saturation in the emission intensity ratio decreases the accuracy in the high concentration range. In general, if the discharge energy becomes too low, the analysis sensitivity is lowered. Therefore, from the results shown in FIG. 1, the discharge energy at the time of quantification (during this measurement) is preferably about 75 mJ. This is also a preferable condition in the analysis method of the present invention in which mapping analysis is performed on a region including a segregation part while continuously scanning a sample, and it is desirable to apply this.
本発明に係るスパーク放電発光分析法を鋳片(スラブ)のマッピング分析に適用した。具体的な測定法として、鋳造方向に垂直なスラブC断面について、ステッピングモータ駆動のアームを用いて試料を連続的に走査しながら、スパーク放電発光分析を行い、放電ごとの発光データを記録し、検量線法により定量分析した。試料の走査法として、スラブの板厚方向に15mm走査し、スラブの板幅方向には3mmピッチで走査位置をずらしながら20回測定し、15mm×60mmの領域を測定した。測定前に分析面を粗度#100のベルト研磨で仕上げた。また、本走査においてC,P,Mnなどの各偏析元素を定量分析できる最適な放電条件は、検量線におけるバックグラウンドの影響や発光強度の飽和など定量分析への影響を考慮して、上記と同じ放電エネルギー75mJ、放電繰返し周波数200Hz、走査速度30mm/minとした。以上の測定条件での15mm×60mmの領域に対する本走査の測定時間は、約15分であった。 The spark discharge emission analysis method according to the present invention was applied to mapping analysis of a slab. As a specific measurement method, a slab C cross section perpendicular to the casting direction is subjected to spark discharge emission analysis while continuously scanning a sample using a stepping motor driven arm, and emission data for each discharge is recorded, Quantitative analysis was performed by the calibration curve method. As a sample scanning method, 15 mm was scanned in the plate thickness direction of the slab, and the measurement was performed 20 times while shifting the scanning position at a pitch of 3 mm in the plate width direction of the slab, and a 15 mm × 60 mm region was measured. Prior to the measurement, the analysis surface was finished by belt polishing with a roughness of # 100. In addition, the optimum discharge conditions that can quantitatively analyze each segregated element such as C, P, and Mn in this scan are as described above in consideration of the influence of background on the calibration curve and the influence of quantitative analysis such as saturation of emission intensity. The same discharge energy was 75 mJ, the discharge repetition frequency was 200 Hz, and the scanning speed was 30 mm / min. The measurement time of the main scan for a 15 mm × 60 mm region under the above measurement conditions was about 15 minutes.
図2は、上記の定量に最適な放電条件(放電エネルギー75mJ、放電繰返し周波数200Hz、走査速度30mm/min)で同一走査線上を複数回走査した際のCの発光強度の変化を示す図である。図2に示すように、C発光強度は走査回数ごとに徐々に減少している。これは、走査するごとに表面汚染が減少しているためと考えられる。図2では4回目の走査以後はほぼ一定の発光強度になっている。したがって、上記の定量に最適な放電条件では、表面汚染の影響を十分に低減させるためには、3回以上の予備走査が必要であり、4回目以降の実際の定量のための走査時間(本測定時間)と合わせると、合計測定時間は60分以上となる。なお、この時の、3回の予備走査で走査距離1mm当たりに放電された合計放電エネルギー量は、90J(=75mJ×200Hz(回/秒)×2秒×3回)であった。
FIG. 2 is a diagram showing a change in the light emission intensity of C when the same scanning line is scanned a plurality of times under the optimal discharge conditions (discharge energy 75 mJ, discharge repetition frequency 200 Hz,
図3(a)は、上記の条件で測定した際のスラブのCの板厚方向濃度プロファイルを示す図であり、図3(b)は、上記の条件で測定したスラブのPの板厚方向濃度プロファイルを示す図である。図3(a)および(b)に示す測定では、1〜3回目の走査を予備走査として、放電エネルギー量75mJ、放電繰返し周波数200Hz、走査速度30mm/minとし、4回目の定量のための本走査を放電エネルギー75mJ、放電繰返し周波数200Hz、走査速度30mm/minとした。図3(a)に示すように、試料を走査しながら連続的にスパーク放電発光分析することにより、EPMA法では定量が困難なCの濃度分布の測定が可能となり、偏析度を評価することができた。また、図3(b)に示すように、EPMA法では定量が困難なPの濃度分布の測定が可能となり、偏析度を評価することができた。 FIG. 3 (a) is a diagram showing a C-thickness direction concentration profile of slab when measured under the above conditions, and FIG. 3 (b) is a thickness direction of P of slab measured under the above conditions. It is a figure which shows a density profile. In the measurement shown in FIGS. 3A and 3B, the first to third scans are pre-scanned, the discharge energy amount is 75 mJ, the discharge repetition frequency is 200 Hz, and the scan speed is 30 mm / min. Scanning was performed with a discharge energy of 75 mJ, a discharge repetition frequency of 200 Hz, and a scanning speed of 30 mm / min. As shown in FIG. 3 (a), by performing spark discharge emission analysis continuously while scanning a sample, it becomes possible to measure the concentration distribution of C, which is difficult to determine by the EPMA method, and to evaluate the degree of segregation. did it. Further, as shown in FIG. 3 (b), it was possible to measure the concentration distribution of P, which is difficult to determine by the EPMA method, and the segregation degree could be evaluated.
次に、1回目走査時の放電エネルギーを240mJまで上げて放電繰返し周波数200Hz、走査速度30mm/minで放電し、2回目以降の走査での放電エネルギーを定量に最適な放電条件である75mJ、放電繰返し周波数200Hz、走査速度30mm/minとした。図4は、この条件下でのC発光強度の変化を示す図である。図4に示すように、1回目の走査時の放電エネルギーを高くすることで、表面汚染の影響を1回の走査で十分に低減させることができ、2回目の走査で実効的な分析が可能となった。したがって、合計測定時間を30分に短縮することができた。この時の1回目走査時の走査距離1mm当たりに放電された合計放電エネルギー量は、96J(=240mJ×200Hz(回/秒)×2秒×1回)であった。 Next, the discharge energy at the first scan is increased to 240 mJ and discharged at a discharge repetition frequency of 200 Hz and a scan speed of 30 mm / min. The discharge energy at the second and subsequent scans is 75 mJ, which is the optimum discharge condition for quantitative determination. The repetition frequency was 200 Hz and the scanning speed was 30 mm / min. FIG. 4 is a diagram showing a change in C emission intensity under these conditions. As shown in FIG. 4, by increasing the discharge energy during the first scan, the influence of surface contamination can be sufficiently reduced by one scan, and effective analysis can be performed by the second scan. It became. Therefore, the total measurement time could be shortened to 30 minutes. The total amount of discharge energy discharged per 1 mm of scanning distance at the time of the first scanning at this time was 96 J (= 240 mJ × 200 Hz (times / second) × 2 seconds × 1 time).
さらに、1回目走査時の放電エネルギーを240mJ、放電繰返し周波数200Hz、走査速度を45mm/min、60mm/minと変え、2回目の走査時の放電エネルギーを定量に最適な放電条件である75mJ、放電繰返し周波数200Hz、走査速度30mm/minとした。図4に、この条件下でのC発光強度変化を併せて示す。図4に示すように、1回目の走査速度を60mm/minまで上げた場合は、表面汚染を十分に低減できないが、1回目の走査速度を45mm/minとした場合は、表面汚染を十分に低減させることができた。走査速度を45mm/minとした場合の走査時間は約10分であり、定量に最適な放電条件での2回目の走査を含めた合計測定時間を25分間に短縮することができた。1回目走査時の走査距離1mm当たりに放電された合計放電エネルギー量は、走査速度45mm/minの時64J(=240mJ×200Hz(回/秒)×1.33秒×1回)、走査速度60mm/minの時48J(=240mJ×200Hz(回/秒)×1秒×1回)であった。
Furthermore, the discharge energy at the first scanning is 240 mJ, the discharge repetition frequency is 200 Hz, the scanning speed is changed to 45 mm / min, 60 mm / min, and the discharge energy at the second scanning is 75 mJ, which is the optimal discharge condition for quantification. The repetition frequency was 200 Hz and the scanning speed was 30 mm / min. FIG. 4 also shows changes in C emission intensity under these conditions. As shown in FIG. 4, when the first scanning speed is increased to 60 mm / min, the surface contamination cannot be sufficiently reduced. However, when the first scanning speed is 45 mm / min, the surface contamination is sufficiently reduced. It was possible to reduce. When the scanning speed was 45 mm / min, the scanning time was about 10 minutes, and the total measurement time including the second scanning under the optimal discharge conditions for quantification could be shortened to 25 minutes. The total amount of discharge energy discharged per 1 mm of scanning distance at the first scanning is 64 J (= 240 mJ × 200 Hz (times / second) × 1.33 seconds × 1 time) at a scanning speed of 45 mm / min,
上記実験を含めた発明者らの検討によれば、通常、予備走査において、走査距離1mmあたりの合計放電エネルギー量が60Jを超えるような予備走査を行なった後に、本走査による定量を行なうことが好ましいことがわかった。 According to the investigations by the inventors including the above-mentioned experiment, usually, in the preliminary scan, after performing the preliminary scan such that the total discharge energy amount per 1 mm of the scanning distance exceeds 60 J, the quantification by the main scan can be performed. It turned out to be preferable.
予備走査での走査距離1mmあたりの合計放電エネルギー量は、放電エネルギー、放電繰返し周波数、1mm走査するのに要する時間(走査速度の逆数)、走査回数の積で表される。従って予備走査では、それぞれの因子を調整して、走査距離1mmあたりの合計放電エネルギー量が60J以上になるように設定することが好ましい。ただし、装置上の制約もあり、通常、放電エネルギー20〜1000mJ、放電繰返し周波数100〜500Hz、走査速度10〜200mm/minの範囲より選択される。さらに、予備走査した部分を抜けがなく均一に表面清浄化をするためには1mm当たり250回以上の放電が必要であるため、放電繰返し周波数と走査速度とはそれらの観点からも制約される。
The total discharge energy amount per 1 mm scanning distance in the preliminary scanning is expressed by the product of the discharge energy, the discharge repetition frequency, the time required for 1 mm scanning (the reciprocal of the scanning speed), and the number of scans. Therefore, in the preliminary scanning, it is preferable to set each factor to be adjusted so that the total discharge energy amount per 1 mm of the scanning distance is 60 J or more. However, there are also restrictions on the apparatus, and it is usually selected from the range of
一般に試料の走査速度を上げると、単位走査面積辺りの放電回数が減少するため、統計誤差が大きくなり定量分析の精度は低下するが、走査時間を短縮することができる。従って、定量分析を行わず表面清浄化のために行なう予備走査では走査速度を速くし、それ以降の本走査では定量分析に必要な放電回数を確保できる走査速度とすることで、元素の定量マッピング分析を迅速に行なうことができる。通常の装置では、表面清浄化のために行なう予備走査は、30mm/min超えの走査速度で、また、定量分析を行なうための本走査は、30mm/min以下の走査速度より選択することが好ましい。 In general, when the scanning speed of a sample is increased, the number of discharges per unit scanning area decreases, so that the statistical error increases and the accuracy of quantitative analysis decreases, but the scanning time can be shortened. Therefore, by performing the preliminary scan for surface cleaning without performing quantitative analysis, the scanning speed is increased, and in subsequent main scans, the scanning speed is set so that the number of discharges necessary for quantitative analysis can be ensured. Analysis can be performed quickly. In a normal apparatus, it is preferable to select a preliminary scan for surface cleaning at a scanning speed exceeding 30 mm / min, and a main scanning for performing quantitative analysis from a scanning speed of 30 mm / min or less. .
また、上記濃度を定量評価する元素としては、通常のスパーク放電発光分析法で鋼中濃度を評価可能な元素で、鋳片や厚鋼板で偏析傾向にある元素を用いることが好ましく、C,P,Mn,Nb,S,Ti,Cu,Mo,VおよびNiなどを例示できる。特に、鋼強度などの材質への影響が大きいCや、溶融金属中の濃度と凝固金属中の濃度との差(分配差)が大きいPなどを用いた偏析度評価に好適に用いることができる。 Further, as the element for quantitatively evaluating the concentration, it is preferable to use an element whose concentration in steel can be evaluated by an ordinary spark discharge optical emission spectrometry, and an element that tends to segregate in a cast slab or a thick steel plate. , Mn, Nb, S, Ti, Cu, Mo, V, Ni and the like. In particular, it can be suitably used for segregation degree evaluation using C having a large influence on the material such as steel strength or P having a large difference (distribution difference) between the concentration in the molten metal and the concentration in the solidified metal. .
以上、説明したように、本実施形態の発光分光分析による偏析評価方法および偏析評価装置によれば、EPMA法では評価困難な連続鋳造鋳片や厚鋼板の中心部におけるCや0.01wt%以下の低濃度元素の偏析を迅速かつ定量的に測定することができる。これにより、中心偏析の評価を正確かつ迅速に行なうことができ、連続鋳造鋳片や厚鋼板などの品質向上に大いに寄与することが可能となる。 As described above, according to the segregation evaluation method and the segregation evaluation apparatus based on the emission spectroscopic analysis of the present embodiment, C or 0.01 wt% or less at the center of a continuous cast slab or a thick steel plate that is difficult to evaluate by the EPMA method. Segregation of low-concentration elements can be measured quickly and quantitatively. Thereby, evaluation of center segregation can be performed accurately and rapidly, and it can greatly contribute to quality improvement of continuous cast slabs and thick steel plates.
[実施例]
本発明に係るスパーク放電発光分析法をスラブのマッピング分析に適用し、従来のマッピング分析法による測定結果と比較した。表1は、[C]:0.023wt%,[Si]:0.30wt%,[Mn]:1.26wt%,[P]:0.003wt%,[S]:0.002wt%の鋼材について、種々の条件を変更して上記と同様に測定した各実施例の測定条件と測定結果とを示す。表1に示すように、各実施例について、C,P,Mnのすべてに対して、測定結果の誤差が上記組成の±5%以内にあり、かつ、予備処理時間と本測定時間との合計である合計測定時間が従来のマッピング分析法による測定(60分)よりも短縮されている場合に、効果有と評価した。その結果、本発明を適用した表1の実施例7〜10で効果有と評価できた。
[Example]
The spark discharge emission analysis method according to the present invention was applied to slab mapping analysis and compared with the measurement results obtained by the conventional mapping analysis method. Table 1 shows steel materials of [C]: 0.023 wt%, [Si]: 0.30 wt%, [Mn]: 1.26 wt%, [P]: 0.003 wt%, [S]: 0.002 wt%. The measurement conditions and measurement results of the respective examples measured in the same manner as described above with various conditions changed are shown. As shown in Table 1, for each example, for all of C, P, and Mn, the measurement result error is within ± 5% of the above composition, and the total of the pretreatment time and the main measurement time. When the total measurement time is shorter than the measurement by the conventional mapping analysis method (60 minutes), it was evaluated as effective. As a result, it was able to be evaluated as effective in Examples 7 to 10 in Table 1 to which the present invention was applied.
図5(a)、図6(a)は、本発明に係る測定法によるスラブのCの濃度分布を示す図であり、図5(b)、図6(b)は、本発明に係る測定法によるスラブのPの濃度分布を示す図である。図5(a)、(b)に示す測定では、1回目の走査を予備走査として、放電エネルギー240mJ、放電繰返し周波数200Hz、走査速度30mm/minとし(走査距離1mm当たりの合計放電エネルギー量:96J)、2回目の走査を放電エネルギー75mJ、放電繰返し周波数200Hz、走査速度30mm/minとした。図6(a)、(b)に示す測定では、1回目の走査を予備走査として、放電エネルギー240mJ、放電繰返し周波数200Hz、走査速度45mm/minとし(走査距離1mm当たりの合計放電エネルギー量:64J)、2回目の走査を放電エネルギー75mJ、放電繰返し周波数200Hz、走査速度30mm/minとした。図5(a)および図6(a)に示すように、各条件下でCの濃度分布の測定ができた。また、図5(b)および図6(b)に示すように、各条件下でPの濃度分布の測定ができた。図5および図6の結果は、図3の結果とよく一致しており、本発明に係るスパーク放電発光分析法では、迅速かつ定量的に偏析度を評価できた。 5 (a) and 6 (a) are diagrams showing the concentration distribution of C in the slab by the measurement method according to the present invention, and FIGS. 5 (b) and 6 (b) show the measurement according to the present invention. It is a figure which shows density | concentration distribution of P of the slab by a method. In the measurements shown in FIGS. 5A and 5B, the first scan is a preliminary scan, the discharge energy is 240 mJ, the discharge repetition frequency is 200 Hz, and the scan speed is 30 mm / min (total discharge energy amount per scan distance of 1 mm: 96 J). ) The second scanning was performed with a discharge energy of 75 mJ, a discharge repetition frequency of 200 Hz, and a scanning speed of 30 mm / min. In the measurements shown in FIGS. 6A and 6B, the first scan is a preliminary scan, the discharge energy is 240 mJ, the discharge repetition frequency is 200 Hz, and the scan speed is 45 mm / min (total discharge energy amount per 1 mm of scanning distance: 64 J). ) The second scanning was performed with a discharge energy of 75 mJ, a discharge repetition frequency of 200 Hz, and a scanning speed of 30 mm / min. As shown in FIG. 5A and FIG. 6A, the concentration distribution of C was measured under each condition. Further, as shown in FIGS. 5B and 6B, the concentration distribution of P could be measured under each condition. The results of FIG. 5 and FIG. 6 are in good agreement with the results of FIG. 3, and the degree of segregation could be evaluated quickly and quantitatively by the spark discharge emission analysis method according to the present invention.
以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。 Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012157831A JP5974696B2 (en) | 2012-07-13 | 2012-07-13 | Segregation evaluation method and segregation evaluation apparatus by emission spectroscopic analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012157831A JP5974696B2 (en) | 2012-07-13 | 2012-07-13 | Segregation evaluation method and segregation evaluation apparatus by emission spectroscopic analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014020839A true JP2014020839A (en) | 2014-02-03 |
JP5974696B2 JP5974696B2 (en) | 2016-08-23 |
Family
ID=50195903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012157831A Active JP5974696B2 (en) | 2012-07-13 | 2012-07-13 | Segregation evaluation method and segregation evaluation apparatus by emission spectroscopic analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5974696B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155161A (en) * | 2014-08-18 | 2014-11-19 | 洛阳双瑞特种装备有限公司 | Corrosion resistant alloy plate blank dissecting and analyzing method |
KR101715517B1 (en) * | 2015-10-21 | 2017-03-13 | 현대제철 주식회사 | Method of evaluating centerline segregation of strand |
WO2023199591A1 (en) * | 2022-04-11 | 2023-10-19 | Jfeスチール株式会社 | Emission spectroscopic analysis method for sb in metal material, method for measuring sb concentration in molten steel during refining, and method for manufacturing steel material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57122351A (en) * | 1981-01-21 | 1982-07-30 | Nippon Steel Corp | Method of spectrochemical analysis wherein continuous light emission is utilized |
JPH0310148A (en) * | 1989-06-08 | 1991-01-17 | Shimadzu Corp | Light emission analyzing apparatus |
EP1355145A1 (en) * | 2002-04-19 | 2003-10-22 | Central Iron & Steel Research Institute | A method for analysing metals in the fundamental state utilizing the statistical distribution of elements |
JP2012052828A (en) * | 2010-08-31 | 2012-03-15 | Jfe Steel Corp | Emission spectral analysis method of silicon in steel |
-
2012
- 2012-07-13 JP JP2012157831A patent/JP5974696B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57122351A (en) * | 1981-01-21 | 1982-07-30 | Nippon Steel Corp | Method of spectrochemical analysis wherein continuous light emission is utilized |
JPH0310148A (en) * | 1989-06-08 | 1991-01-17 | Shimadzu Corp | Light emission analyzing apparatus |
EP1355145A1 (en) * | 2002-04-19 | 2003-10-22 | Central Iron & Steel Research Institute | A method for analysing metals in the fundamental state utilizing the statistical distribution of elements |
JP2012052828A (en) * | 2010-08-31 | 2012-03-15 | Jfe Steel Corp | Emission spectral analysis method of silicon in steel |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155161A (en) * | 2014-08-18 | 2014-11-19 | 洛阳双瑞特种装备有限公司 | Corrosion resistant alloy plate blank dissecting and analyzing method |
KR101715517B1 (en) * | 2015-10-21 | 2017-03-13 | 현대제철 주식회사 | Method of evaluating centerline segregation of strand |
WO2023199591A1 (en) * | 2022-04-11 | 2023-10-19 | Jfeスチール株式会社 | Emission spectroscopic analysis method for sb in metal material, method for measuring sb concentration in molten steel during refining, and method for manufacturing steel material |
Also Published As
Publication number | Publication date |
---|---|
JP5974696B2 (en) | 2016-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5320791B2 (en) | Center segregation evaluation method | |
JP5974696B2 (en) | Segregation evaluation method and segregation evaluation apparatus by emission spectroscopic analysis | |
CN104048902B (en) | A kind of measure in steel the distribution of globular oxide inclusion size and the method for content | |
CN112986298B (en) | In-situ statistical distribution characterization method for dendrite structure of single-crystal superalloy | |
WO2018184262A1 (en) | Dynamic calibration method for echelle spectrometer for laser induced breakdown spectrum collection | |
CN107290199A (en) | A kind of method that utilization electron probe quickly characterizes bearing steel segregation | |
TWI657241B (en) | Measurement of small features using xrf | |
CN101216477B (en) | In situ quantitative determination method for large-sized metallic inclusion | |
KR101746990B1 (en) | Steal cleanness measurement apparatus and method | |
CN105181676A (en) | Method for measuring depth and quality of plating of galvanized plate through glow discharge spectrometer | |
EP1355145A1 (en) | A method for analysing metals in the fundamental state utilizing the statistical distribution of elements | |
JP4537253B2 (en) | Determination of nonmetallic inclusion composition by emission spectroscopy | |
CN116698896A (en) | Banded tissue segregation and quantitative characterization method | |
JP2007178321A (en) | Evaluation method of macrosegregation due to emission spectral analysis | |
JP2014058156A (en) | Strip for lithography printing plate circuit board | |
CN113447512B (en) | Quantitative assessment method for hypoeutectoid steel strip-shaped structure | |
JP3671600B2 (en) | Method for measuring particle size distribution of oxide inclusions in metals | |
CN100489491C (en) | Suspension type scanning method for metal in-situ analyzer and sample clamp therefor | |
JP2005300226A (en) | Method for nondestructive evaluation on embrittlement degree of metal material | |
JP2006250737A (en) | Grain size measuring method of inclusion in steel, and calibration curve sample used for it | |
KR100547480B1 (en) | How to measure cleanliness of steel | |
JPH0961357A (en) | Method for quantitatively determining minute nonmetal inclusion by emission spectro analysis | |
JP7388344B2 (en) | Steel center segregation evaluation method | |
KR100347578B1 (en) | Method for promptly measuring molten metal inclusion | |
JPH11160239A (en) | Quantitative determination method for very small inclusion in iron and steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5974696 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |