JP2014020683A - Cold/hot water heat source machine - Google Patents

Cold/hot water heat source machine Download PDF

Info

Publication number
JP2014020683A
JP2014020683A JP2012160435A JP2012160435A JP2014020683A JP 2014020683 A JP2014020683 A JP 2014020683A JP 2012160435 A JP2012160435 A JP 2012160435A JP 2012160435 A JP2012160435 A JP 2012160435A JP 2014020683 A JP2014020683 A JP 2014020683A
Authority
JP
Japan
Prior art keywords
water heat
heat exchanger
cold
heat medium
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012160435A
Other languages
Japanese (ja)
Other versions
JP6146966B2 (en
Inventor
Yuta Nomura
祐太 野村
則幸 ▲高▼須
Noriyuki Takasu
Katsumi Katsu
勝美 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012160435A priority Critical patent/JP6146966B2/en
Publication of JP2014020683A publication Critical patent/JP2014020683A/en
Application granted granted Critical
Publication of JP6146966B2 publication Critical patent/JP6146966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cold/hot water heat source machine that is compact and requires low manufacturing costs by reducing space occupied by a hydrothermal medium coupling pipe.SOLUTION: A cold/hot water heat source machine includes at least two heat exchangers formed by alternately laminating a plate with a refrigerant passage formed thereon and a plate with a hydrothermal medium passage formed thereon. At least two of the heat exchangers adjacent to each other are arranged side by side in a plate lamination direction, and hydrothermal medium pipe coupling ports respectively disposed on opposed surfaces of the heat exchangers are coupled to each other by a hydrothermal coupling pipe.

Description

本発明は、冷凍サイクルの冷媒から熱交換器を介して採熱し、冷温水を生成する冷温水熱源機に関するものであり、特に熱交換器の配管の占有スペースを減らすようにした冷温水熱源機に関する。   TECHNICAL FIELD The present invention relates to a cold / hot water heat source apparatus that collects heat from a refrigerant in a refrigeration cycle through a heat exchanger and generates cold / hot water, and in particular, a cold / hot water heat source apparatus that reduces the space occupied by piping of the heat exchanger. About.

冷凍サイクルの冷媒から熱交換器を介して採熱し、冷温水を生成する冷温水熱源機において、熱交換器は冷媒流路が形成されたプレートと水熱媒流路が形成されたプレートを交互に積層したプレート式熱交換器が一般的であり、大型の冷温水熱源機では複数の冷凍サイクルを備え、それに対応する熱交換器も複数設けられる。   In a cold / hot water heat source that collects heat from the refrigerant in the refrigeration cycle through a heat exchanger and generates cold / hot water, the heat exchanger alternates between the plate with the refrigerant flow path and the plate with the water heat medium flow path formed. In general, a large-sized cold / hot water heat source apparatus includes a plurality of refrigeration cycles, and a plurality of heat exchangers corresponding thereto are also provided.

複数設けられた熱交換器の配置、水熱媒接続管との接続方法として、熱交換器の正面隅部の一側に2つの水熱媒管接続口を有する同一形状の熱交換器を2つ備え、水熱媒管接続口が正面に向く方向に、熱交換器を上下にずらして並置し、熱交換器の水熱媒管接続口とT字継手の2つの分岐口とを2つのL字管で接続し、水熱媒循環流路を構成する技術が開示されている(例えば特許文献1参照)。   As an arrangement method of a plurality of heat exchangers and a connection method with a water heat medium connection pipe, two heat exchangers of the same shape having two water heat medium pipe connection ports on one side of the front corner of the heat exchanger are provided. The heat exchanger pipes are shifted in the vertical direction so that the water heat medium pipe connection port faces the front, and the water heat medium pipe connection port of the heat exchanger and the two branch ports of the T-shaped joint are A technique of connecting with an L-shaped tube to configure a water heat medium circulation channel is disclosed (for example, see Patent Document 1).

特開2007−303762号公報(たとえば、4ページ参照)JP 2007-303762 (for example, see page 4)

上記従来の技術によれば、2つの熱交換器を上下にずらして並置し、T字継手とL字管を用いて接続するため、水熱媒接続管の形状が複雑となり、水熱媒接続管占有スペースが大きくなる。その結果、製品が大型化して製造コストが増大するという問題があった。さらに、熱交換器を3つ以上備える場合は2つの場合に比べ、より水熱媒接続管が複雑になるという問題があった。   According to the above-described conventional technology, the two heat exchangers are shifted side by side and connected using the T-shaped joint and the L-shaped pipe, so that the shape of the water-heat medium connection pipe becomes complicated, and the water-heat medium connection The space occupied by the tube is increased. As a result, there is a problem that the product is increased in size and the manufacturing cost is increased. Furthermore, when three or more heat exchangers are provided, there is a problem that the water heat medium connection pipe becomes more complicated than in the case of two.

本発明は、以上のような課題を解決するためになされたもので、水熱媒接続管の占有スペースを減らし、小型で製造コストの低い冷温水熱源機を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cold / hot water heat source apparatus that reduces the occupied space of the water-heat medium connection pipe, is small, and has low manufacturing costs.

本発明に係る冷温水熱源機は、冷媒流路が形成されたプレートと水熱媒流路が形成されたプレートとを交互に積層して形成された熱交換器を少なくとも二つ備えた冷温水熱源機において、熱交換器のうち少なくとも隣り合う二つをプレート積層方向に並置し、それぞれの対向する面に設けられた水熱媒管接続口同士を水熱媒接続管で接続したものである。   The cold / hot water heat source apparatus according to the present invention includes cold / hot water provided with at least two heat exchangers formed by alternately laminating a plate having a refrigerant flow path and a plate having a water heat medium flow path. In the heat source machine, at least two adjacent heat exchangers are juxtaposed in the plate stacking direction, and the water heat medium pipe connection ports provided on the opposing surfaces are connected by a water heat medium connection pipe. .

本発明によれば、水熱媒接続管の占有スペースを減らし、小型で製造コストの低い冷温水熱源機が得られる、という効果を奏する。   According to the present invention, the space occupied by the water-heat medium connecting pipe is reduced, and an effect of obtaining a small-sized cold / hot water heat source apparatus with low manufacturing cost is obtained.

本発明の実施の形態に係る冷温水熱源機のシステム構成図である。It is a system configuration figure of the cold / hot water heat source machine concerning an embodiment of the invention. 本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の側面図である。It is a side view of the front | former stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の正面図である。It is a front view of the front | former stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の裏面図である。It is a back view of the front | former stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の後段側熱交換器の側面図である。It is a side view of the back | latter stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の後段側熱交換器の正面図である。It is a front view of the back | latter stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の抵抗係数比と流量比との関係を示す図である。It is a figure which shows the relationship between the resistance coefficient ratio and flow rate ratio of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の斜視図である。It is a perspective view of the front | former stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の後段側熱交換器の斜視図である。It is a perspective view of the back | latter stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention. 本発明の実施の形態に係る冷温水熱源機の前段側熱交換器と後段側熱交換器との接続図である。It is a connection diagram of the front | former stage side heat exchanger and back | latter stage side heat exchanger of the cold / hot water heat source equipment which concerns on embodiment of this invention.

実施の形態.
図1は、本発明の実施の形態に係る冷温水熱源機のシステム構成図である。冷温水熱源機1は、熱交換ユニット2と室外ユニット3とを備えている。熱交換ユニット2は、水熱媒を貯留するバッファタンク4と、水熱媒を循環させる循環ポンプ5と、水熱媒と室外ユニット3から供給される冷媒との間で熱交換を行う前段側熱交換器6と、終端側に位置する後段側熱交換器7とを水熱媒接続管で接続して筐体に収容したものである。前段側熱交換器6と後段側熱交換器7は、同一面が同一方向を向くようにプレート積層方向に並置され、戻り側水熱媒接続管8と吐出側水熱媒接続管9で接続される。
Embodiment.
FIG. 1 is a system configuration diagram of a cold / hot water heat source apparatus according to an embodiment of the present invention. The cold / hot water heat source unit 1 includes a heat exchange unit 2 and an outdoor unit 3. The heat exchange unit 2 includes a buffer tank 4 that stores the water heat medium, a circulation pump 5 that circulates the water heat medium, and a pre-stage side that performs heat exchange between the water heat medium and the refrigerant supplied from the outdoor unit 3. The heat exchanger 6 and the rear-stage heat exchanger 7 located on the terminal side are connected by a water heat medium connecting pipe and accommodated in a casing. The front-stage heat exchanger 6 and the rear-stage heat exchanger 7 are juxtaposed in the plate stacking direction so that the same surface faces the same direction, and are connected by the return-side water heat medium connection pipe 8 and the discharge-side water heat medium connection pipe 9. Is done.

端末放熱器(図示しない)から戻された水熱媒は、一旦バッファタンク4に貯留され、循環ポンプ5により前段側熱交換器6及び後段側熱交換器7に送られ、前段側熱交換器6及び後段側熱交換器7で室外ユニット3の冷媒により加熱又は冷却された後、再び端末放熱器へ送られる。   The water heat medium returned from the terminal radiator (not shown) is temporarily stored in the buffer tank 4 and sent to the front-stage heat exchanger 6 and the rear-stage heat exchanger 7 by the circulation pump 5, and the front-stage heat exchanger. 6 and the rear heat exchanger 7 are heated or cooled by the refrigerant of the outdoor unit 3 and then sent to the terminal radiator again.

室外ユニット3には、図示しないが室外熱交換器、圧縮機及び冷媒流量調整弁などが備えられ、これらは熱交換ユニット2の前段側熱交換器6及び後段側熱交換器7と冷媒管とで接続される。冷凍サイクルの冷媒と熱交換ユニット2の水熱媒とは混じり合うことはないが、前段側熱交換器6及び後段側熱交換器7により熱的に接続されている。なお、ここでは室外ユニット3が2機又は2系統の冷凍サイクルを備えている状態を例に示している。   Although not shown, the outdoor unit 3 is provided with an outdoor heat exchanger, a compressor, a refrigerant flow rate adjusting valve, and the like. These include a front heat exchanger 6 and a rear heat exchanger 7 of the heat exchange unit 2, a refrigerant pipe, Connected with. Although the refrigerant of the refrigeration cycle and the hydrothermal medium of the heat exchange unit 2 do not mix with each other, they are thermally connected by the front-stage side heat exchanger 6 and the rear-stage side heat exchanger 7. Here, an example is shown in which the outdoor unit 3 includes two or two refrigeration cycles.

図2は、本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の側面図、図3は、本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の正面図、図4は、本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の裏面図である。
前段側熱交換器6は、冷媒流路が形成されたプレートと水熱媒流路が形成されたプレートとを交互に積層して長方形厚板状に形成されている。図2〜4に示すように、正面右上隅部に放熱器吐出側水熱媒管接続口61、正面右下隅部に放熱器戻り側水熱媒管接続口62、裏面左上隅部に後段熱交換器戻り側水熱媒管接続口63、裏面左下隅部に後段熱交換器吐出側水熱媒管接続口64、正面左上隅部にガス冷媒管接続口65、正面左下隅部に液冷媒管接続口66を備える。ガス冷媒管接続口65及び液冷媒管接続口66は本実施の形態では熱交換器6の正面に設けたが、裏面に設けてもよい。
FIG. 2 is a side view of the front heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention, and FIG. 3 is the front view of the front heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention. FIG. 4 and FIG. 4 are rear views of the front-stage heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention.
The pre-stage heat exchanger 6 is formed in a rectangular thick plate shape by alternately laminating plates with refrigerant channels and plates with hydrothermal medium channels. 2 to 4, the radiator discharge side water heat medium pipe connection port 61 is located at the upper right corner of the front surface, the radiator return side water heat medium pipe connection port 62 is located at the lower right corner of the front surface, and the rear stage heat is located at the upper left corner of the back surface. Exchanger return side water heat medium pipe connection port 63, rear heat exchanger discharge side water heat medium pipe connection port 64 at the lower left corner of the back surface, gas refrigerant pipe connection port 65 at the upper left corner of the front, and liquid refrigerant at the lower left corner of the front. A tube connection port 66 is provided. Although the gas refrigerant pipe connection port 65 and the liquid refrigerant pipe connection port 66 are provided on the front surface of the heat exchanger 6 in the present embodiment, they may be provided on the back surface.

水熱媒は前段側熱交換器6の内部で、放熱器吐出側水熱媒管接続口61へ向かう流路と、後段熱交換器吐出側水熱媒管接続口64へ向かう流路に分岐される。また、放熱器戻り側水熱媒管接続口62からの流路と、後段熱交換器戻り側水熱媒管接続口63からの流路とが合流する構成となっている。   The water heating medium branches into a flow path toward the radiator discharge side water heat medium pipe connection port 61 and a flow path toward the rear stage heat exchanger discharge side water heat medium pipe connection port 64 inside the front stage heat exchanger 6. Is done. Further, the flow path from the radiator return-side water heat medium pipe connection port 62 and the flow path from the rear-stage heat exchanger return-side water heat medium pipe connection port 63 are configured to merge.

図5は、本発明の実施の形態に係る冷温水熱源機の後段側熱交換器の側面図、図6は、本発明の実施の形態に係る冷温水熱源機の後段側熱交換器の正面図である。後段側熱交換器7は前段側熱交換器6と同様に、冷媒流路が形成されたプレートと水熱媒流路が形成されたプレートとを交互に積層して長方形厚板状に形成されている。図6及び図7に示すように、正面右上隅部に前段放熱器吐出側水熱媒管接続口71、正面右下隅部に前段熱交換器戻り側水熱媒管接続口72、正面左上隅部にガス冷媒管接続口75、正面左下隅部に液冷媒管接続口76を備える。ガス冷媒管接続口75及び液冷媒管接続口76は本実施の形態では熱交換器6の正面に設けたが、裏面に設けてもよい。   FIG. 5 is a side view of the rear-stage heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention, and FIG. 6 is the front view of the rear-stage heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention. FIG. Similarly to the front-side heat exchanger 6, the rear-stage heat exchanger 7 is formed in a rectangular thick plate shape by alternately laminating plates with refrigerant channels and plates with water-heat medium channels. ing. As shown in FIGS. 6 and 7, the front radiator discharge side water heat medium pipe connection port 71 is located at the front upper right corner, the front heat exchanger return side water heat medium pipe connection port 72 is located at the front lower right corner, and the front left upper corner. A gas refrigerant pipe connection port 75 is provided in the part, and a liquid refrigerant pipe connection port 76 is provided in the lower left corner of the front face. Although the gas refrigerant pipe connection port 75 and the liquid refrigerant pipe connection port 76 are provided on the front surface of the heat exchanger 6 in the present embodiment, they may be provided on the back surface.

以下、冷媒と水熱媒の熱交換時の流れについて説明する。
水熱媒を前段側熱交換器6の放熱器戻り側水熱媒管接続口62から流入させ、前段側熱交換器6の内部で、放熱器吐出側水熱媒管接続口61へ向かう流路と、後段熱交換器吐出側水熱媒管接続口64に向かう流路に分岐する。放熱器吐出側水熱媒管接続口61へ向かう流路で、水熱媒は室外ユニット3から供給される冷媒との熱交換を行い、加熱又は冷却される。ここで、冷媒を前段側熱交換器6及び後段側熱交換器7のガス冷媒管接続口65、75から流入させ、前段側熱交換器6及び後段側熱交換器7の液冷媒管接続口66、76から流出させた場合は加熱され、上記と逆向きに冷媒を流した場合は冷却される。
後段熱交換器吐出側水熱媒管接続口64へ向かった水熱媒は戻り側水熱媒接続管8を経由して、後段側熱交換器7の前段熱交換器戻り側水熱媒管接続口72へ流入し、水熱媒は室外ユニット3から供給される冷媒との熱交換を行い、加熱又は冷却される。なお、加熱又は冷却における冷媒の流れは上記と同様である。後段側熱交換器7で加熱又は冷却された水熱媒は前段放熱器吐出側水熱媒管接続口71から吐出側水熱媒接続管9を経由して、前段側熱交換器6の後段熱交換器戻り側水熱媒管接続口63へ流入する。前段側熱交換器6では、後段側熱交換器7で加熱又は冷却された水熱媒と、前段側熱交換器6で加熱又は冷却された水熱媒が合流し、放熱器吐出側水熱媒管接続口61から流出する。
Hereinafter, the flow at the time of heat exchange between the refrigerant and the water heat medium will be described.
The water heat medium is introduced from the radiator return side water heat medium pipe connection port 62 of the front stage side heat exchanger 6, and flows toward the radiator discharge side water heat medium pipe connection port 61 inside the front stage side heat exchanger 6. It branches into the channel and the flow path which goes to the latter stage heat exchanger discharge side water-heat-medium pipe connection port 64. In the flow path toward the radiator discharge side water heat medium pipe connection port 61, the water heat medium exchanges heat with the refrigerant supplied from the outdoor unit 3 and is heated or cooled. Here, the refrigerant is introduced from the gas refrigerant pipe connection ports 65 and 75 of the front stage side heat exchanger 6 and the rear stage side heat exchanger 7, and the liquid refrigerant pipe connection port of the front stage side heat exchanger 6 and the rear stage side heat exchanger 7. When it flows out from 66 and 76, it heats, and when it flows a refrigerant | coolant in the reverse direction, it cools.
The water heat medium headed toward the discharge heat exchanger pipe connection port 64 on the rear heat exchanger passes through the return water heat medium connection pipe 8 and then returns to the front heat exchanger return side water heat medium pipe of the rear heat exchanger 7. The hydrothermal medium flows into the connection port 72 and heat exchange with the refrigerant supplied from the outdoor unit 3 is heated or cooled. The refrigerant flow in heating or cooling is the same as described above. The water heating medium heated or cooled by the rear-stage heat exchanger 7 passes through the discharge-side water-heat medium connection pipe 9 from the front-stage radiator discharge-side water-heat medium pipe connection port 71, and is followed by the rear-stage heat exchanger 6. It flows into the heat exchanger return side water heat medium pipe connection port 63. In the front stage side heat exchanger 6, the water heat medium heated or cooled by the rear stage side heat exchanger 7 and the water heat medium heated or cooled by the front stage side heat exchanger 6 are merged, and the radiator discharge side water heat It flows out from the medium tube connection port 61.

以上のような冷媒と水熱媒の流れ方向とすることで、水熱媒の加熱時は、冷媒と水熱媒とが対向流となるため熱交換率が向上する。一方、水熱媒の冷却時は、冷媒と水熱媒とが平行流となるため熱交換率は悪化する。水熱媒の流れ方向を上記と逆にすると、水熱媒の冷却時に熱交換効率がよく、加熱時に熱交換効率が悪くなる。そのため、冷房運転と暖房運転のどちらの熱交換効率を優先するかによって、水熱媒の流れ方向を選択することになる。   By setting the flow direction of the refrigerant and the hydrothermal medium as described above, when the hydrothermal medium is heated, the refrigerant and the hydrothermal medium are opposed to each other, so that the heat exchange rate is improved. On the other hand, when the water heat medium is cooled, the refrigerant and the water heat medium are in parallel flow, so the heat exchange rate is deteriorated. If the flow direction of the hydrothermal medium is reversed, the heat exchange efficiency is good when the hydrothermal medium is cooled, and the heat exchange efficiency is poor when heating. For this reason, the flow direction of the hydrothermal medium is selected depending on which of the cooling operation and the heating operation is prioritized.

前段側熱交換器6と後段側熱交換器7を流れる水熱媒の流量は、後段側熱交換器7の方が、戻り側水熱媒接続管8と吐出側水熱媒接続管9の圧力損失が余分に加わるため少なくなる。前段側熱交換器6と後段側熱交換器7との流量差が大きくなると、2つの冷凍サイクルの動作条件に差異が生じ、結果として冷温水熱源機の効率低下、あるいは出力低下の要因となるため、水熱媒の流量は均一であることが望ましい。   The flow rate of the water heat medium flowing through the front-stage side heat exchanger 6 and the rear-stage side heat exchanger 7 is such that the rear-stage heat exchanger 7 has a return-side water heat medium connection pipe 8 and a discharge-side water heat medium connection pipe 9. Less pressure loss is added. When the flow rate difference between the front-stage side heat exchanger 6 and the rear-stage side heat exchanger 7 becomes large, a difference occurs in the operating conditions of the two refrigeration cycles, and as a result, the efficiency of the chilled / hot water heat source machine decreases or the output decreases. Therefore, it is desirable that the flow rate of the hydrothermal medium is uniform.

圧力損失と流量の関係は一般的に、圧力損失=抵抗係数×流量2が成り立つ。そのため流量は、前段側熱交換器6の圧力損失と、後段側熱交換器7、戻り側水熱媒接続管8、吐出側水熱媒接続管9の、3つの合計の圧力損失とが同一となるように分配される。戻り側水熱媒接続管8と吐出側水熱媒接続管9の抵抗係数を、前段側熱交換器6と後段側熱交換器7の水熱媒流路の抵抗係数に比べ十分に小さくすることで、前段側熱交換器6と後段側熱交換器7との流量差を小さくすることが可能となる。 In general, the relationship between pressure loss and flow rate is: pressure loss = resistance coefficient × flow rate 2 . Therefore, the flow rate is the same as the pressure loss of the front-side heat exchanger 6 and the total pressure loss of the rear-side heat exchanger 7, the return-side water heat medium connection tube 8, and the discharge-side water heat medium connection tube 9. To be distributed. The resistance coefficient of the return side water heat medium connection pipe 8 and the discharge side water heat medium connection pipe 9 is made sufficiently smaller than the resistance coefficient of the water heat medium flow path of the front stage side heat exchanger 6 and the rear stage side heat exchanger 7. Thereby, it becomes possible to make small the flow volume difference of the front | former stage side heat exchanger 6 and the back | latter stage side heat exchanger 7. FIG.

図7は、本発明の実施の形態に係る冷温水熱源機の抵抗係数比と流量比との関係を示す図である。抵抗係数比が0(水熱媒接続管の抵抗係数が0)の場合、流量比100%(前段側熱交換器6と後段側熱交換器7との流量が同一)となり、抵抗係数比が大きくなる(水熱媒接続管の抵抗係数が大きくなる)に従い、流量比が大きくなる(後段側熱交換器7の流量が少なくなる)。   FIG. 7 is a diagram showing the relationship between the resistance coefficient ratio and the flow rate ratio of the cold / hot water heat source apparatus according to the embodiment of the present invention. When the resistance coefficient ratio is 0 (the resistance coefficient of the water heat medium connecting pipe is 0), the flow rate ratio is 100% (the flow rates of the front-stage heat exchanger 6 and the rear-stage heat exchanger 7 are the same), and the resistance coefficient ratio is As the flow rate increases (the resistance coefficient of the water heat medium connecting pipe increases), the flow rate ratio increases (the flow rate of the rear-stage heat exchanger 7 decreases).

本実施の形態では抵抗係数比が0.01以下となるように、戻り側水熱媒接続管8と吐出側水熱媒接続管9の抵抗係数と、前段側熱交換器6と後段側熱交換器7の水熱媒流路の抵抗係数を設定し、前段側熱交換器6と後段側熱交換器7との流量比を1%以下に抑えている。流量比が1%以下であれば、冷温水熱源機の効率や出力に影響のない範囲であることが実測等により分かっている。   In the present embodiment, the resistance coefficient of the return side water heat medium connection pipe 8 and the discharge side water heat medium connection pipe 9, the front stage side heat exchanger 6, and the rear stage side heat are set so that the resistance coefficient ratio is 0.01 or less. The resistance coefficient of the water heat medium flow path of the exchanger 7 is set, and the flow rate ratio between the front-stage side heat exchanger 6 and the rear-stage side heat exchanger 7 is suppressed to 1% or less. If the flow rate ratio is 1% or less, it has been found by actual measurement or the like that the efficiency and output of the cold / hot water heat source machine are not affected.

また、戻り側水熱媒接続管8と吐出側水熱媒接続管9の抵抗係数が小さくなる最適な形態として、前段側熱交換器6の放熱器戻り側水熱媒管接続口62と後段熱交換器吐出側水熱媒管接続口64とを貫通させ、戻り側水熱媒接続管8と吐出側水熱媒接続管9をそれぞれ直線形状としている。直線形状の水熱媒接続管とすることにより水熱媒接続管の占有スペースを減らし、小型で製造コストを安価とする効果もある。   Further, as an optimum mode in which the resistance coefficient of the return side water heat medium connection pipe 8 and the discharge side water heat medium connection pipe 9 is reduced, the radiator return side water heat medium pipe connection port 62 and the rear stage of the front stage side heat exchanger 6 are used. The heat exchanger discharge side water heat medium pipe connection port 64 is penetrated, and the return side water heat medium connection pipe 8 and the discharge side water heat medium connection pipe 9 are each formed in a straight line shape. By using a straight water-heat medium connection pipe, the space occupied by the water-heat medium connection pipe is reduced, and there is an effect that the manufacturing cost is reduced with a small size.

図8は、本発明の実施の形態に係る冷温水熱源機の前段側熱交換器の斜視図、図9は、本発明の実施の形態に係る冷温水熱源機の後段側熱交換器の斜視図である。前段側熱交換器6のガス冷媒配管接続口65にはガス冷媒管67が接続され、液冷媒配管接続口66には液冷媒管68が接続される。ガス冷媒管67は前段側熱交換器6の側面上に配置され、側面上部でU字形状に曲げられ、ガス冷媒配管接続口65に接続される形状となっている。液冷媒管68は前段側熱交換器6の表面上に配置され、表面下部で2回L字に曲げられ、液冷媒管接続口66に接続される形状となっている。
後段側熱交換器7のガス冷媒配管接続口75にはガス冷媒管77が接続され、液冷媒管接続口76には液冷媒管78が接続される。ガス冷媒管77と液冷媒管78の形状は、前段側熱交換器6に接続するガス冷媒管67及び液冷媒管68と同一である。
FIG. 8 is a perspective view of the front-stage heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention, and FIG. 9 is a perspective view of the rear-stage heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention. FIG. A gas refrigerant pipe 67 is connected to the gas refrigerant pipe connection port 65 of the upstream heat exchanger 6, and a liquid refrigerant pipe 68 is connected to the liquid refrigerant pipe connection port 66. The gas refrigerant pipe 67 is disposed on the side surface of the front-stage heat exchanger 6, is bent into a U shape at the upper part of the side surface, and is connected to the gas refrigerant pipe connection port 65. The liquid refrigerant pipe 68 is disposed on the surface of the front-side heat exchanger 6, bent in an L shape twice at the lower surface, and connected to the liquid refrigerant pipe connection port 66.
A gas refrigerant pipe 77 is connected to the gas refrigerant pipe connection port 75 of the rear stage side heat exchanger 7, and a liquid refrigerant pipe 78 is connected to the liquid refrigerant pipe connection port 76. The shapes of the gas refrigerant pipe 77 and the liquid refrigerant pipe 78 are the same as those of the gas refrigerant pipe 67 and the liquid refrigerant pipe 68 connected to the upstream heat exchanger 6.

図10は、本発明の実施の形態に係る冷温水熱源機の前段側熱交換器と後段側熱交換器との接続図である。以上、図10に示すように、前段側熱交換器6と後段側熱交換器7とをプレート積載方向に並置し、直線形状の戻り側水熱媒接続管8と吐出側水熱媒接続管9で接続して水熱媒循環流路を構成し、冷媒管を前段側熱交換器6と後段側熱交換器7とで同一形状とすることにより、熱交換器と配管の占有スペースを小さくすることができ、小型化、低コスト化した冷温水熱源機を得ることができる。   FIG. 10 is a connection diagram between the front-stage side heat exchanger and the rear-stage side heat exchanger of the cold / hot water heat source apparatus according to the embodiment of the present invention. As described above, as shown in FIG. 10, the front side heat exchanger 6 and the rear side heat exchanger 7 are juxtaposed in the plate stacking direction, and the linear return side water heat medium connection pipe 8 and discharge side water heat medium connection pipe are arranged. 9, the water heat medium circulation flow path is configured, and the refrigerant pipes have the same shape in the front side heat exchanger 6 and the rear side heat exchanger 7, thereby reducing the space occupied by the heat exchanger and the pipe. Therefore, it is possible to obtain a cold / hot water heat source machine that is reduced in size and cost.

さらに抵抗係数比が0.01以下となるように、戻り側水熱媒接続管8と吐出側水熱媒接続管9の抵抗係数と、前段側熱交換器6と後段側熱交換器7の水熱媒流路との抵抗係数を設定することにより、前段側熱交換器6と後段側熱交換器7を流れる水熱媒の流量の均一化が図れ、流量差によって生じる効率低下、あるいは出力低下を招くおそれのない冷温水熱源機を得ることができる。   Further, the resistance coefficient of the return-side water heat medium connection pipe 8 and the discharge-side water heat medium connection pipe 9, the pre-stage side heat exchanger 6, and the rear-stage side heat exchanger 7 are set so that the resistance coefficient ratio is 0.01 or less. By setting the resistance coefficient with the water heat medium flow path, the flow rate of the water heat medium flowing through the front-stage side heat exchanger 6 and the rear-stage side heat exchanger 7 can be made uniform, resulting in a reduction in efficiency caused by the flow rate difference or output. It is possible to obtain a cold / hot water heat source machine that does not cause a decrease.

なお、本実施の形態では熱交換器が2つの場合について述べたが、熱交換器が3つ以上の場合も同様な構成とすることで、同様の効果を実現することが可能である。   Note that although the case where there are two heat exchangers has been described in the present embodiment, the same effect can be realized by adopting the same configuration even when there are three or more heat exchangers.

1 冷温水熱源機、2 熱交換ユニット、3 室外ユニット、4 バッファタンク、5 循環ポンプ、6 前段側熱交換器、7 後段側熱交換器、8 戻り側水熱媒接続管、9 吐出側水熱媒接続管、61 放熱器吐出側水熱媒管接続口、62 放熱器戻り側水熱媒管接続口、63 後段熱交換器戻り側水熱媒管接続口、64 後段熱交換器吐出側水熱媒管接続口、65 ガス冷媒管接続口、66 液冷媒管接続口、67 ガス冷媒管、68 液冷媒管、71 前段放熱器吐出側水熱媒管接続口、72 前段熱交換器戻り側水熱媒管接続口、75 ガス冷媒管接続口、76 液冷媒管接続口、77 ガス冷媒管、78 液冷媒管。   DESCRIPTION OF SYMBOLS 1 Cold / warm water heat source machine, 2 Heat exchange unit, 3 Outdoor unit, 4 Buffer tank, 5 Circulation pump, 6 Front side heat exchanger, 7 Back side heat exchanger, 8 Return side water heat medium connection pipe, 9 Discharge side water Heat medium connection pipe, 61 Radiator discharge side water heat medium pipe connection port, 62 Radiator return side water heat medium pipe connection port, 63 Subsequent heat exchanger return side water heat medium pipe connection port, 64 Subsequent heat exchanger discharge side Water heat medium pipe connection port, 65 Gas refrigerant pipe connection port, 66 Liquid refrigerant pipe connection port, 67 Gas refrigerant pipe, 68 Liquid refrigerant pipe, 71 Pre-stage radiator discharge side water heat medium pipe connection port, 72 Pre-stage heat exchanger return Side water heat medium pipe connection port, 75 gas refrigerant pipe connection port, 76 liquid refrigerant pipe connection port, 77 gas refrigerant pipe, 78 liquid refrigerant pipe.

Claims (6)

冷媒流路が形成されたプレートと水熱媒流路が形成されたプレートとを交互に積層して形成された熱交換器を少なくとも二つ備えた冷温水熱源機において、
前記熱交換器のうち少なくとも隣り合う二つをプレート積層方向に並置し、
それぞれの対向する面に設けられた水熱媒管接続口同士を水熱媒接続管で接続した
ことを特徴とする冷温水熱源機。
In a cold / hot water heat source apparatus comprising at least two heat exchangers formed by alternately laminating plates formed with refrigerant flow paths and plates formed with water heat medium flow paths,
Placing at least two adjacent heat exchangers side by side in the plate stacking direction;
A cold / hot water heat source machine characterized in that the water heat medium pipe connection ports provided on the opposing surfaces are connected by a water heat medium connection pipe.
前記水熱媒接続管で接続した隣り合う前記熱交換器のうちの終端側を後段側熱交換器とし、それ以外を前段側熱交換器として、
前記後段側熱交換器は正面に冷媒管接続口と水熱媒管接続口とを有し、
前記前段側熱交換器は正面に冷媒管接続口と水熱媒管接続口とを有し、裏面にも水熱媒管接続口を有する
ことを特徴とする請求項1に記載の冷温水熱源機。
Of the adjacent heat exchangers connected by the water heat medium connection pipe, the terminal side is the rear stage heat exchanger, and the other is the front stage heat exchanger,
The rear-stage heat exchanger has a refrigerant pipe connection port and a water heat medium pipe connection port on the front,
2. The cold / hot water heat source according to claim 1, wherein the front side heat exchanger has a refrigerant pipe connection port and a water heat medium pipe connection port on a front surface, and also has a water heat medium pipe connection port on a back surface. Machine.
前記熱交換器を少なくとも三つ備えたものであって、
前記水熱媒接続管で接続した隣り合う前記熱交換器のうちの終端側を除いた両方を前段側熱交換器とし、
前記前段側熱交換器は正面に冷媒管接続口と水熱媒管接続口とを有し、裏面にも水熱媒管接続口を有する
ことを特徴とする請求項1に記載の冷温水熱源機。
Comprising at least three heat exchangers,
Both excluding the terminal side of the adjacent heat exchangers connected by the water heat medium connecting pipe are the front stage side heat exchangers,
2. The cold / hot water heat source according to claim 1, wherein the front side heat exchanger has a refrigerant pipe connection port and a water heat medium pipe connection port on a front surface, and also has a water heat medium pipe connection port on a back surface. Machine.
前記水熱媒接続管が直線形状である
ことを特徴とする請求項1〜3のいずれか一項に記載の冷温水熱源機。
The cold / hot water heat source unit according to any one of claims 1 to 3, wherein the water heat medium connecting pipe has a linear shape.
前記後段側熱交換器及び前記前段側熱交換器の正面に設けられた前記冷媒管接続口において、
ガス冷媒用と液冷媒用との2つを有し、
それぞれの前記冷媒管接続口に接続される冷媒管の形状が、前記後段側熱交換器及び前記前段側熱交換器内で全て同一である
ことを特徴とする請求項1〜4のいずれか一項に記載の冷温水熱源機。
In the refrigerant pipe connection port provided in front of the rear stage side heat exchanger and the front stage side heat exchanger,
It has two for gas refrigerant and liquid refrigerant,
The shape of the refrigerant pipe connected to each of the refrigerant pipe connection ports is the same in both the rear-stage heat exchanger and the front-stage heat exchanger. The cold / hot water heat source machine as described in the item.
水熱媒接続管抵抗係数と熱交換器水熱媒流路抵抗係数との比である抵抗係数比において、
前記抵抗係数比が0.01以下となるように、前記水熱媒接続管抵抗係数と前記熱交換器水熱媒流路抵抗係数を設定した
ことを特徴とする請求項1〜5のいずれか一項に記載の冷温水熱源機。
In the resistance coefficient ratio, which is the ratio of the water heat medium connecting pipe resistance coefficient and the heat exchanger water heat medium flow path resistance coefficient,
The water heating medium connecting pipe resistance coefficient and the heat exchanger water heating medium flow path resistance coefficient are set so that the resistance coefficient ratio is 0.01 or less. The cold / hot water heat source machine according to one item.
JP2012160435A 2012-07-19 2012-07-19 Cold / hot water heat source machine Active JP6146966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160435A JP6146966B2 (en) 2012-07-19 2012-07-19 Cold / hot water heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160435A JP6146966B2 (en) 2012-07-19 2012-07-19 Cold / hot water heat source machine

Publications (2)

Publication Number Publication Date
JP2014020683A true JP2014020683A (en) 2014-02-03
JP6146966B2 JP6146966B2 (en) 2017-06-14

Family

ID=50195773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160435A Active JP6146966B2 (en) 2012-07-19 2012-07-19 Cold / hot water heat source machine

Country Status (1)

Country Link
JP (1) JP6146966B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130963U (en) * 1983-02-18 1984-09-03 株式会社神戸製鋼所 Connected plate-fin heat exchanger
JPH05172478A (en) * 1991-12-24 1993-07-09 Hisaka Works Ltd Plate type heat exchanger
JPH1082594A (en) * 1996-09-05 1998-03-31 Hitachi Ltd Plate type heat exchanger and absorption cooling-heating apparatus using the same
JP2002267289A (en) * 2001-03-09 2002-09-18 Sanyo Electric Co Ltd Plate heat exchanger
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator
JP2009041802A (en) * 2007-08-07 2009-02-26 Takasago Thermal Eng Co Ltd Manufacturing method of supercooled water
JP2009275970A (en) * 2008-05-14 2009-11-26 Daikin Ind Ltd Refrigerating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130963U (en) * 1983-02-18 1984-09-03 株式会社神戸製鋼所 Connected plate-fin heat exchanger
JPH05172478A (en) * 1991-12-24 1993-07-09 Hisaka Works Ltd Plate type heat exchanger
JPH1082594A (en) * 1996-09-05 1998-03-31 Hitachi Ltd Plate type heat exchanger and absorption cooling-heating apparatus using the same
JP2002267289A (en) * 2001-03-09 2002-09-18 Sanyo Electric Co Ltd Plate heat exchanger
JP2002277089A (en) * 2001-03-22 2002-09-25 Tokyo Gas Co Ltd Absorption refrigerator
JP2009041802A (en) * 2007-08-07 2009-02-26 Takasago Thermal Eng Co Ltd Manufacturing method of supercooled water
JP2009275970A (en) * 2008-05-14 2009-11-26 Daikin Ind Ltd Refrigerating apparatus

Also Published As

Publication number Publication date
JP6146966B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US10161687B2 (en) Plate heat exchanger and heat pump outdoor unit
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
JP5817775B2 (en) Chiller device
JP2012247168A (en) Refrigeration cycle device
JP2013234801A (en) Heat exchanger and vehicle air conditioning device
JP2012002425A (en) Plate type heat exchanger, and heat pump device
JP5661205B2 (en) Laminated heat exchanger, heat pump system equipped with the same, and manufacturing method of laminated heat exchanger
JP5174739B2 (en) Plate heat exchanger and heat exchange unit equipped with the same
JP2013096667A (en) Refrigerator freezer
JP5744316B2 (en) Heat exchanger and heat pump system equipped with the heat exchanger
JP2006329537A (en) Heat exchanger
JP6146966B2 (en) Cold / hot water heat source machine
KR100784845B1 (en) Air conditioner for cooling and heating having multiple 4-way valve
JP6179750B2 (en) Heat pump heat source machine
JP4971681B2 (en) Air conditioning system
JP2010117102A (en) Heat exchanger
JP2019163865A (en) Heat exchanger and refrigeration system using the same
WO2015128900A1 (en) Thermal transfer device
JP2019100565A (en) Heat exchanger and refrigeration system using the same
JP5721611B2 (en) Heat pump equipment
JP6601380B2 (en) Heat exchanger and air conditioner
US9903663B2 (en) Brazed heat exchanger with fluid flow to serially exchange heat with different refrigerant circuits
JP2023000451A (en) Plate fin lamination-type heat exchanger and refrigeration system using the same
JP4884162B2 (en) Heat exchanger
JP5877324B2 (en) Heat pump unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160404

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170516

R150 Certificate of patent or registration of utility model

Ref document number: 6146966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250