JP5174739B2 - Plate heat exchanger and heat exchange unit equipped with the same - Google Patents

Plate heat exchanger and heat exchange unit equipped with the same Download PDF

Info

Publication number
JP5174739B2
JP5174739B2 JP2009113448A JP2009113448A JP5174739B2 JP 5174739 B2 JP5174739 B2 JP 5174739B2 JP 2009113448 A JP2009113448 A JP 2009113448A JP 2009113448 A JP2009113448 A JP 2009113448A JP 5174739 B2 JP5174739 B2 JP 5174739B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
path
plate
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009113448A
Other languages
Japanese (ja)
Other versions
JP2010261662A (en
Inventor
信雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2009113448A priority Critical patent/JP5174739B2/en
Publication of JP2010261662A publication Critical patent/JP2010261662A/en
Application granted granted Critical
Publication of JP5174739B2 publication Critical patent/JP5174739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、冷凍機の蒸発器として用いられるプレート式熱交換器、及びこれを備えた熱交換ユニットに関する。   The present invention relates to a plate heat exchanger used as an evaporator of a refrigerator and a heat exchange unit including the plate heat exchanger.

従来から、冷凍機の蒸発器に用いられる熱交換器として、プレート式熱交換器が多用されている。   Conventionally, plate heat exchangers are frequently used as heat exchangers used in evaporators of refrigerators.

かかるプレート式熱交換器は、図9に示す如く、積層された複数の伝熱プレート100’…を備えている。そして、該プレート式熱交換器10’は、図10(a)及び図10(b)に示す如く、複数の伝熱プレート100’…間に各伝熱プレート100’…を境にしてフロンやアンモニア等の冷媒Mを流通させる冷媒用流路101’…と、水やブライン等の被冷却体Wを流通させる被冷却体用流路102’…とが交互に形成され、各伝熱プレート100’…に形成された貫通穴H1’…,H2’…,H3’…,H4’…が連なって各冷媒用流路101’…に冷媒Mを流出入させる冷媒流入路103’及び冷媒流出路104’が形成されるとともに、各被冷却体用流路102’…に被冷却体Wを流出入させる被冷却体流入路105’及び被冷却体流出路106’が形成されている。   As shown in FIG. 9, the plate heat exchanger includes a plurality of stacked heat transfer plates 100 ′. The plate-type heat exchanger 10 ′ is composed of a plurality of heat transfer plates 100 ′ between the heat transfer plates 100 ′, as shown in FIGS. 10 (a) and 10 (b). Refrigerant flow paths 101 ′ through which the refrigerant M such as ammonia flows and cooling target flow paths 102 ′ through which the cooled object W such as water or brine flows are alternately formed, and each heat transfer plate 100 is formed. Refrigerant inflow passage 103 'and refrigerant outflow passage through which refrigerant M flows into and out of each refrigerant flow passage 101' ... through holes H1 '..., H2' ..., H3 '..., H4' ... formed in '... 104 ′ is formed, and a cooled body inflow path 105 ′ and a cooled body outflow path 106 ′ through which the cooled body W flows in and out of each cooled body flow path 102 ′ are formed.

上記構成のプレート式熱交換器10’は、図11(a)及び図11(b)に示す如く、冷媒流入路103’から冷媒用流路101’…に冷媒Mを流入させて冷媒流出路104’に流出させるのに併せて、被冷却体流入路105’から被冷却体用流路102’…に被冷却体Wを流入させて被冷却体流出路106’に流出させることで、伝熱プレート100’…(伝熱面)を介して冷媒Mと被冷却体Wとを熱交換させるようになっている。   As shown in FIGS. 11 (a) and 11 (b), the plate heat exchanger 10 ′ having the above-described configuration causes the refrigerant M to flow from the refrigerant inflow path 103 ′ to the refrigerant flow path 101 ′, so that the refrigerant outflow path. In addition to flowing out to 104 ′, the cooled object W flows from the cooled object inflow path 105 ′ to the cooled object flow path 102 ′, and flows out to the cooled object outflow path 106 ′. Heat is exchanged between the refrigerant M and the object to be cooled W via the heat plates 100 ′ (heat transfer surface).

そして、この種のプレート式熱交換器10’は、積層する伝熱プレート100’…の枚数を多くすることで、冷媒用流路101’…及び被冷却体用流路102’…の数が多くなる上に伝熱面積が広くなることから、熱交換能力が高くなるとされている。   In this type of plate heat exchanger 10 ′, the number of refrigerant flow paths 101 ′ and cooling target flow paths 102 ′ is increased by increasing the number of stacked heat transfer plates 100 ′. In addition to increasing the heat transfer area, the heat exchange capacity is said to increase.

ところで、上記構成のプレート式熱交換器10’は、各伝熱プレート100’…に形成された貫通穴H1’を連ねることで冷媒流入路103’を形成するようにしているため、積層する伝熱プレート100’…の枚数が多くなると、冷媒流入路103’の全長が必然的に長くなって冷媒Mの流通抵抗が大きくなってしまう。そのため、この種のプレート式熱交換器10’は、冷媒流入路103’の入口側(一次側)にある冷媒用流路101’よりも奥側にある冷媒用流路101’に冷媒Mが流入しにくくなる結果、伝熱プレート100’…の積層方向において冷媒Mの分配ムラが発生し、熱交換効率を低下させてしまうといった問題がある。   By the way, the plate type heat exchanger 10 ′ having the above-described configuration forms the refrigerant inflow passage 103 ′ by connecting the through holes H1 ′ formed in the respective heat transfer plates 100 ′. When the number of the heat plates 100 ′ increases, the total length of the refrigerant inflow passage 103 ′ inevitably increases, and the flow resistance of the refrigerant M increases. Therefore, in this type of plate heat exchanger 10 ′, the refrigerant M is placed in the refrigerant flow path 101 ′ located on the back side of the refrigerant flow path 101 ′ on the inlet side (primary side) of the refrigerant flow path 103 ′. As a result, it becomes difficult to flow in. As a result, there is a problem that uneven distribution of the refrigerant M occurs in the stacking direction of the heat transfer plates 100 ′, and the heat exchange efficiency is lowered.

そこで、複数の冷媒流入路103’のそれぞれに冷媒Mを効率的に流入させるべく、図12(a)に示す如く、複数のノズルN…が軸線方向に間隔をあけて取り付けられたシャワーパイプPを冷媒流入路103’として複数の伝熱プレート100’…に挿通し、各ノズルNから各冷媒用流路101’…に冷媒Mを送り込むようにしたものや、図12(b)に示す如く、冷媒流入路103’を分割して冷媒用流路101’…と直交方向に延びる複数の分割流入路103’’…を形成し、各分割流入路103’’…で異なった位置にある冷媒用流路101’…に冷媒Mを流入させるようにしたもの等が提案されている(例えば、特許文献1参照)。   Therefore, in order to efficiently flow the refrigerant M into each of the plurality of refrigerant inflow passages 103 ′, as shown in FIG. 12A, a shower pipe P in which a plurality of nozzles N are attached at intervals in the axial direction. Are inserted into the plurality of heat transfer plates 100 ′ as refrigerant inflow passages 103 ′, and the refrigerant M is sent from the nozzles N to the refrigerant flow paths 101 ′, as shown in FIG. 12B. The refrigerant inflow passages 103 ′ are divided to form a plurality of divided inflow passages 103 ″ extending in a direction orthogonal to the refrigerant flow passages 101 ′, and the refrigerants at different positions in the divided inflow passages 103 ″. The thing etc. which made the refrigerant | coolant M flow in into flow path 101 '... are proposed (for example, refer patent document 1).

特開2002−303499号公報JP 2002-303499 A

しかしながら、シャワーパイプPを設けたプレート式熱交換器10’は、ノズルNの存在で冷媒Mの流通抵抗が大きくなり、冷媒Mの流れを規制してしまうため、冷媒Mの流入が冷凍機の負荷変動に追従できないといった問題がある。   However, in the plate heat exchanger 10 ′ provided with the shower pipe P, the flow resistance of the refrigerant M increases due to the presence of the nozzle N and restricts the flow of the refrigerant M. There is a problem that it cannot follow the load fluctuation.

これに対し、単一な冷媒流入路103’を分割して複数の分割流入路103’’…が形成されたプレート式熱交換器10’は、ノズルNがない分、冷媒Mの流通抵抗が不必要に大きくなることを抑えることができるが、各分割流入路103’’…は、冷媒Mを供給する対象(冷媒用流路101’…)の配置が異なることから冷媒Mの流通経路の長さが異なる結果、伝熱プレート100’…の積層方向の奥側の冷媒用流路101’…を対象とする分割流入路103’’…での冷媒Mの流通抵抗が一次側(入口側)の冷媒用流路101’…を対象とする分割流入路103’’…での冷媒Mの流通抵抗よりも大きくなってしまう。また、該プレート式熱交換器10’は、冷媒流入路103’を介して全ての冷媒用流路101’…が連通状態にあるため、それぞれの冷媒用流路101’…で流通する冷媒Mが他の冷媒用流路101’…での冷媒Mの流体圧に影響を受けてしまう。   On the other hand, the plate type heat exchanger 10 ′ in which a single refrigerant inflow passage 103 ′ is divided to form a plurality of divided inflow passages 103 ″. Although it is possible to suppress an unnecessarily large size, each of the divided inflow passages 103 ″... Has a different arrangement of the refrigerant M supply target (the refrigerant flow channel 101 ′. As a result of the different lengths, the flow resistance of the refrigerant M in the divided inflow passages 103 '' ... for the refrigerant flow channels 101 '... in the stacking direction of the heat transfer plates 100' ... is reduced to the primary side (inlet side). ) Of the refrigerant flow path 101 ′, the flow resistance of the refrigerant M in the divided inflow paths 103 ″. Further, in the plate heat exchanger 10 ′, all the refrigerant flow paths 101 ′,... Are in communication with each other through the refrigerant inflow path 103 ′. However, it is influenced by the fluid pressure of the refrigerant M in the other refrigerant flow paths 101 ′.

そのため、上記構成のプレート式熱交換器10’は、冷媒Mの供給の対象を異にする分割流入路103’’…毎に流入する冷媒Mの流体圧にバラツキが生じる上に、伝熱プレート100’…の積層方向において奥側の冷媒用流路101’…ほど、冷媒Mが流れ込みにくくなってしまう結果、冷媒用流路101’…の配置によって熱交換効率(被冷却体Mに対する冷却効率)が異なり、装置全体として本来あるべき熱交換性能を発揮させることができないといった問題がある。   For this reason, the plate heat exchanger 10 ′ having the above-described configuration has a variation in the fluid pressure of the refrigerant M flowing in each of the divided inflow passages 103 ″. As a result, the refrigerant M becomes more difficult to flow into the refrigerant flow path 101 ′ at the back side in the stacking direction of 100 ′, and as a result, the heat exchange efficiency (cooling efficiency with respect to the object M to be cooled) depends on the arrangement of the flow paths 101 ′. ) Is different, and there is a problem that the heat exchange performance that should be originally achieved cannot be exhibited as a whole apparatus.

そこで、本発明は、斯かる実情に鑑み、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることのできるプレート式熱交換器及びこれを備えた熱交換ユニットを提供することを課題とする。   Therefore, in view of such circumstances, the present invention includes a plate heat exchanger capable of exhibiting heat exchange performance that should be inherent in the entire apparatus when heat exchange is performed between the refrigerant and the object to be cooled, and the plate heat exchanger. It is an object to provide a heat exchange unit.

本発明に係るプレート式熱交換器は、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器であって、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、積層された複数枚の伝熱プレートにおける最も外側にある伝熱プレートから貫通穴が一列に連なり、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されていることを特徴とする。
The plate heat exchanger according to the present invention includes a flow path for a coolant that circulates a refrigerant between each of the heat transfer plates and a flow for a cooled body that circulates the cooled body between the plurality of stacked heat transfer plates. Are formed alternately, and through holes formed in each heat transfer plate are connected to form a refrigerant inflow passage and a refrigerant outflow passage through which the refrigerant flows in and out of the refrigerant flow passage, and a flow path for the object to be cooled The plate-type heat exchanger has a cooled body inflow path and a cooled body outflow path through which the cooled body flows in and out, and a plurality of refrigerant flow paths formed in the stacking direction of the heat transfer plates are transmitted. The liquid plate is partitioned liquid-tight or air-tight by a predetermined number in the stacking direction of the heat plates and divided into two or more blocks, and two or more refrigerant inflow paths are formed corresponding to the number of the blocks. One or more of each of the refrigerant inflow channel, stacked plurality of heat Most through hole from the heat transfer plate on the outside is contiguous in a row in the plate, while being formed so as to communicate with the refrigerant passage of the different blocks, the refrigerant outlet channel, all of the refrigerant in the stacking direction of the heat transfer plate It is characterized by being formed so as to communicate with the use channel.

上記構成のプレート式熱交換器によれば、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されているので、他のブロックの圧力状態に影響を受けることなく、各ブロックの冷媒用流路で冷媒を流通させることができる。   According to the plate heat exchanger configured as described above, a plurality of refrigerant flow paths formed in the heat transfer plate stacking direction are partitioned in a liquid-tight or air-tight manner by a predetermined number in the heat transfer plate stacking direction. Two or more refrigerant inflow passages are formed corresponding to the number of the blocks, and each of the two or more refrigerant inflow passages communicates with the refrigerant flow passages of different blocks. On the other hand, the refrigerant outflow path is formed so as to communicate with all the refrigerant flow paths in the stacking direction of the heat transfer plate, so that it is not affected by the pressure state of other blocks, The refrigerant can be circulated through the refrigerant flow path of each block.

そして、上記構成のプレート式熱交換器は、各冷媒流入路に対して冷媒の流体圧を減圧する減圧手段を取り付けることができ、その減圧手段で冷媒流入路毎に冷媒の流体圧を減圧して冷媒を供給することで、伝熱プレートの積層方向で区画された各ブロック(各冷媒用流路)で冷媒を適正に流通させることができる。   The plate-type heat exchanger having the above-described configuration can be attached to each refrigerant inflow passage with pressure reducing means for reducing the refrigerant fluid pressure, and the pressure reducing means reduces the refrigerant fluid pressure for each refrigerant inflow passage. By supplying the refrigerant, the refrigerant can be properly circulated in each block (each refrigerant flow path) partitioned in the stacking direction of the heat transfer plates.

具体的には、上記構成のプレート式熱交換器は、ブロック毎に冷媒流入路が設けられるのに対して、冷媒流出路が全ての冷媒用流路に連通して共通の流路を構成しているため、各冷媒流入路で流通する冷媒の流体圧と冷媒流出路で流通する冷媒の流体圧との差圧は、冷媒流入路の長さ(流通抵抗)と対応して、見かけ上、伝熱プレートの積層方向において奥側にあるブロック(冷媒用流路)に繋がる冷媒流入路ほど大きくなる。   Specifically, the plate-type heat exchanger having the above-described configuration is provided with a refrigerant inflow path for each block, whereas the refrigerant outflow path communicates with all the refrigerant flow paths to form a common flow path. Therefore, the differential pressure between the fluid pressure of the refrigerant flowing in each refrigerant inflow passage and the fluid pressure of the refrigerant flowing in the refrigerant outflow passage is apparently corresponding to the length of the refrigerant inflow passage (circulation resistance), The refrigerant inflow path connected to the block (refrigerant flow path) on the back side in the stacking direction of the heat transfer plates increases.

しかしながら、上記構成のプレート式熱交換器は、各冷媒流入路に減圧手段を取り付けて冷媒の流体圧を二次側で大きく減圧することで、減圧手段の一次側における冷媒の流体圧(減圧手段で減圧される前の冷媒の流体圧)と冷媒流出路の二次側における冷媒の流体圧(プレート式熱交換器から流出した冷媒の流体圧)との差圧の大部分が、減圧手段による減圧によるものとなり、各ブロックにおける冷媒流入路と冷媒流出路との間の差圧(冷媒流入路の長さ(流通抵抗)に関連する差圧)が殆ど無視できる状態になる。その結果、各ブロックで伝熱プレートの積層方向における位置の相違による差圧の影響が殆どなくなり、各ブロックでの冷媒の流体圧(冷媒の流通状態)が略等しくなる。   However, the plate heat exchanger having the above-described configuration attaches pressure reducing means to each refrigerant inflow passage and greatly reduces the fluid pressure of the refrigerant on the secondary side, so that the refrigerant fluid pressure (pressure reducing means on the primary side of the pressure reducing means is reduced. The pressure difference between the fluid pressure of the refrigerant before being reduced in pressure and the fluid pressure of the refrigerant on the secondary side of the refrigerant outflow path (fluid pressure of the refrigerant flowing out of the plate heat exchanger) The pressure is reduced, and the differential pressure between the refrigerant inflow path and the refrigerant outflow path in each block (differential pressure related to the length of the refrigerant inflow path (flow resistance)) is almost negligible. As a result, the influence of the differential pressure due to the difference in position in the stacking direction of the heat transfer plates in each block is almost eliminated, and the fluid pressure of refrigerant (circulation state of refrigerant) in each block becomes substantially equal.

そのため、上記構成のプレート式熱交換器によれば、伝熱プレートの積層方向の異なる位置(冷媒用流路)毎に冷媒の流体圧の差圧に大きな違いがなくなる結果、各冷媒用流路で冷媒がバランス良く流通することになり、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。   Therefore, according to the plate heat exchanger having the above-described configuration, there is no significant difference in the differential pressure between the refrigerant fluid pressures at different positions (refrigerant channels) in the stacking direction of the heat transfer plates. Thus, the refrigerant circulates in a well-balanced manner, and in exchanging heat between the refrigerant and the object to be cooled, it is possible to exhibit the heat exchange performance that should be inherent in the entire apparatus.

本発明の熱交換ユニットは、積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器を備えた熱交換ユニットであって、冷媒を一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段をさらに備え、前記プレート式熱交換器は、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、積層された複数枚の伝熱プレートにおける最も外側にある伝熱プレートから貫通穴が一列に連なり、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成され、前記減圧手段は、冷媒流入路毎に設けられて各冷媒流入路に対して直接的又は間接的に接続されていることを特徴とする。
The heat exchange unit according to the present invention includes a refrigerant flow path for circulating a refrigerant between a plurality of stacked heat transfer plates, and a flow path for a cooled body for circulating a cooled body. Alternately formed through holes formed in each heat transfer plate are connected to form a refrigerant inflow passage and a refrigerant outflow passage through which the refrigerant flows in and out of the refrigerant flow passage, and the cooling target flow passage is cooled. A heat exchange unit including a plate heat exchanger in which a cooled body inflow passage and a cooled body outflow passage are formed to flow in and out of the body, and the refrigerant is reduced from the fluid pressure on the primary side to the secondary side. The plate-type heat exchanger further includes a plurality of refrigerant flow paths formed in the stacking direction of the heat transfer plates at a predetermined number in the stacking direction of the heat transfer plates. It is divided into two or more blocks by partitioning tightly or airtightly. Both are formed refrigerant inflow passage than twofold in accordance with the number of said blocks, each of said two or more refrigerant inflow channel, the heat transfer plates the outermost of the stacked plurality heat transfer plates The through holes are connected in a row and are formed to communicate with the refrigerant flow paths of different blocks, while the refrigerant outflow path is formed to communicate with all the refrigerant flow paths in the stacking direction of the heat transfer plates. The decompression means is provided for each refrigerant inflow passage and is directly or indirectly connected to each refrigerant inflow passage.

上記構成の熱交換ユニットによれば、プレート式熱交換器における伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されているので、他のブロック(冷媒流入路)における冷媒の流体圧の影響を受けることなく、各ブロックの冷媒用流路で冷媒を適正に流通させることができる。   According to the heat exchange unit having the above configuration, a plurality of refrigerant flow paths formed in the stacking direction of the heat transfer plates in the plate heat exchanger are liquid-tight or air-tight for each predetermined number in the stacking direction of the heat transfer plates. The refrigerant is divided into two or more blocks, and two or more refrigerant inflow passages are formed corresponding to the number of the blocks, and each of the two or more refrigerant inflow passages is a refrigerant flow of a different block. While the refrigerant outflow passage is formed to communicate with all the refrigerant flow paths in the stacking direction of the heat transfer plates, the refrigerant outflow passage is formed in other blocks (refrigerant inflow passages). The refrigerant can be properly circulated through the refrigerant flow path of each block without being affected by the fluid pressure of the refrigerant.

そして、上記構成の熱交換ユニットは、冷媒を一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段をさらに備え、前記減圧手段は、冷媒流入路毎に設けられて各冷媒流入路に対して直接的又は間接的に接続されているため、冷媒流入路毎に減圧手段で冷媒の流体圧を減圧して冷媒を供給することで、伝熱プレートの積層方向で区画された各ブロック(各冷媒用流路)で冷媒を適正に流通させることができる。   The heat exchange unit having the above-described configuration further includes a decompression unit configured to depressurize the refrigerant from the primary side fluid pressure and supply the refrigerant to the secondary side, and the decompression unit is provided for each refrigerant inflow passage. Since each refrigerant inflow passage is directly or indirectly connected to each refrigerant inflow passage, each refrigerant inflow passage is divided in the stacking direction of the heat transfer plates by reducing the fluid pressure of the refrigerant with the decompression means and supplying the refrigerant. The refrigerant can be properly distributed in each of the blocks (each refrigerant flow path).

具体的には、上記構成のプレート式熱交換器は、ブロック毎に第一入流路が設けられるのに対して、冷媒流出路が全ての冷媒用流路に連通して共通の流路を構成しているため、各冷媒流入路で流通する冷媒の流体圧と冷媒流出路で流通する冷媒の流体圧との差圧は、冷媒流入路の長さ(流通抵抗)と対応して、見かけ上、伝熱プレートの積層方向において奥側にあるブロック(冷媒用流路)に繋がる冷媒流入路ほど大きくなる。   Specifically, the plate heat exchanger having the above-described configuration is provided with a first inlet channel for each block, whereas the refrigerant outlet channel communicates with all the refrigerant channels to form a common channel. Therefore, the differential pressure between the fluid pressure of the refrigerant flowing through each refrigerant inflow passage and the fluid pressure of the refrigerant flowing through the refrigerant outflow passage apparently corresponds to the length of the refrigerant inflow passage (circulation resistance). The refrigerant inflow path connected to the block (coolant flow path) located on the back side in the stacking direction of the heat transfer plates becomes larger.

しかしながら、上記構成の熱交換ユニットは、各冷媒流入路に直接的又は間接的に接続された減圧手段で冷媒の流体圧を二次側で大きく減圧することで、減圧手段の一次側における冷媒の流体圧(減圧手段で減圧される前の冷媒の流体圧)と冷媒流出路の二次側における冷媒の流体圧(プレート式熱交換器から流出した冷媒の流体圧)との差圧の大部分が、減圧手段による減圧によるものとなり、各ブロックにおける冷媒流入路と冷媒流出路との間の差圧(冷媒流入路の長さ(流通抵抗)に関連する差圧)が殆ど無視できる状態になる。その結果、各ブロックで伝熱プレートの積層方向における位置の相違による差圧の影響が殆どなくなり、各ブロックでの冷媒の流体圧(冷媒の流通状態)が略等しくなる。   However, the heat exchange unit having the above configuration greatly reduces the fluid pressure of the refrigerant on the secondary side by the decompression means connected directly or indirectly to each refrigerant inflow path, so that the refrigerant on the primary side of the decompression means is reduced. Most of the differential pressure between the fluid pressure (fluid pressure of the refrigerant before being decompressed by the decompression means) and the fluid pressure of the refrigerant on the secondary side of the refrigerant outflow path (fluid pressure of refrigerant flowing out of the plate heat exchanger) However, the pressure is reduced by the pressure reducing means, and the differential pressure between the refrigerant inflow path and the refrigerant outflow path in each block (the differential pressure related to the length of the refrigerant inflow path (flow resistance)) is almost negligible. . As a result, the influence of the differential pressure due to the difference in position in the stacking direction of the heat transfer plates in each block is almost eliminated, and the fluid pressure of refrigerant (circulation state of refrigerant) in each block becomes substantially equal.

そのため、上記構成の熱交換ユニット(プレート式熱交換器)によれば、伝熱プレートの積層方向の異なる位置(冷媒用流路)毎に冷媒の流体圧の差圧に大きな違いがなくなる結果、各冷媒用流路で冷媒がバランス良く流通することになり、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。   Therefore, according to the heat exchange unit (plate-type heat exchanger) having the above configuration, as a result of no significant difference in the differential pressure of the refrigerant fluid pressure for each position (refrigerant channel) in the stacking direction of the heat transfer plate, The refrigerant circulates in a well-balanced manner in each refrigerant flow path, and when the refrigerant and the cooled object are subjected to heat exchange, the entire apparatus can exhibit the heat exchange performance that should originally be provided.

本発明の一態様として、前記減圧手段は、冷媒の流量調整可能な流量調整弁で構成されていることが好ましい。このようにすれば、ブロック毎に冷媒の流体圧力の調整を行うことができる。すなわち、冷媒の流量を調整すると、流量の変化に応じて冷媒の流体圧も変動することになるので、各冷媒流入路に流量調整弁を取り付けることで、ブロック毎で冷媒の流体圧を適正な状態にすることができる。   As one aspect of the present invention, it is preferable that the decompression means is composed of a flow rate adjustment valve capable of adjusting the flow rate of the refrigerant. In this way, the fluid pressure of the refrigerant can be adjusted for each block. That is, when the refrigerant flow rate is adjusted, the refrigerant fluid pressure also fluctuates in accordance with the change in the flow rate. Therefore, by attaching a flow rate adjustment valve to each refrigerant inflow passage, the refrigerant fluid pressure is adjusted appropriately for each block. Can be in a state.

以上のように、本発明に係るプレート式熱交換器によれば、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができるという優れた効果を奏し得る。   As described above, according to the plate heat exchanger according to the present invention, in exchanging heat between the refrigerant and the object to be cooled, the excellent effect that the heat exchange performance that should be originally provided in the entire apparatus can be exhibited. Can be played.

また、本発明に係る熱交換ユニットによっても、冷媒と被冷却体とを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができるという優れた効果を奏し得る。   In addition, the heat exchange unit according to the present invention can also exhibit an excellent effect that the heat exchange performance that should be originally provided in the entire apparatus can be exhibited in exchanging heat between the refrigerant and the object to be cooled.

本発明の一実施形態に係る熱交換ユニットの概念図を示す。The conceptual diagram of the heat exchange unit which concerns on one Embodiment of this invention is shown. 同実施形態に係る熱交換ユニットに用いられるプレート式熱交換器の全体斜視図であって、複数の冷媒流入路が伝熱プレートの積層方向と直交する方向(伝熱プレートの長手方向)に並んで形成されたプレート式熱交換器の全体斜視図を示す。It is a whole perspective view of the plate type heat exchanger used for the heat exchange unit concerning the embodiment, Comprising: A plurality of refrigerant inflow passages are lined up in the direction (longitudinal direction of a heat transfer plate) perpendicular to the lamination direction of a heat transfer plate. The whole perspective view of the plate type heat exchanger formed by is shown. 同実施形態に係るプレート式熱交換器の冷媒の流通経路を説明するための縦断面図を示す。The longitudinal cross-sectional view for demonstrating the distribution | circulation route of the refrigerant | coolant of the plate type heat exchanger which concerns on the same embodiment is shown. 同実施形態に係るプレート式熱交換器の被冷却体の流通経路を説明するための縦断面図を示す。The longitudinal cross-sectional view for demonstrating the flow path of the to-be-cooled body of the plate type heat exchanger which concerns on the same embodiment is shown. 同実施形態に係るプレート式熱交換器内での冷媒及び被冷却体の流れを説明するための概略断面図であって、(a)は、第一ブロックでの冷媒の流れを説明するための断面図を示し、(b)は、第一ブロックよりも伝熱プレートの積層方向の奥側にある第二ブロックでの冷媒の流れを説明するための断面図を示し、(c)は、第二ブロックよりも伝熱プレートの積層方向の奥側にある第三ブロックでの冷媒の流れを説明するための断面図を示し、(d)は、被冷却体流入路から被冷却体流出路に向けての被冷却体の流れを説明するための断面図を示す。It is a schematic sectional drawing for demonstrating the flow of the refrigerant | coolant in the plate type heat exchanger which concerns on the same embodiment, and a to-be-cooled body, Comprising: (a) is for demonstrating the flow of the refrigerant | coolant in a 1st block. A sectional view is shown, (b) shows a sectional view for explaining the flow of the refrigerant in the second block located behind the heat transfer plate in the stacking direction from the first block, and (c) shows the first block. Sectional drawing for demonstrating the flow of the refrigerant | coolant in the 3rd block in the back | inner side of the lamination direction of a heat exchanger plate rather than two blocks is shown, (d) is from a to-be-cooled body inflow path to a to-be-cooled body outflow path. Sectional drawing for demonstrating the flow of the to-be-cooled body toward is shown. 本発明の他実施形態に係る熱交換ユニットに用いられるプレート式熱交換器の全体斜視図であって、複数の冷媒流入路が伝熱プレートの積層方向と直交する方向(伝熱プレートの短手方向)に並んで形成されたプレート式熱交換器の斜視図を示す。It is the whole plate-type heat exchanger used for the heat exchange unit which concerns on other embodiment of this invention, Comprising: It is a direction (short side of a heat exchanger plate) in which a some refrigerant | coolant inflow path is orthogonal to the lamination direction of a heat exchanger plate. The perspective view of the plate type heat exchanger formed along with (direction) is shown. 図6に示すプレート式熱交換器内での冷媒及び被冷却体の流れを説明するための概略断面図であって、(a)は、第一ブロックでの冷媒の流れを説明するための断面図を示し、(b)は、第一ブロックよりも伝熱プレートの積層方向の奥側にある第二ブロックでの冷媒の流れを説明するための断面図を示し、(c)は、第二ブロックよりも伝熱プレートの積層方向の奥側にある第三ブロックでの冷媒の流れを説明するための断面図を示し、(d)は、被冷却体流入路から被冷却体流出路に向けての被冷却体の流れを説明するための断面図を示す。It is a schematic sectional drawing for demonstrating the flow of the refrigerant | coolant and to-be-cooled body in the plate type heat exchanger shown in FIG. 6, Comprising: (a) is a cross section for demonstrating the flow of the refrigerant | coolant in a 1st block. FIG. 4B is a cross-sectional view for explaining the flow of the refrigerant in the second block located on the back side in the stacking direction of the heat transfer plate with respect to the first block, and FIG. Sectional drawing for demonstrating the flow of the refrigerant | coolant in the 3rd block in the back | inner side of the lamination direction of a heat exchanger plate rather than a block is shown, (d) is toward a to-be-cooled body outflow path from a to-be-cooled body inflow path. Sectional drawing for demonstrating the flow of all the to-be-cooled bodies is shown. 本発明の別の実施形態に係るプレート式熱交換器の冷媒の流通経路を説明するための縦断面図を示す。The longitudinal cross-sectional view for demonstrating the flow path of the refrigerant | coolant of the plate-type heat exchanger which concerns on another embodiment of this invention is shown. 従来のプレート式熱交換器の全体斜視図を示す。An overall perspective view of a conventional plate heat exchanger is shown. 図9のプレート式熱交換器の縦断面図であって、(a)は、冷媒の流通経路を説明するための縦断面図を示し、(b)は、被冷却体の流通経路を説明するための縦断面図を示す。It is a longitudinal cross-sectional view of the plate type heat exchanger of FIG. 9, (a) shows the longitudinal cross-sectional view for demonstrating the distribution path of a refrigerant | coolant, (b) demonstrates the distribution path of a to-be-cooled body. The longitudinal cross-sectional view for this is shown. 図9のプレート式熱交換器内での冷媒及び被冷却体の流れを説明するための概略断面図であって、(a)は、冷媒流入路から冷媒流出路に向けての冷媒の流れを説明するための断面図を示し、(b)は、被冷却体流入路から被冷却体流出路に向けての被冷却体の流れを説明するための断面図を示す。It is a schematic sectional drawing for demonstrating the flow of the refrigerant | coolant in the plate type heat exchanger of FIG. 9, and a to-be-cooled body, Comprising: (a) is a flow of the refrigerant | coolant toward a refrigerant | coolant outflow path from a refrigerant | coolant inflow path. Sectional drawing for demonstrating is shown, (b) shows sectional drawing for demonstrating the flow of the to-be-cooled body from a to-be-cooled body inflow path toward a to-be-cooled body outflow path. 従来のプレート式熱交換器の部分断面図であって、(a)は、冷媒流入路としてシャワーパイプを備えたプレート式熱交換器の部分縦断面図を示し、(b)は、冷媒流入路が複数の分割流入路に分割されたプレート式熱交換器の部分縦断面図を示す。It is a fragmentary sectional view of the conventional plate-type heat exchanger, (a) shows the fragmentary longitudinal cross-sectional view of the plate-type heat exchanger provided with the shower pipe as a refrigerant | coolant inflow path, (b) is a refrigerant | coolant inflow path. Fig. 2 shows a partial longitudinal sectional view of a plate heat exchanger divided into a plurality of divided inflow passages.

以下、本発明の一実施形態に係る熱交換ユニットについて添付図面を参照して説明する。   Hereinafter, a heat exchange unit according to an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係る熱交換ユニットは、図1に示す如く、冷媒Mと被冷却体Wとを熱交換させるプレート式熱交換器10と、冷媒Mを一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段20a,20b,20cとを備えている。   As shown in FIG. 1, the heat exchange unit according to this embodiment includes a plate heat exchanger 10 that exchanges heat between the refrigerant M and the object W to be cooled, and a secondary by depressurizing the refrigerant M from the fluid pressure on the primary side. Pressure reducing means 20a, 20b, 20c configured to be supplied to the side.

前記プレート式熱交換器10は、図2に示す如く、積層された複数の伝熱プレート100…と、該複数の伝熱プレート100…を挟み込むように設けられた一対のフレーム110,120とを備えている。   As shown in FIG. 2, the plate heat exchanger 10 includes a plurality of stacked heat transfer plates 100 and a pair of frames 110 and 120 provided so as to sandwich the plurality of heat transfer plates 100. I have.

本実施形態に係るプレート式熱交換器10は、図3及び図4に示す如く、積層された複数枚の伝熱プレート100…間に各伝熱プレート100…を境にして冷媒Mを流通させる冷媒用流路101…と被冷却体Wを流通させる被冷却体用流路102…とが交互に形成され、各伝熱プレート100…に形成された貫通穴H1a,H1b,H1c,H2,H3,H4が連なって冷媒用流路101…に冷媒Mを流出入させる冷媒流入路103a,103b,103c及び冷媒流出路104が形成されるとともに、被冷却体用流路102…に被冷却体Wを流出入させる被冷却体流入路105及び被冷却体流出路106が形成されている。   In the plate heat exchanger 10 according to the present embodiment, as shown in FIGS. 3 and 4, the refrigerant M is circulated between the plurality of stacked heat transfer plates 100 with the heat transfer plates 100 as boundaries. Refrigerant flow paths 101... And cooled object flow paths 102 for circulating the cooled object W are alternately formed, and through holes H1a, H1b, H1c, H2, H3 formed in the respective heat transfer plates 100. , H4 are connected to form the refrigerant inflow passages 103a, 103b, 103c and the refrigerant outflow passage 104 through which the refrigerant M flows in and out of the refrigerant flow passages 101. The body to be cooled inflow path 105 and the body to be cooled outflow path 106 are formed.

そして、本実施形態に係るプレート式熱交換器10は、図3に示す如く、伝熱プレート100…の積層方向に形成された複数の冷媒用流路101…が伝熱プレート100…の積層方向で所定の数毎に液密又は気密に仕切られて二つ以上(本実施形態では三つ)のブロックA,B,Cに区画されるとともに、前記冷媒流入路103a,103b,103cが前記ブロックA,B,Cの数に対応して二つ以上(本実施形態では三つ)形成されている。そして、各冷媒流入路103a,103b,103cは、それぞれ異なるブロックA,B,Cの冷媒用流路101…に連通するように形成されている。   In the plate heat exchanger 10 according to this embodiment, as shown in FIG. 3, a plurality of refrigerant flow paths 101 formed in the stacking direction of the heat transfer plates 100 are stacked in the stacking direction of the heat transfer plates 100. And is divided into two or more (three in this embodiment) blocks A, B, and C that are partitioned liquid-tight or air-tight by a predetermined number, and the refrigerant inflow passages 103a, 103b, and 103c are the blocks. Two or more (three in this embodiment) are formed corresponding to the number of A, B, and C. And each refrigerant | coolant inflow path 103a, 103b, 103c is formed so that it may connect with the flow paths 101 ... for refrigerant | coolants of a different block A, B, C, respectively.

ここで、本実施形態に係るプレート式熱交換器10について具体的に説明すると、前記複数の伝熱プレート100…は、図5に示す如く、正面視矩形状(長方形状)に形成されている。伝熱プレート100…は、それぞれプレス成形されており、表裏に複数の凸条(図示しない)及び凹条(図示しない)が交互に形成されている。なお、本実施形態において、各伝熱プレート100…の表裏に凸条及び凹条を形成することで、隣り合う伝熱プレート100…の凹条及び凸条が正面から見て交差した状態になりつつ、凸条同士が点接触するようになっている。   Here, the plate heat exchanger 10 according to this embodiment will be described in detail. The plurality of heat transfer plates 100 are formed in a rectangular shape (rectangular shape) when viewed from the front, as shown in FIG. . Each of the heat transfer plates 100 is press-formed, and a plurality of ridges (not shown) and ridges (not shown) are alternately formed on the front and back. In the present embodiment, by forming the ridges and ridges on the front and back of each heat transfer plate 100, the ridges and ridges of the adjacent heat transfer plates 100 are crossed when viewed from the front. On the other hand, the ridges are in point contact.

そして、各伝熱プレート100…は、図3乃至図5に示す如く、異なる適宜位置に複数の貫通穴H1a,H1b,H1c,H2,H3,H4が設けられている。本実施形態に係るプレート式熱交換器10における伝熱プレート100…は、正面視における四隅のうちの三つの隅部のそれぞれに一つの貫通穴H2,H3,H4が設けられており、残りの一つの隅部に一つ乃至複数の貫通穴H1a,H1b,H1cが設けられている。   Each of the heat transfer plates 100 is provided with a plurality of through holes H1a, H1b, H1c, H2, H3, and H4 at different appropriate positions as shown in FIGS. The heat transfer plate 100 in the plate heat exchanger 10 according to the present embodiment is provided with one through hole H2, H3, H4 in each of three corners of the four corners in a front view, and the rest. One or more through holes H1a, H1b, and H1c are provided at one corner.

各伝熱プレート100…は、各貫通穴H1a,H1b,H1c,H2,H3,H4の配置が対応しており、積層した状態(重ね合わせた状態)で隣り合う伝熱プレート100…の貫通穴H1a,H1b,H1c,H2,H3,H4が連なり、冷媒Mを流出入させる冷媒流入路103a,103b,103c及び冷媒流出路104を形成でき、また、被冷却体Wを流出入させる被冷却体流入路105及び被冷却体流出路106を形成できるようになっている。   Each of the heat transfer plates 100 corresponds to the arrangement of the through holes H1a, H1b, H1c, H2, H3, and H4, and the through holes of the adjacent heat transfer plates 100 in a stacked state (superposed state). H1a, H1b, H1c, H2, H3, H4 are connected to form the refrigerant inflow passages 103a, 103b, 103c and the refrigerant outflow passage 104 through which the refrigerant M flows in and out, and the body to be cooled through which the body W to be cooled flows out and in An inflow path 105 and a cooled body outflow path 106 can be formed.

本実施形態に係るプレート式熱交換器10は、各伝熱プレート100…の四隅部分のうちの三つの隅部に冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106を形成するための貫通穴H2,H3,H4が一つずつ設けられている。各伝熱プレート100…は、長手方向の一端側にある二つの隅部のうちの一方(長手方向と直交する方向(以下、短手方向という)の一端側にある隅部)に、冷媒流出路104を形成するための貫通穴H2が設けられ、他方(短手方向の他端側にある隅部)に被冷却体流入路105を形成するための貫通穴H3が設けられている。また、各伝熱プレート100…は、長手方向の他端側にある二つ隅部のうち、一方の隅部(短手方向の他端側にある隅部)に、被冷却体流出路106を形成するための貫通穴H4が穿設されている。   In the plate heat exchanger 10 according to the present embodiment, a refrigerant outflow path 104, a cooled body inflow path 105, and a cooled body outflow path 106 are provided at three corners of the four corners of each heat transfer plate 100. One through hole H2, H3, H4 for forming is provided one by one. Each of the heat transfer plates 100... Flows out of the refrigerant into one of the two corners on one end side in the longitudinal direction (the corner portion on one end side in the direction orthogonal to the longitudinal direction (hereinafter referred to as the short direction)). A through hole H2 for forming the passage 104 is provided, and a through hole H3 for forming the cooled body inflow passage 105 is provided on the other side (corner on the other end side in the short side direction). Further, each of the heat transfer plates 100... Is provided at one of the two corners on the other end side in the longitudinal direction (the corner on the other end side in the short side direction) at the cooled body outflow path 106. A through-hole H4 is formed for forming the.

さらに、各伝熱プレート100…は、長手方向の他端側にある二つ隅部のうち、他方の隅部(短手方向の一端側にある隅部)に、冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cが穿設されている。   Further, each of the heat transfer plates 100... Has a refrigerant inflow path 103a, 103b, and a refrigerant inflow passage 103a, 103b, Through holes H1a, H1b, and H1c for forming 103c are formed.

本実施形態に係るプレート式熱交換器10は、上述の如く、伝熱プレート100…の積層方向において、複数の冷媒用流路101…が所定の数毎で複数のブロックA,B,Cに区画され、ブロックA,B,Cの数に対応して複数の冷媒流入路103a,103b,103cが形成されるため、図3及び図5に示す如く、冷媒流入路103a,103b,103cの入口側(後述する接続部J1a,J1b,J1c,J2,J3,J4の設けられた一方のフレーム110側)にあるブロックAを構成する伝熱プレート100…には、冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cがブロックA,B,C数に応じた数で設けられている。これに対し、冷媒流入路103a,103b,103cの奥側(非貫通状態にある他方のフレーム120側)にあるブロックB,Cを構成する伝熱プレート100…には、冷媒流入路103b,103cを形成するための貫通穴H1b,H1cが区画されたブロックA,B,Cの数よりも少ない数で設けられている。 In the plate heat exchanger 10 according to the present embodiment, as described above, in the stacking direction of the heat transfer plates 100..., The plurality of refrigerant channels 101. Since a plurality of refrigerant inflow passages 103a, 103b, and 103c are formed corresponding to the number of blocks A, B, and C , the inlets of the refrigerant inflow passages 103a, 103b, and 103c are formed as shown in FIGS. The refrigerant inflow passages 103a, 103b, 103c are connected to the heat transfer plates 100 constituting the block A on the side (one frame 110 side provided with connecting portions J1a, J1b, J1c, J2, J3, J4 described later). Through holes H1a, H1b, and H1c are formed in a number corresponding to the number of blocks A, B, and C. On the other hand, the refrigerant inflow passages 103b, 103c are connected to the heat transfer plates 100 constituting the blocks B, C on the back side of the refrigerant inflow passages 103a, 103b, 103c (the other frame 120 side in the non-penetrating state). Through holes H1b and H1c are provided in a number smaller than the number of blocks A, B and C partitioned.

すなわち、複数に区画したブロックA,B,Cを冷媒流入路103a,103b,103cの一次側(入口側)から奥側に向けて一から順に順位を付けると、冷媒流入路103a,103b,103cの入口側にある最小順位(第一順位)のブロックAを構成する伝熱プレート100…には、ブロックA,B,Cの最大順位の数(区画したブロックA,B,Cの数)に対応する数の貫通穴H1a,H1b,H1cが形成され、伝熱プレート100…の構成するブロックB,Cの順位が一つずつ下がるにつれて、そのブロックB,Cを構成する伝熱プレート100…に形成される冷媒流入路103b,103cとなる貫通穴H1b,H1cの数が一つずつ少なくなっている。   That is, when the blocks A, B, and C divided into a plurality are ranked in order from the primary side (inlet side) to the back side of the refrigerant inflow passages 103a, 103b, and 103c, the refrigerant inflow passages 103a, 103b, and 103c In the heat transfer plates 100 constituting the block A of the lowest order (first order) on the inlet side, the number of blocks A, B, and C (the number of divided blocks A, B, and C) is increased. A corresponding number of through-holes H1a, H1b, H1c are formed, and as the order of the blocks B, C constituting the heat transfer plates 100 decreases one by one, the heat transfer plates 100,. The number of through holes H1b and H1c that form the refrigerant inflow passages 103b and 103c is reduced by one.

従って、本実施形態において、三つのブロックA,B,Cに区画しているため、第一順位のブロック(以下、第一ブロックという)Aを構成する伝熱プレート100…には、三つの冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cが三つ設けられ、その次の順位のブロック(以下、第二ブロックという)Bを構成する伝熱プレート100…には、二つの冷媒用流路101…を形成するための貫通穴,H1b,H1cが二つ設けられ、その次の順位(最大順位)のブロック(以下、第三ブロックという)Cを構成する伝熱プレート100…には、一つの冷媒流入路103cを形成するための貫通穴H1cが一つ設けられている。   Therefore, in this embodiment, since it is divided into three blocks A, B and C, three refrigerants are included in the heat transfer plates 100 constituting the first rank block (hereinafter referred to as the first block) A. Three through holes H1a, H1b, and H1c for forming the inflow passages 103a, 103b, and 103c are provided, and the heat transfer plates 100 that constitute a block (hereinafter referred to as a second block) B of the next order , Two through holes H1b, H1c for forming the two refrigerant flow paths 101 are provided, and the heat transfer that constitutes the block (hereinafter referred to as the third block) C of the next rank (maximum rank) The plate 100 is provided with one through hole H1c for forming one refrigerant inflow passage 103c.

そして、第一ブロックA及び第二ブロックBを構成する伝熱プレート100…(貫通穴H1a,H1b,H1cが複数設けられた伝熱プレート100…)において、複数の貫通穴H1a,H1b,H1cは一列をなすように配置されている。本実施形態において、第一ブロックA及び第二ブロックBを構成する伝熱プレート100…は、複数の貫通穴H1a,H1b,H1cが長手方向に一列をなすように設けられている。   In the heat transfer plates 100 (the heat transfer plate 100 provided with a plurality of through holes H1a, H1b, H1c) constituting the first block A and the second block B, the plurality of through holes H1a, H1b, H1c are They are arranged in a row. In the present embodiment, the heat transfer plates 100 constituting the first block A and the second block B are provided such that a plurality of through holes H1a, H1b, H1c form a line in the longitudinal direction.

これにより、本実施形態に係るプレート式熱交換器10は、複数の伝熱プレート100…を積層した状態(被冷却体流入路105、被冷却体流出路106、及び冷媒流出路104を形成するための貫通穴H2,H3,H4が連なった状態)で、第一ブロックA、第二ブロックB及び第三ブロックCを構成する伝熱プレート100…に形成された貫通穴H1cが連なり、第三ブロックCの冷媒用流路101…に連通する冷媒流入路(以下、第三ブロック冷媒流入路という)103cが形成され、第一ブロックA、及び第二ブロックBを構成する伝熱プレート100…に形成された貫通穴H1bが連なり、第二ブロックBの冷媒用流路101…に連通する冷媒流入路(以下、第二ブロック冷媒流入路という)103bが形成され、さらに、第一ブロックAを構成する伝熱プレート100…に形成された貫通穴H1aが連なり、第一ブロックAの冷媒用流路101…に連通する冷媒流入路(以下、第一ブロック冷媒流入路という)103aが形成されるようになっている。   Accordingly, the plate heat exchanger 10 according to the present embodiment forms a state in which a plurality of heat transfer plates 100 are stacked (a cooled body inflow path 105, a cooled body outflow path 106, and a refrigerant outflow path 104 are formed. Through-holes H2, H3, and H4 connected to each other), the through-holes H1c formed in the heat transfer plates 100 constituting the first block A, the second block B, and the third block C are connected to each other. A refrigerant inflow passage (hereinafter referred to as a third block refrigerant inflow passage) 103c communicating with the refrigerant flow paths 101 of the block C is formed, and the heat transfer plates 100 constituting the first block A and the second block B are formed. The formed through hole H1b is connected to form a refrigerant inflow passage (hereinafter referred to as a second block refrigerant inflow passage) 103b that communicates with the refrigerant flow passage 101 of the second block B, and further includes a first block. A through-hole H1a formed in the heat transfer plates 100 constituting the rack A is connected, and a refrigerant inflow path (hereinafter referred to as a first block refrigerant inflow path) 103a communicated with the refrigerant flow path 101 of the first block A. Is to be formed.

本実施形態に係るプレート式熱交換器10は、上述の如く、第一ブロックA及び第二ブロックBを構成する伝熱プレート100…に対し、長手方向の他端側にある二つ隅部のうち、他方の隅部(短手方向の一端側にある隅部)にある複数の貫通穴H1a,H1b,H1cが長手方向で一列に形成されているため、前記第一〜第三ブロック冷媒流入路103a,103b,103cは、伝熱プレート100…の長手方向に間隔をあけて配置成されている。   As described above, the plate heat exchanger 10 according to the present embodiment has two corners on the other end side in the longitudinal direction with respect to the heat transfer plates 100 constituting the first block A and the second block B. Among them, since the plurality of through holes H1a, H1b, H1c in the other corner (corner on one end side in the short side direction) are formed in a line in the longitudinal direction, the first to third block refrigerant inflows The passages 103a, 103b, 103c are arranged at intervals in the longitudinal direction of the heat transfer plates 100.

このように本実施形態に係るプレート式熱交換器10は、順位の高い(順位数の小さい)ブロックA,Bを構成する伝熱プレート100…ほど、冷媒流入路103a,103b,103cを形成するための貫通穴H1a,H1b,H1cの数が多くなるため、各ブロックA,B,Cの境界にある伝熱プレート100…は、順位の低いブロックB,C側の伝熱プレート100…の貫通穴H1a,H1bの形成されていない部分(非貫通部分)が隣り合う順位の高いブロックA,Bの伝熱プレート100…の貫通穴H1a,H1bと対向するようになっている。   As described above, the plate heat exchanger 10 according to this embodiment forms the refrigerant inflow passages 103a, 103b, and 103c as the heat transfer plates 100 constituting the blocks A and B having higher ranks (smaller ranks). Since the number of through holes H1a, H1b, and H1c for the heat transfer plate 100 is increased, the heat transfer plates 100 at the boundaries of the blocks A, B, and C pass through the heat transfer plates 100 on the blocks B and C having lower ranks. The portions where the holes H1a and H1b are not formed (non-penetrating portions) are opposed to the through holes H1a and H1b of the heat transfer plates 100 of the blocks A and B which are adjacent to each other.

そして、本実施形態に係るプレート式熱交換器10は、隣り合う伝熱プレート100…の短手方向の一端側にある貫通穴H1a,H1b,H1c,H2回りで隣り合う伝熱プレート100…同士が液密又は気密にシールされることで、該貫通穴H1a,H1b,H1c,H2で形成された冷媒流入路103a,103b,103c及び冷媒流出路104を流通する冷媒Mが伝熱プレート100…間に形成される被冷却体用流路102…に流れ込むことが防止されている。また、該プレート式熱交換器10は、隣り合う伝熱プレート100…の短手方向の他端側にある貫通穴H3,4回りで隣り合う伝熱プレート100…同士が液密又は気密にシールされることで、該貫通穴H3,H4で形成された被冷却体流入路105及び被冷却体流出路106を流通する被冷却体Wが伝熱プレート100…間に形成される冷媒用流路101…に流れ込むことが防止されている。   The plate heat exchanger 10 according to the present embodiment includes adjacent heat transfer plates 100 around the through holes H1a, H1b, H1c, and H2 on one end side in the short direction of the adjacent heat transfer plates 100. Is sealed in a liquid-tight or air-tight manner, so that the refrigerant M flowing through the refrigerant inflow passages 103a, 103b, 103c and the refrigerant outflow passage 104 formed by the through holes H1a, H1b, H1c, H2 is transferred to the heat transfer plate 100 ... It is prevented from flowing into the channels 102 to be cooled formed between them. Further, the plate heat exchanger 10 is configured such that the adjacent heat transfer plates 100 around the through holes H3, 4 on the other end side in the short direction of the adjacent heat transfer plates 100 are sealed in a liquid-tight or air-tight manner. As a result, the coolant flow path is formed between the heat transfer plates 100 through which the cooled object inflow passages 105 and the cooled object outlet passages 106 formed by the through holes H3 and H4 pass. 101 is prevented from flowing.

すなわち、本実施形態に係るプレート式熱交換器10は、隣り合う伝熱プレート100…の冷媒用流路101…を形成する一方の面間が該冷媒用流路101…を画定してシールされ、隣り合う伝熱プレート100…の被冷却体用流路102…を形成する他方の面間が該被冷却体用流路102…を画定してシールされている。   That is, in the plate heat exchanger 10 according to the present embodiment, a space between one surface forming the refrigerant flow paths 101 of the adjacent heat transfer plates 100 is defined and sealed with the refrigerant flow paths 101. Between the other surfaces of the adjacent heat transfer plates 100 that form the flow channel 102 for the cooled object, the flow channel 102 for the cooled object is defined and sealed.

なお、伝熱プレート100…間のシールは、ゴム等で構成されるガスケットを隣り合う伝熱プレート100…で挟み込んだり、隣り合う伝熱プレート100…同士を溶接したりすることで行われるが、本実施形態に係るプレート式熱交換器10は、何れの方法で伝熱プレート100…間をシールしてもよいため、ここでのシール構造についての説明は割愛することとする。   Sealing between the heat transfer plates 100 is performed by sandwiching a gasket made of rubber or the like between adjacent heat transfer plates 100 or welding the adjacent heat transfer plates 100. Since the plate-type heat exchanger 10 according to the present embodiment may seal between the heat transfer plates 100 by any method, description of the sealing structure here will be omitted.

そして、本実施形態に係るプレート式熱交換器10は、上述の如く、伝熱プレート100…の積層方向で複数の冷媒用流路101…を所定の数毎のブロックA,B,Cに区画するようにしているため、第一ブロックAを構成する複数枚の伝熱プレート100…は、図5(a)及び図5(d)に示す如く、第一ブロックAの冷媒用流路101…に連通する第一ブロック冷媒流入路103aとなる貫通穴H1aと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a,103b,103c及び冷媒流出路104となる貫通穴H1a,H1b,H1c,H2を避けた領域を画定するように対向する他方の面間にシールSが施されている。   As described above, the plate heat exchanger 10 according to the present embodiment divides a plurality of refrigerant flow paths 101 into a predetermined number of blocks A, B, and C in the stacking direction of the heat transfer plates 100. Therefore, the plurality of heat transfer plates 100 constituting the first block A are composed of the refrigerant flow paths 101 of the first block A as shown in FIGS. 5 (a) and 5 (d). Including a through hole H1a serving as a first block refrigerant inflow passage 103a and a through hole H2 serving as a refrigerant outflow passage 104, and through holes H3 serving as a cooled body inflow passage 105 and a cooled body outflow passage 106. A seal S is provided between the opposing surfaces so as to define a region avoiding H4, and the through-hole H3 serving as the cooled body inflow path 105 communicating with the cooled body flow path 102 ... Including a through hole H4 to be a path 106, and Medium inflow passage 103a, 103b, 103c and the through-hole H1a comprising a refrigerant outflow passage 104, H1b, H1c, seal S is applied between the other surface facing to define a region except the H2.

また、第二ブロックBを構成する複数枚の伝熱プレート100…は、図5(b)及び図5(d)に示す如く、第二ブロックBの冷媒用流路101…に連通する第二ブロック冷媒流入路103bとなる貫通穴H1bと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a,103b,103c及び冷媒流出路104となる貫通穴H3,H4を避けた領域を画定するように対向する他方の面間にシールSが施されている。   Further, the plurality of heat transfer plates 100 constituting the second block B are in communication with the refrigerant flow paths 101 of the second block B as shown in FIGS. 5B and 5D. A region including a through hole H1b serving as the block refrigerant inflow path 103b and a through hole H2 serving as the refrigerant outflow path 104, and avoiding the through holes H3 and H4 serving as the cooled body inflow path 105 and the cooled body outflow path 106 A seal S is provided between the opposing surfaces so as to define a through-hole H3 serving as a cooled body inflow passage 105 and a through hole serving as a cooled body outflow path 106 communicating with the cooled body flow paths 102. A seal S is provided between the opposite surfaces so as to define a region that includes the hole H4 and avoids the through holes H3 and H4 serving as the refrigerant inflow passages 103a, 103b, and 103c and the refrigerant outflow passage 104. .

さらに、第三ブロックCを構成する複数枚の伝熱プレート100…は、図5(c)及び図5(d)に示す如く、第三ブロックCの冷媒用流路101…に連通する第三ブロック冷媒流入路103cとなる貫通穴H1cと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a,103b,103c及び冷媒流出路104となる貫通穴H1a,H1b,H1c,H2を避けた領域を画定するように対向する他方の面間にシールSが施されている。   Further, the plurality of heat transfer plates 100 constituting the third block C are in communication with the refrigerant flow passages 101 of the third block C as shown in FIGS. 5 (c) and 5 (d). A region including a through hole H1c serving as the block refrigerant inflow path 103c and a through hole H2 serving as the refrigerant outflow path 104, and avoiding the through holes H3 and H4 serving as the cooled body inflow path 105 and the cooled body outflow path 106 A seal S is provided between the opposing surfaces so as to define a through-hole H3 serving as a cooled body inflow passage 105 and a through hole serving as a cooled body outflow path 106 communicating with the cooled body flow paths 102. A seal S is provided between the opposite surfaces so as to define a region that includes the hole H4 and avoids the through holes H1a, H1b, H1c, and H2 that serve as the refrigerant inflow passages 103a, 103b, and 103c and the refrigerant outflow passage 104. It has been subjected.

そして、該プレート式熱交換器10は、第一〜第三のブロックA,B,Cにおいて、冷媒用流路101…においては冷媒流入路103a,103b,103c側から冷媒流出路104側に冷媒Mが円滑に流通でき、また、被冷却体用流路102…においては被冷却体流入路105側から被冷却体流出路106側に被冷却体Wが円滑に流通できるようにした上で、伝熱プレート100…を介して隣り合う冷媒用流路101…と被冷却体用流路102…との重なりをできるだけ多くできるように、伝熱プレート100…間にシールSが施されて冷媒用流路101…及び被冷却体用流路102…を画定するようにしている。   In the first to third blocks A, B, and C, the plate heat exchanger 10 includes a refrigerant from the refrigerant inflow passages 103a, 103b, and 103c to the refrigerant outflow passage 104 in the refrigerant flow passage 101. M can be smoothly circulated, and in the cooled object flow path 102, the cooled object W can be smoothly circulated from the cooled object inflow path 105 side to the cooled object outlet path 106 side. A seal S is provided between the heat transfer plates 100 so that the refrigerant flow paths 101 adjacent to each other through the heat transfer plates 100 and the flow paths 102 to be cooled can be overlapped as much as possible. The flow paths 101... And the cooling target flow paths 102 are defined.

本実施形態に係るプレート式熱交換器10は、図5(a)〜(d)に示す如く、冷媒用流路101…において冷媒Mが冷媒流入路103a,103b,103c(第一〜第三ブロック冷媒流入路103a,103b,103c)側から冷媒流出路104側に向けて流通するに際し、冷媒Mが長手方向の中間位置に向けて短手方向に拡がった後に冷媒流出路104の一箇所に向けて流れる、いわゆる、台形流を形成し、被冷却体用流路102…において被冷却体Wが被冷却体流入路105側から被冷却体流出路106側に向けて流通するに際し、冷媒Mが長手方向の中間位置に向けて短手方向に拡がった後に被冷却体流出路106の一箇所に向けて流れる、いわゆる、台形流を形成するように、冷媒用流路101…及び被冷却体用流路102…を画定するようになっている。   In the plate heat exchanger 10 according to the present embodiment, as shown in FIGS. 5A to 5D, the refrigerant M flows into the refrigerant inflow paths 103a, 103b, 103c (first to third) in the refrigerant flow paths 101. When the refrigerant M flows from the block refrigerant inflow passages 103a, 103b, 103c) toward the refrigerant outflow passage 104, the refrigerant M spreads in the short direction toward the intermediate position in the longitudinal direction, and is then placed in one place of the refrigerant outflow passage 104. A so-called trapezoidal flow that flows in the direction toward the cooled body W flows from the cooled body inflow path 105 side to the cooled body outflow path 106 side in the cooled body flow path 102. So as to form a so-called trapezoidal flow in which the refrigerant flows toward one portion of the cooled object outlet passage 106 after spreading in the lateral direction toward the intermediate position in the longitudinal direction and the cooled object Flow path 102 ... It is adapted to define.

図2〜図4に示す如く、一対のフレーム110,120は、何れも厚板で構成されている。本実施形態に係るプレート式熱交換器10は、何れのフレーム110,120も正面視矩形状に形成されており、伝熱プレート100…の全面に対向できるように伝熱プレート100…と同寸或いはそれ以上のサイズに設定される。そして、一方のフレーム110には、伝熱プレート100…の各貫通穴H1a,H1b,H1c,H2,H3,H4の配置に対応した位置に貫通した穴が形成されている。すなわち、一方のフレーム110には、複数の冷媒流入路103a,103b,103c(第一〜第三ブロック冷媒流入路103a,103b,103c)、単一な冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106と対応する穴(採番しない)が穿設されている。そして、該一方のフレーム110は、外側になる面(伝熱プレート100…と対向する面の反対側の面)に筒状の接続部J1a,J1b,J1c,J2,J3,J4が液密又は気密に接続されている。接続部J1a,J1b,J1c,J2,J3,J4は、伝熱プレート100…の貫通穴H1a,H1b,H1c,H2,H3,H4に対応して設けられている。すなわち、接続部J1a,J1b,J1c,J2,J3,J4は、フレーム110に形成された穴と同心又は略同心になるようにフレーム110に固設されており、該フレーム110の外側になる面から突出した態様をなしている。   As shown in FIGS. 2 to 4, each of the pair of frames 110 and 120 is formed of a thick plate. In the plate heat exchanger 10 according to the present embodiment, both the frames 110 and 120 are formed in a rectangular shape when viewed from the front, and have the same dimensions as the heat transfer plates 100 so as to face the entire surface of the heat transfer plates 100. Alternatively, it is set to a size larger than that. One frame 110 is formed with a through hole at a position corresponding to the arrangement of the through holes H1a, H1b, H1c, H2, H3, and H4 of the heat transfer plate 100. That is, in one frame 110, a plurality of refrigerant inflow passages 103a, 103b, 103c (first to third block refrigerant inflow passages 103a, 103b, 103c), a single refrigerant outflow passage 104, and an object to be cooled inflow passage 105 are provided. And a hole (not numbered) corresponding to the cooled body outflow path 106 is formed. And this one flame | frame 110 is liquid-tight or the cylindrical connection part J1a, J1b, J1c, J2, J3, J4 on the surface which becomes an outer side (surface on the opposite side to the surface which opposes the heat-transfer plate 100 ...) Airtight connection. The connecting portions J1a, J1b, J1c, J2, J3, J4 are provided corresponding to the through holes H1a, H1b, H1c, H2, H3, H4 of the heat transfer plates 100. That is, the connecting portions J1a, J1b, J1c, J2, J3, and J4 are fixed to the frame 110 so as to be concentric or substantially concentric with the holes formed in the frame 110, and are surfaces that are outside the frame 110. The aspect which protruded from has been comprised.

そして、本実施形態においては、冷媒流入路103a,103b,103cと連通する接続部J1a,J1b,J1cは、減圧手段20a,20b,20cを直接的又は間接的に接続されるようになっている。   In the present embodiment, the connecting portions J1a, J1b, J1c communicating with the refrigerant inflow passages 103a, 103b, 103c are connected directly or indirectly to the decompression means 20a, 20b, 20c. .

これに対し、他方のフレーム120は、穴の開いていない(非貫通)の平板で構成されている。そして、一対のフレーム110,120は、積層した複数の伝熱プレート100…を両側から挟み込むように、直接的又は間接的に互いに連結される。なお、この種のプレート式熱交換器10は、大型のものである場合、一対のフレーム110,120は伝熱プレート100…を挟み込んだ状態で、互いの端部同士がボルト締結されるが、小型のものである場合には、一対のフレーム110,120は伝熱プレート100…を挟み込んだ状態で、互いの端部同士がボルト締結されたり、両フレームが隣り合う伝熱プレート100…に対して溶接等で直接固定されたりすることもある。   On the other hand, the other frame 120 is formed of a flat plate having no holes (non-penetrating). The pair of frames 110 and 120 are connected to each other directly or indirectly so as to sandwich the plurality of stacked heat transfer plates 100 from both sides. In addition, when this kind of plate-type heat exchanger 10 is a large-sized thing, while a pair of flame | frames 110 and 120 pinched | interposed the heat-transfer plate 100 ..., each other edge part is bolted, In the case of a small size, the pair of frames 110, 120 sandwich the heat transfer plates 100, and the ends of the frames are bolted to each other, or both frames are adjacent to the adjacent heat transfer plates 100 ... It may be fixed directly by welding.

そして、一対のフレーム110,120で伝熱プレート100…を挟み込むことで、一方のフレーム110の各接続部J1a,J1b,J1c,J2,J3,J4が伝熱プレート100…の貫通穴H1a,H1b,H1c,H2,H3,H4(複数の冷媒流入路103a,103b,103c、単一な冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106)と流体的に接続された状態になっている。なお、フレーム110,120と伝熱プレート100…との間においても、冷媒Mや被冷却体Wが漏れることのないように適正なシールが施される。   And by sandwiching the heat transfer plates 100 between the pair of frames 110, 120, the connecting portions J1a, J1b, J1c, J2, J3, J4 of one frame 110 are through holes H1a, H1b of the heat transfer plates 100 ... , H1c, H2, H3, H4 (a plurality of refrigerant inflow passages 103a, 103b, 103c, a single refrigerant outflow passage 104, a cooled body inflow path 105, and a cooled body outflow path 106). It is in a state. Note that an appropriate seal is also provided between the frames 110 and 120 and the heat transfer plates 100 to prevent the refrigerant M and the cooling target W from leaking.

図1に戻り、前記減圧手段20a,20b,20cは、冷媒流入路103a,103b,103cに接続された接続部J1a,J1b,J1cに対して直接的又は間接的に接続される。すなわち、減圧手段20a,20b,20cは、プレート式熱交換器10の設置場所等の環境に応じ、接続部J1a,J1b,J1cに流体的に接続された配管に接続されたり、接続部J1a,J1b,J1cに直接接続されたりする。そして、各減圧手段20a,20b,20cは、一次側における冷媒Mの流体圧に対して二次側における冷媒Mの流体圧が1/10〜1/2(10%〜50%)に減圧できるものが採用される。具体例を挙げると、例えば、冷媒Mをフロン(R134a)とし、減圧手段20a,20b,20cの一次側で冷媒Mの流体圧が0.8MPa〜2.0MPaに設定される場合、減圧手段20a,20b,20cは、冷媒Mの流体圧を0.2MPa〜0.4MPaに減圧して該冷媒Mを冷媒流入路103a,103b,103cに流入(供給)させることができるものが採用される。   Returning to FIG. 1, the decompression means 20a, 20b, 20c are directly or indirectly connected to the connecting portions J1a, J1b, J1c connected to the refrigerant inflow passages 103a, 103b, 103c. That is, the decompression means 20a, 20b, and 20c are connected to pipes that are fluidly connected to the connection portions J1a, J1b, and J1c according to the environment such as the installation location of the plate heat exchanger 10, or the connection portions J1a, Or directly connected to J1b and J1c. And each decompression means 20a, 20b, 20c can reduce the fluid pressure of refrigerant M on the secondary side to 1/10 to 1/2 (10% to 50%) with respect to the fluid pressure of refrigerant M on the primary side. Things are adopted. For example, when the refrigerant M is Freon (R134a) and the fluid pressure of the refrigerant M is set to 0.8 MPa to 2.0 MPa on the primary side of the decompression means 20a, 20b, 20c, the decompression means 20a. , 20b, and 20c are employed so that the fluid pressure of the refrigerant M can be reduced to 0.2 MPa to 0.4 MPa and the refrigerant M can be introduced (supplied) into the refrigerant inflow passages 103a, 103b, and 103c.

そして、減圧手段20a,20b,20cは、冷媒Mの流体圧を一定の圧力に減圧する固定式のものや、冷媒Mの流体圧を任意の圧力に減圧可能な可変式のものを採用することができるが、本実施形態においては、冷媒Mの流体圧の減圧が可変な可変式のものが採用されている。本実施形態に係る熱交換ユニット1は、減圧手段20a,20b,20cとして、冷媒Mの流量調整可能な流量調整弁で構成されており、冷媒Mの流量調整を行うことで該冷媒Mの流体圧を減圧させるようになっている。なお、減圧手段20a,20b,20cには、例えば、ニードル弁やオリフィス弁等を採用することが好ましい。   The decompression means 20a, 20b, and 20c employ a fixed type that reduces the fluid pressure of the refrigerant M to a constant pressure or a variable type that can reduce the fluid pressure of the refrigerant M to an arbitrary pressure. However, in this embodiment, a variable type in which the pressure reduction of the fluid pressure of the refrigerant M is variable is adopted. The heat exchange unit 1 according to the present embodiment includes a flow rate adjustment valve capable of adjusting the flow rate of the refrigerant M as the decompression means 20a, 20b, and 20c, and by adjusting the flow rate of the refrigerant M, the fluid of the refrigerant M The pressure is reduced. In addition, it is preferable to employ | adopt a needle valve, an orifice valve, etc. as the pressure reduction means 20a, 20b, 20c, for example.

この種の熱交換ユニット1は、一般的に冷媒流出路104から流出した冷媒Mを再度冷媒流入路103a,103b,103cに戻す循環系の一構成として採用されるため、通常、冷媒流出路104で気体になっている冷媒Mを液化させるべく、冷媒流出路104と冷媒流入路103a,103b,103cとの間に圧縮器と別の熱交換器(凝縮器)とが設置されることになり、各冷媒流入路103a,103b,103cは、該別の熱交換器(凝縮器)に接続されることになる。そのため、各冷媒流入路103a,103b,103cは、減圧手段20a,20b,20cを介してそれぞれ独立した配管系で別の熱交換器(凝縮器)に接続することも可能であるが、本実施形態においては、別の熱交換器(凝縮器)に接続された単一な配管を複数(三つ)に分岐させた上で、その分岐させた配管を各減圧手段20a,20b,20cの一次側に接続させている。   This type of heat exchange unit 1 is generally employed as one configuration of a circulation system that returns the refrigerant M flowing out of the refrigerant outflow passage 104 to the refrigerant inflow passages 103a, 103b, and 103c. In order to liquefy the refrigerant M, which is in a gaseous state, a compressor and another heat exchanger (condenser) are installed between the refrigerant outflow passage 104 and the refrigerant inflow passages 103a, 103b, 103c. The refrigerant inflow paths 103a, 103b, and 103c are connected to the other heat exchanger (condenser). Therefore, each refrigerant inflow path 103a, 103b, 103c can be connected to another heat exchanger (condenser) by an independent piping system via the decompression means 20a, 20b, 20c. In the embodiment, a single pipe connected to another heat exchanger (condenser) is branched into a plurality (three), and the branched pipe is then used as the primary pressure reducing means 20a, 20b, 20c. It is connected to the side.

本実施形態に係る熱交換ユニット1は、以上の構成からなり、次に、上記構成の熱交換ユニット1の作動について説明する。   The heat exchange unit 1 according to the present embodiment has the above-described configuration. Next, the operation of the heat exchange unit 1 having the above configuration will be described.

まず、各減圧手段20a,20b,20c(流量調整弁)を調整し、一次側における冷媒Mの流体圧の1/10〜1/2(10%〜50%)に減圧した状態で冷媒Mを第一〜第三ブロック冷媒流入路103a,103b,103cのそれぞれに供給する。また、これに併せて被冷却体流入路105に被冷却体Wを供給する。   First, the pressure reducing means 20a, 20b, 20c (flow rate adjusting valve) is adjusted, and the refrigerant M is reduced in a state where the pressure is reduced to 1/10 to 1/2 (10% to 50%) of the fluid pressure of the refrigerant M on the primary side. It supplies to each of the 1st-3rd block refrigerant | coolant inflow passages 103a, 103b, 103c. At the same time, the cooled object W is supplied to the cooled object inflow path 105.

そうすると、図5に示す如く、第一〜第三ブロックA,B,Cのそれぞれの冷媒用流路101…において、冷媒流入路103a,103b,103c(第一〜第三ブロック冷媒流入路103a,103b,103c)から冷媒流出路104に向けて冷媒Mが流通する一方、被冷却体用流路102…において、被冷却体流入路105から被冷却体流出路106に向けて被冷却体Wが流通する。この状態で、冷媒M及び被冷却体Wは、伝熱プレート100…を挟んで対向した状態で流通するため、互いに熱交換し、被冷却体Wが被冷却体流出路106に向かうにつれて冷却されることになる。   Then, as shown in FIG. 5, in each of the refrigerant flow paths 101 of the first to third blocks A, B, C, the refrigerant inflow paths 103a, 103b, 103c (first to third block refrigerant inflow paths 103a, 103b, 103c) to the refrigerant outflow path 104, while the refrigerant M flows from the cooled body inflow path 105 to the cooled body outflow path 106 in the cooled body flow path 102. Circulate. In this state, the refrigerant M and the object to be cooled W circulate in a state of being opposed to each other with the heat transfer plates 100 interposed therebetween. Will be.

本実施形態に係る熱交換ユニット1は、プレート式熱交換器10における伝熱プレート100…の積層方向に形成された複数の冷媒用流路101…が伝熱プレート100…の積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックA,B,Cに区画されているため、上述の如く、第一〜第三ブロックA,B,Cのそれぞれの冷媒流入路103a,103b,103cで冷媒Mが流通するとき、他のブロックA,B,Cの冷媒流路101や冷媒流入路103a,103b,103cにおける冷媒Mの流体圧の影響を受けることなく、各ブロックA,B,Cの冷媒用流路101…で冷媒Mが流通することになる。   In the heat exchange unit 1 according to the present embodiment, a plurality of refrigerant flow paths 101 formed in the stacking direction of the heat transfer plates 100 in the plate heat exchanger 10 are predetermined in the stacking direction of the heat transfer plates 100. Since each of the blocks is divided into two or more blocks A, B, and C in a liquid-tight or air-tight manner, as described above, each of the refrigerant inflow passages 103a of the first to third blocks A, B, and C. , 103b, 103c, each block A is not affected by the fluid pressure of the refrigerant M in the refrigerant flow paths 101 and the refrigerant inflow paths 103a, 103b, 103c of the other blocks A, B, C. , B, C refrigerant channels 101...

そして、上記構成の熱交換ユニット1は、冷媒Mを一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段20a,20b,20cを各冷媒流入路103a,103b,103cの一次側に接続しているため、冷媒流入路103a,103b,103c毎に減圧手段20a,20b,20cで冷媒Mの流体圧を減圧して冷媒Mを供給することで、伝熱プレート100…の積層方向で区画された各ブロックA,B,C(各冷媒用流路101…)で冷媒Mが適正に流通することになる。   The heat exchanging unit 1 configured as described above is configured so that the pressure reducing means 20a, 20b, 20c configured to depressurize the refrigerant M from the fluid pressure on the primary side and supply the secondary side to the refrigerant inflow passages 103a, 103b, 103c. Since the refrigerant M is supplied to the refrigerant inflow passages 103a, 103b, and 103c by reducing the fluid pressure of the refrigerant M using the decompression means 20a, 20b, and 20c for each refrigerant inflow passage 103a, 103b, and 103c. Thus, the refrigerant M appropriately flows through the blocks A, B, and C (each refrigerant flow path 101...) Partitioned in the stacking direction.

具体的には、上記構成のプレート式熱交換器10は、図1に示す如く、ブロックA,B,C毎に冷媒流入路103a,103b,103cが設けられるのに対して、冷媒流出路104が全ての冷媒用流路101…に連通して共通の流路を構成しているため、各冷媒流入路103a,103b,103cで流通する冷媒Mの流体圧P1a’P1b’P1c’と冷媒流出路104(及び冷媒流出路104に繋がる配管)で流通する冷媒Mの流体圧P2との差圧ΔPa’,ΔPb’,ΔPc’は、冷媒流入路103a,103b,103cの長さ(流通抵抗)と対応して、見かけ上、伝熱プレート100…の積層方向の奥側(他方のフレーム120側)ほど大きくなる(ΔPa’’<ΔPb’’<ΔPc’’)。   Specifically, as shown in FIG. 1, the plate heat exchanger 10 having the above-described configuration is provided with the refrigerant inflow paths 103 a, 103 b, and 103 c for each of the blocks A, B, and C, whereas the refrigerant outflow path 104. Communicate with all the refrigerant flow paths 101 and constitute a common flow path, so that the fluid pressure P1a′P1b′P1c ′ of the refrigerant M flowing through the refrigerant inflow paths 103a, 103b, and 103c and the refrigerant outflow The differential pressures ΔPa ′, ΔPb ′, ΔPc ′ from the fluid pressure P2 of the refrigerant M flowing through the path 104 (and the pipe connected to the refrigerant outflow path 104) are the lengths (flow resistance) of the refrigerant inflow paths 103a, 103b, 103c. Correspondingly, the rear side of the heat transfer plates 100 in the stacking direction (the other frame 120 side) becomes larger (ΔPa ″ <ΔPb ″ <ΔPc ″).

しかしながら、減圧手段20a,20b,20cに接続された一次側の配管(採番しない)内における冷媒Mの流体圧P1a,P1b,P1cと、冷媒流出路104に接続された配管(図示しない)内における冷媒Mの流体圧P2との差圧ΔPa,ΔPb,ΔPcは、各冷媒流入路103a,103b,103cの長さ(流通抵抗)と対応する上述の差圧ΔPa’,ΔPb’,ΔPc’と、減圧手段20a,20b,20cによる減圧による差圧ΔPa’’,ΔPb’’,ΔPc’’との合計になる。   However, the fluid pressure P1a, P1b, P1c of the refrigerant M in the primary side pipe (not numbered) connected to the decompression means 20a, 20b, 20c, and the pipe (not shown) connected to the refrigerant outflow path 104 The differential pressures ΔPa, ΔPb, ΔPc of the refrigerant M with respect to the fluid pressure P2 are the above-described differential pressures ΔPa ′, ΔPb ′, ΔPc ′ corresponding to the lengths (flow resistances) of the refrigerant inflow passages 103a, 103b, 103c, respectively. , And the differential pressures ΔPa ″, ΔPb ″, ΔPc ″ due to the decompression by the decompression means 20a, 20b, 20c.

そのため、冷媒流入路103a,103b,103cのそれぞれに別個独立で接続された減圧手段20a,20b,20cで冷媒Mの流体圧を大きく減圧した上で各冷媒流入路103a,103b,103cに冷媒Mを供給することで、減圧手段20a,20b,20cの一次側における冷媒Mの流体圧(減圧手段20a,20b,20cで減圧される前の冷媒Mの流体圧)P1a,P1b,P1cと冷媒流出路104の二次側における冷媒Mの流体圧(プレート式熱交換器10から流出した冷媒Mの流体圧)P2との差圧ΔPa,ΔPb,ΔPcの大部分を、減圧手段20a,20b,20cによる減圧による差圧成分ΔPa’’,ΔPb’’,ΔPc’’が占めることになり(ΔPa’≪ΔPa’’,ΔPb’≪ΔPb’’,ΔPc’≪ΔPc’’)、各ブロックA,B,Cにおける冷媒流入路103a,103b,103cと冷媒流出路104との間の差圧(冷媒流入路の長さ(流通抵抗)に関連する差圧)ΔPa’,ΔPb’,ΔPc’を殆ど無視できる状態になる。   Therefore, the pressure of the refrigerant M is greatly reduced by the pressure reducing means 20a, 20b, and 20c separately connected to the refrigerant inflow paths 103a, 103b, and 103c, and then the refrigerant M is supplied to the refrigerant inflow paths 103a, 103b, and 103c. , The fluid pressure of the refrigerant M on the primary side of the decompression means 20a, 20b, 20c (fluid pressure of the refrigerant M before being decompressed by the decompression means 20a, 20b, 20c) P1a, P1b, P1c and the refrigerant outflow Most of the differential pressures ΔPa, ΔPb, ΔPc from the fluid pressure of the refrigerant M (fluid pressure of the refrigerant M flowing out from the plate heat exchanger 10) P2 on the secondary side of the passage 104 are reduced by the decompression means 20a, 20b, 20c. Differential pressure components ΔPa ″, ΔPb ″, ΔPc ″ due to pressure reduction due to (ΔPa ′ << ΔPa ″, ΔPb ′ << ΔPb ″, ΔPc ′ << ΔPc ′ ), Differential pressure between the refrigerant inflow passages 103a, 103b, 103c and the refrigerant outflow passage 104 in each block A, B, C (differential pressure related to the length of the refrigerant inflow passage (flow resistance)) ΔPa ′, ΔPb ', ΔPc' is almost negligible.

その結果、各ブロックA,B,Cで伝熱プレート100…の積層方向における位置の相違による差圧の影響が殆どなくなり、各ブロックA,B,Cでの冷媒Mの流体圧(冷媒Mの流通状態)が略等しくなる。   As a result, the influence of the differential pressure due to the difference in position in the stacking direction of the heat transfer plates 100 in each of the blocks A, B, and C is almost eliminated, and the fluid pressure of the refrigerant M in each of the blocks A, B, and C (of the refrigerant M). Distribution state) becomes substantially equal.

そのため、上記構成の熱交換ユニット1(プレート式熱交換器10)によれば、伝熱プレート100…の積層方向の異なる位置(冷媒用流路103a,103b,103c)毎に冷媒Mの流体圧の差圧ΔPa,ΔPb,ΔPcに大きな違いがなくなる結果、各冷媒用流路103a,103b,103cで冷媒Mがバランス良く流通することになり、冷媒Mと被冷却体Wとを熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。   Therefore, according to the heat exchange unit 1 (plate type heat exchanger 10) having the above-described configuration, the fluid pressure of the refrigerant M at each position (refrigerant channels 103a, 103b, 103c) in the stacking direction of the heat transfer plates 100. As a result, there is no significant difference in the differential pressures ΔPa, ΔPb, ΔPc of the refrigerant, and the refrigerant M flows in a balanced manner in the refrigerant flow paths 103a, 103b, 103c, and heat exchange between the refrigerant M and the cooled object W is performed. As a result, the heat exchange performance that should be inherent in the entire apparatus can be exhibited.

以上のように、本実施形態に係る熱交換ユニット1(プレート式熱交換器10)は、他のブロックA,B,Cの圧力状態に影響を受けることなく、各ブロックA,B,Cの冷媒用流路101…で冷媒Mを流通させることができる。また、上記構成のプレート式熱交換器10は、各冷媒流入路103a,103b,103cに対して減圧手段20a,20b,20cを取り付ける(接続する)ようにしているため、冷媒流入路103a,103b,103c毎に冷媒Mの流体圧を減圧して冷媒Mを供給することで、伝熱プレート100…の積層方向で区画された各ブロックA,B,C(各冷媒用流路101…)で冷媒Mを適正に流通させることができ、冷媒Mと被冷却体Wとが熱交換させるに当り、装置全体として本来あるべき熱交換性能を発揮させることができる。   As described above, the heat exchange unit 1 (plate heat exchanger 10) according to the present embodiment is not affected by the pressure states of the other blocks A, B, and C, and the blocks A, B, and C are not affected. The refrigerant M can be circulated through the refrigerant flow paths 101. In the plate heat exchanger 10 having the above-described configuration, the decompression means 20a, 20b, and 20c are attached (connected) to the refrigerant inflow passages 103a, 103b, and 103c. , 103c, by reducing the fluid pressure of the refrigerant M and supplying the refrigerant M, the blocks A, B, C (each refrigerant flow path 101 ...) partitioned in the stacking direction of the heat transfer plates 100 ... The refrigerant M can be properly circulated, and when the refrigerant M and the object to be cooled W exchange heat, the heat exchange performance that should be inherent in the entire apparatus can be exhibited.

また、本実施形態に係る熱交換ユニット1は、記減圧手段20a,20b,20cとして冷媒Mの流量調整可能な流量調整弁を採用しているため、ブロックA,B,C毎に冷媒Mの流体圧力の調整を行うことができる。   Moreover, since the heat exchange unit 1 according to the present embodiment employs a flow rate adjustment valve capable of adjusting the flow rate of the refrigerant M as the decompression means 20a, 20b, 20c, the refrigerant M is supplied to each block A, B, C. The fluid pressure can be adjusted.

尚、本発明に係るプレート式熱交換器及びこれを備えた熱交換ユニットは、上記実施形態にも限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The plate heat exchanger and the heat exchange unit including the plate heat exchanger according to the present invention are not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention. Of course.

例えば、上記実施形態において、第一〜第三ブロック冷媒流入路103a,103b,103cを伝熱プレート100…の長手方向で一列に並ぶように配置したが、これに限定されるものではなく、例えば、図6に示す如く、第一〜第三ブロック冷媒流入路103a,103b,103cを伝熱プレート100…の長手方向と直交する短手方向で一列に並ぶように配置してもよい。この場合においても、図7に示す如く、プレート式熱交換器10は、上記実施形態と同様、伝熱プレート100…の積層方向で複数の冷媒用流路101…を所定の数毎のブロックA,B,Cに区画するようにしているため、第一ブロックAを構成する複数枚の伝熱プレート100…は、第一ブロックAの冷媒用流路101…に連通する第一ブロック冷媒流入路103aとなる貫通穴H1aと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103a及び冷媒流出路104となる貫通穴H1a,H2を避けた領域を画定するように対向する他方の面間にシールSが施される。   For example, in the above embodiment, the first to third block refrigerant inflow passages 103a, 103b, and 103c are arranged in a line in the longitudinal direction of the heat transfer plates 100, but the present invention is not limited to this. As shown in FIG. 6, the first to third block refrigerant inflow passages 103a, 103b, 103c may be arranged in a line in the short direction perpendicular to the longitudinal direction of the heat transfer plates 100. Also in this case, as shown in FIG. 7, the plate heat exchanger 10 has a plurality of refrigerant channels 101... In a predetermined number of blocks A in the stacking direction of the heat transfer plates 100. , B, and C, the plurality of heat transfer plates 100 constituting the first block A are communicated with the refrigerant flow passages 101 of the first block A. A region including a through hole H1a serving as 103a and a through hole H2 serving as the refrigerant outflow path 104, and a region avoiding the through holes H3 and H4 serving as the cooled body inflow path 105 and the cooled body outflow path 106 is defined. A seal S is provided between the surfaces facing each other, and a through hole H3 serving as a cooled body inflow passage 105 and a through hole H4 serving as a cooled body outflow path 106 communicated with the flow path 102 for the cooled body. Including the refrigerant inflow path 103 And the through hole H1a comprising a refrigerant outflow passage 104, the seal S is applied between the other surface facing to define a region except the H2.

また、第二ブロックBを構成する複数枚の伝熱プレート100…は、第二ブロックBの冷媒用流路101…に連通する第二ブロック冷媒流入路103bとなる貫通穴H1bと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103b及び冷媒流出路104となる貫通穴H1b,H2を避けた領域を画定するように対向する他方の面間にシールSが施される。   Further, the plurality of heat transfer plates 100 constituting the second block B include a through hole H1b serving as a second block refrigerant inflow passage 103b communicating with the refrigerant flow passage 101 of the second block B, and a refrigerant outflow passage. A seal S is provided between the opposing faces so as to define a region that includes a through hole H2 that becomes 104 and avoids the through holes H3 and H4 that become the cooled body inflow path 105 and the cooled body outflow path 106. A through hole H3 serving as a cooled body inflow path 105 and a through hole H4 serving as a cooled body outflow path 106, and a refrigerant inflow path 103b and a refrigerant outflow path. A seal S is applied between the other surfaces facing each other so as to define a region avoiding the through-holes H1b and H2 to be 104.

さらに、第三ブロックCを構成する複数枚の伝熱プレート100…は、第三ブロックCの冷媒用流路101…に連通する第三ブロック冷媒流入路103cとなる貫通穴H1cと、冷媒流出路104となる貫通穴H2とを含み、且つ被冷却体流入路105及び被冷却体流出路106となる貫通穴H3,H4を避けた領域を画定するように対向する一方の面間にシールSが施され、被冷却体用流路102…に連通する被冷却体流入路105となる貫通穴H3と被冷却体流出路106となる貫通穴H4とを含み、且つ冷媒流入路103c及び冷媒流出路104となる貫通穴H1c,H2を避けた領域を画定するように対向する他方の面間にシールSが施される。このようにすることで、上記実施形態と同様に、各ブロックA,B,Cの冷媒用流路101…で冷媒Mを流通させつつ、各被冷却体用流路102…で被冷却体Wを流通させることができる。   Further, the plurality of heat transfer plates 100 constituting the third block C include a through hole H1c serving as a third block refrigerant inflow passage 103c communicating with the refrigerant flow passage 101 of the third block C, and a refrigerant outflow passage. A seal S is provided between the opposing faces so as to define a region that includes a through hole H2 that becomes 104 and avoids the through holes H3 and H4 that become the cooled body inflow path 105 and the cooled body outflow path 106. A through-hole H3 serving as a cooled body inflow path 105 and a through-hole H4 serving as a cooled body outflow path 106, and a refrigerant inflow path 103c and a refrigerant outflow path. A seal S is applied between the other surfaces facing each other so as to define a region avoiding the through holes H1c and H2 to be 104. By doing in this way, similarly to the said embodiment, to-be-cooled body W with each to-be-cooled body flow path 102 ..., distribute | circulating the refrigerant | coolant M with the flow-path 101 for refrigerant | coolant of each block A, B, C. Can be distributed.

また、上記実施形態において、伝熱プレート100…の積層方向に形成される複数の冷媒流入路103a,103b,103cを該積層方向で三つのブロックA,B,Cに区画するようにしたが、これに限定されるものではなく、例えば、二つのブロックに区画したり、四つ以上のブロックに区画したりしてもよい。すなわち、伝熱プレート100…の積層枚数(冷媒用流路101…の数)に応じて、複数の冷媒用流路101…を複数のブロックに区画すればよい。   In the above embodiment, the plurality of refrigerant inflow passages 103a, 103b, 103c formed in the stacking direction of the heat transfer plates 100 ... are partitioned into three blocks A, B, C in the stacking direction. It is not limited to this, For example, you may divide into two blocks or may divide into four or more blocks. That is, the plurality of refrigerant channels 101 may be divided into a plurality of blocks according to the number of stacked heat transfer plates 100 (the number of refrigerant channels 101).

上記実施形態において、冷媒流出路104を一つ設けるようにしたが、これに限定されるものではなく、二つ以上設けるようにしてもよい。但し、冷媒流出路104は、ブロックA,B,Cに関係なく全ての冷媒用流路101…に連通していることが前提である。   In the above-described embodiment, one refrigerant outflow passage 104 is provided. However, the present invention is not limited to this, and two or more refrigerant outflow passages may be provided. However, it is assumed that the refrigerant outflow passage 104 communicates with all the refrigerant passages 101... Regardless of the blocks A, B, and C.

上記実施形態において、プレート式熱交換器10を熱交換ユニット1の一構成として説明したが、これに限定されるものではなく、例えば、プレート式熱交換器10を単体の構成としてもよい。但し、各冷媒流入路103a,103b,103cに対して減圧手段20a,20b,20cが取付可能であることは言うまでもない。   Although the plate heat exchanger 10 has been described as one configuration of the heat exchange unit 1 in the above embodiment, the present invention is not limited to this. For example, the plate heat exchanger 10 may have a single configuration. However, it goes without saying that the decompression means 20a, 20b, 20c can be attached to the respective refrigerant inflow passages 103a, 103b, 103c.

上記実施形態において、冷媒用流路101及び被冷却体用流路102で台形流を形成するように、冷媒流入路103a,103b,103c、冷媒流出路104、被冷却体流入路105、及び被冷却体流出路106を配置するようにしたが、これに限定されるものではなく、例えば、冷媒流入路103a,103b,103c、及び冷媒流出路104を伝熱プレート100の四隅のうちの対角位置にある二つの隅部に設けるとともに、被冷却体流入路105、及び被冷却体流出路106を伝熱プレート100の四隅のうちの残りの二つの隅部に設け、冷媒用流路101及び被冷却体用流路102で冷媒M及び被冷却体Wを斜め方向に流通させる、いわゆる斜行流を形成するようにしてもよい。また、上記実施形態において、被冷却体Wを伝熱プレート100の長手方向の一端側から流入させる一方、冷媒Mを伝熱プレート100の長手方向の他端側から流入させるようにしたが、これに限定されるものではなく、例えば、被冷却体W及び冷媒Mを伝熱プレート100の長手方向一端側又は他端側から流入させるようにしてもよい。なお、言うまでもないが、冷媒Mを流入させる位置を変更しても、複数の冷媒流路101…を伝熱プレート100…の積層方向で二つ以上のブロックA,B,Cに区画するとともに、該ブロックA,B,Cの数に対応した冷媒流入路103a,103b,103cを形成し、各冷媒流入路103a,103b,103cに対して減圧手段20a,20b,20cを直接的又は間接的に接続させることは勿論のことである。   In the above embodiment, the refrigerant inflow passages 103a, 103b, 103c, the refrigerant outflow passage 104, the cooled body inflow passage 105, and the flow path are formed so as to form a trapezoidal flow in the refrigerant flow path 101 and the cooled object flow path 102. Although the cooling body outflow path 106 is arranged, the present invention is not limited to this. For example, the refrigerant inflow paths 103a, 103b, 103c, and the refrigerant outflow path 104 are diagonally arranged at the four corners of the heat transfer plate 100. Are provided at the two corners at the position, and the cooled body inflow path 105 and the cooled body outflow path 106 are provided at the remaining two corners of the four corners of the heat transfer plate 100, and the refrigerant flow path 101 and You may make it form what is called an oblique flow which distribute | circulates the refrigerant | coolant M and the to-be-cooled body W in the diagonal direction in the flow path 102 for to-be-cooled bodies. In the above embodiment, the cooling target W is introduced from one end side in the longitudinal direction of the heat transfer plate 100, while the refrigerant M is introduced from the other end side in the longitudinal direction of the heat transfer plate 100. For example, the object to be cooled W and the refrigerant M may be allowed to flow from one end side or the other end side of the heat transfer plate 100 in the longitudinal direction. Needless to say, even if the position where the refrigerant M is introduced is changed, the plurality of refrigerant flow paths 101 are divided into two or more blocks A, B, and C in the stacking direction of the heat transfer plates 100. Refrigerant inflow passages 103a, 103b, 103c corresponding to the number of blocks A, B, C are formed, and the decompression means 20a, 20b, 20c are directly or indirectly connected to the respective refrigerant inflow passages 103a, 103b, 103c. Of course, they are connected.

また、上記実施形態において、一方のフレーム110に接続部J1a,J1b,J1cを取り付け、該一方のフレーム110側から冷媒Mを流入させるようにしたが、これに限定されるものではなく、例えば、図8に示す如く、両方のフレーム110,120側から冷媒Mを流入させるようにしてもよい。   In the above embodiment, the connecting portions J1a, J1b, J1c are attached to one frame 110, and the refrigerant M is allowed to flow from the one frame 110 side. However, the present invention is not limited to this. As shown in FIG. 8, the refrigerant M may be caused to flow from both the frames 110 and 120 side.

具体的には、伝熱プレート100…の積層方向に形成された複数の冷媒用流路101…を伝熱プレート100…の積層方向で所定の数毎に液密又は気密に仕切って二つ以上(図においては四つ)のブロックA,B,C,Dに区画するとともに、冷媒流入路103a,103b,103c,103dをブロックA,B,C,Dの数に対応して二つ以上(図においては四つ)形成し、その二つ以上の冷媒流入路103a,103b,103c,103dのうちの所定数の冷媒流入路103a,103bを一方のフレーム110側から冷媒Mを流入させるように形成し、残りの冷媒流入路103c,103dを他方のフレーム120側から冷媒Mを流入させるように形成するようにしてもよい。この場合においても、各冷媒流入路103a,103b,103cは、それぞれ異なるブロックA,B,C,Dの冷媒用流路101…に連通するように形成するとともに、冷媒流入路103a,103b,103c,103dと連通するようにフレーム110,120に取り付けられた接続部J1a,J1b,J1c,J1dに対して減圧手段が直接的又は間接的に接続されることは勿論のことである。また、冷媒流出路104は、異なるブロックA,B,C,Dを貫通するように形成されることも勿論のことである。   Specifically, two or more of the plurality of refrigerant flow paths 101 formed in the stacking direction of the heat transfer plates 100 are partitioned liquid-tight or air-tight by a predetermined number in the stacking direction of the heat transfer plates 100. The block is divided into four blocks A, B, C and D (four in the figure), and the refrigerant inflow passages 103a, 103b, 103c and 103d are divided into two or more corresponding to the number of blocks A, B, C and D ( In the figure, four are formed, and a predetermined number of the refrigerant inflow passages 103a, 103b out of the two or more refrigerant inflow passages 103a, 103b, 103c, 103d are introduced from the one frame 110 side. The remaining refrigerant inflow paths 103c and 103d may be formed so that the refrigerant M flows in from the other frame 120 side. Also in this case, the refrigerant inflow passages 103a, 103b, and 103c are formed so as to communicate with the refrigerant passages 101 of the different blocks A, B, C, and D, and the refrigerant inflow passages 103a, 103b, and 103c. Of course, the decompression means is connected directly or indirectly to the connecting portions J1a, J1b, J1c, J1d attached to the frames 110, 120 so as to communicate with the frames 103d. Of course, the refrigerant outflow path 104 is formed so as to penetrate different blocks A, B, C, and D.

1…熱交換ユニット、10…プレート式熱交換器、20a,20b,20c…減圧手段、100…伝熱プレート、101…冷媒用流路、102…被冷却体用流路、103a…第一ブロック冷媒流入路(冷媒流入路)、103b…第二ブロック冷媒流入路(冷媒流入路)、103c…第三ブロック冷媒流入路(冷媒流入路)、104…冷媒流出路、105…被冷却体流入路、106…被冷却体流出路、110,120…フレーム、A…第一ブロック(ブロック)、B…第二ブロック(ブロック)、C…第三ブロック(ブロック)、H1a,H1b,H1c,H2,H3,H4…貫通穴、J1a,J1b,J1c,J2,J3,J4…接続部、M…冷媒、W…被冷却体   DESCRIPTION OF SYMBOLS 1 ... Heat exchange unit, 10 ... Plate type heat exchanger, 20a, 20b, 20c ... Pressure reducing means, 100 ... Heat transfer plate, 101 ... Refrigerant flow path, 102 ... Coolant flow path, 103a ... First block Refrigerant inflow path (refrigerant inflow path), 103b ... second block refrigerant inflow path (refrigerant inflow path), 103c ... third block refrigerant inflow path (refrigerant inflow path), 104 ... refrigerant outflow path, 105 ... cooled body inflow path 106 ... cooled body outflow path, 110,120 ... frame, A ... first block (block), B ... second block (block), C ... third block (block), H1a, H1b, H1c, H2, H3, H4 ... through hole, J1a, J1b, J1c, J2, J3, J4 ... connection part, M ... refrigerant, W ... body to be cooled

Claims (3)

積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器であって、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、積層された複数枚の伝熱プレートにおける最も外側にある伝熱プレートから貫通穴が一列に連なり、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成されていることを特徴とするプレート式熱交換器。 Between the heat transfer plates that are stacked, a refrigerant flow path for circulating the refrigerant with each heat transfer plate as a boundary and a flow path for the cooled body for circulating the cooled object are alternately formed, and each heat transfer A cooling target body in which a through-hole formed in the plate is connected to form a refrigerant inflow path and a refrigerant outflow path through which the refrigerant flows into and out of the cooling medium flow path, and the cooling target body flows into and out of the cooling target flow path A plate type heat exchanger in which an inflow path and a cooled body outflow path are formed, and a plurality of refrigerant flow paths formed in the stacking direction of the heat transfer plates are provided for each predetermined number in the stacking direction of the heat transfer plates. It is partitioned liquid-tight or air-tight and is divided into two or more blocks, and two or more refrigerant inflow paths are formed corresponding to the number of the blocks, and each of the two or more refrigerant inflow paths is laminated. The outermost heat transfer plate Plate through hole is contiguous in a line from a different one that is formed so as to communicate with the refrigerant passage of the block, said coolant outlet channel, so as to communicate with all of the refrigerant flow path in the stacking direction of the heat transfer plate A plate heat exchanger characterized by being formed. 積層された複数枚の伝熱プレート間に各伝熱プレートを境にして冷媒を流通させる冷媒用流路と被冷却体を流通させる被冷却体用流路とが交互に形成され、各伝熱プレートに形成された貫通穴が連なって冷媒用流路に冷媒を流出入させる冷媒流入路及び冷媒流出路が形成されるとともに、被冷却体用流路に被冷却体を流出入させる被冷却体流入路及び被冷却体流出路が形成されたプレート式熱交換器を備えた熱交換ユニットであって、冷媒を一次側の流体圧から減圧して二次側に供給可能に構成された減圧手段をさらに備え、前記プレート式熱交換器は、伝熱プレートの積層方向に形成された複数の冷媒用流路が伝熱プレートの積層方向で所定の数毎に液密又は気密に仕切られて二つ以上のブロックに区画されるとともに、冷媒流入路が前記ブロックの数に対応して二つ以上形成され、該二つ以上の冷媒流入路のそれぞれは、積層された複数枚の伝熱プレートにおける最も外側にある伝熱プレートから貫通穴が一列に連なり、異なるブロックの冷媒用流路に連通するように形成される一方、前記冷媒流出路は、伝熱プレートの積層方向の全ての冷媒用流路に連通するように形成され、前記減圧手段は、冷媒流入路毎に設けられて各冷媒流入路に対して直接的又は間接的に接続されていることを特徴とする熱交換ユニット。 Between the heat transfer plates that are stacked, a refrigerant flow path for circulating the refrigerant with each heat transfer plate as a boundary and a flow path for the cooled body for circulating the cooled object are alternately formed, and each heat transfer A cooling target body in which a through-hole formed in the plate is connected to form a refrigerant inflow path and a refrigerant outflow path through which the refrigerant flows into and out of the cooling medium flow path, and the cooling target body flows into and out of the cooling target flow path A heat exchanging unit including a plate heat exchanger in which an inflow path and a cooled body outflow path are formed, and decompression means configured to depressurize refrigerant from a primary side fluid pressure and supply the refrigerant to a secondary side The plate-type heat exchanger further includes a plurality of refrigerant flow paths formed in the heat transfer plate stacking direction and partitioned in a liquid-tight or air-tight manner by a predetermined number in the heat transfer plate stacking direction. And the refrigerant inflow passage is divided into two or more blocks. Are formed corresponding to the number of locking more than one, each of said two or more refrigerant inflow channel, most through-holes from the heat transfer plate on the outside is contiguous in a row in the stacked plurality heat transfer plates, The refrigerant outflow path is formed to communicate with all the refrigerant flow paths in the stacking direction of the heat transfer plate, and the decompression unit is configured to communicate with the refrigerant flow paths of different blocks. A heat exchange unit provided for each inflow path and connected directly or indirectly to each refrigerant inflow path. 前記減圧手段は、冷媒の流量調整可能な流量調整弁で構成されている請求項2記載の熱交換ユニット。   The heat exchange unit according to claim 2, wherein the decompression unit is configured by a flow rate adjustment valve capable of adjusting a flow rate of the refrigerant.
JP2009113448A 2009-05-08 2009-05-08 Plate heat exchanger and heat exchange unit equipped with the same Active JP5174739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113448A JP5174739B2 (en) 2009-05-08 2009-05-08 Plate heat exchanger and heat exchange unit equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113448A JP5174739B2 (en) 2009-05-08 2009-05-08 Plate heat exchanger and heat exchange unit equipped with the same

Publications (2)

Publication Number Publication Date
JP2010261662A JP2010261662A (en) 2010-11-18
JP5174739B2 true JP5174739B2 (en) 2013-04-03

Family

ID=43359890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113448A Active JP5174739B2 (en) 2009-05-08 2009-05-08 Plate heat exchanger and heat exchange unit equipped with the same

Country Status (1)

Country Link
JP (1) JP5174739B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176336A1 (en) * 2011-06-24 2012-12-27 三菱電機株式会社 Plate heater and refrigeration cycle device
ES2700399T3 (en) 2012-06-14 2019-02-15 Alfa Laval Corp Ab Plate heat exchanger
CN102980328B (en) * 2012-12-10 2015-04-22 丹佛斯(杭州)板式换热器有限公司 Plate type heat exchanger
CN103759474B (en) * 2014-01-28 2018-01-02 丹佛斯微通道换热器(嘉兴)有限公司 Plate type heat exchanger
KR102523184B1 (en) * 2021-07-22 2023-04-21 한국원자력연구원 Printed circuit type heat exchanger
WO2023179313A1 (en) * 2022-03-25 2023-09-28 丹佛斯有限公司 Plate heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015847U (en) * 1973-06-09 1975-02-19
JP2002267289A (en) * 2001-03-09 2002-09-18 Sanyo Electric Co Ltd Plate heat exchanger
JP2002303499A (en) * 2001-03-30 2002-10-18 Hisaka Works Ltd Plate type heat exchanger

Also Published As

Publication number Publication date
JP2010261662A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5174739B2 (en) Plate heat exchanger and heat exchange unit equipped with the same
JP5665983B2 (en) Plate heat exchanger and refrigeration cycle apparatus
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
US20170248373A1 (en) Plate heat exchanger and heat pump outdoor unit
WO2020100276A1 (en) Plate-type heat exchanger, heat pump device, and heat-pump-type cooling/heating hot-water supply system
CN111837010A (en) Plate heat exchanger, heat pump device provided with plate heat exchanger, and heat pump type cooling/heating/hot water supply system provided with heat pump device
JP2018189352A (en) Heat exchanger
WO2019193713A1 (en) Distributor and heat exchanger
US6814135B2 (en) Stacked-type evaporator
JP2012229880A (en) Plate type heat exchanger
JP5818397B2 (en) Plate heat exchanger
JP6306901B2 (en) Plate heat exchanger
JP2011149667A (en) Plate type heat exchanger
JP5993884B2 (en) Plate heat exchanger
JP2017203613A (en) Stack type heat exchanger
CN115143668B (en) Heat exchanging device
JP5818396B2 (en) Plate heat exchanger
JP2019200039A (en) Plate lamination type heat exchanger
WO2021106719A1 (en) Heat exchanger
JP2007178100A (en) Plate-type heat exchanger
CN218328401U (en) Air conditioner
WO2023127625A1 (en) Heat exchanger plate, heat exchanger plate laminate, and micro channel heat exchanger
JP2023097857A (en) Plate for heat exchanger, plate laminate for heat exchanger, and microchannel heat exchanger
JP6146966B2 (en) Cold / hot water heat source machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250