JP2014020582A - Fin tube type heat exchanger - Google Patents

Fin tube type heat exchanger Download PDF

Info

Publication number
JP2014020582A
JP2014020582A JP2012156231A JP2012156231A JP2014020582A JP 2014020582 A JP2014020582 A JP 2014020582A JP 2012156231 A JP2012156231 A JP 2012156231A JP 2012156231 A JP2012156231 A JP 2012156231A JP 2014020582 A JP2014020582 A JP 2014020582A
Authority
JP
Japan
Prior art keywords
heat transfer
fin
fins
heat
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012156231A
Other languages
Japanese (ja)
Inventor
Tomiyuki Noma
富之 野間
Shoichi Yokoyama
昭一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012156231A priority Critical patent/JP2014020582A/en
Publication of JP2014020582A publication Critical patent/JP2014020582A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fin tube type heat exchanger with an excellent heat transfer performance due to a cutting front edge effect.SOLUTION: The fin tube type heat exchanger comprises: plural heat transfer fins 10 almost parallely laminated at predetermined intervals; and plural heat transfer pipes (not shown) penetrating through the heat transfer fins 10 in a direction almost orthogonal to a plane direction of the heat transfer fins 10. Notches 13 are provided on the heat transfer fins 10 only in a stage direction almost orthogonal to a flow direction of gas. The heat transfer fin 10 on a windward side of the notch 13 on which the gas flows is protruded. A crest part 15 having an opening 14 formed by the notch 13 is provided on a leeward side. The heat transfer fin comprises a valley part 25 having a shape almost symmetrical to the crest part 15 with the notch 13 as an axis, and protruding in a direction opposite to the crest part 15 to be opened toward the windward side. The opening 14 by the notch 13 is enlarged, so as to increase a flow rate of gas penetrating through the heat transfer fin 10, promote mixture of the gas between top and back faces of the heat transfer fin 10, increase length of a front edge formed by the valley part 25, and improve a heat transfer performance by a larger front edge effect.

Description

本発明は、ルームエアコン、パッケージエアコン、カーエアコン等の空気調和機や、ヒートポンプ式給湯機、冷蔵庫、冷凍庫等に用いられ、多数積層された平板状の伝熱フィンの間を流動する空気などの気体と伝熱管内を流動する水や冷媒などの流体との間で熱を授受するフィンチューブ型熱交換器に関するものである。   The present invention is used in air conditioners such as room air conditioners, packaged air conditioners, car air conditioners, etc., heat pump water heaters, refrigerators, freezers, etc., such as air flowing between a plurality of stacked flat plate heat transfer fins. The present invention relates to a finned tube heat exchanger that transfers heat between a gas and a fluid such as water or refrigerant flowing in a heat transfer tube.

多数積層された平板状の伝熱フィンと伝熱管とで構成される従来のフィンチューブ型熱交換器として、図4〜7に示されるようなものがある(例えば、特許文献1参照)。   As a conventional fin tube type heat exchanger composed of a plurality of laminated plate-like heat transfer fins and heat transfer tubes, there are those shown in FIGS. 4 to 7 (for example, see Patent Document 1).

図4は、上記特許文献1に記載された従来のフィンチューブ型熱交換器の斜視図、図5は、同フィンチューブ型熱交換器の伝熱フィンの部分正面図、図6は、同伝熱フィンの底面図、図7は、同伝熱フィンの要部の拡大斜視図である。   FIG. 4 is a perspective view of a conventional fin tube heat exchanger described in Patent Document 1, FIG. 5 is a partial front view of heat transfer fins of the fin tube heat exchanger, and FIG. FIG. 7 is an enlarged perspective view of the main part of the heat transfer fin.

図4〜7において、従来のフィンチューブ型熱交換器は、一定のピッチで平行に積層されるとともに、その間を空気などの気体Wが流動する多数の平板状の伝熱フィン101と、これらの伝熱フィン101に略直角に所定のピッチで挿入され、内部を水や冷媒などの流体Rが流動する伝熱管104とで構成され、伝熱管104は、伝熱フィン101の貫通孔11aの外周に垂直に立ち上げた円筒状のフィンカラー102に密着接合されている。なお、全てのフィンカラー102は、伝熱フィン101から同一方向に延び、略同一の高さを有している。   4-7, the conventional fin tube type heat exchanger is laminated in parallel at a constant pitch, and a large number of plate-like heat transfer fins 101 through which a gas W such as air flows, and these The heat transfer fins 101 are inserted into the heat transfer fins 101 at a predetermined pitch at a predetermined pitch, and the heat transfer tubes 104 are configured such that the fluid R such as water or refrigerant flows therein. The heat transfer tubes 104 are the outer periphery of the through holes 11a of the heat transfer fins 101. It is tightly bonded to a cylindrical fin collar 102 raised vertically. Note that all the fin collars 102 extend in the same direction from the heat transfer fins 101 and have substantially the same height.

また、伝熱フィン101のスリット形成部分103に、気流1の流れ方向に略直角方向となる熱交換器の段方向だけに切り込み13を設け、切り込み13の気体が流動する風上側の伝熱フィン101を表側(図5の手前側、図6の上側)に隆起させて、風下側に切り込み13により形成される略三角形状の開口部14を有する山部15が形成されている。風下側の開口部14を有する山部15は、段方向に隣接するフィンカラー102の間の伝熱フィン101の面に複数形成されている。   Further, the slit forming portion 103 of the heat transfer fin 101 is provided with a cut 13 only in the step direction of the heat exchanger that is substantially perpendicular to the flow direction of the airflow 1, and the heat transfer fin on the windward side where the gas in the cut 13 flows. 101 is raised to the front side (the front side in FIG. 5, the upper side in FIG. 6), and a peak portion 15 having a substantially triangular opening 14 formed by a cut 13 is formed on the leeward side. A plurality of ridges 15 having leeward openings 14 are formed on the surfaces of the heat transfer fins 101 between the fin collars 102 adjacent in the step direction.

気体は、山部15に沿って流れ、その後風下側の開口部14を通過するとき縦渦(図示せず)が発生し、そこから風下側の伝熱フィン101の表面の温度境界層を乱して熱伝達率を向上させることにより伝熱を促進する。   When the gas flows along the mountain 15 and then passes through the opening 14 on the leeward side, a vertical vortex (not shown) is generated from which the temperature boundary layer on the surface of the heat transfer fin 101 on the leeward side is disturbed. Heat transfer is promoted by improving the heat transfer coefficient.

それとともに、伝熱フィン101の段方向の熱伝導が遮断されて伝熱に寄与しない領域が発生しないように切り込み13を段方向だけとしたので、熱は伝熱フィン101が段方向に連続している山部15を熱伝導により移動することができるので、伝熱フィン101の表面全体を伝熱に寄与させ、伝熱性能が向上するように構成されている。   At the same time, the heat transfer fins 101 are continuous in the step direction so that the heat conduction fins 101 are continuously cut in the step direction so that the heat conduction in the step direction of the heat transfer fins 101 is cut off and the region that does not contribute to heat transfer does not occur. Since the ridge portion 15 can be moved by heat conduction, the entire surface of the heat transfer fin 101 is configured to contribute to heat transfer and to improve heat transfer performance.

特許第4775429号公報Japanese Patent No. 4775429

しかしながら、前記特許文献1に記載されたような従来のフィンチューブ型熱交換器の構成では、流動する気体が山部15を通過するとき、一部の気体が前記山部15の風下側に形成された開口部14を介して伝熱フィン101を貫くように流れ、伝熱フィン101
表裏間で気体を混合させことによる伝熱性能の向上、および切り込み13の下流側前縁による前縁効果による伝熱性能の向上を期待しているが、伝熱フィン101を貫く気体の流れは微量であり、大きな伝熱性能の向上は得られないという課題があった。
However, in the configuration of the conventional fin tube heat exchanger as described in Patent Document 1, when the flowing gas passes through the peak portion 15, a part of the gas is formed on the leeward side of the peak portion 15. The heat transfer fins 101 flow through the heat transfer fins 101 through the formed openings 14.
We expect improvement of heat transfer performance by mixing gas between the front and back, and improvement of heat transfer performance due to the leading edge effect by the downstream front edge of the cut 13, but the gas flow through the heat transfer fins 101 is There was a problem that it was a trace amount and a large improvement in heat transfer performance could not be obtained.

本発明は、前記従来の課題を解決するもので、切り込みのより大きな前縁効果による性能を向上させたフィンチューブ型熱交換器を提供することを目的としている。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a finned tube heat exchanger having improved performance due to a leading edge effect with a larger cut.

上記従来の課題を解決するために、本発明に係るフィンチューブ型熱交換器は、所定の間隔を置いて略平行に積層された複数の伝熱フィンと、前記伝熱フィンの平面方向と略直交する方向に前記伝熱フィンを貫通する複数の伝熱管とを備え、前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に延びる略円筒状のフィンカラーが形成され、前記伝熱管は、前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる熱冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、前記伝熱フィンに前記気体の流動方向に略直角方向となる段方向だけに切り込みを設け、前記切り込みの前記気体が流動する風上側の前記伝熱フィンを隆起させて、風下側に前記切り込みにより形成される開口部を有する山部を備え、前記切り込みを軸として前記山部と略対称な形状を成し、風上側に向けて開口するように前記山部と逆方向に隆起させた谷部を備えたもので、開口部を通過する際に発生する縦渦により、開口部よりも風下側の伝熱フィン表面の伝熱を促進するとともに、伝熱フィンの熱伝導を遮断して伝熱に寄与しない領域を発生させて伝熱性能を低下させることがなく、伝熱フィン表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができ、さらに従来よりも切り込みによる開口部を拡大させているので、伝熱フィンを貫く気体の流量が増し、フィン表裏間での混合を促進させるとともに、谷部により形成される前縁の長さが従来よりも増すことで、より大きな前縁効果により性能を向上させることができる。   In order to solve the above-described conventional problems, a finned tube heat exchanger according to the present invention includes a plurality of heat transfer fins stacked substantially in parallel at a predetermined interval, and a plane direction of the heat transfer fins. A plurality of heat transfer tubes penetrating the heat transfer fins in a direction orthogonal to each other, and a direction substantially orthogonal to the planar direction of the heat transfer fins around the through holes of the heat transfer fins through which the heat transfer tubes pass A substantially cylindrical fin collar extending to the heat transfer tube is inserted into the through hole in close contact with the fin collar, and flows in the plane direction of the heat transfer fin and the inside of the heat transfer tube. A finned tube heat exchanger configured to exchange heat with a thermal refrigerant, wherein the heat transfer fin is provided with a cut only in a step direction substantially perpendicular to the gas flow direction. The gas flows The heat transfer fin on the leeward side is raised, and a ridge part having an opening formed by the notch is provided on the leeward side. The ridge is substantially symmetric with the ridge part about the notch. It is provided with a trough that is raised in the opposite direction to the peak so as to open toward the front, and the vertical vortex generated when passing through the opening causes the heat transfer fin surface on the leeward side of the opening to The heat transfer fins are cut off and the heat transfer performance is reduced without interrupting the heat conduction of the heat transfer fins to reduce the heat transfer performance. Heat transfer performance can be obtained, and the opening by cutting is expanded more than before, so the flow rate of gas passing through the heat transfer fins increases, promoting mixing between the front and back of the fins, and forming by the valleys The length of the leading edge is increased than before It is, it is possible to improve the performance by a greater leading edge effect.

本発明に係るフィンチューブ型熱交換器は、以上説明したように構成されているので、風下側の開口部を有する山部に沿って気体が流れ、風下側の開口部を通過するとき縦渦が発生し、そこから風下側の伝熱フィン表面の温度境界層を乱して熱伝達率を向上させ、伝熱を促進するとともに、三角片で伝熱フィンの熱伝導を遮断して伝熱に寄与しない領域を発生させて伝熱性能を低下させることがなく、伝熱フィンが連続している山部を熱伝導することができるので、伝熱フィン表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができ、さらに従来よりも切り込みによる開口部を拡大させているので、伝熱フィンを貫く気体の流量が増し、伝熱フィン表裏間での混合を促進させ、谷部により形成される前縁の長さが従来よりも増すことで、より大きな前縁効果により性能を向上させたフィンチューブ型熱交換器を提供することができる。   Since the finned tube heat exchanger according to the present invention is configured as described above, when the gas flows along the mountain portion having the opening on the leeward side and passes through the opening on the leeward side, the vertical vortex From there, the temperature boundary layer on the surface of the heat transfer fin on the leeward side is disturbed to improve the heat transfer rate and promote heat transfer, and the heat conduction of the heat transfer fin is blocked by a triangular piece. The heat transfer fins can be thermally conducted without generating a region that does not contribute to heat transfer performance, and the heat transfer fins are continuous. Heat transfer performance can be obtained, and the opening by cutting is expanded more than before, so the flow rate of gas passing through the heat transfer fin is increased, and mixing between the heat transfer fin front and back is promoted. The length of the leading edge formed by It is possible to provide a finned tube heat exchanger having improved performance due to the large leading edge effect.

本発明の実施の形態1におけるフィンチューブ型熱交換器の伝熱フィンの正面図The front view of the heat-transfer fin of the fin tube type heat exchanger in Embodiment 1 of this invention 同伝熱フィンの底面図Bottom view of the heat transfer fin 同伝熱フィンの要部の拡大斜視図Enlarged perspective view of the main part of the heat transfer fin 従来のフィンチューブ型熱交換器の斜視図A perspective view of a conventional finned tube heat exchanger 同フィンチューブ型熱交換器の伝熱フィンの部分正面図Partial front view of heat transfer fin of the finned tube heat exchanger 同伝熱フィンの底面図Bottom view of the heat transfer fin 同伝熱フィンの要部の拡大斜視図Enlarged perspective view of the main part of the heat transfer fin

第1の発明は、所定の間隔を置いて略平行に積層された複数の伝熱フィンと、前記伝熱フィンの平面方向と略直交する方向に前記伝熱フィンを貫通する複数の伝熱管とを備え、前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に延びる略円筒状のフィンカラーが形成され、前記伝熱管は、前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる熱冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、前記伝熱フィンに前記気体の流動方向に略直角方向となる段方向だけに切り込みを設け、前記切り込みの前記気体が流動する風上側の前記伝熱フィンを隆起させて、風下側に前記切り込みにより形成される開口部を有する山部を備え、前記切り込みを軸として前記山部と略対称な形状を成し、風上側に向けて開口するように前記山部と逆方向に隆起させた谷部を備えたもので、開口部を通過する際に発生する縦渦により、開口部よりも風下側の伝熱フィン表面の伝熱を促進するとともに、伝熱フィンの熱伝導を遮断して伝熱に寄与しない領域を発生させて伝熱性能を低下させることがなく、伝熱フィン表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができ、さらに従来よりも切り込みによる開口部を拡大させているので、伝熱フィンを貫く気体の流量が増し、伝熱フィン表裏間での混合を促進させるとともに、谷部により形成される前縁の長さが従来よりも増すことで、より大きな前縁効果により性能を向上させることができる。   The first invention includes a plurality of heat transfer fins stacked substantially in parallel at a predetermined interval, and a plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially perpendicular to the planar direction of the heat transfer fins. A substantially cylindrical fin collar extending in a direction substantially perpendicular to the plane direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer tube passes. A fin tube type inserted into the through hole in close contact with the fin collar to exchange heat between the gas flowing in the plane direction of the heat transfer fin and the thermal refrigerant flowing inside the heat transfer tube A heat exchanger, wherein the heat transfer fin is provided with a cut only in a step direction that is substantially perpendicular to the flow direction of the gas, and the heat transfer fin on the windward side where the gas of the cut flows is raised. , Notch on the leeward side A trough that has a crest having an opening that is formed, has a shape that is substantially symmetrical to the crest with the notch as an axis, and is raised in a direction opposite to the crest so as to open toward the windward side The vertical vortex generated when passing through the opening promotes heat transfer on the surface of the heat transfer fin on the leeward side of the opening, and cuts off the heat conduction of the heat transfer fin. The heat transfer performance is not reduced by generating a region that does not contribute to heat, the entire heat transfer fin surface contributes to heat transfer, and excellent heat transfer performance can be obtained. Because the flow rate of the gas passing through the heat transfer fins is increased, mixing between the heat transfer fins front and back is promoted, and the length of the leading edge formed by the valleys is increased compared to the conventional case. Improve performance with a larger leading edge effect It can be.

第2の発明は、特に、第1の発明の開口部の形状を、伝熱フィンの面を対称軸とした2つの略三角形状を並べた形状としたもので、気体は山部の斜面に沿って流れた後、風下側の開口部を通過するとき縦渦が発生し、そこから風下側の温度境界層を乱して熱伝達率を向上させることにより伝熱を促進することができる。一方、伝熱フィンの段方向の熱伝導を遮断して伝熱に寄与しない領域を発生させて伝熱性能を低下させることがなく、伝熱フィンが段方向に連続している山部および谷部を熱伝導することができるので、伝熱フィン表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができる。   In the second invention, in particular, the shape of the opening of the first invention is a shape in which two substantially triangular shapes with the plane of the heat transfer fin as an axis of symmetry are arranged. After flowing along, a vertical vortex is generated when passing through the opening on the leeward side, and heat transfer can be promoted by disturbing the temperature boundary layer on the leeward side to improve the heat transfer coefficient. On the other hand, the heat conduction fins are continuous in the step direction without causing heat transfer performance to deteriorate by generating a region that does not contribute to heat transfer by blocking the heat conduction in the step direction of the heat transfer fins. Since the part can conduct heat, the entire heat transfer fin surface can contribute to heat transfer, and excellent heat transfer performance can be obtained.

また、従来よりも切り込みによる開口部を拡大させているので、伝熱フィンを貫く気体の流量が増し、伝熱フィン表裏間での混合を促進させるとともに、谷部により形成される前縁の長さが従来よりも増すことで、より大きな前縁効果により性能を向上させることができる。   In addition, since the opening by cutting is larger than the conventional one, the flow rate of the gas passing through the heat transfer fins is increased, the mixing between the heat transfer fins front and back is promoted, and the length of the front edge formed by the valleys is increased. As a result, the performance can be improved by a larger leading edge effect.

第3の発明は、特に、第1の発明の開口部の形状を、伝熱フィンの面を対称軸とした2つの略台形状を並べた形状としたもので、気体は山部の斜面に沿って流れた後、風下側の開口部を通過するとき縦渦が発生し、そこから風下側の温度境界層を乱して熱伝達率を向上させることにより伝熱を促進することができる。一方、伝熱フィンの段方向の熱伝導を遮断して伝熱に寄与しない領域を発生させて伝熱性能を低下させることがなく、伝熱フィンが段方向に連続している山部および谷部を熱伝導することができるので、伝熱フィン表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができる。また、山部および谷部を形成する4つの斜面は平面状の尾根に緩やかな角度で繋がるので、山部を隆起させる加工が容易である。   In the third invention, in particular, the shape of the opening of the first invention is a shape in which two substantially trapezoidal shapes with the surface of the heat transfer fin as an axis of symmetry are arranged. After flowing along, a vertical vortex is generated when passing through the opening on the leeward side, and heat transfer can be promoted by disturbing the temperature boundary layer on the leeward side to improve the heat transfer coefficient. On the other hand, the heat conduction fins are continuous in the step direction without causing heat transfer performance to deteriorate by generating a region that does not contribute to heat transfer by blocking the heat conduction in the step direction of the heat transfer fins. Since the part can conduct heat, the entire heat transfer fin surface can contribute to heat transfer, and excellent heat transfer performance can be obtained. In addition, since the four slopes forming the peak and valley are connected to the flat ridge at a gentle angle, the process of raising the peak is easy.

また、従来よりも切り込みによる開口部を拡大させているので、伝熱フィンを貫く気体の流量が増し、伝熱フィン表裏間での混合を促進させるとともに、谷部により形成される前縁の長さが従来よりも増すことで、より大きな前縁効果により性能を向上させることができる。   In addition, since the opening by cutting is larger than the conventional one, the flow rate of the gas passing through the heat transfer fins is increased, the mixing between the heat transfer fins front and back is promoted, and the length of the front edge formed by the valleys is increased. As a result, the performance can be improved by a larger leading edge effect.

第4の発明は、特に、第1の発明の開口部の形状を、伝熱フィンの面を対称軸とした2つの略円弧状を並べた形状としたもので、気体は山部の斜面に沿って流れた後、風下側の開口部を通過するとき縦渦が発生し、そこから風下側の温度境界層を乱して熱伝達率を向上させることにより伝熱を促進することができる。一方、伝熱フィンの段方向の熱伝導を
遮断して伝熱に寄与しない領域を発生させて伝熱性能を低下させることがなく、伝熱フィンが段方向に連続している山部および谷部を熱伝導することができるので伝熱フィン表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができる。また、山部は断面を円弧状にして隆起させるので、加工が容易である。
In the fourth invention, in particular, the shape of the opening of the first invention is a shape in which two substantially circular arcs with the plane of the heat transfer fin as an axis of symmetry are arranged. After flowing along, a vertical vortex is generated when passing through the opening on the leeward side, and heat transfer can be promoted by disturbing the temperature boundary layer on the leeward side to improve the heat transfer coefficient. On the other hand, the heat conduction fins are continuous in the step direction without causing heat transfer performance to deteriorate by generating a region that does not contribute to heat transfer by blocking the heat conduction in the step direction of the heat transfer fins. Since the part can be thermally conducted, the entire heat transfer fin surface can contribute to heat transfer, and excellent heat transfer performance can be obtained. Moreover, since the peak portion is raised with an arc cross section, it is easy to process.

また、従来よりも切り込みによる開口部を拡大させているので、伝熱フィンを貫く気体の流量が増し、伝熱フィン表裏間での混合を促進させるとともに、谷部により形成される前縁の長さが従来よりも増すことで、より大きな前縁効果により性能を向上させることができる。   In addition, since the opening by cutting is larger than the conventional one, the flow rate of the gas passing through the heat transfer fins is increased, the mixing between the heat transfer fins front and back is promoted, and the length of the front edge formed by the valleys is increased. As a result, the performance can be improved by a larger leading edge effect.

以下、本発明のフィンチューブ型熱交換器の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the finned tube heat exchanger of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるフィンチューブ型熱交換器の伝熱フィンの正面図、図2は、同伝熱フィンの底面図、図3は、同伝熱フィンの要部の拡大斜視図である。なお、上記従来のフィンチューブ型熱交換器と同一部分には、同一符号を付して、その詳細な説明は省略する。
(Embodiment 1)
1 is a front view of a heat transfer fin of a finned tube heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is a bottom view of the heat transfer fin, and FIG. 3 is a main portion of the heat transfer fin. It is an expansion perspective view. In addition, the same code | symbol is attached | subjected to the same part as the said conventional fin tube type heat exchanger, and the detailed description is abbreviate | omitted.

図1および図2に示されるように、本実施の形態におけるフィンチューブ型熱交換器のそれぞれの伝熱フィン10には、伝熱管12が貫通する複数の貫通孔11a(図1では二つの貫通孔のみ示している)が形成されている。それぞれの貫通孔11aの周囲には、伝熱フィン10の平面方向あるいは気流1の流れ方向に対し略直交する方向に延びる略円筒状のフィンカラー11が形成されており、例えば、それぞれの伝熱管12を拡径することにより、伝熱管12はフィンカラー11に密着した状態で貫通孔11aに挿通されている。なお、全てのフィンカラー11は、伝熱フィン10から同一方向に延び、略同一の高さを有している。   As shown in FIGS. 1 and 2, each heat transfer fin 10 of the finned tube heat exchanger in the present embodiment has a plurality of through holes 11a (two through holes in FIG. 1) through which the heat transfer tube 12 passes. Only the holes are shown). Around each through-hole 11a, a substantially cylindrical fin collar 11 extending in a direction substantially perpendicular to the plane direction of the heat transfer fin 10 or the flow direction of the airflow 1 is formed. For example, each heat transfer tube By expanding the diameter of the heat transfer tube 12, the heat transfer tube 12 is inserted into the through hole 11 a while being in close contact with the fin collar 11. Note that all the fin collars 11 extend from the heat transfer fins 10 in the same direction and have substantially the same height.

ここで、伝熱管12の拡径について詳述すると、フィンチューブ型熱交換器を製造するに際し、伝熱フィン10を積層して、フィンカラー11に伝熱管12を挿入するが、作業性を良好にするため、フィンプレス時のフィンカラー11の内径は、伝熱管12の外径より多少大きく加工されている。しかしながら、伝熱管12のフィンカラー11への挿入後、液圧を利用して、あるいは機械的な方法等で伝熱管12を拡径し、伝熱管12とフィンカラー11を密着させて伝熱性能を向上させている。   Here, the diameter expansion of the heat transfer tube 12 will be described in detail. When manufacturing the fin tube type heat exchanger, the heat transfer fins 10 are stacked and the heat transfer tube 12 is inserted into the fin collar 11, but the workability is good. Therefore, the inner diameter of the fin collar 11 at the time of fin pressing is processed somewhat larger than the outer diameter of the heat transfer tube 12. However, after the heat transfer tube 12 is inserted into the fin collar 11, the heat transfer tube 12 is expanded in diameter using a hydraulic pressure or by a mechanical method, and the heat transfer tube 12 and the fin collar 11 are brought into close contact with each other to perform heat transfer performance. Has improved.

また、図1〜図3において、伝熱フィン10に気流1の流れ方向に略直角方向となる熱交換器の段方向だけに切り込み13を設け、切り込み13の気体が流動する風上側の伝熱フィン10を表側(図1の手前側、図2の上側)に隆起させて、風下側に切り込み13により形成される開口部14を有する山部15が形成されている。   1 to 3, the heat transfer fin 10 is provided with a cut 13 only in the step direction of the heat exchanger that is substantially perpendicular to the flow direction of the airflow 1, and the heat transfer on the windward side where the gas in the cut 13 flows. The fin 10 is raised on the front side (the front side in FIG. 1, the upper side in FIG. 2), and a peak portion 15 having an opening 14 formed by a cut 13 is formed on the leeward side.

さらに、切り込み13を対称軸として山部15と対称な形状を成すよう、山部15に対して伝熱フィン10の裏側(図1の奥側、図2の下側)に隆起させ、山部15の風下側において略ひし形となる開口部14を風上側にて共有する谷部25を備えている。山部15および谷部25は、段方向に隣接するフィンカラー11の間の伝熱フィン10の面に複数形成されている。   Further, the ridges are raised on the back side of the heat transfer fins 10 (the back side in FIG. 1, the bottom side in FIG. 2) with respect to the ridges 15 so as to form a shape symmetrical to the ridges 15 with the notch 13 as the axis of symmetry. 15 is provided with a valley portion 25 that shares the substantially rhombus-shaped opening 14 on the leeward side. A plurality of peak portions 15 and valley portions 25 are formed on the surface of the heat transfer fin 10 between the fin collars 11 adjacent in the step direction.

なお、山部15は表側、谷部25は裏側に隆起させて形成されるだけに限定するものではなく、山部15が裏側、谷部25が表側に隆起させて形成されても良いし、表側の隆起と裏側の隆起とを混在させても良い。   The peak 15 is not limited to be formed by raising the front side and the valley 25 is raised on the back side, and the peak 15 may be formed on the back side and the valley 25 may be raised on the front side. A front ridge and a back ridge may be mixed.

以上のように構成された本実施の形態におけるフィンチューブ型熱交換器について、以下その動作、作用を説明する。   The operation and action of the fin tube heat exchanger according to the present embodiment configured as described above will be described below.

伝熱フィン10に切り込み13を気体の流動方向に略直角方向となる段方向に設け、切り込み13の気流1の風上側の伝熱フィン10を隆起させて風下側に切り込み13により形成される開口部14を有する山部15を形成したので、気体は、山部15に沿って流れ、その後風下側の開口部14を通過するとき縦渦が発生し、そこから風下側の伝熱フィン10の表面の温度境界層を乱して熱伝達率を向上させることにより伝熱を促進する。   Cuts 13 are provided in the heat transfer fins 10 in a step direction substantially perpendicular to the gas flow direction, and the heat transfer fins 10 on the windward side of the airflow 1 in the cuts 13 are raised to form openings formed by the cuts 13 on the leeward side. Since the mountain portion 15 having the portion 14 is formed, the gas flows along the mountain portion 15 and then a vertical vortex is generated when passing through the opening portion 14 on the leeward side, from which the heat transfer fin 10 on the leeward side is formed. Heat transfer is promoted by disturbing the surface temperature boundary layer and improving the heat transfer coefficient.

また、切り込み13を対称軸として山部15と対称な形状を成すよう、山部15に対して伝熱フィン10の裏側に隆起させ、山部15の風下側において略ひし形となる開口部14を風上側にて共有する谷部25を形成したので、気体の一部は、山部15の裏側面に沿って流れた後、開口部14を介して谷部25の表側面に沿って流れ、伝熱フィン10の表裏間で混合させるので、伝熱性能を向上させることができる。   Further, the ridge portion 15 is raised to the back side of the heat transfer fin 10 so as to form a shape symmetrical to the ridge portion 15 with the notch 13 as the axis of symmetry, and an opening portion 14 having a substantially rhombus shape is formed on the leeward side of the ridge portion 15. Since the valley portion 25 shared on the windward side is formed, a part of the gas flows along the back side surface of the mountain portion 15, and then flows along the front side surface of the valley portion 25 through the opening portion 14. Since it mixes between the front and back of the heat-transfer fin 10, heat-transfer performance can be improved.

開口部14は、谷部25が伝熱フィン10の裏側面に隆起されたことで従来よりも拡大されているので、伝熱フィン10の表裏間で混合される気体の量も増し、得られる伝熱性能の向上分は従来よりも増大している。   The opening 14 is obtained by increasing the amount of gas mixed between the front and back of the heat transfer fin 10 because the valley portion 25 is raised from the back surface of the heat transfer fin 10 so as to be larger than before. The improvement in heat transfer performance has increased compared to the conventional case.

また、切り込み13の風下側、谷部25の前縁26にて温度境界層の前縁効果により伝熱性能を向上させることができる。谷部25の前縁26は、谷部25を伝熱フィン10の裏側面に隆起され従来よりも長くなっているので、得られる前縁効果も従来よりも向上している。   Further, the heat transfer performance can be improved by the leading edge effect of the temperature boundary layer at the leeward side of the notch 13 and the leading edge 26 of the valley 25. Since the front edge 26 of the valley portion 25 is raised from the back side surface of the heat transfer fin 10 through the valley portion 25 and is longer than before, the obtained front edge effect is also improved compared to the conventional case.

また、山部15と谷部25を形成するための切り込み13は、伝熱フィン10の段方向の熱伝導が遮断されて伝熱に寄与しない領域が発生しないように段方向だけとしたので、熱は、伝熱フィン10が段方向に連続している山部15および谷部25を熱伝導により移動することができるので、伝熱フィン10の表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができる。   In addition, the notch 13 for forming the peak portion 15 and the valley portion 25 is only in the step direction so that the heat conduction in the step direction of the heat transfer fins 10 is blocked and a region that does not contribute to heat transfer does not occur. Since heat can be transferred by heat conduction through the ridges 15 and the valleys 25 where the heat transfer fins 10 are continuous in the step direction, the entire surface of the heat transfer fins 10 contributes to heat transfer and is excellent in heat transfer. Thermal performance can be obtained.

なお、開口部14の形状を伝熱フィン10面を対称とした2つの略台形状を並べた形状にすれば、山部15と谷部25を形成する4つの斜面は平面状の尾根に緩やかな角度で繋がるので、山部15および谷部25を隆起させる加工を容易にすることができる。さらに、開口部14の形状を伝熱フィン10面を対称軸とした2つの略円弧状を並べた形状にすれば、山部15および谷部25の断面を円弧状にして隆起させるので、加工を容易にすることができる。   If the shape of the opening 14 is formed by arranging two substantially trapezoidal shapes that are symmetrical with respect to the surface of the heat transfer fin 10, the four slopes that form the peak 15 and the valley 25 are loosely formed on a flat ridge. Since the connection is made at a proper angle, it is possible to facilitate the processing of raising the peak portion 15 and the valley portion 25. Furthermore, if the shape of the opening 14 is formed by arranging two substantially circular arcs with the heat transfer fin 10 surface as the axis of symmetry, the cross-sections of the crests 15 and troughs 25 are raised in a circular arc shape. Can be made easier.

本発明に係るフィンチューブ型熱交換器は、伝熱フィンに切り込みを設け、切り込みの風上側の伝熱フィン部を隆起させて、切り込みにより風下側に形成される開口部を有する山部を形成することにより、風下側の開口部を通過する際に発生する縦渦により、風下側の伝熱フィン表面の伝熱を促進するとともに、伝熱フィンの熱伝導を遮断して伝熱に寄与しない領域を発生させて伝熱性能を低下させることがなく、伝熱フィン表面全体を伝熱に寄与させ、優れた伝熱性能を得ることができ、さらに従来よりも切り込みによる開口部を拡大させているので、伝熱フィンを貫く気体の流量が増し、伝熱フィン表裏間での混合を促進させ、谷部により形成される前縁の長さが従来よりも増すことで、より大きな前縁効果により性能を向上させることができるので、空気調和機、ヒートポンプ式給湯機、冷蔵庫、冷凍庫等に用いられる熱交換器として有用である。   The finned tube heat exchanger according to the present invention is provided with a notch in a heat transfer fin, and a heat transfer fin portion on the windward side of the notch is raised to form a peak portion having an opening formed on the leeward side by the notch. As a result, the vertical vortex generated when passing through the opening on the leeward side promotes heat transfer on the surface of the heat transfer fin on the leeward side, and blocks the heat conduction of the heat transfer fin and does not contribute to heat transfer. The heat transfer performance is not reduced by generating a region, the entire heat transfer fin surface contributes to heat transfer, excellent heat transfer performance can be obtained, and the opening by cutting is expanded more than before. As a result, the flow rate of the gas through the heat transfer fins is increased, mixing between the heat transfer fins is promoted, and the length of the leading edge formed by the valleys is increased compared to the conventional one, resulting in a larger leading edge effect. To improve performance Since it, the air conditioner, heat pump water heater, is useful refrigerator, as a heat exchanger used in the freezer or the like.

10、101 伝熱フィン
11、102 フィンカラー
11a 貫通孔
12、104 伝熱管
13 切り込み
14 開口部
15 山部
25 谷部
26 前縁
10, 101 Heat transfer fin 11, 102 Fin collar 11a Through hole 12, 104 Heat transfer tube 13 Notch 14 Opening portion 15 Mountain portion 25 Valley portion 26 Leading edge

Claims (4)

所定の間隔を置いて略平行に積層された複数の伝熱フィンと、前記伝熱フィンの平面方向と略直交する方向に前記伝熱フィンを貫通する複数の伝熱管とを備え、前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に延びる略円筒状のフィンカラーが形成され、前記伝熱管は、前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる熱冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、前記伝熱フィンに前記気体の流動方向に略直角方向となる段方向だけに切り込みを設け、前記切り込みの前記気体が流動する風上側の前記伝熱フィンを隆起させて、風下側に前記切り込みにより形成される開口部を有する山部を備え、前記切り込みを軸として前記山部と略対称な形状を成し、風上側に向けて開口するように前記山部と逆方向に隆起させた谷部を備えたことを特徴とするフィンチューブ型熱交換器。 A plurality of heat transfer fins stacked substantially in parallel with a predetermined interval; and a plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to a planar direction of the heat transfer fins, the heat transfer tubes A substantially cylindrical fin collar extending in a direction substantially orthogonal to the planar direction of the heat transfer fin is formed around the through hole of the heat transfer fin through which the heat transfer fin passes, and the heat transfer tube is in close contact with the fin collar A fin-tube heat exchanger that is inserted into the through-hole in a state in which the heat transfer fins perform heat exchange between the gas flowing in the planar direction of the heat transfer fins and the thermal refrigerant flowing through the heat transfer tubes. The heat transfer fin is provided with a cut only in a step direction which is substantially perpendicular to the gas flow direction, and the heat transfer fin on the windward side where the gas flows in the cut is raised so that the cut is made on the leeward side. Formed by A crest having an opening, having a shape substantially symmetrical to the crest with the notch as an axis, and having a trough raised in the opposite direction to the crest so as to open toward the windward side A finned tube heat exchanger. 開口部の形状を、伝熱フィンの面を対称軸とした2つの略三角形状を並べた形状としたことを特徴とする請求項1に記載のフィンチューブ型熱交換器。 The fin tube type heat exchanger according to claim 1, wherein the shape of the opening is a shape in which two substantially triangular shapes with the plane of the heat transfer fin as an axis of symmetry are arranged. 開口部の形状を、伝熱フィンの面を対称軸とした2つの略台形状を並べた形状としたことを特徴とする請求項1に記載のフィンチューブ型熱交換器。 The fin tube type heat exchanger according to claim 1, wherein the shape of the opening is a shape in which two substantially trapezoidal shapes with the surface of the heat transfer fin as an axis of symmetry are arranged. 開口部の形状を、伝熱フィンの面を対称軸とした2つの略円弧状を並べた形状としたことを特徴とする請求項1に記載のフィンチューブ型熱交換器。 2. The finned tube heat exchanger according to claim 1, wherein the shape of the opening is a shape in which two substantially circular arcs with the plane of the heat transfer fin as an axis of symmetry are arranged.
JP2012156231A 2012-07-12 2012-07-12 Fin tube type heat exchanger Pending JP2014020582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156231A JP2014020582A (en) 2012-07-12 2012-07-12 Fin tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156231A JP2014020582A (en) 2012-07-12 2012-07-12 Fin tube type heat exchanger

Publications (1)

Publication Number Publication Date
JP2014020582A true JP2014020582A (en) 2014-02-03

Family

ID=50195695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156231A Pending JP2014020582A (en) 2012-07-12 2012-07-12 Fin tube type heat exchanger

Country Status (1)

Country Link
JP (1) JP2014020582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225845A1 (en) * 2019-05-07 2020-11-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225845A1 (en) * 2019-05-07 2020-11-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2014020580A (en) Fin tube type heat exchanger
JP4775429B2 (en) Finned tube heat exchanger
JP5077926B2 (en) Heat exchanger
JP2016102592A (en) Heat exchanger
JP2018025373A (en) Heat exchanger for refrigerator, and refrigerator
JP2009275967A (en) Heat exchanger
CN103791750A (en) Finned tube heat exchanger
JP2013250016A (en) Fin tube heat exchanger
JP6021081B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus including the same
JP6375897B2 (en) Heat exchanger
JP2014020582A (en) Fin tube type heat exchanger
JP5958917B2 (en) Finned tube heat exchanger
WO2013161240A1 (en) Finned tube heat exchanger
JP6379352B2 (en) Finned tube heat exchanger
JP2008215737A (en) Fin tube type heat exchanger and refrigerating cycle
JP6194471B2 (en) Finned tube heat exchanger
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP5072983B2 (en) Fin tube type heat exchanger and air conditioner using the same
WO2016031032A1 (en) Heat exchanger and air conditioner
KR100565505B1 (en) Heat exchanger of air conditioner
JP2005121288A (en) Heat exchanger
JP4874320B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2014089019A (en) Fin tube heat exchanger and refrigeration cycle device including the same
JP2010255918A (en) Air heat exchanger
JP5446379B2 (en) Finned heat exchanger