JP2009275967A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009275967A
JP2009275967A JP2008126883A JP2008126883A JP2009275967A JP 2009275967 A JP2009275967 A JP 2009275967A JP 2008126883 A JP2008126883 A JP 2008126883A JP 2008126883 A JP2008126883 A JP 2008126883A JP 2009275967 A JP2009275967 A JP 2009275967A
Authority
JP
Japan
Prior art keywords
fin
cut
raised
heat transfer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008126883A
Other languages
Japanese (ja)
Inventor
Osamu Aoyanagi
治 青柳
Shoichi Yokoyama
昭一 横山
Yasuhiko Isayama
安彦 諌山
Tomoaki Ando
智朗 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008126883A priority Critical patent/JP2009275967A/en
Publication of JP2009275967A publication Critical patent/JP2009275967A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems on cut and raised pieces of a fin, wherein ventilating resistance of gas passing through a heat exchanger is increased though a heat transfer coefficient is improved by vertical vortex generated in the wake, and frost is easily attached, in particular, to the cut and raised pieces of high heat transfer coefficient, and rapidly grows up, when the heat exchanger as an evaporator is used below freezing point, which causes significant increase of ventilating resistance. <P>SOLUTION: The cuts and raised pieces 11 formed by making cutouts 15 of the bent shape or curved shape on the fin 10, folding them at a fundamental line 16, and roughly vertically raising them on a fin face, are disposed much at a leeward side where the gas flows out, and more in accordance with separating from a heat transfer tube, thus frost formation on a fin surface can be unified, and the increase of ventilating resistance in accompany with the growth of frost below the freezing point can be suppressed. Further by disposing a raised piece 47 higher than the fin collar 43, a distance to the adjacent fin can be increased, and the increase of ventilating resistance can be further suppressed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空気調和機、冷凍機、ヒートポンプ式給湯機などに使用され、多数積層された平板状のフィンの間を流動する空気などの気体と伝熱管内を流動する水や冷媒などの流体との間で熱を授受するフィンアンドチューブ式の熱交換器に関するものである。   The present invention is used in an air conditioner, a refrigerator, a heat pump type water heater, etc., and a gas such as air flowing between a plurality of laminated plate-like fins and a fluid such as water or a refrigerant flowing in a heat transfer tube It is related with the fin and tube type heat exchanger which transfers heat | fever between.

一般に、多数積層された平板状のフィンと伝熱管とで構成されるフィンアンドチューブ式の熱交換器は、図13に示すように、一定のピッチで平行に積層されるとともに、その間を空気などの気体Wが流動する多数の平板状のフィン101と、これらのフィン101に略直角に所定のピッチで挿入され、内部を水や冷媒などの流体Rが流動する伝熱管104とで構成され、伝熱管104はフィン101の貫通穴の外周に垂直に立ち上げた円筒状のフィンカラー102に密着接合されている。また、フィン101には、スリット形成部分103に、図10、図11、図12に示すような切起こし片111、112が設けられている。そして従来の熱交換器の切起こし片111は、図12に示すように基部から先端部に向けて漸次幅狭となり、通過する空気に縦渦Sを発生させる翼部を平板フィンから切起こして形成する。この縦渦により、熱伝達率を向上させるというものである(例えば、特許文献1参照)。
特開2005−207688号公報
In general, a fin-and-tube heat exchanger composed of a large number of laminated flat fins and heat transfer tubes is laminated in parallel at a constant pitch as shown in FIG. A large number of plate-like fins 101 through which the gas W flows, and heat transfer tubes 104 inserted into these fins 101 at a predetermined pitch substantially at right angles and through which fluid R such as water or refrigerant flows, The heat transfer tube 104 is tightly joined to a cylindrical fin collar 102 that rises perpendicularly to the outer periphery of the through hole of the fin 101. Further, the fin 101 is provided with cut and raised pieces 111 and 112 as shown in FIGS. 10, 11, and 12 in the slit forming portion 103. Then, as shown in FIG. 12, the cut-and-raised piece 111 of the conventional heat exchanger is gradually narrowed from the base portion toward the tip portion, and the blade portion that generates the vertical vortex S in the passing air is cut and raised from the flat plate fin. Form. This vertical vortex improves the heat transfer coefficient (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2005-207688

しかしながら、上記従来の構成では切起こし片111の後流に発生する縦渦Sにより、熱伝達率は向上するものの、一方では、熱交換器を気体が通過する際の通風抵抗が増大してしまう。このため、切起こし片111の数が多くなるに従い通風抵抗が大幅に増大してしまうため、ファンに負担をかけてしまい、ファンモータの入力を増大させてしまう。   However, although the heat transfer coefficient is improved by the vertical vortex S generated in the wake of the cut and raised piece 111 in the conventional configuration, the ventilation resistance when the gas passes through the heat exchanger is increased. . For this reason, as the number of the cut-and-raised pieces 111 increases, the ventilation resistance greatly increases, which places a burden on the fan and increases the input of the fan motor.

また、熱交換器を蒸発器として使用した場合、フィン表面に凝縮水が付着し、通常はフィン表面に沿って滴下するが、冷媒の温度が0℃以下では、凝縮水が霜となってフィン表面に付着し、その凝縮水は滴下することなくフィン表面に固着し、しだいにその霜が成長し、フィンとフィンの間を閉塞させてしまうことがある。熱伝達率の高い切起こし片の端部は、霜が付着しやすく、急激に霜が成長してしまうため、切起こし片111の数を多くできず、熱交換器の性能向上が抑えられてしまう。   In addition, when the heat exchanger is used as an evaporator, condensed water adheres to the fin surface and usually drops along the fin surface. However, when the temperature of the refrigerant is 0 ° C. or lower, the condensed water becomes frost and becomes finned. The condensed water adheres to the surface and adheres to the fin surface without dripping, and the frost grows gradually, which may block the fins. The end of the cut-and-raised piece with a high heat transfer rate is prone to frost, and the frost grows abruptly. Therefore, the number of the cut-and-raised pieces 111 cannot be increased, and the performance improvement of the heat exchanger is suppressed. End up.

さらに、切起こし片を均一に配置させた場合、熱交換器の気体の流入側である風上側では、気体中の水分量が多いため霜が付着しやすく、風上側の切起こし片に集中的に霜が付着するため短時間にフィン間が閉塞してしまう、というこれらの課題を有していた。   Furthermore, when the cut-and-raised pieces are arranged uniformly, frost tends to adhere on the windward side, which is the gas inflow side of the heat exchanger, due to the large amount of moisture in the gas, and is concentrated on the cut-and-raised pieces on the windward side. Since frost adheres to the surface, the problem is that the gap between the fins is closed in a short time.

本発明は、前記従来の課題を解決するもので、熱交換器を気体が通過する際の通風抵抗の増大を抑制しながら熱伝達率を向上させ、熱交換性能を高めた熱交換器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides a heat exchanger that improves heat transfer performance and improves heat exchange performance while suppressing increase in ventilation resistance when gas passes through the heat exchanger. The purpose is to do.

前記従来の課題を解決するために、本発明の熱交換器は、フィンに屈曲形状または曲線形状の切込みを設けて切込みの両端部を結ぶ直線を基本線とし、その基本線で折り曲げてフィン面に略垂直に立ち上げた切起こし片を設け、基本線と気体の主流方向とのなす角度が傾斜を有し、かつ35度以下で配置したものである。また、伝熱管の中心に対し、気体が流出する風下側に設けた切起こし片の数が、気体の流入する風上側に設けた切起こし片
の数より多く配置する。さらに、切起こし片の数を伝熱管から離れるに従い多く配置する。さらに、フィンに四辺形の一辺を残して三辺を切り込んだ切込みを設け、残した一辺を基本線としてその基本線で折り曲げてフィン面に略垂直に立ち上げた立上げ片を形成する。この立上げ片の高さはフィンカラーの高さより高くなるように設定し、フィンを積層するときの所定の間隔を規定するように構成する。さらに、立上げ片の平面が、気体の主流方向に対し、傾斜を有し、かつその角度を35度以下の角度に形成する。
In order to solve the above-mentioned conventional problems, the heat exchanger of the present invention has a fin-shaped surface in which a bent or curved cut is provided in a fin and a straight line connecting both ends of the cut is used as a basic line, and the fin is bent at the basic line. A cut-and-raised piece that is raised substantially vertically is provided, and the angle between the basic line and the main flow direction of the gas has an inclination and is arranged at 35 degrees or less. Further, the number of cut and raised pieces provided on the leeward side from which the gas flows out is more than the number of cut and raised pieces provided on the leeward side from which the gas flows in the center of the heat transfer tube. Furthermore, the number of cut and raised pieces is increased as the distance from the heat transfer tube increases. Further, the fin is provided with a notch obtained by cutting one side of the quadrilateral while leaving one side of the quadrilateral as a basic line, and is bent along the basic line to form a rising piece that is raised substantially perpendicular to the fin surface. The height of the rising piece is set so as to be higher than the height of the fin collar, and the predetermined interval when the fins are stacked is defined. Furthermore, the plane of the rising piece has an inclination with respect to the main flow direction of the gas and forms an angle of 35 degrees or less.

本発明の熱交換器は、フィンに屈曲形状または曲線形状の切込みを設け、切込みの両端部を結ぶ直線を基本線とし、その基本線で折り曲げてフィン面に略垂直に立ち上げた切起こし片を設け、基本線と気体の主流方向とのなす角度が傾斜を有し、かつ35度以下で配置したものである。この構成により、垂直に立ち上げた切起こし片の先端部で熱伝達率の向上が図れると共に、基本線と気体の主流方向と傾斜を有し、かつそのなす角が35度以下に配置することで、切起こし片の後流域の乱流を抑制でき、これにより通風抵抗の増大を抑制できる。したがって、フィン表面の切起こし片の数を多く設けても通風抵抗の増大を抑制できると共に、熱伝達率の向上を図ることができるというものである。   The heat exchanger according to the present invention has a cut or raised piece provided with a bent or curved cut in the fin, a straight line connecting both ends of the cut as a basic line, bent at the basic line and raised substantially perpendicular to the fin surface The angle formed by the basic line and the main flow direction of the gas has an inclination and is arranged at 35 degrees or less. With this configuration, the heat transfer coefficient can be improved at the tip of the vertically raised piece, and the basic line and the main flow direction of the gas and the inclination should be inclined and the angle formed should be 35 degrees or less. Thus, the turbulent flow in the wake area of the cut and raised piece can be suppressed, and thereby the increase in ventilation resistance can be suppressed. Therefore, even if a large number of cut and raised pieces on the fin surface are provided, an increase in ventilation resistance can be suppressed and a heat transfer rate can be improved.

また、伝熱管の中心に対し、気体の流出する風下側に設けた切起こし片の数が、気体の流入する風上側に設けた切起こし片の数より多く配置することにより、伝熱管内を流れる冷媒の温度が0度以下の際にフィンに付着した水滴が霜となってフィン表面に氷結するが、気体中の水分の一部が風上側で付着し、水分が少なくなった気体が風下側に流れることで、風下側の切起こしに付着する水分すなわち霜が少なくなる。風上側では、切起こし片をまばらに配置することで、切起こし片に霜が多く付着してもフィン間を通過する流路が確保でき、風下側では切起こし片を多く配置しても気流中の水分が少ないため、霜の成長を抑制できる。これによりフィン間が霜により閉塞するまでの時間を長く保つことができる。   In addition, the number of cut and raised pieces provided on the leeward side from which gas flows out relative to the center of the heat transfer tube is greater than the number of cut and raised pieces provided on the leeward side from which gas flows in, so that the inside of the heat transfer tube is When the temperature of the flowing refrigerant is 0 degrees or less, the water droplets attached to the fins become frost and freeze on the fin surface, but some of the moisture in the gas adheres on the windward side, and the gas with reduced moisture is leeward By flowing to the side, moisture, that is, frost attached to the leeward cut and raised is reduced. On the leeward side, the cut-and-raised pieces are arranged sparsely to secure a flow path that passes between the fins even if a lot of frost adheres to the cut-and-raised pieces. Since there is little moisture inside, the growth of frost can be suppressed. Thereby, it is possible to maintain a long time until the gap between the fins is blocked by frost.

さらに、切起こし片の数を伝熱管から離れるに従い多く配置する。熱伝導による熱移動は伝熱管との距離が遠くなるに従い少なくなることから、伝熱管から離れたところに切起こし片を多く設けることで、伝熱管内を流れる冷媒の温度が0度以下の場合、切起こし片に付着する量を抑えることができ、霜によるフィン間の閉塞を抑制させることができる。   Furthermore, the number of cut and raised pieces is increased as the distance from the heat transfer tube increases. Since heat transfer due to heat conduction decreases as the distance from the heat transfer tube increases, the temperature of the refrigerant flowing in the heat transfer tube is less than 0 degrees by providing a large number of cut and raised pieces away from the heat transfer tube The amount attached to the cut and raised pieces can be suppressed, and the blockage between the fins due to frost can be suppressed.

さらに、フィンに四辺形の一辺を残して三辺を切り込んだ切込みを設け、残した一辺を基本線とし、その基本線で折り曲げてフィン面に略垂直に立ち上げた立上げ片を形成し、立上げ片がフィンカラーの高さより高くなるようにして、フィンを積層するときの所定の間隔を規定するように構成する。フィンカラーは、プレス加工のしごき加工にて形成されるが、高さが高くなるに従い、フィンカラーの肉厚は薄くなり、先端に割れが生じたり、高さが不均一になるなど加工する際に不具合が発生する。本発明の構成では、フィン間の間隔を立上げ片で規制することで、フィン間の間隔を大きくすることができる。これにより、伝熱管内を流れる冷媒の温度が0度以下の際に、フィン表面や立上げ片に霜が付着しても通風抵抗の急激な増大を抑制することができる。   In addition, the fin is provided with a notch obtained by cutting one side of the quadrilateral, and the remaining one is defined as a basic line, and is bent at the basic line to form a rising piece that rises substantially perpendicular to the fin surface. The rising piece is configured to be higher than the height of the fin collar so as to define a predetermined interval when the fins are stacked. The fin collar is formed by pressing ironing, but as the height increases, the fin collar becomes thinner, causing cracks at the tip or uneven height. Trouble occurs. In the structure of this invention, the space | interval between fins can be enlarged by restrict | limiting the space | interval between fins with a starting piece. Thereby, when the temperature of the refrigerant flowing in the heat transfer tube is 0 ° C. or less, a rapid increase in ventilation resistance can be suppressed even if frost adheres to the fin surface or the rising piece.

さらに、立上げ片の平面が、気体の主流方向に対し、傾斜を有し、かつその角度を35度以下の角度に形成する。この構成により立上げ片に凝縮水が滞留することなく、付着しても速やかに滴下し、排水され、通風抵抗が異常に増大することはない。   Furthermore, the plane of the rising piece has an inclination with respect to the main flow direction of the gas and forms an angle of 35 degrees or less. With this configuration, condensed water does not stay on the rising piece, and even if it adheres, it quickly drops and drains, and the ventilation resistance does not increase abnormally.

第1の発明は、フィンに屈曲形状または曲線形状の切込みを設けて切込みの両端部を結ぶ直線を基本線とし、その基本線で折り曲げてフィン面に略垂直に立ち上げた切起こし片を設け、基本線と気体の主流方向と傾斜を有し、かつそのなす角度が35度以下で配置し
たものである。この構成により、垂直に立ち上げた切起こし片の先端部で熱伝達率の向上が図れると共に、基本線と気体の主流方向とのなす角が35度以下に配置することで、切起こし片の後流域の乱流を抑制でき、これにより通風抵抗の増大を抑制できる。したがって切起こし片の数を多く設けても通風抵抗の増大を抑制できると共に、熱伝達率の向上を図ることができるというものである。
In the first invention, a bent or curved cut is provided in the fin, and a straight line connecting both ends of the cut is used as a basic line, and a cut-and-raised piece that is bent at the basic line and rises substantially perpendicular to the fin surface is provided. The basic line and the main flow direction of the gas are inclined, and the angle between them is arranged at 35 degrees or less. With this configuration, the heat transfer coefficient can be improved at the tip of the vertically raised piece, and the angle between the basic line and the gas main flow direction is set to 35 degrees or less, thereby Turbulent flow in the wake area can be suppressed, and thereby increase in ventilation resistance can be suppressed. Therefore, even if a large number of cut and raised pieces are provided, an increase in ventilation resistance can be suppressed, and an improvement in heat transfer coefficient can be achieved.

第2の発明は、伝熱管の中心に対し、気体が流出する風下側に設けた切起こし片の数が、気体が流入する風上側に設けた切起こし片の数より多く配置することにより、熱交換器を蒸発器として使用した場合、特に伝熱管内を流れる冷媒の温度が0度以下の際にフィンに付着した水滴が霜となってフィン表面に氷結するが、風上側で気体中の水分の一部がフィン表面に凝縮した後に、水分が少なくなった気体が風下側に流れるため、風下側の切起こし片に付着する水分すなわち霜が少なくなり、風下側の切起こし片が多くても霜の成長を抑制できる。これによりフィン間が霜で閉塞するまでの時間を長く保つことができる。また、切起こしの数を風下側で多く配置することで、短時間でフィン間を閉塞することはなく、熱交換性能を向上させることができる。   2nd invention arrange | positions more than the number of the cut-and-raised piece provided in the leeward side where gas flows out with respect to the center of a heat exchanger tube from the number of the cut-and-raised piece provided in the leeward side where gas flows in, When the heat exchanger is used as an evaporator, water drops adhering to the fin become frost and freeze on the fin surface especially when the temperature of the refrigerant flowing in the heat transfer tube is 0 degrees or less. After some of the water has condensed on the fin surface, the gas with less water flows to the leeward side, so there is less moisture or frost adhering to the cut and raised pieces on the leeward side, and there are more cut and raised pieces on the leeward side. Can also suppress the growth of frost. Thereby, it is possible to maintain a long time until the gap between the fins is blocked with frost. Further, by arranging a large number of cuts and raisings on the leeward side, the heat exchange performance can be improved without closing the gaps between the fins in a short time.

第3の発明は、切起こし片の数を伝熱管から離れるに従い多く配置する。熱伝導による熱移動は伝熱管との距離が遠くなるに従い少なくなることから、伝熱管から離れたところに切起こし片を多く設けることで、伝熱管内を流れる冷媒の温度が0度以下の場合に、切起こし片に付着する量を抑えることができ、霜によるフィン間の閉塞を抑制させることができる。   In the third invention, the number of cut and raised pieces is increased as the distance from the heat transfer tube increases. Since heat transfer due to heat conduction decreases as the distance from the heat transfer tube increases, the temperature of the refrigerant flowing in the heat transfer tube is less than 0 degrees by providing a large number of cut and raised pieces away from the heat transfer tube In addition, the amount attached to the cut and raised pieces can be suppressed, and the blockage between the fins due to frost can be suppressed.

第4の発明は、フィンに四辺形の一辺を残して三辺を切り込んだ切込みを設け、残した一辺を基本線として基本線で折り曲げてフィン面に略垂直に立ち上げた立上げ片を形成し、立上げ片の高さをフィンカラーの高さより高くなるようにして、フィンを積層するときの所定の間隔を規定するように構成する。フィンカラーは、プレス加工のしごき加工にて形成されるが、高さを高くするに従い、フィンカラーの肉厚は薄くなり、先端に割れが生じたり、高さが不均一になったりするなど加工する際に不具合が発生する。本発明の構成では、フィン間の間隔を立上げ片で規制することで、立上げ片の間隔を大きくすることができる。これにより、伝熱管内を流れる冷媒の温度が0度以下の際に、フィン表面や立上げ片に霜が付着しても、霜でフィン間が閉塞するまでの時間を長くすることができ、通風抵抗の急激な増大を抑制することができる。   According to a fourth aspect of the present invention, a notch is formed by cutting one side of the quadrilateral into the fin, and forming a rising piece that is raised substantially perpendicular to the fin surface by bending the remaining one side as a basic line along the basic line. Then, the height of the rising piece is set higher than the height of the fin collar so as to define a predetermined interval when the fins are stacked. The fin collar is formed by pressing ironing, but as the height increases, the fin collar becomes thinner, cracks at the tip, and uneven height, etc. Trouble occurs when doing so. In the configuration of the present invention, the spacing between the fins can be increased by regulating the spacing between the fins with the rising pieces. Thereby, when the temperature of the refrigerant flowing in the heat transfer tube is 0 degrees or less, even if frost adheres to the fin surface or the rising piece, the time until the fins are blocked by the frost can be lengthened, A rapid increase in ventilation resistance can be suppressed.

第5の発明は、立上げ片の平面が、気体の主流方向に対し、傾斜を有し、かつその角度を35度以下の角度に形成する。この構成により立上げ片に凝縮水が滞留することなく、付着しても速やかに滴下し、排水され、通風抵抗が異常に増大することはない。   In the fifth invention, the plane of the rising piece is inclined with respect to the main flow direction of the gas, and the angle is formed to an angle of 35 degrees or less. With this configuration, condensed water does not stay on the rising piece, and even if it adheres, it quickly drops and drains, and the ventilation resistance does not increase abnormally.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
本発明の実施の形態1について、図1〜図7にしたがい説明する。図1〜図3は実施の形態1の第1の形状、図4,図5は実施の形態1の第2の形状、図6,図7は実施の形態1の第3の形状である。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. 1 to 3 show the first shape of the first embodiment, FIGS. 4 and 5 show the second shape of the first embodiment, and FIGS. 6 and 7 show the third shape of the first embodiment.

まず、実施の形態1の第1の形状について、図1〜図3に従い説明する。図1は第1の形状のフィンの正面図、図2は同底面図、図3は同斜視図である。図1〜図3において、フィンカラー13の近傍で、段方向の縦中心線13aに対して気流1の上流側に切起こし片11aを、下流側に切起こし片11bを、それぞれフィンカラー13の上下に設けている。複数段設けたフィンカラー13のそれぞれの近傍のフィン10の表面に、三角形の2
辺に切込みを入れた屈曲形状の切込み15a、15bを設け、気流1の上流側の切込み15aの一端部12aと他端部12bとの両端部を結ぶ直線を基本線16aとし、基本線16aで折り曲げてフィン面に垂直に立ち上げた切起こし片11aを設け、また、気流1の下流側の切込み15bの一端部12cと他端部12dとの両端部を結ぶ直線を基本線16bとし、基本線16bで折り曲げてフィン面に垂直に立ち上げた切起こし片11bとを設ける。
First, the 1st shape of Embodiment 1 is demonstrated according to FIGS. 1-3. 1 is a front view of a fin having a first shape, FIG. 2 is a bottom view thereof, and FIG. 3 is a perspective view thereof. 1 to 3, in the vicinity of the fin collar 13, a cut and raised piece 11 a is formed on the upstream side of the air flow 1 with respect to the longitudinal center line 13 a in the step direction, and a cut and raised piece 11 b is formed on the downstream side of the fin collar 13. It is provided above and below. On the surface of the fin 10 in the vicinity of each of the fin collars 13 provided in a plurality of stages, a triangle 2
Bending cuts 15a and 15b with cuts on the sides are provided, and a straight line connecting both ends of one end 12a and the other end 12b of the upstream cut 15a of the airflow 1 is defined as a basic line 16a. A cut-and-raised piece 11a which is bent and raised perpendicularly to the fin surface is provided, and a straight line connecting both ends of one end 12c and the other end 12d of the cut 15b on the downstream side of the airflow 1 is defined as a basic line 16b. A cut-and-raised piece 11b which is bent at the line 16b and rises perpendicularly to the fin surface is provided.

基本線16aは、気体の主流1の主流方向1aとのなす角βaが35度以下で配置し、しかも基本線16aの傾斜の方向は、主流1がフィンカラー13の方に導く方向に傾斜している。基本線16aの傾斜の方向は、言い換えれば、フィンカラー13の縦中心線13aと直交する横中心線13bの方に向かって主流1を導く方向に傾斜している。また、基本線16bも基本線16aと同様に、気体の主流1の主流方向1bとのなす角βbが35度以下で配置し、しかも基本線16bの傾斜の方向は、横中心線13bの方に主流1を導く方向に傾斜している。   The basic line 16a is arranged such that the angle βa between the main flow direction 1a of the gas and the main flow direction 1a is 35 degrees or less, and the inclination direction of the basic line 16a is inclined in a direction in which the main flow 1 is guided toward the fin collar 13. ing. In other words, the inclination direction of the basic line 16a is inclined in the direction of guiding the main stream 1 toward the lateral center line 13b orthogonal to the longitudinal center line 13a of the fin collar 13. Similarly to the basic line 16a, the basic line 16b is arranged such that the angle βb formed with the main flow direction 1b of the gas main flow 1 is 35 degrees or less, and the inclination direction of the basic line 16b is the direction of the horizontal center line 13b. It is inclined in the direction of guiding the main stream 1 to.

以上のように構成された熱交換器について、以下その動作、作用を説明する。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

本実施の形態においては、垂直に立ち上げた切起こし片11a、11bの先端部では境界層前縁効果により熱伝達率の向上が図れ、さらに、フィン10の表面の切込み15a、15bの部分についても境界層前縁効果の作用により、熱伝達率の向上が図れ、熱交換性能を向上させることができる。また、基本線16a、16bと気体の主流1の主流方向1aとのなす角βa、βbが35度以下になるように配置することで、切起こし片11a、11bの後流の乱流を抑制でき、これにより通風抵抗の増大を抑制できる。これにより、切起こし片の数を多く設けても通風抵抗の増大を抑制できると共に、熱伝達率の向上を図ることができるというものである。   In the present embodiment, the heat transfer coefficient can be improved by the boundary layer leading edge effect at the front ends of the cut and raised pieces 11a and 11b that are vertically raised, and further, the portions of the cuts 15a and 15b on the surface of the fin 10 However, the effect of the boundary layer leading edge effect can improve the heat transfer coefficient and improve the heat exchange performance. Further, by arranging the angles βa and βb formed by the basic lines 16a and 16b and the main flow direction 1a of the gas main flow 1 to be 35 degrees or less, turbulence in the wake of the cut and raised pieces 11a and 11b is suppressed. This can suppress an increase in ventilation resistance. Thereby, even if it provides many cut-and-raised pieces, while being able to suppress the increase in ventilation resistance, the improvement of a heat transfer rate can be aimed at.

なお、切込み形状については、上記の第1の形状以外にいろいろな多角形の屈曲形状や円弧や自由な曲線形状などが考えられるが、例として次の第2の形状と第3の形状の2つを示す。   In addition to the first shape described above, various polygonal bent shapes, circular arcs, free curved shapes, and the like are conceivable as the cut shape, but as an example, the following second shape and second shape 2 Indicates one.

実施の形態1の第2の形状を、図4にその正面図、図5にその底面図を示す。図4、図5において、フィン20の表面に、五角形の4辺に切込みを入れた屈曲形状の切込み25a、25bを設け、切込み25aの一端部22aと他端部22bとの両端部を結ぶ直線を基本線26a、また、切込み25bの一端部22cと他端部22dとの両端部を結ぶ直線を基本線26bとし、基本線26aで折り曲げてフィン20の表面に垂直に立ち上げた切起こし片21a、基本線26bで折り曲げてフィン面に垂直に立ち上げた切起こし片21bを設ける。基本線26aは、気体の主流1の主流方向1aとのなす角βaが35度以下で配置し、しかも基本線26aの傾斜の方向は、主流1がフィンカラー23の方に導く方向、言い換えれば、フィンカラー23の縦中心線23aと直交する横中心線23bの方に向かって主流1を導く方向に傾斜している。また、基本線26bも基本線26aと同様に、気体の主流1の主流方向1bとのなす角βbが35度以下で配置し、しかも基本線26bの傾斜の方向は、横中心線23bの方に主流1を導く方向に傾斜している。   FIG. 4 is a front view of the second shape of the first embodiment, and FIG. 5 is a bottom view thereof. 4 and 5, the surface of the fin 20 is provided with bent cuts 25a and 25b with cuts on four sides of a pentagon, and a straight line connecting both ends of one end 22a and the other end 22b of the cut 25a. Is a basic line 26a, and a straight line connecting both ends of one end 22c and the other end 22d of the cut 25b is defined as a basic line 26b. 21a, a cut-and-raised piece 21b which is bent at the basic line 26b and rises perpendicularly to the fin surface is provided. The basic line 26a is arranged such that the angle βa formed by the main flow direction 1a of the gas main flow 1 is 35 degrees or less, and the inclination direction of the basic line 26a is the direction in which the main flow 1 leads toward the fin collar 23, in other words. The fin collar 23 is inclined in a direction leading the main stream 1 toward the lateral center line 23b orthogonal to the longitudinal center line 23a. Similarly to the basic line 26a, the basic line 26b is arranged such that the angle βb formed with the main flow direction 1b of the gas main flow 1 is 35 degrees or less, and the inclination direction of the basic line 26b is the direction of the horizontal center line 23b. It is inclined in the direction of guiding the main stream 1 to.

さらに、実施の形態1の第3の形状を、図6にその正面図、図7にその底面図を示す。図6、図7において、フィン30の表面に、円弧形状の切込み35a、35bを設け、切込み35aの両端部32aと32bを結ぶ直線を基本線36a、また、切込み35bの一端部32cと他端部32dとを結ぶ直線を基本線36bとし、基本線36aで折り曲げてフィン30の表面に垂直に立ち上げた切起こし片31a、基本線36bで折り曲げてフィン30の表面に垂直に立ち上げた切起こし片31bを設ける。基本線36aは、気体の主流1の主流方向1aとのなす角βaが35度以下で配置し、しかも基本線36aの傾斜の
方向は、主流1がフィンカラー33の方に導く方向、言い換えれば、フィンカラー33の縦中心線33aと直交する横中心線33bの方に向かって主流1を導く方向に傾斜している。また、基本線36bも基本線36aと同様に、気体の主流1の主流方向1bとのなす角βbが35度以下で配置し、しかも基本線36bの傾斜の方向は、横中心線33bの方に主流1を導く方向に傾斜している。
Furthermore, FIG. 6 shows a front view of the third shape of the first embodiment, and FIG. 7 shows a bottom view thereof. 6 and 7, arc-shaped cuts 35a and 35b are provided on the surface of the fin 30, a straight line connecting both ends 32a and 32b of the cut 35a is a basic line 36a, and one end 32c and the other end of the cut 35b. A straight line connecting the part 32d is a basic line 36b, a cut and raised piece 31a that is bent at the basic line 36a and raised vertically to the surface of the fin 30, and a cut that is bent at the basic line 36b and raised vertically to the surface of the fin 30 A raising piece 31b is provided. The basic line 36a is arranged such that the angle βa between the main flow direction 1a of the gas and the main flow direction 1a is 35 degrees or less, and the inclination direction of the basic line 36a is the direction in which the main flow 1 leads toward the fin collar 33, in other words. The fin collar 33 is inclined in the direction of guiding the main flow 1 toward the lateral center line 33b orthogonal to the longitudinal center line 33a. Similarly to the basic line 36a, the basic line 36b is arranged such that the angle βb formed with the main flow direction 1b of the gas main flow 1 is 35 degrees or less, and the inclination direction of the basic line 36b is the direction of the horizontal center line 33b. It is inclined in the direction of guiding the main stream 1 to.

上記2つの形状についての動作と作用については、実施の形態1の第1の形状と同等の動作と作用を有するもので、特に説明は省略する。   About operation | movement and an effect | action about said 2 shape, it has an operation | movement and an effect | action equivalent to the 1st shape of Embodiment 1, and abbreviate | omits description especially.

なお、切込みの形状については上に記載した他にも、円弧形状が楕円形状だったり、円弧と屈曲とを組み合わせたり、曲線と直線とを組み合わせたりして形成しても同様の効果を有する。さらに、複数の切起こし片は、それぞれの大きさや形状が異なっても良いし、また、気流の主流とのなす角度が異なっても良い。   As for the shape of the cut, in addition to those described above, the same effect can be obtained if the arc shape is an elliptical shape, a combination of an arc and a bend, or a combination of a curve and a straight line. Further, the plurality of cut and raised pieces may have different sizes and shapes, or may have different angles with the main stream of the airflow.

(実施の形態2)
本発明の実施の形態2について、図8、図9にしたがい説明する。実施の形態2は、実施の形態1の動作と作用の効果を、切起こし片の数を増やし、最適に配置することでさらに有効に活かすものであり、一つの切起こし片の説明は実施の形態1と同様な作用であるため省略する。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the effect of the operation and action of the first embodiment is further effectively utilized by increasing the number of cut and raised pieces and optimally arranging them. The explanation of one cut and raised piece is as follows. Since the operation is the same as that of the first embodiment, the description is omitted.

図8は実施の形態2のフィンの正面図、図9は同底面図である。図8、図9において、2つのフィンカラー43間のフィン表面の領域を、フィンカラー43の図面上水平方向の横中心線50aとフィンカラー43間を均等に2分割する中間線50cと、横中心線50aと中間線50c間を均等に2分割する分割線50bで領域を区分けし、フィンカラー43に近い領域Aとフィンカラーから遠い領域Bに分割している。フィン40の表面には、三角形の2辺に切込みを入れ、切込みの両端を結ぶ基本線で折り曲げた三角形状の切起こし片41(41a、41b、41c、41d、41e、41f、41g、41h、41i)を設ける。切起こし片41は、中間線50cを線対称とし、フィン40の表面に配置している。他の構成から線対称でない切起こし片41を符号41jで示す。切起こし片41はいずれもフィンカラー43の横中心線の方に主流1を導く方向に傾斜している。   FIG. 8 is a front view of the fin according to the second embodiment, and FIG. 9 is a bottom view thereof. 8 and 9, the fin surface region between the two fin collars 43 is divided horizontally into a horizontal center line 50 a in the horizontal direction of the fin collar 43 and an intermediate line 50 c that equally divides between the fin collars 43. The area is divided by a dividing line 50b that equally divides the center line 50a and the intermediate line 50c into two, and is divided into an area A near the fin collar 43 and an area B far from the fin collar. On the surface of the fin 40, a cut-and-raised piece 41 (41a, 41b, 41c, 41d, 41e, 41f, 41g, 41h, 41h, 41h, 41h, 41h, 41h, 41h, 41b, 41h, 41h, 41h, 41h, 41h, 41h, 41h, 41h, 41h 41i). The cut and raised pieces 41 are arranged on the surface of the fin 40 with the intermediate line 50 c being line symmetric. A cut-and-raised piece 41 that is not line-symmetric from another configuration is denoted by reference numeral 41j. Each of the cut and raised pieces 41 is inclined in the direction of guiding the main flow 1 toward the lateral center line of the fin collar 43.

以上のように構成された熱交換器について、以下その動作、作用を説明するが、実施の形態1で説明した切起こし片の効果については、同様の効果を有するもので説明は省略する。また、説明は主に領域A、Bに配置されたものについて説明し、中間線50cと対称な切起こし片41については、同様の効果を有するものであり、説明は省略する。   The operation and operation of the heat exchanger configured as described above will be described below. However, the effect of the cut and raised piece described in the first embodiment has the same effect, and the description thereof is omitted. Further, the description will mainly describe the elements arranged in the areas A and B, and the cut and raised pieces 41 symmetrical to the intermediate line 50c have the same effect, and the description thereof will be omitted.

本実施の形態においては、フィンカラー43の図面上垂直方向の縦中心線51に対し、気体が流入する風上側に3つの切起こし片41a、41b、41cと、縦中心線51上に1つの切起こし片41dと、風下側に5つの切起こし片41e、41f、41g、41h、41iを配置する。フィンカラー43に挿入され、フィンカラー43と密着された伝熱管44内を流れる冷媒の温度が0℃以下の場合、気流の水分がフィン40の表面に結露し、フィン40の表面では霜となって付着するが、霜は熱伝達率の高い部分で、特に切起こし片41部分に集中して付着する。切起こし片41の数を風上側で少なくすることで、気流の水分の一部は風上側のフィン40の表面に凝縮するため、風下側の気流内の水分量は減少し、風下側で付着する霜量も減少する。このように熱伝達率の高い切起こし片41を風下側より風上側の方を少なくすることで、気流に含まれる水分量が多い風上側では、霜が付着しやすい切起こし片41が少なく、気流に含まれる水分量が少なくなった風下側では熱伝達率の高い切起こし片41を多く設けることで、フィン40の表面に付着する霜の量を均一に付着させることができ、これにより積層されたフィン40間を通過する際の通風抵抗の増大を抑制でき、風量低下による能力の低下を抑制できる。   In the present embodiment, with respect to the vertical center line 51 in the vertical direction in the drawing of the fin collar 43, three cut-and-raised pieces 41a, 41b, 41c are provided on the windward side where gas flows, and one is provided on the vertical center line 51. A cut and raised piece 41d and five cut and raised pieces 41e, 41f, 41g, 41h, and 41i are arranged on the leeward side. When the temperature of the refrigerant that is inserted into the fin collar 43 and flows through the heat transfer tubes 44 that are in close contact with the fin collar 43 is 0 ° C. or less, moisture in the airflow condenses on the surface of the fin 40 and becomes frost on the surface of the fin 40. However, the frost is a portion having a high heat transfer rate, and is particularly concentrated on the cut and raised piece 41 portion. By reducing the number of cut and raised pieces 41 on the windward side, a part of the moisture in the airflow is condensed on the surface of the fin 40 on the windward side, so that the amount of water in the airflow on the leeward side decreases and adheres on the leeward side. The amount of frost to be reduced is also reduced. In this way, the cut and raised piece 41 having a high heat transfer rate is reduced on the windward side from the leeward side, so that on the windward side where the amount of moisture contained in the airflow is large, the number of cut and raised pieces 41 to which frost easily adheres is small. On the leeward side where the amount of water contained in the airflow is reduced, the amount of frost that adheres to the surface of the fins 40 can be evenly adhered by providing a large number of cut and raised pieces 41 having a high heat transfer coefficient. The increase in ventilation resistance when passing between the fins 40 that have been made can be suppressed, and the decrease in capacity due to a decrease in the air volume can be suppressed.

(実施の形態3)
本発明の実施の形態3について、図8、図9にしたがい説明する。実施の形態3は、実施の形態1及び実施の形態2の動作と作用の効果については同様の効果を有するもので、切起こし片の配置をさらに最適にすることで、切起こし片を有効に活かすものであり、実施の形態1及び実施の形態2と同様の作用については省略する。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIGS. The third embodiment has the same effect as the operation and action of the first embodiment and the second embodiment. By further optimizing the arrangement of the cut and raised pieces, the cut and raised pieces are effectively used. The operation similar to that of the first embodiment and the second embodiment is omitted.

図8、図9において、フィンカラー43の横中心線50aに近い切起こし片41a、41g、次に近いところに41c、41e、41h、離れたところに41b、41d、41f、41iを配置する。   8 and 9, cut and raised pieces 41a and 41g near the lateral center line 50a of the fin collar 43, 41c, 41e and 41h are arranged at the next closest positions, and 41b, 41d, 41f and 41i are arranged at the separated positions.

以上のように構成された熱交換器について、以下その動作、作用を説明する。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

伝熱管44は、フィンカラー43に挿入され、密着固定されている。伝熱管44内を流れる冷媒の温度とフィンの温度の差は、伝熱管44から離れるに従い温度差が大きくなり、逆にフィン40の温度と空気との温度差は小さくなることから、局所の熱交換量は小さくなる。つまり、フィンカラー43から離れるに従い、フィン40の表面の温度は空気温度に近くなり、温度差が小さくなることから、局所の熱交換能力は小さくなるということである。ここで、熱交換器を蒸発器として使用し、伝熱管44内を流れる冷媒の温度が0℃以下の場合、フィンカラー43に近い切起こし片41a、41gは温度が低く、熱交換量も大きいことから付着する霜の量も多い。これに対し、フィンカラー43から離れている切起こし片41b、41d、41f、41iの温度は上昇し、空気温度との差が小さくなり、熱交換量も少なく、霜の付着する量も少なくなる。このように切起こし片41の数をフィンカラー43から離れるに従い多くすることで、熱交換性能を高めるとともに霜の付着による急激な通風抵抗の上昇を抑制でき、熱交換能力を高めることができる。   The heat transfer tube 44 is inserted into the fin collar 43 and fixed in close contact therewith. The difference between the temperature of the refrigerant flowing in the heat transfer tube 44 and the temperature of the fin increases as the distance from the heat transfer tube 44 increases, and conversely, the temperature difference between the temperature of the fin 40 and air decreases. The exchange amount becomes smaller. That is, as the distance from the fin collar 43 increases, the surface temperature of the fin 40 becomes closer to the air temperature and the temperature difference becomes smaller, so that the local heat exchange capability becomes smaller. Here, when the heat exchanger is used as an evaporator and the temperature of the refrigerant flowing in the heat transfer tube 44 is 0 ° C. or less, the cut and raised pieces 41a and 41g close to the fin collar 43 have a low temperature and a large heat exchange amount. Therefore, the amount of frost attached is also large. On the other hand, the temperature of the cut and raised pieces 41b, 41d, 41f, and 41i that are separated from the fin collar 43 is increased, the difference from the air temperature is reduced, the amount of heat exchange is small, and the amount of frost is reduced. . Thus, by increasing the number of the cut and raised pieces 41 as the distance from the fin collar 43 increases, the heat exchange performance can be enhanced and a rapid increase in ventilation resistance due to frost adhesion can be suppressed, and the heat exchange capability can be enhanced.

なお、図8では、切起こし片41b、41d、41f、41iが、気流の主流1と同じ方向で同一直線状に配置しているが、少なくとも直ぐ後ろの切起こし片とは重ならない千鳥状に配置することで、風上側の切起こし片で発生した境界層に埋没することなく、より高性能化を図ることも可能である。   In FIG. 8, the cut-and-raised pieces 41b, 41d, 41f, and 41i are arranged in the same straight line in the same direction as the main stream 1 of the airflow, but at least in a zigzag shape that does not overlap with the cut-and-raised pieces immediately behind. By arranging, it is possible to achieve higher performance without being buried in the boundary layer generated by the cut-and-raised piece on the windward side.

(実施の形態4)
本発明の実施の形態4について、図8、図9にしたがい説明する。実施の形態4は、実施の形態1から実施の形態3の動作と作用の効果については同様の効果を有するもので、立上げ片を設けることでフィン間を広くすることにより、熱交換器を蒸発器として使用し、伝熱管内を流れる冷媒の温度が0℃以下の場合、霜の付着による通風抵抗の急激な増加を抑制できると言うものである。
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIGS. The fourth embodiment has the same effect as the operation and action of the first to third embodiments. By providing a rising piece, the space between the fins is widened, so that the heat exchanger is When used as an evaporator and the temperature of the refrigerant flowing in the heat transfer tube is 0 ° C. or less, it is possible to suppress a rapid increase in ventilation resistance due to frost adhesion.

図8、図9において、フィンカラー43の近傍に、四辺形の一辺を残して三辺を切り込んだ切込み48a、48bを設け、残した一辺を基本線49a、49bとして基本線49a、49bで折り曲げてフィン40の表面に略垂直に立ち上げた立上げ片47a、47bを形成する。立上げ片47a、47bの高さhaは、フィンカラー43の高さhfより高く形成する。また、基本線49a、49bと気体の主流1の主流方向1cとのなす角βcが35度以下で配置し、しかも基本線49a、49bの傾斜の方向は、実施の形態3までに説明した切起こし片41と同様に、主流1がフィンカラー43の横中心線50aに導く方向に傾斜している。   In FIGS. 8 and 9, incisions 48a and 48b are provided in the vicinity of the fin collar 43, leaving one side of the quadrilateral, and three sides are cut, and the remaining side is bent at the basic lines 49a and 49b as the basic lines 49a and 49b. Thus, rising pieces 47 a and 47 b are formed on the surface of the fin 40 substantially vertically. The heights ha of the rising pieces 47 a and 47 b are formed higher than the height hf of the fin collar 43. Further, the angle βc formed between the basic lines 49a and 49b and the main flow direction 1c of the gas main flow 1 is set to 35 degrees or less, and the inclination directions of the basic lines 49a and 49b are the same as those described in the third embodiment. Similar to the raising piece 41, the main flow 1 is inclined in a direction leading to the lateral center line 50 a of the fin collar 43.

以上のように構成された熱交換器について、以下その動作、作用を説明する。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

隣接するフィン40の間隔の規定を、フィンカラー43の高さhfより、立上げ片47
a、47bの高さhaの方を高くすることでフィン間隔を規制することから、切込み48a、48bの形状しだいで隣接するフィンとの距離を規定でき、フィンの間隔も大きくすることができる。これにより、伝熱管44内を流れる冷媒の温度が0度以下の際に、フィン40の表面や切起こし片41a〜41jに霜が付着しても、積層されたフィン40の間を通過する気流の通風抵抗の急激な増大を抑制することができる。
The interval between adjacent fins 40 is defined by the height of the fin collar 43 from the height hf.
Since the fin interval is regulated by increasing the height ha of a and 47b, the distance between adjacent fins can be defined depending on the shape of the cuts 48a and 48b, and the fin interval can be increased. Thereby, when the temperature of the refrigerant flowing in the heat transfer tube 44 is 0 degrees or less, even if frost adheres to the surface of the fin 40 or the cut and raised pieces 41a to 41j, the airflow passing between the stacked fins 40 The rapid increase in ventilation resistance can be suppressed.

また、立上げ片47a、47bの基本線49a、49bが、気体の主流方向1cに対して傾斜を有し、その角度βcを35度以下の角度に形成することで、立上げ片47a、47bの平面が水平でないことから、立上げ片47a、48bに凝縮水が滞留することなく、付着しても速やかに滴下し、排水され、通風抵抗が異常に増大することはない。また、主流方向1cとなす角を35度以下にすることで、立上げ片47aの後流部分での乱流の発生を抑制でき、通風抵抗の増大を抑制できる。   Further, the basic lines 49a and 49b of the rising pieces 47a and 47b are inclined with respect to the main flow direction 1c of the gas, and the angle βc is formed at an angle of 35 degrees or less, whereby the rising pieces 47a and 47b are formed. Since the flat surface is not horizontal, condensed water does not stay on the rising pieces 47a and 48b, and even if it adheres, it quickly drops and drains, and the ventilation resistance does not increase abnormally. Further, by setting the angle formed with the main flow direction 1c to be 35 degrees or less, it is possible to suppress the occurrence of turbulent flow in the wake portion of the rising piece 47a, and to suppress increase in ventilation resistance.

以上のように、本発明にかかる熱交換器は、気体の冷却器として用いる機器に使用した場合、特に伝熱管内を流れる冷媒の温度が0℃以下の場合に有効で、フィンの表面に付着した霜が成長しても急激な通風抵抗の上昇を抑制でき、熱交換器の通過する風量の減少を抑制することで、熱交換性能の高いものを提供するものである。したがって、空気調和機や冷凍機などに使用され、多数積層された平板状のフィンの間を流動する空気などの気体と伝熱管内を流動する水や冷媒などの流体との間で熱を授受するフィンアンドチューブ式の熱交換器に広く適用できるものである。   As described above, the heat exchanger according to the present invention is effective when used in a device used as a gas cooler, particularly when the temperature of the refrigerant flowing in the heat transfer tube is 0 ° C. or less, and adheres to the fin surface. Even if the developed frost grows, a rapid increase in ventilation resistance can be suppressed, and a decrease in the amount of air passing through the heat exchanger is suppressed, thereby providing a high heat exchange performance. Therefore, it is used in air conditioners and refrigerators, and transfers heat between a gas such as air that flows between a large number of stacked flat fins and a fluid such as water and refrigerant that flows in the heat transfer tube. It can be widely applied to fin-and-tube heat exchangers.

本発明の実施の形態1の第1の形状のフィンの正面図The front view of the fin of the 1st shape of Embodiment 1 of this invention 本発明の実施の形態1の第1の形状のフィンの底面図The bottom view of the 1st shape fin of Embodiment 1 of the present invention 本発明の実施の形態1の第1の形状のフィンの斜視図The perspective view of the 1st shape fin of Embodiment 1 of this invention 本発明の実施の形態1の第2の形状のフィンの正面図Front view of fin of second shape according to embodiment 1 of the present invention 本発明の実施の形態1の第2の形状のフィンの底面図The bottom view of the 2nd shape fin of Embodiment 1 of the present invention 本発明の実施の形態1の第3の形状のフィンの正面図Front view of third shape fin of embodiment 1 of the present invention 本発明の実施の形態1の第3の形状のフィンの底面図The bottom view of the fin of the 3rd shape of Embodiment 1 of the present invention 本発明の実施の形態2〜4のフィンの正面図Front view of fins of embodiments 2 to 4 of the present invention 本発明の実施の形態2〜4のフィンの底面図The bottom view of the fin of Embodiment 2-4 of this invention 従来例のフィンの正面図Front view of conventional fin 従来例のフィンの底面図Bottom view of conventional fin 従来例のフィンの斜視図The perspective view of the fin of a prior art example フィンアンドチューブ熱交換器の斜視図Fin and tube heat exchanger perspective view

符号の説明Explanation of symbols

1 気体の主流
1a、1b、1c 気体の主流方向
10、20、30、40 フィン
11a、11b 切起こし片
21a、21b 切起こし片
31a、31b 切起こし片
41、41a、41b、41c、41d、41e、41f、41g、41h、41i、41j 切起こし片
12a、12c、22a、22c、32a、32c 切込みの一端部
12b、12d、22b、22d、32b、32d 切込みの他端部
13、23、33、43 フィンカラー
13a、23a、33a フィンカラーの横中心線
13b、23b、33b フィンカラーの縦中心線
15a、15b、25a、25b、35a、35b 切起こし片の切込み
16a、16b、26a、26b、36a、36b 切起こし片の基本線
47a、47b 立上げ片
48a、48b 立上げ片の切込み
49a、49b 立上げ片の基本線
50a フィンカラーの横中心線
50b 分割線
50c 中間線
51 フィンカラーの縦中心線
βa、βb 切起こし片の基本線と主流方向のなす角度
βc 切起こし片の基本線と主流方向のなす角度
ha 立上げ片の高さ
hf フィンカラーの高さ
1 Gas main flow 1a, 1b, 1c Gas main flow direction 10, 20, 30, 40 Fins 11a, 11b Cut and raised pieces 21a and 21b Cut and raised pieces 31a and 31b Cut and raised pieces 41, 41a, 41b, 41c, 41d and 41e 41f, 41g, 41h, 41i, 41j Cut and raised pieces 12a, 12c, 22a, 22c, 32a, 32c One end of the cut 12b, 12d, 22b, 22d, 32b, 32d The other end of the cut 13, 23, 33, 43 Fin collar 13a, 23a, 33a Fin collar horizontal center line 13b, 23b, 33b Fin collar vertical center line 15a, 15b, 25a, 25b, 35a, 35b Cut-and-raised cut 16a, 16b, 26a, 26b, 36a , 36b Basic lines of cut and raised pieces 47a, 47b Rising pieces 48a, 48b Incision in flange 49a, 49b Basic line of rising piece 50a Horizontal center line of fin collar 50b Dividing line 50c Intermediate line 51 Vertical center line of fin collar βa, βb Angle between basic line of cut and raised piece and main flow direction βc Cutting Angle between the base line of the wake-up piece and the main flow direction ha Height of the rising piece hf Height of the fin collar

Claims (5)

一定のピッチで平行に積層されるとともに、その間を空気などの気体が流動する多数の平板状のフィンと、前記フィンに所定のピッチで設けた円状の貫通穴に挿入されるとともに、内部を水や冷媒などの流体が流動する伝熱管とで構成され、前記伝熱管は前記貫通穴の外周に垂直に立ち上げた円筒状のフィンカラーに密着接合されたフィンアンドチューブ式の熱交換器において、前記フィンに屈曲形状または曲線形状の切込みを設けて前記切込みの両端部を結ぶ直線を基本線とし、前記基本線で折り曲げてフィン面に略垂直に立ち上げた切起こし片を設け、前記基本線と前記気体の主流方向とのなす角度が傾斜を有し、かつ35度以下で配置したことを特徴とする熱交換器。 A plurality of plate-like fins that are stacked in parallel at a constant pitch and through which a gas such as air flows, and inserted into circular through holes provided at a predetermined pitch in the fin, In a fin-and-tube heat exchanger comprising a heat transfer tube through which a fluid such as water or a refrigerant flows, the heat transfer tube being tightly joined to a cylindrical fin collar vertically raised up to the outer periphery of the through hole The fin is provided with a bent or curved cut and a straight line connecting both ends of the cut is used as a basic line, and a cut-and-raised piece that is bent at the basic line and rises substantially perpendicular to the fin surface is provided. The heat exchanger is characterized in that an angle formed between the line and the main flow direction of the gas has an inclination and is arranged at 35 degrees or less. 伝熱管の中心軸に対し、気体の流入する風上側よりも気体の流出する風下側の前記切起こし片を多く配置したことを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein the cut-and-raised pieces on the leeward side from which the gas flows out are arranged more than the windward side from which the gas flows into the central axis of the heat transfer tube. 切起こし片の数が、伝熱管から離れるに従い多く配置することを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the number of cut and raised pieces is increased as the distance from the heat transfer tube increases. フィンに四辺形の一辺を残して三辺を切り込んだ切込みを設け、残した一辺を基本線として前記基本線で折り曲げてフィン面に略垂直に立ち上げた立上げ片を形成し、前記立上げ片がフィンカラーの高さより高くなるようにして、前記フィンを積層するときの所定の間隔を規定するように構成したことを特徴とする請求項1〜3のいずれか1項に記載の熱交換器。 The fin is provided with a cut in which three sides are cut, leaving one side of the quadrilateral, and the rising side is bent up at the basic line with the remaining side as a basic line to form a rising piece that is raised substantially perpendicular to the fin surface. The heat exchange according to any one of claims 1 to 3, wherein a piece is higher than a height of a fin collar so as to define a predetermined interval when the fins are stacked. vessel. 立上げ片の平面が、気体の主流方向に対し、傾斜を有し、かつその角度を35度以下の角度に形成することを特徴とする請求項4に記載の熱交換器。 5. The heat exchanger according to claim 4, wherein the plane of the rising piece has an inclination with respect to a main flow direction of the gas and is formed at an angle of 35 degrees or less.
JP2008126883A 2008-05-14 2008-05-14 Heat exchanger Pending JP2009275967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126883A JP2009275967A (en) 2008-05-14 2008-05-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126883A JP2009275967A (en) 2008-05-14 2008-05-14 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009275967A true JP2009275967A (en) 2009-11-26

Family

ID=41441572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126883A Pending JP2009275967A (en) 2008-05-14 2008-05-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009275967A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109289A (en) * 2011-03-25 2011-06-29 兰州交通大学 Fin-and-oval tube heat exchanger
CN102121798A (en) * 2011-03-25 2011-07-13 兰州交通大学 Flat tube-fin heat exchanger with double-side vortex generator
CN102200405A (en) * 2011-03-25 2011-09-28 兰州交通大学 Combined triangular curved vortex generator type circular tube fin heat exchanger
JP2012037168A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Fin tube type heat exchanger and refrigerating cycle device using the same
CN104197288A (en) * 2014-09-12 2014-12-10 苏州承源光电科技有限公司 LED radiator
KR102292396B1 (en) * 2020-02-13 2021-08-20 엘지전자 주식회사 Evaporator
US11624533B2 (en) 2020-02-13 2023-04-11 Lg Electronics Inc. Evaporator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037168A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Fin tube type heat exchanger and refrigerating cycle device using the same
CN102109289A (en) * 2011-03-25 2011-06-29 兰州交通大学 Fin-and-oval tube heat exchanger
CN102121798A (en) * 2011-03-25 2011-07-13 兰州交通大学 Flat tube-fin heat exchanger with double-side vortex generator
CN102200405A (en) * 2011-03-25 2011-09-28 兰州交通大学 Combined triangular curved vortex generator type circular tube fin heat exchanger
CN102109289B (en) * 2011-03-25 2012-08-15 兰州交通大学 Fin-and-oval tube heat exchanger
CN104197288A (en) * 2014-09-12 2014-12-10 苏州承源光电科技有限公司 LED radiator
KR102292396B1 (en) * 2020-02-13 2021-08-20 엘지전자 주식회사 Evaporator
US11624533B2 (en) 2020-02-13 2023-04-11 Lg Electronics Inc. Evaporator
US11898780B2 (en) 2020-02-13 2024-02-13 Lg Electronics Inc. Evaporator

Similar Documents

Publication Publication Date Title
JP6165360B2 (en) Heat exchanger and air conditioner
WO2009153985A1 (en) Heat exchanger
JP2009275967A (en) Heat exchanger
JP4775429B2 (en) Finned tube heat exchanger
WO2014207785A1 (en) Heat exchanger, heat exchanger structure, and fin for heat exchanger
JP2016102592A (en) Heat exchanger
JP2008180468A (en) Heat exchanger
JP2014020580A (en) Fin tube type heat exchanger
JP2013245884A (en) Fin tube heat exchanger
CN102027307A (en) Fin-tube heat exchanger
KR20150094954A (en) A heat exchanger
JP2018025373A (en) Heat exchanger for refrigerator, and refrigerator
JP5020886B2 (en) Heat exchanger
JP2006105415A (en) Heat exchanger
EP3608618B1 (en) Heat exchanger and refrigeration cycle device
JP6021081B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus including the same
JP2015004449A (en) Fin tube heat exchanger
JP2016102593A (en) Heat exchanger
JP2010091145A (en) Heat exchanger
JP6379352B2 (en) Finned tube heat exchanger
JP2010210188A (en) Fin tube heat exchanger
JP2005121288A (en) Heat exchanger
JP6253940B2 (en) Refrigeration equipment
JP5446379B2 (en) Finned heat exchanger
JP2013221679A (en) Fin tube heat exchanger