JP2014020412A - Four-way valve - Google Patents

Four-way valve Download PDF

Info

Publication number
JP2014020412A
JP2014020412A JP2012157555A JP2012157555A JP2014020412A JP 2014020412 A JP2014020412 A JP 2014020412A JP 2012157555 A JP2012157555 A JP 2012157555A JP 2012157555 A JP2012157555 A JP 2012157555A JP 2014020412 A JP2014020412 A JP 2014020412A
Authority
JP
Japan
Prior art keywords
flow path
way valve
refrigerant
flow
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012157555A
Other languages
Japanese (ja)
Other versions
JP6069921B2 (en
Inventor
Yuji Tsuchiya
祐二 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2012157555A priority Critical patent/JP6069921B2/en
Publication of JP2014020412A publication Critical patent/JP2014020412A/en
Application granted granted Critical
Publication of JP6069921B2 publication Critical patent/JP6069921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a four-way valve of high thermal efficiency without bypassing of a refrigerant flow.SOLUTION: A four-way valve A connected with a first flow channel 12 at its upper side, connected with second to fourth flow channels 13, 14, 15 at its lower side, and controlling the flow of a fluid, includes a housing 11 composed of a cylinder portion 16 having the shape formed by air-tightly closing both ends of a cylindrical container and connected to the second to fourth flow channels at its lower side, and a connecting portion 17 positioned at an upper side of the cylinder portion and connected to the first flow channel, the inside of the connecting portion 17 has the shape expanded in the longitudinal direction of the cylinder portion from a first flow channel side toward a cylinder portion side, a valve element 22 is provided to move inside the housing 11 and to switch the flow channels, the valve element 22 is disposed from the cylinder portion 16 to the connecting portion 17, and a wall surface 24 of the valve element 22 and an inner wall surface 18 of the connecting portion 17 are brought into contact with each other to form a flow channel R1 in the connecting portion 17.

Description

本発明は、例えば、空調装置に用いられるもので、冷媒が流れる流路の接続を切り替える四方弁に関する。   The present invention relates to a four-way valve that is used in, for example, an air conditioner and switches connection of a flow path through which a refrigerant flows.

従来から、例えば、空気調和装置等において、冷房運転と暖房運転を切り替えるべく冷媒が流れる流路を切り替えるために四方弁が用いられている。   Conventionally, for example, in an air conditioner or the like, a four-way valve has been used to switch a flow path through which a refrigerant flows in order to switch between a cooling operation and a heating operation.

特許文献1は、構造が簡単で高温冷媒と低温冷媒が近接して流れても、両者間で熱漏洩による熱損失の発生を抑制し、冷暖房能力を向上させる技術を開示している。   Patent Document 1 discloses a technology that has a simple structure and suppresses generation of heat loss due to heat leakage between the two even when a high-temperature refrigerant and a low-temperature refrigerant flow in proximity to each other, thereby improving the heating and cooling capacity.

特開2010−159882号公報JP 2010-159882 A

しかし、例えば、特許文献1が示す四方弁は、本体がシリンダ形状をもっているため、四方弁内部に形成される冷媒流路は必ずしも直線的な形状ではなく、シリンダ形状の内部構造に沿って冷媒が迂回する流路が形成される。このため、冷媒が四方弁内部で滞留してしまい、その結果、熱損失が増加する場合がある。
本発明は、冷媒の流れの滞留をなくし熱損失の発生を抑制できる四方弁を提供することを目的とする。
However, for example, in the four-way valve shown in Patent Document 1, the main body has a cylinder shape. Therefore, the refrigerant flow path formed inside the four-way valve is not necessarily a linear shape, and the refrigerant flows along the internal structure of the cylinder shape. A detour channel is formed. For this reason, a refrigerant | coolant stagnates inside a four-way valve, As a result, a heat loss may increase.
An object of the present invention is to provide a four-way valve capable of eliminating the retention of the refrigerant flow and suppressing the generation of heat loss.

課題を解決するための請求項1記載の発明は、上側に第1流路が接続され、下側に第2流路と第3流路と第4流路とが接続され、流体が流れる流路を切り替える四方弁であって、前記四方弁は筒状容器の両端を密閉した形状であり下側に前記第2流路と前記第3流路と前記第4流路とが接続されたシリンダ部と、前記シリンダ部の上側に設けられ前記第1流路が接続されるとともに前記シリンダ部と内部同士が接続している接続部とからなる筐体を備え、前記接続部は、内部が前記第1流路側から前記シリンダ部側に向かって前記シリンダ部の長手方向に広がる形状を有しており、前記筐体の内部を移動するように設けられ、前記第1流路から流入する高温の流体を前記第2流路に流出させるときに前記第4流路から流入する低温の流体を前記第3流路に流出させ、前記第1流路から流入する高温の流体を前記第4流路に流出させるときに前記第2流路から流入する低温の流体を前記第3流路に流出させるように流路を切り替える弁体とを備え、前記弁体は、前記シリンダ部から前記接続部にまたがって配置され、前記弁体の壁面と前記接続部の内壁面とが当接し、前記接続部内に形成流路を形成することを特徴とした四方弁である。   According to a first aspect of the present invention for solving the problem, the first flow path is connected to the upper side, the second flow path, the third flow path, and the fourth flow path are connected to the lower side, and the flow of the fluid flows. A four-way valve for switching a path, wherein the four-way valve has a shape in which both ends of a cylindrical container are sealed and the second flow path, the third flow path, and the fourth flow path are connected to the lower side And a housing comprising a connecting portion that is provided on the upper side of the cylinder portion and is connected to the first flow path and in which the cylinder portion and the interior are connected to each other. It has a shape that spreads in the longitudinal direction of the cylinder part from the first flow path side toward the cylinder part side, and is provided so as to move inside the casing, and is heated to flow in from the first flow path. When the fluid flows out into the second flow path, the low temperature fluid flowing in from the fourth flow path is A low temperature fluid flowing from the second flow channel is caused to flow out to the third flow channel when the high temperature fluid flowing from the first flow channel is caused to flow into the third flow channel and the high temperature fluid flowing from the first flow channel to the fourth flow channel. A valve body for switching the flow path, and the valve body is disposed across the connecting portion from the cylinder portion, and a wall surface of the valve body and an inner wall surface of the connecting portion are in contact with each other, This is a four-way valve characterized by forming a formation flow path.

請求項2記載の発明は、前記形成流路を形成する前記接続部の内壁と前記弁体の壁面の少なくともいずれか一方に弾性部材を設けたことを特徴とする請求項1記載の四方弁である。   According to a second aspect of the present invention, in the four-way valve according to the first aspect, an elastic member is provided on at least one of the inner wall of the connecting portion and the wall surface of the valve body that form the forming flow path. is there.

四方弁内に形成される形成流路を、冷媒が迂回することのない直線的な流路として形成する。これにより、冷媒は迂回することなく流れるため、冷媒の流れの滞留をなくし熱損失の発生を抑制できる四方弁を提供することができる。   The formation flow path formed in the four-way valve is formed as a straight flow path that does not bypass the refrigerant. Accordingly, since the refrigerant flows without detouring, it is possible to provide a four-way valve that can eliminate the retention of the refrigerant flow and suppress the occurrence of heat loss.

本発明の一実施形態に係る四方弁の外見を示す外形図。FIG. 3 is an external view showing the appearance of a four-way valve according to an embodiment of the present invention. 同じく一実施形態に係る四方弁の冷房運転時の動作の一例を示す断面図。Sectional drawing which shows an example of the operation | movement at the time of the air_conditionaing | cooling operation of the four-way valve which concerns on one Embodiment. 同じく一実施形態に係る四方弁の暖房運転時の動作の一例を示す断面図。Sectional drawing which shows an example of the operation | movement at the time of the heating operation of the four-way valve which concerns on one Embodiment. 同じく一実施形態に係る四方弁を含む空気調和装置の冷房運転時の動作の一例を示す断面図。Sectional drawing which shows an example of the operation | movement at the time of air_conditionaing | cooling operation | movement of the air conditioning apparatus similarly containing the four-way valve which concerns on one Embodiment. 同じく一実施形態に係る四方弁を含む空気調和装置の暖房運転時の動作の一例を示す断面図。Sectional drawing which shows an example of the operation | movement at the time of the heating operation of the air conditioning apparatus similarly containing the four-way valve which concerns on one Embodiment. 同じく四方弁の他の実施形態の一例を示す断面図。Sectional drawing which shows an example of other embodiment of a four-way valve similarly.

以下、この発明の実施の形態について図面を参照して詳細に説明する。図1は、本発明の一実施形態に係る四方弁の外観を示す外形図、図2は、同じく一実施形態に係る四方弁の冷房運転時の動作の一例を示す断面図、図3は、同じく一実施形態に係る四方弁の暖房運転時の動作の一例を示す断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an outline view showing the appearance of a four-way valve according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing an example of the operation during cooling operation of the four-way valve according to the embodiment, and FIG. It is sectional drawing which shows an example of the operation | movement at the time of the heating operation of the four-way valve which concerns on one Embodiment.

本発明の一実施の形態に係る四方弁Aは、図1の外形図に示すように、一例として筒状容器の両端を密閉した形状であるシリンダ部16と、この上部に設けられシリンダ部16と連通する接続部17からなる筐体11を有している。接続部17は頂点側に第1流路12が接続され、シリンダ部16は底面側に第2流路13、第3流路14、第4流路15が接続されている。また、接続部17は、内部が第1流路12側からシリンダ部16側に向かってシリンダ部16の長手方向に広がる形状を有している。   A four-way valve A according to an embodiment of the present invention includes, as an example, a cylinder portion 16 having a shape in which both ends of a cylindrical container are sealed, and a cylinder portion 16 provided on the upper portion, as shown in the outline view of FIG. The housing 11 includes a connection portion 17 that communicates with the housing 11. The first flow path 12 is connected to the apex side of the connection portion 17, and the second flow path 13, the third flow path 14, and the fourth flow path 15 are connected to the bottom surface side of the cylinder section 16. Further, the connection portion 17 has a shape in which the inside expands in the longitudinal direction of the cylinder portion 16 from the first flow path 12 side toward the cylinder portion 16 side.

また、四方弁Aは、図2の冷房運転時の動作の一例を示す断面図、図3の暖房運転時の動作の一例を示す断面図に示すように、筐体11内を移動することで流路を切り替える弁体22を有している。また、弁体22は、一例として断熱性の材料とすることにより、第2流路13、第3流路14、第4流路15側に設けた流路23と第1形成流路R1との間の熱移動が効果的に防止され、熱損失を抑制することができるため、効率のよい冷房運転(暖房運転)が可能となる。弁体22は、例えば冷房運転時は、図2に示すように図面の左方向に弁体22の壁面24と接続部17の内壁面18とが当接するまでスライドする。これにより、接続部17内に第1形成流路R1が形成され、第1流路12と第4流路15を接続して低温の流体を流出させる。このとき、弁体22は、流路23を介して第2流路13と第3流路14を接続する。また、弁体22は、例えば暖房運転時は、図3に示すように図面の右方向に弁体22の壁面24と接続部17の内壁面18とが当接するまでスライドする。これにより、接続部17内に第2形成流路R2が形成され、第1流路12と第2流路13を接続して高温の流体を流出させる。このとき、弁体22は、流路23を介して第3流路14と第4流路15を接続する。   Further, the four-way valve A is moved in the housing 11 as shown in a cross-sectional view showing an example of the operation during the cooling operation in FIG. 2 and a cross-sectional view showing an example of the operation in the heating operation in FIG. It has the valve body 22 which switches a flow path. Further, the valve body 22 is made of a heat insulating material as an example, so that the flow path 23 provided on the second flow path 13, the third flow path 14, and the fourth flow path 15 side and the first formation flow path R1 The heat transfer between the two is effectively prevented and heat loss can be suppressed, so that an efficient cooling operation (heating operation) is possible. For example, during the cooling operation, the valve body 22 slides in the left direction of the drawing until the wall surface 24 of the valve body 22 and the inner wall surface 18 of the connecting portion 17 come into contact with each other in the drawing. As a result, the first formation flow path R1 is formed in the connection portion 17, and the low temperature fluid flows out by connecting the first flow path 12 and the fourth flow path 15. At this time, the valve body 22 connects the second flow path 13 and the third flow path 14 via the flow path 23. Further, for example, during heating operation, the valve body 22 slides in the right direction of the drawing until the wall surface 24 of the valve body 22 and the inner wall surface 18 of the connection portion 17 abut on each other as shown in FIG. As a result, the second formation flow path R2 is formed in the connection portion 17, and the first flow path 12 and the second flow path 13 are connected to allow the high-temperature fluid to flow out. At this time, the valve body 22 connects the third flow path 14 and the fourth flow path 15 via the flow path 23.

また、弁体22は、シリンダ部16から接続部17にまたがって配置され、弁体22が、筐体11の内部を移動する際に弁体22の壁面24と接続部17の内壁面18とが当接し、接続部17内に形成流路R1,R2を形成する。弁体22はシリンダ部16内の長手方向両側に後述するピストン36、37が取り付けられている。形成流路R1が形成されたとき、シリンダ部16内では弁体22とピストン36との間で形成流路R3が形成され、また、形成流路R2が形成されたとき、シリンダ部16内では弁体22とピストン37との間で形成流路R4が形成される。   In addition, the valve body 22 is disposed across the connecting portion 17 from the cylinder portion 16, and when the valve body 22 moves inside the housing 11, the wall surface 24 of the valve body 22 and the inner wall surface 18 of the connecting portion 17 Come into contact with each other to form the formation flow paths R1 and R2 in the connection portion 17. The valve body 22 is provided with pistons 36 and 37 to be described later on both sides in the longitudinal direction in the cylinder portion 16. When the formation flow path R1 is formed, the formation flow path R3 is formed between the valve element 22 and the piston 36 in the cylinder portion 16, and when the formation flow path R2 is formed, in the cylinder portion 16 A formation flow path R <b> 4 is formed between the valve body 22 and the piston 37.

次に、本発明の一実施形態である四方弁を空気調和装置に適用した場合の構成および動作について、図4および図5を用いて詳細に説明する。図4は、本発明の一実施形態に係る四方弁Aを含む空気調和装置の冷房運転時の動作の一例を示す断面図、図5は、同じく一実施形態に係る四方弁Aを含む空気調和装置の暖房運転時の動作の一例を示す断面図である。   Next, the configuration and operation when a four-way valve according to an embodiment of the present invention is applied to an air conditioner will be described in detail with reference to FIGS. 4 and 5. FIG. 4 is a cross-sectional view illustrating an example of an operation during cooling operation of an air conditioner including a four-way valve A according to an embodiment of the present invention, and FIG. 5 is an air conditioner including the four-way valve A according to an embodiment. It is sectional drawing which shows an example of the operation | movement at the time of heating operation of an apparatus.

図4および図5の空気調和装置において、空気調和装置は、一端が第1流路12に、他端が第3流路14に接続され、第3流路14から吸入したガス冷媒を圧縮し、高温高圧となったガス冷媒を第1流路12へ吐出する圧縮機42と、第1流路12を介して圧縮機42の吐出側に接続し、第2流路13を介して室内熱交換器45に接続し、第3流路14を介して圧縮機42の吸入側に接続し、第4流路15を介して室外熱交換器43に接続し、各流路の接続を切り替える四方弁Aと、一端が第2流路13に、他端が冷媒配管を介して膨張手段44に接続され、冷房運転時は蒸発器として機能し、暖房運転時は凝縮器として機能する室内熱交換器45と、一端が冷媒配管を介して室内熱交換器45に、他端が冷媒配管を介して室外熱交換器43に接続され、冷媒を減圧する膨張手段44と、一端が冷媒配管を介して膨張手段44に、他端が第4流路15に接続され、冷房運転時は凝縮器として機能し、暖房運転時は蒸発器として機能する室外熱交換器43とを有している。   4 and 5, the air conditioner has one end connected to the first flow path 12 and the other end connected to the third flow path 14, and compresses the gas refrigerant sucked from the third flow path 14. A compressor 42 that discharges the gas refrigerant that has become high temperature and pressure to the first flow path 12, is connected to the discharge side of the compressor 42 via the first flow path 12, and is heated indoors via the second flow path 13. Connected to the exchanger 45, connected to the suction side of the compressor 42 via the third flow path 14, connected to the outdoor heat exchanger 43 via the fourth flow path 15, and switched between the connections of each flow path The indoor heat exchange functioning as an evaporator during the cooling operation and as a condenser during the heating operation is connected to the valve A and one end to the second flow path 13 and the other end to the expansion means 44 via the refrigerant pipe. 45, one end to the indoor heat exchanger 45 via the refrigerant pipe, and the other end to the outdoor heat exchanger 43 via the refrigerant pipe. An expansion means 44 that is connected and depressurizes the refrigerant, one end is connected to the expansion means 44 via the refrigerant pipe, and the other end is connected to the fourth flow path 15, and functions as a condenser during the cooling operation, and during the heating operation And an outdoor heat exchanger 43 that functions as an evaporator.

さらに、空気調和装置は、電磁弁41と第2流路、四方弁Aおよび第3流路14との間が、配管31、32、33、34により接続されている。詳しくは、電磁弁41は、配管31を介して第1流路12と、配管32を介してシリンダ部16の長手方向の一端(シリンダ空間35側)と、配管33を介してシリンダ部16の長手方向の他端(シリンダ空間38側)と、配管34を介して第3流路14と接続する電磁弁41を有しており、オン/オフ制御により配管31,32,33,34の接続を切り替える。詳しくは、電磁弁41がオフ制御のとき、配管31と配管32とが接続され、配管33と配管34とが接続される。また、電磁弁41がオン制御の時、配管31と配管33とが接続され、配管32と配管34とが接続される。   Further, in the air conditioner, the solenoid valve 41 and the second flow path, the four-way valve A, and the third flow path 14 are connected by pipes 31, 32, 33, and 34. Specifically, the solenoid valve 41 includes the first flow path 12 via the pipe 31, one end in the longitudinal direction of the cylinder part 16 (on the cylinder space 35 side) via the pipe 32, and the cylinder part 16 via the pipe 33. The other end in the longitudinal direction (on the cylinder space 38 side) and an electromagnetic valve 41 connected to the third flow path 14 via the pipe 34 are provided, and the pipes 31, 32, 33, 34 are connected by on / off control. Switch. Specifically, when the solenoid valve 41 is off-controlled, the pipe 31 and the pipe 32 are connected, and the pipe 33 and the pipe 34 are connected. Moreover, when the solenoid valve 41 is on-controlled, the pipe 31 and the pipe 33 are connected, and the pipe 32 and the pipe 34 are connected.

このような構成をもつ空気調和装置において、以下に、冷房運転時の動作を図4を用いて説明する。図4に示される空気調和装置において、冷房運転時は、電磁弁41はオフであり、この結果、冷媒は、第1流路12から配管31の中を電磁弁41に向かって流れ、電磁弁41から配管32の中をシリンダ空間35に向かって流れ、四方弁A内のピストン36を左に押すことで弁体22を左に押して図4に示す位置に固定する。この時、図4に示す通り、対向する弁体22の壁面24と接続部17の内壁面18とは隙間なく当接している。この時の冷凍サイクルの冷媒の流れを以下に説明する。   In the air conditioner having such a configuration, the operation during the cooling operation will be described below with reference to FIG. In the air conditioner shown in FIG. 4, during the cooling operation, the electromagnetic valve 41 is off. As a result, the refrigerant flows from the first flow path 12 through the pipe 31 toward the electromagnetic valve 41, and the electromagnetic valve 41 flows from the pipe 32 to the cylinder space 35 and pushes the piston 36 in the four-way valve A to the left, thereby pushing the valve body 22 to the left and fixing it to the position shown in FIG. At this time, as shown in FIG. 4, the wall surface 24 of the opposing valve body 22 and the inner wall surface 18 of the connection portion 17 are in contact with each other without a gap. The flow of the refrigerant in the refrigeration cycle at this time will be described below.

圧縮機42から吐出された高圧高温のガス冷媒は、第1流路12を介して四方弁Aに流入する。四方弁Aから第4流路15を介して室外熱交換器43に流入した高温高圧のガス冷媒は外気と熱交換を行って凝縮し、高圧の液冷媒となる。室外熱交換器43から冷媒配管を介して膨張手段44に流入した高圧の液冷媒は膨張手段44により減圧され低圧低温の気液二相状態の冷媒となる。膨張手段44から冷媒配管を介して室内熱交換器45に流入した低圧低温の気液二相状態の冷媒は、室内空気と熱交換を行って蒸発し低温低圧のガス冷媒となる。この低温低圧のガス冷媒は室内熱交換器45から第2流路13を介して四方弁Aに流入し、四方弁Aから第3流路14を介して圧縮機42に吸入され、再び圧縮される。   The high-pressure and high-temperature gas refrigerant discharged from the compressor 42 flows into the four-way valve A through the first flow path 12. The high-temperature and high-pressure gas refrigerant that has flowed from the four-way valve A into the outdoor heat exchanger 43 via the fourth flow path 15 is condensed by exchanging heat with the outside air, and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed from the outdoor heat exchanger 43 into the expansion means 44 via the refrigerant pipe is decompressed by the expansion means 44 and becomes a low-pressure low-temperature gas-liquid two-phase refrigerant. The low-pressure and low-temperature gas-liquid two-phase refrigerant that has flowed from the expansion means 44 into the indoor heat exchanger 45 through the refrigerant pipe exchanges heat with room air and evaporates to become a low-temperature and low-pressure gas refrigerant. This low-temperature and low-pressure gas refrigerant flows into the four-way valve A from the indoor heat exchanger 45 via the second flow path 13 and is sucked into the compressor 42 from the four-way valve A via the third flow path 14 and compressed again. The

ここで注目すべきは、対向する弁体22の壁面24と接続部17の内壁面18とは隙間なく当接しているため、第1流路12から流入する冷媒がピストン37側に流入することはないということである。よって、四方弁Aの筐体11と四方弁Aの内部に設けられた弁体22とにより形成される第1形成流路R1は直線状となり、筐体11内を流体が迂回する領域をもたない形状となる。このことから、上述した特許文献1が示すように、シリンダ形状の四方弁の中に形成された形成流路のように、冷媒がシリンダ内に充満し、冷媒が迂回することで、四方弁A内で冷媒が滞留を起こし熱損失を発生させるという不具合を回避することが可能となる。   It should be noted here that the wall surface 24 of the opposing valve body 22 and the inner wall surface 18 of the connecting portion 17 are in contact with each other without any gap, so that the refrigerant flowing from the first flow path 12 flows into the piston 37 side. That is not. Therefore, the first forming flow path R1 formed by the casing 11 of the four-way valve A and the valve body 22 provided inside the four-way valve A is linear, and has a region where the fluid bypasses the casing 11. The shape is not good. From this, as shown in Patent Document 1 described above, the refrigerant fills the cylinder as in the formation flow path formed in the cylinder-shaped four-way valve, and the refrigerant bypasses the four-way valve A. It is possible to avoid the problem that the refrigerant stagnates and causes heat loss.

またさらに、図4に示すとおり、第1形成流路R1を形成する接続部17の内壁面18と、弁体22の壁面24とは略平行となるように形成されている。これにより、第1形成流路R1は、第1流路12と第4流路15を略最短で接続するための筒形状の形成流路であり、筐体内を流体が迂回する領域をもたない形状となるものである。   Furthermore, as shown in FIG. 4, the inner wall surface 18 of the connecting portion 17 that forms the first formation flow path R <b> 1 and the wall surface 24 of the valve body 22 are formed to be substantially parallel. Thus, the first formation flow path R1 is a cylindrical formation flow path for connecting the first flow path 12 and the fourth flow path 15 in a substantially shortest manner, and has a region in which the fluid bypasses the inside of the housing. It will be a shape that is not.

次に、暖房運転時の動作を図5を用いて説明する。図5に示される空気調和装置において、構成は図4と変わることがないが、冷媒の流れは冷房運転の際と逆転することになる。   Next, the operation | movement at the time of heating operation is demonstrated using FIG. In the air conditioner shown in FIG. 5, the configuration does not change from that in FIG. 4, but the refrigerant flow is reversed from that in the cooling operation.

すなわち、暖房運転時は、電磁弁41はオンであり、この結果、冷媒は、第1流路12から配管31の中を電磁弁41に向かって流れ、電磁弁41から配管33の中をシリンダ空間38に向かって流れ、四方弁A内のピストン37を右に押すことで弁体22を右に押して図5に示す位置に固定する。この時、図4に示す通り、対向する弁体22の壁面24と接続部17の内壁面18とは隙間なく当接している。この時の冷凍サイクルの冷媒の流れを以下に説明する。   That is, during the heating operation, the electromagnetic valve 41 is on, and as a result, the refrigerant flows from the first flow path 12 through the pipe 31 toward the electromagnetic valve 41 and from the electromagnetic valve 41 through the pipe 33 to the cylinder. It flows toward the space 38 and pushes the piston 37 in the four-way valve A to the right, thereby pushing the valve body 22 to the right and fixing it to the position shown in FIG. At this time, as shown in FIG. 4, the wall surface 24 of the opposing valve body 22 and the inner wall surface 18 of the connection portion 17 are in contact with each other without a gap. The flow of the refrigerant in the refrigeration cycle at this time will be described below.

圧縮機42から吐出された高圧高温のガス冷媒は、第1流路12を介して四方弁Aに流入する。四方弁Aから第2流路13を介して室内熱交換器45に流入した高温高圧のガス冷媒は室内空気と熱交換を行って凝縮し、高圧の液冷媒となる。室内熱交換器45から冷媒配管を介して膨張手段44に流入した高圧の液冷媒は膨張手段44により減圧され低温低圧の気液二相状態の冷媒となる。膨張手段44から冷媒配管を介して室外熱交換器43に流入した低温低圧の気液二相状態の冷媒は、外気と熱交換を行って蒸発し低温低圧のガス冷媒となる。この低温低圧のガス冷媒は室外熱交換器43から第4流路15を介して四方弁Aに流入し、四方弁Aから第3流路14を介して圧縮機42に吸入され、再び圧縮される。   The high-pressure and high-temperature gas refrigerant discharged from the compressor 42 flows into the four-way valve A through the first flow path 12. The high-temperature and high-pressure gas refrigerant that has flowed from the four-way valve A into the indoor heat exchanger 45 via the second flow path 13 is condensed by exchanging heat with the indoor air and becomes high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed from the indoor heat exchanger 45 into the expansion means 44 via the refrigerant pipe is decompressed by the expansion means 44 and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 43 from the expansion means 44 via the refrigerant pipe exchanges heat with the outside air and evaporates to become a low-temperature and low-pressure gas refrigerant. This low-temperature and low-pressure gas refrigerant flows into the four-way valve A from the outdoor heat exchanger 43 via the fourth flow path 15 and is sucked into the compressor 42 from the four-way valve A via the third flow path 14 and compressed again. The

同様にここで注目すべきは、図5に示すように、対向する弁体22の壁面24と接続部17の内壁面18とは隙間なく当接しているため、第1流路12から流入する冷媒がピストン36側に流入することはないということである。よって、四方弁Aの筐体11と四方弁Aの内部に設けられた弁体22とにより形成される第2形成流路R2は直線状となり、第1流路12と第2流路13を略最短で接続するための筒形状の形成流路であり、筐体11内を流体が迂回する領域をもたない形状となる。このことから、同様に、上述した特許文献1が示すシリンダ形状の四方弁の中に形成された形成流路のように、冷媒がシリンダ内に充満し、四方弁内で冷媒が滞留を起こし熱損失を発生させるという不具合を回避することが可能となる。   Similarly, it should be noted here that, as shown in FIG. 5, the wall surface 24 of the opposing valve body 22 and the inner wall surface 18 of the connecting portion 17 are in contact with each other without any gap, and therefore flow from the first flow path 12. This means that the refrigerant does not flow into the piston 36 side. Therefore, the second formation flow path R2 formed by the casing 11 of the four-way valve A and the valve body 22 provided inside the four-way valve A is linear, and the first flow path 12 and the second flow path 13 are connected to each other. It is a cylindrical shaped flow path for connection in a substantially shortest length, and has a shape that does not have a region where the fluid bypasses the inside of the housing 11. From this, similarly, the refrigerant is filled in the cylinder as in the formation flow path formed in the cylinder-shaped four-way valve described in Patent Document 1 described above, and the refrigerant stays in the four-way valve to generate heat. It is possible to avoid the problem of generating a loss.

またさらに、図5に示すとおり、第2形成流路R2を形成する接続部17の内壁面18と、弁体22の壁面24とは略平行となるように形成されている。これにより、第2形成流路R2は、第1流路12と第2流路13を略最短で接続するための筒形状の形成流路であり、筐体内を流体が迂回する領域をもたない形状となるものである。   Furthermore, as shown in FIG. 5, the inner wall surface 18 of the connecting portion 17 that forms the second formation flow path R <b> 2 and the wall surface 24 of the valve body 22 are formed to be substantially parallel. As a result, the second formation flow path R2 is a cylindrical formation flow path for connecting the first flow path 12 and the second flow path 13 in a shortest distance, and has a region in which the fluid bypasses the housing. It will be a shape that is not.

また、図6は、本発明による四方弁の他の実施形態の一例を示す断面図である。ここで、弁体22の壁面24と接続部17の内壁面18とに弾性部材であるパッキン51およびパッキン52が接着されている。このパッキンにより、対向する弁体22の壁面24と接続部17の内壁面18とが当接する際に、冷媒が当接面を通過することを防止する効果をより一層高めることができる。この結果、冷媒は筐体11および弁体22により形成された第1形成流路R1、または、第2形成流路R2の中のみを主に移動することにより、冷媒の流れの滞留をなくし熱損失の発生を抑制でき、ひいては冷暖房効率を向上させた空気調和装置を実現することが可能となる。   Moreover, FIG. 6 is sectional drawing which shows an example of other embodiment of the four-way valve by this invention. Here, packing 51 and packing 52, which are elastic members, are bonded to the wall surface 24 of the valve body 22 and the inner wall surface 18 of the connection portion 17. This packing can further enhance the effect of preventing the refrigerant from passing through the contact surface when the wall surface 24 of the valve body 22 and the inner wall surface 18 of the connecting portion 17 contact each other. As a result, the refrigerant moves mainly only in the first formation flow path R1 or the second formation flow path R2 formed by the casing 11 and the valve body 22, thereby eliminating the stagnation of the flow of the refrigerant and heat. It is possible to realize an air conditioner that can suppress the occurrence of loss and thus improve the cooling and heating efficiency.

以上記載した様々な実施形態は複数同時に実施することが可能であり、本発明は、開示された原理と新規な特徴に矛盾しない広範な範囲に及ぶものであり、上述した実施形態に限定されるものではない。   A plurality of various embodiments described above can be carried out simultaneously, and the present invention covers a wide range consistent with the disclosed principle and novel features, and is limited to the above-described embodiments. It is not a thing.

A…四方弁、11…筐体、12…第1流路、13…第2流路、14…第3流路、15…第4流路、16…シリンダ部、17…接続部、22…弁体、23…流路、31〜34…配管、41…電磁弁、42…圧縮機、43…室外熱交換器、44…膨張手段、45…室内熱交換器、51,52…パッキン。   A ... Four-way valve, 11 ... Housing, 12 ... First flow path, 13 ... Second flow path, 14 ... Third flow path, 15 ... Fourth flow path, 16 ... Cylinder section, 17 ... Connection section, 22 ... Valve body, 23 ... flow path, 31-34 ... piping, 41 ... solenoid valve, 42 ... compressor, 43 ... outdoor heat exchanger, 44 ... expansion means, 45 ... indoor heat exchanger, 51, 52 ... packing.

Claims (2)

上側に第1流路が接続され、下側に第2流路と第3流路と第4流路とが接続され、流体が流れる流路を切り替える四方弁であって、
前記四方弁は筒状容器の両端を密閉した形状であり下側に前記第2流路と前記第3流路と前記第4流路とが接続されたシリンダ部と、
前記シリンダ部の上側に設けられ前記第1流路が接続されるとともに前記シリンダ部と内部同士が接続している接続部とからなる筐体を備え、
前記接続部は、内部が前記第1流路側から前記シリンダ部側に向かって前記シリンダ部の長手方向に広がる形状を有しており、
前記筐体の内部を移動するように設けられ、前記第1流路から流入する高温の流体を前記第2流路に流出させるときに前記第4流路から流入する低温の流体を前記第3流路に流出させ、前記第1流路から流入する高温の流体を前記第4流路に流出させるときに前記第2流路から流入する低温の流体を前記第3流路に流出させるように流路を切り替える弁体とを備え、
前記弁体は、前記シリンダ部から前記接続部にまたがって配置され、前記弁体の壁面と前記接続部の内壁面とが当接し、前記接続部内に形成流路を形成することを特徴とした四方弁。
A first flow path is connected to the upper side, a second flow path, a third flow path, and a fourth flow path are connected to the lower side, and a four-way valve that switches a flow path through which a fluid flows,
The four-way valve has a shape in which both ends of a cylindrical container are sealed, and a cylinder portion in which the second flow path, the third flow path, and the fourth flow path are connected to the lower side,
Provided with a casing that is provided on the upper side of the cylinder part and is connected to the first flow path and is connected to the cylinder part and the inside thereof;
The connection portion has a shape in which the inside expands in the longitudinal direction of the cylinder portion from the first flow path side toward the cylinder portion side,
The third fluid is provided so as to move inside the housing, and when the high-temperature fluid flowing from the first flow path is caused to flow out to the second flow path, the low-temperature fluid flowing from the fourth flow path is the third. The low temperature fluid flowing from the second flow path is caused to flow out to the third flow path when the high temperature fluid flowing from the first flow path is caused to flow out to the fourth flow path. A valve body for switching the flow path,
The valve body is arranged across the connecting portion from the cylinder portion, and a wall surface of the valve body and an inner wall surface of the connecting portion are in contact with each other to form a forming flow path in the connecting portion. Four-way valve.
前記形成流路を形成する前記接続部の内壁と前記弁体の壁面の少なくともいずれか一方に弾性部材を設けたことを特徴とする請求項1記載の四方弁。   The four-way valve according to claim 1, wherein an elastic member is provided on at least one of an inner wall of the connecting portion and the wall surface of the valve body that form the forming flow path.
JP2012157555A 2012-07-13 2012-07-13 Four-way valve Active JP6069921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157555A JP6069921B2 (en) 2012-07-13 2012-07-13 Four-way valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157555A JP6069921B2 (en) 2012-07-13 2012-07-13 Four-way valve

Publications (2)

Publication Number Publication Date
JP2014020412A true JP2014020412A (en) 2014-02-03
JP6069921B2 JP6069921B2 (en) 2017-02-01

Family

ID=50195571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157555A Active JP6069921B2 (en) 2012-07-13 2012-07-13 Four-way valve

Country Status (1)

Country Link
JP (1) JP6069921B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982952A (en) * 2014-05-16 2014-08-13 广东美的集团芜湖制冷设备有限公司 Air pressure transmission device of air conditioner, vertical type air conditioner indoor unit and air conditioner
JP2017002979A (en) * 2015-06-09 2017-01-05 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system
CN109838583A (en) * 2019-03-25 2019-06-04 郑州云宇新能源技术有限公司 Four-way reversing valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114747U (en) * 1975-03-13 1976-09-17
JPS5682362U (en) * 1979-11-28 1981-07-03
JP2002022315A (en) * 2000-07-04 2002-01-23 Ranco Japan Ltd Four-way selector valve of high efficiency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114747U (en) * 1975-03-13 1976-09-17
JPS5682362U (en) * 1979-11-28 1981-07-03
JP2002022315A (en) * 2000-07-04 2002-01-23 Ranco Japan Ltd Four-way selector valve of high efficiency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982952A (en) * 2014-05-16 2014-08-13 广东美的集团芜湖制冷设备有限公司 Air pressure transmission device of air conditioner, vertical type air conditioner indoor unit and air conditioner
JP2017002979A (en) * 2015-06-09 2017-01-05 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system
CN109838583A (en) * 2019-03-25 2019-06-04 郑州云宇新能源技术有限公司 Four-way reversing valve

Also Published As

Publication number Publication date
JP6069921B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
US10605498B2 (en) Heat pump apparatus
WO2010070858A1 (en) In-ground heat exchanger and air conditioning system equipped with same
JP5870760B2 (en) Four-way valve and heat pump device equipped with it
CN107489786B (en) Slidingtype switching valve and refrigerating circulation system
JP2009109062A (en) Refrigerating cycle device using four-way switch valve
JP5936785B1 (en) Air conditioner
JP2009109063A (en) Four-way selector valve and refrigeration cycle device using this
WO2016192146A1 (en) Six-way reversing valve, and air-conditioning outdoor unit, and air conditioner having same
JP6261008B2 (en) Sliding switching valve and refrigeration cycle system
JP6069921B2 (en) Four-way valve
JP2017137961A (en) Four-way valve and refrigeration cycle device including the same
CN105526747B (en) Heat exchanger and the refrigerating circulatory device for possessing the heat exchanger
JP5663330B2 (en) Four-way selector valve
JP2007129095A (en) Cooling device
JP2014173823A (en) Passage selector valve and air conditioner with passage selector valve
JP5241432B2 (en) Four-way switching valve and refrigeration cycle device
JP2012211688A (en) Four-way valve, and heat pump device with the same
JP2016044777A (en) Flow passage selector valve and refrigeration cycle using the same
WO2016192147A1 (en) Air-conditioning outdoor unit and air conditioner
CN104819608B (en) Refrigerating system and electromagnetic three-way valve thereof
JP2014190642A (en) Air conditioner
JP5310242B2 (en) Shunt and refrigeration equipment
JP7224465B2 (en) refrigeration cycle equipment
JP2020176751A (en) Heat exchanger and refrigeration system using the same
JP6469489B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6069921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151