JP2014190642A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014190642A
JP2014190642A JP2013067830A JP2013067830A JP2014190642A JP 2014190642 A JP2014190642 A JP 2014190642A JP 2013067830 A JP2013067830 A JP 2013067830A JP 2013067830 A JP2013067830 A JP 2013067830A JP 2014190642 A JP2014190642 A JP 2014190642A
Authority
JP
Japan
Prior art keywords
flow path
switching mechanism
path switching
connection pipe
side connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013067830A
Other languages
Japanese (ja)
Other versions
JP6006664B2 (en
Inventor
Kazuhiro Endo
和広 遠藤
Sadao Sekiya
禎夫 関谷
Toshihiro Komatsu
智弘 小松
Hiroshi Yoneda
広 米田
Kazumasa Yoshida
和正 吉田
Kazuo Odate
一夫 大舘
Ryoichi Takato
亮一 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013067830A priority Critical patent/JP6006664B2/en
Publication of JP2014190642A publication Critical patent/JP2014190642A/en
Application granted granted Critical
Publication of JP6006664B2 publication Critical patent/JP6006664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fluid-Driven Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of ensuring small internal heat loss in a channel switching mechanism.SOLUTION: An air conditioner comprises a refrigerant circuit in which a compressor, a channel switching mechanism, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected by a high-pressure-side connection pipe and a low-pressure-side connection pipe. The channel switching mechanism includes: a first channel switching mechanism that connects the compressor to the indoor heat exchanger during a heating operation; and a second channel switching mechanism that connects the outdoor heat exchanger to the compressor during the heating operation. The first channel switching mechanism and the second channel switching mechanism each include a valve body switching a channel of the refrigerant circuit, and the high-pressure-side connection pipe is connected to the second channel switching mechanism above the valve body of the second channel switching mechanism.

Description

本発明は、流路切替機構を備える空気調和機に関する。   The present invention relates to an air conditioner including a flow path switching mechanism.

特許文献1には、高圧三方弁と低圧三方弁を備え、高圧三方弁に圧縮機から吐出した高温冷媒を流し、低圧三方弁に膨張弁を通過した低温冷媒を流す四方弁が記載されている。特許文献1に記載の四方弁によれば、四方弁での高温冷媒と低温冷媒との熱交換を抑制することができる。   Patent Document 1 describes a four-way valve that includes a high-pressure three-way valve and a low-pressure three-way valve, flows high-temperature refrigerant discharged from a compressor through the high-pressure three-way valve, and flows low-temperature refrigerant that has passed through an expansion valve through the low-pressure three-way valve. . According to the four-way valve described in Patent Document 1, heat exchange between the high-temperature refrigerant and the low-temperature refrigerant in the four-way valve can be suppressed.

特開2012−211688公報JP 2012-211688 A

しかしながら、特許文献1に記載の四方弁は、圧縮機から吐出した高温冷媒が高圧三方弁だけでなく、低圧三方弁のスライド弁外側空間にも流れる。低圧三方弁のスライド弁内側空間には低温冷媒が流れるため、低圧三方弁に流れた高温冷媒はスライド弁を介して低温冷媒と接触する。すると、低圧三方弁に流れた高温冷媒は、低圧三方弁で低温冷媒によって凝縮して液状態となる。   However, in the four-way valve described in Patent Document 1, high-temperature refrigerant discharged from the compressor flows not only in the high-pressure three-way valve but also in the slide valve outer space of the low-pressure three-way valve. Since the low-temperature refrigerant flows in the space inside the slide valve of the low-pressure three-way valve, the high-temperature refrigerant flowing through the low-pressure three-way valve comes into contact with the low-temperature refrigerant through the slide valve. Then, the high-temperature refrigerant that has flowed to the low-pressure three-way valve is condensed by the low-temperature refrigerant at the low-pressure three-way valve and becomes a liquid state.

液状態となった高温冷媒の密度は、ガス状態の高温冷媒よりも高いため、液状態となった高温冷媒は低圧三方弁から流出し、代わりにガス状態の高温冷媒が低圧三方弁に流入する。   Since the density of the high-temperature refrigerant in the liquid state is higher than that of the high-temperature refrigerant in the gas state, the high-temperature refrigerant in the liquid state flows out from the low-pressure three-way valve, and instead, the high-temperature refrigerant in the gas state flows into the low-pressure three-way valve. .

つまり、特許文献1に記載の四方弁では、低圧三方弁のスライド弁外側空間において、高温冷媒の凝縮が連続的に発生し、高温冷媒と低温冷媒の熱交換を抑制できず、四方弁での内部熱損失を低減することができない。   That is, in the four-way valve described in Patent Document 1, condensation of the high-temperature refrigerant is continuously generated in the space outside the slide valve of the low-pressure three-way valve, and heat exchange between the high-temperature refrigerant and the low-temperature refrigerant cannot be suppressed. Internal heat loss cannot be reduced.

そこで、本発明は、流路切替機構での熱損失が小さい空気調和機を提供することを目的とする。   Then, an object of this invention is to provide the air conditioner with a small heat loss in a flow-path switching mechanism.

前記課題を解決するために、本発明に係る空気調和機は、圧縮機と、流路切替機構と、室内熱交換器と、膨張弁と、室外熱交換器と、が高圧側接続配管及び低圧側接続配管によって接続された冷媒回路を備え、流路切替機構は、暖房運転時に圧縮機と室内熱交換器とを接続する第1の流路切替機構と、暖房運転時に室外熱交換器と圧縮機とを接続する第2の流路切替機構と、を有し、第1の流路切替機構及び第2の流路切替機構は冷媒回路の流路を切換える弁体を有し、高圧側接続配管は、第2の流路切替機構の弁体よりも上方で第2の流路切替機構に接続する。   In order to solve the above problems, an air conditioner according to the present invention includes a compressor, a flow path switching mechanism, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger, which are connected to a high-pressure side connection pipe and a low-pressure pipe. A refrigerant circuit connected by the side connection pipe, and the flow path switching mechanism includes a first flow path switching mechanism that connects the compressor and the indoor heat exchanger during the heating operation, and an outdoor heat exchanger and the compression during the heating operation. And a second flow path switching mechanism for connecting the machine, the first flow path switching mechanism and the second flow path switching mechanism have a valve body for switching the flow path of the refrigerant circuit, The pipe is connected to the second flow path switching mechanism above the valve body of the second flow path switching mechanism.

本発明によれば、流路切替機構での熱損失が小さい空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioner with a small heat loss in a flow-path switching mechanism can be provided.

第1実施形態に係る空気調和機の暖房運転時の系統図である。It is a distribution diagram at the time of heating operation of the air harmony machine concerning a 1st embodiment. 流路切替機構の暖房運転時の熱交換量の実験結果を示す図である。It is a figure which shows the experimental result of the heat exchange amount at the time of heating operation of a flow-path switching mechanism. 第2の吐出側接続配管が弁体より上方で第2の流路切替機構に接続するように配置した場合における第2の流路切替機構の内部状態を説明する図である。It is a figure explaining the internal state of the 2nd flow-path switching mechanism in the case where it arrange | positions so that 2nd discharge side connection piping may be connected to a 2nd flow-path switching mechanism above a valve body. 第1実施形態に係る暖房運転時の第2の流路切替機構の内部状態を説明する図である。It is a figure explaining the internal state of the 2nd flow-path switching mechanism at the time of the heating operation which concerns on 1st Embodiment. 第1実施形態に係る空気調和機の暖房運転から冷房運転への切り替え時の系統図である。It is a systematic diagram at the time of switching from the heating operation of the air conditioner which concerns on 1st Embodiment to the cooling operation. 第1実施形態に係る空気調和機の第1の流路切替機構と第2の流路切替機構の弁体の位置が反対になった場合の系統図である。It is a systematic diagram when the positions of the valve bodies of the first flow path switching mechanism and the second flow path switching mechanism of the air conditioner according to the first embodiment are reversed. 第1実施形態に係る空気調和機の冷房運転時の系統図である。It is a systematic diagram at the time of air_conditionaing | cooling operation of the air conditioner which concerns on 1st Embodiment. 第1実施形態に係る空気調和機の冷房運転から暖房運転への切り替え時の系統図である。It is a systematic diagram at the time of the switching from the cooling operation of the air conditioner which concerns on 1st Embodiment to a heating operation. 第2実施形態に係る空気調和機の暖房運転時の系統図である。It is a distribution diagram at the time of heating operation of the air harmony machine concerning a 2nd embodiment. 第2実施形態に係る暖房運転時の第2の流路切替機構の内部状態を説明する図である。It is a figure explaining the internal state of the 2nd flow-path switching mechanism at the time of the heating operation which concerns on 2nd Embodiment.

本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、第1実施形態に係る空気調和機の暖房運転時の冷媒回路を示す系統図である。図1では、流路切替機構20を断面図として拡大図示している。空気調和機S1は、熱源側であって室外(非空調空間)に設置される室外ユニットUoと、利用側であって室内(空調空間)に設置される室内ユニットUiと、を備えている。   FIG. 1 is a system diagram showing a refrigerant circuit during heating operation of the air conditioner according to the first embodiment. In FIG. 1, the flow path switching mechanism 20 is shown enlarged as a cross-sectional view. The air conditioner S1 includes an outdoor unit Uo that is installed on the heat source side and outdoors (non-air-conditioned space), and an indoor unit Ui that is installed on the usage side and indoors (air-conditioned space).

空気調和機S1の冷媒回路は、圧縮機10と、流路切替機構20と、室外熱交換器60と、膨張弁70と、室内熱交換器80と、が環状に配管aで接続されている。圧縮機10、流路切替機構20、室外熱交換器60、及び膨張弁70は室外ユニットUoに設置され、室内熱交換器80は室内ユニットUiに設置されている。   In the refrigerant circuit of the air conditioner S1, the compressor 10, the flow path switching mechanism 20, the outdoor heat exchanger 60, the expansion valve 70, and the indoor heat exchanger 80 are annularly connected by a pipe a. . The compressor 10, the flow path switching mechanism 20, the outdoor heat exchanger 60, and the expansion valve 70 are installed in the outdoor unit Uo, and the indoor heat exchanger 80 is installed in the indoor unit Ui.

室外熱交換器60は、室外ファン60fから送られてくる空気(室外空気)と冷媒との熱交換を行う。膨張弁70は、冷媒を減圧する減圧装置として機能する。室内熱交換器80は、室内ファン80fから送られてくる空気(室内空気)と冷媒との熱交換を行う。   The outdoor heat exchanger 60 performs heat exchange between the air (outdoor air) sent from the outdoor fan 60f and the refrigerant. The expansion valve 70 functions as a decompression device that decompresses the refrigerant. The indoor heat exchanger 80 performs heat exchange between the air (room air) sent from the indoor fan 80f and the refrigerant.

なお、圧縮機10、流路切替機構20、室外ファン60f、室内ファン80f及び膨張弁70の各動作は、センサ類(図示せず)やリモコン(図示せず)から入力される信号に基づいて、制御装置(図示せず)により制御される。   In addition, each operation | movement of the compressor 10, the flow-path switching mechanism 20, the outdoor fan 60f, the indoor fan 80f, and the expansion valve 70 is based on the signal input from sensors (not shown) and a remote control (not shown). Controlled by a control device (not shown).

流路切替機構20は、第1の流路切替機構21aと、第2の流路切替機構21bと、電磁流路切替弁40と、電磁三方弁50と、を備えている。流路切替機構20は、暖房運転時に圧縮機10から吐出されるガス状態の高温冷媒が室内熱交換器80に流入するようにし、冷房運転時に膨張弁70から流出する低温冷媒が室内熱交換器80に流入するように切り替える。   The flow path switching mechanism 20 includes a first flow path switching mechanism 21a, a second flow path switching mechanism 21b, an electromagnetic flow path switching valve 40, and an electromagnetic three-way valve 50. The flow path switching mechanism 20 allows the high-temperature refrigerant in a gas state discharged from the compressor 10 during the heating operation to flow into the indoor heat exchanger 80, and the low-temperature refrigerant flowing out of the expansion valve 70 during the cooling operation causes the indoor heat exchanger to Switch to 80.

第1の流路切替機構21aは、円筒状の両端を密閉した弁本体22aの一方の側面に圧縮機10の高圧側接続配管12に連通する第1の吐出側接続配管23aを有する。第1の流路切替機構21aは、第1の吐出側接続配管23aの反対側に、圧縮機10の低圧側接続配管11に連通する第1の吸入側接続配管24aと、第1の吸入側接続配管24aの一方の側に隣接し、室内熱交換器80に連通する室内熱交換器側接続配管25aと、第1の吸入側接続配管24aの他方の側に隣接し、電磁三方弁50に連通する第1の開閉機構接続配管26aと、を有する。   The first flow path switching mechanism 21 a has a first discharge side connection pipe 23 a that communicates with the high pressure side connection pipe 12 of the compressor 10 on one side surface of the valve body 22 a that is sealed at both ends of the cylindrical shape. The first flow path switching mechanism 21a includes a first suction side connection pipe 24a communicating with the low pressure side connection pipe 11 of the compressor 10 on the opposite side of the first discharge side connection pipe 23a, and a first suction side. Adjacent to one side of the connection pipe 24a, adjacent to the indoor heat exchanger side connection pipe 25a communicating with the indoor heat exchanger 80, and the other side of the first suction side connection pipe 24a, and connected to the electromagnetic three-way valve 50 And a first opening / closing mechanism connection pipe 26a communicating with each other.

弁台座27aは、平面状の弁シート面28aを有する。弁シート面28aは、弁本体22aの内側の側部に、室内熱交換器側接続配管25aと、第1の吸入側接続配管24aと、第1の開閉機構接続配管26aに接続する開口部を有する。   The valve seat 27a has a flat valve seat surface 28a. The valve seat surface 28a has openings connected to the indoor heat exchanger side connection pipe 25a, the first suction side connection pipe 24a, and the first opening / closing mechanism connection pipe 26a on the inner side of the valve body 22a. Have.

弁体29aは、弁シート面28a上を摺動して、冷媒回路の流路を切り替える。室内熱交換器側接続配管25aと第1の開閉機構接続配管26aのうち一方を第1の吸入側接続配管24aと連通状態とし、他方を第1の吐出側接続配管23aと連通状態とする。   The valve body 29a slides on the valve seat surface 28a to switch the flow path of the refrigerant circuit. One of the indoor heat exchanger side connection pipe 25a and the first opening / closing mechanism connection pipe 26a is in communication with the first suction side connection pipe 24a, and the other is in communication with the first discharge side connection pipe 23a.

ピストン30a及びピストン31aは、弁本体22aの両端にそれぞれ密閉空間V1a及び密閉空間V2aを形成し、連結板32aで連結されている。弁体29aは連結板32aに設けられた図示しない孔に固定され、連結板32a、ピストン30a及びピストン31aと共に円筒軸方向を移動する。   The piston 30a and the piston 31a form a sealed space V1a and a sealed space V2a at both ends of the valve body 22a, respectively, and are connected by a connecting plate 32a. The valve body 29a is fixed to a hole (not shown) provided in the connecting plate 32a, and moves in the cylindrical axis direction together with the connecting plate 32a, the piston 30a, and the piston 31a.

第2の流路切替機構21bは、第1の流路切替機構21aと一部同様に、円筒状の両端を密閉した弁本体22bの一方の側面に圧縮機10の高圧側接続配管12に連通する第2の吐出側接続配管23bを有する。第2の流路切替機構21bは、第2の吐出側接続配管23bの反対側に圧縮機10の低圧側接続配管11に連通する第2の吸入側接続配管24bと、第2の吸入側接続配管24bの一方の側に隣接し、電磁三方弁50に連通する第2の開閉機構接続配管26bと、第2の吸入側接続配管24bの他方の側に隣接し、室外熱交換器60に連通する室外熱交換器側接続配管25bと、を有する。   The second flow path switching mechanism 21b communicates with the high pressure side connection pipe 12 of the compressor 10 on one side surface of the valve main body 22b having both cylindrical ends sealed in the same manner as the first flow path switching mechanism 21a. The second discharge side connection pipe 23b is provided. The second flow path switching mechanism 21b includes a second suction side connection pipe 24b communicating with the low pressure side connection pipe 11 of the compressor 10 on the opposite side of the second discharge side connection pipe 23b, and a second suction side connection. Adjacent to one side of the pipe 24b and adjacent to the other side of the second opening / closing mechanism connecting pipe 26b communicating with the electromagnetic three-way valve 50 and the second suction side connecting pipe 24b and communicating with the outdoor heat exchanger 60 And an outdoor heat exchanger side connection pipe 25b.

弁台座27bは、平面状の弁シート面28bを有する。弁シート面28bは、弁本体22bの内側の側部に、第2の開閉機構接続配管26bと、第2の吸入側接続配管24bと、室外熱交換器側接続配管25bに接続する開口部を有する。   The valve seat 27b has a flat valve seat surface 28b. The valve seat surface 28b has openings connected to the second opening / closing mechanism connection pipe 26b, the second suction side connection pipe 24b, and the outdoor heat exchanger side connection pipe 25b on the inner side of the valve body 22b. Have.

弁体29bは、弁シート面28b上を摺動して、第2の開閉機構接続配管26bと室外熱交換器側接続配管25bのうち一方を第2の吸入側接続配管24bと連通状態とし、他方を第2の吐出側接続配管23bと連通状態とする。   The valve body 29b slides on the valve seat surface 28b to bring one of the second opening / closing mechanism connection pipe 26b and the outdoor heat exchanger side connection pipe 25b into communication with the second suction side connection pipe 24b, The other is in communication with the second discharge side connection pipe 23b.

ピストン30b及びピストン31bは、弁本体22bの両端にそれぞれ密閉空間V1b,V2bを形成し、連結板32bで連結されている。弁体29bは連結板32bに設けられた図示しない孔に固定され、連結板32b、ピストン30b及びピストン31bと共に円筒軸方向を移動する。   The piston 30b and the piston 31b form sealed spaces V1b and V2b at both ends of the valve body 22b, respectively, and are connected by a connecting plate 32b. The valve body 29b is fixed to a hole (not shown) provided in the connection plate 32b, and moves in the cylindrical axis direction together with the connection plate 32b, the piston 30b, and the piston 31b.

電磁流路切替弁(パイロット弁)40は、第2の流路切替機構21bの第2の吐出側接続配管23bの圧力(圧縮機10の吐出圧力)と第2の吸入側接続配管24bの圧力(圧縮機10の吸入圧力)との差圧により、第1の流路切替機構21aのピストン30a及びピストン31aと、第2の流路切替機構21bのピストン30b及びピストン31bと、を作動させる。   The electromagnetic flow path switching valve (pilot valve) 40 includes a pressure of the second discharge side connection pipe 23b (discharge pressure of the compressor 10) and a pressure of the second suction side connection pipe 24b of the second flow path switching mechanism 21b. The piston 30a and the piston 31a of the first flow path switching mechanism 21a and the piston 30b and the piston 31b of the second flow path switching mechanism 21b are operated by a differential pressure with respect to (the suction pressure of the compressor 10).

電磁流路切替弁(パイロット弁)40は、流路切替部41と電磁コイル42とを備え、流路切替部41は、第1のピストン側連通口43cと第2のピストン側連通口43dのうち一方が吸入側連通口43bと連通状態となり、他方が吐出側連通口43aと連通状態となるように流路を切り替える。   The electromagnetic flow path switching valve (pilot valve) 40 includes a flow path switching section 41 and an electromagnetic coil 42. The flow path switching section 41 includes a first piston side communication port 43c and a second piston side communication port 43d. The flow path is switched so that one of them is in communication with the suction side communication port 43b and the other is in communication with the discharge side communication port 43a.

吐出側連通口43aは、キャピラリ(細管)44を介して第2の流路切替機構21bの第2の吐出側接続配管23bに接続される。吸入側連通口43bは、キャピラリ45を介して第2の流路切替機構21bの第2の吸入側接続配管24bに接続される。第1のピストン側連通口43cは、キャピラリ46及びキャピラリ47を介して第1の流路切替機構21aの密閉空間V1a、及び第2の流路切替機構21bの密閉空間V2aに接続される。第2のピストン側連通口43dは、キャピラリ48及び49を介して第1の流路切替機構21aの密閉空間V2a、及び第2の流路切替機構21bの密閉空間V2bに接続される。   The discharge side communication port 43 a is connected to the second discharge side connection pipe 23 b of the second flow path switching mechanism 21 b via a capillary (narrow tube) 44. The suction side communication port 43b is connected to the second suction side connection pipe 24b of the second flow path switching mechanism 21b via the capillary 45. The first piston side communication port 43c is connected to the sealed space V1a of the first flow path switching mechanism 21a and the sealed space V2a of the second flow path switching mechanism 21b via the capillary 46 and the capillary 47. The second piston side communication port 43d is connected to the sealed space V2a of the first channel switching mechanism 21a and the sealed space V2b of the second channel switching mechanism 21b via capillaries 48 and 49.

暖房運転時、流路切替部41は、第1のピストン側連通口43cは吐出側連通口43aと連通状態となり、第2のピストン側連通口43dは吸入側連通口43bと連通状態となる。   During the heating operation, in the flow path switching unit 41, the first piston side communication port 43c is in communication with the discharge side communication port 43a, and the second piston side communication port 43d is in communication with the suction side communication port 43b.

冷房運転時、流路切替部41は、第1のピストン側連通口43cは吸入側連通口43bと連通状態となり、第2のピストン側連通口43dは吐出側連通口43aと連通状態となる。   During the cooling operation, in the flow path switching unit 41, the first piston side communication port 43c is in communication with the suction side communication port 43b, and the second piston side communication port 43d is in communication with the discharge side communication port 43a.

このように、本実施例によれば、1個の電磁流路切替弁40で、第1の流路切替機構21aと第2の流路切替機構21bの両方を作動させることにより、電磁流路切替弁の個数を減らしてコスト低減を図ると共に、占有容積を減少することにより、コンパクト化を図ることができる。   As described above, according to the present embodiment, the electromagnetic flow path switching valve 40 is operated by operating both the first flow path switching mechanism 21a and the second flow path switching mechanism 21b. While reducing the number of switching valves and reducing the cost, the size can be reduced by reducing the occupied volume.

電磁三方弁50は、流路切替部51と電磁コイル52とを備え、流路切替部51は、第1の流路切替機構側連通口53cと第2の流路切替機構側連通口53dのうち一方が、吸入側連通口53bと連通状態となるように流路を切り替える。   The electromagnetic three-way valve 50 includes a flow path switching unit 51 and an electromagnetic coil 52, and the flow path switching unit 51 includes a first flow path switching mechanism side communication port 53c and a second flow path switching mechanism side communication port 53d. The flow path is switched so that one of them communicates with the suction side communication port 53b.

第1の流路切替機構21aの第1の開閉機構接続配管26aまたは第2の流路切替機構21bの第2の開閉機構接続配管26bを圧縮機10の低圧側接続配管11に連通させる。圧縮機10の低圧側接続配管11は、キャピラリ(細管)54を介して吸入側連通口53bに接続されている。第1の流路切替機構側連通口53cは、キャピラリ55を介して第1の流路切替機構21aの第1の開閉機構接続配管26aに接続されている。第2の流路切替機構側連通口53dは、キャピラリ56を介して第2の流路切替機構21bの第2の開閉機構接続配管26bに接続されている。   The first opening / closing mechanism connecting pipe 26a of the first flow path switching mechanism 21a or the second opening / closing mechanism connecting pipe 26b of the second flow path switching mechanism 21b is communicated with the low pressure side connecting pipe 11 of the compressor 10. The low pressure side connection pipe 11 of the compressor 10 is connected to the suction side communication port 53 b via a capillary (narrow tube) 54. The first flow path switching mechanism side communication port 53 c is connected to the first opening / closing mechanism connection pipe 26 a of the first flow path switching mechanism 21 a via the capillary 55. The second channel switching mechanism side communication port 53d is connected to the second opening / closing mechanism connection pipe 26b of the second channel switching mechanism 21b via the capillary 56.

暖房運転時、電磁三方弁50は、第1の流路切替機構側連通口53cを吸入側連通口53bと連通状態とし、且つ、第2の流路切替機構側連通口53dを電磁三方弁50の第1の開閉機構によって封止している。一方、冷房運転時、電磁三方弁50は、第2の流路切替機構側連通口53dを吸入側連通口53bと連通状態とし、且つ、第2の流路切替機構側連通口53dを電磁三方弁50の第2の開閉機構によって封止している。   During the heating operation, the electromagnetic three-way valve 50 causes the first flow path switching mechanism side communication port 53c to communicate with the suction side communication port 53b, and the second flow path switching mechanism side communication port 53d to communicate with the electromagnetic three-way valve 50. It is sealed by the first opening / closing mechanism. On the other hand, during the cooling operation, the electromagnetic three-way valve 50 causes the second flow path switching mechanism side communication port 53d to communicate with the suction side communication port 53b, and the second flow path switching mechanism side communication port 53d to communicate with the electromagnetic three-way valve. The valve 50 is sealed by the second opening / closing mechanism.

本実施例では、第1の開閉機構及び第2の開閉機構を1つの電磁三方弁50が担っているので、開閉弁を2個とするよりも、個数を減らしてコスト低減を図ると共に、占有容積を減少することにより、コンパクト化を図ることができる。なお、第1の開閉機構及び第2の開閉機構をそれぞれ別の開閉弁によって構成してもよい。   In the present embodiment, since one electromagnetic three-way valve 50 is responsible for the first opening / closing mechanism and the second opening / closing mechanism, the number of the opening / closing valves can be reduced and the cost can be reduced rather than the number of the opening / closing valves being two. Compactness can be achieved by reducing the volume. The first opening / closing mechanism and the second opening / closing mechanism may be configured by separate opening / closing valves.

次に、空気調和機S1の暖房運転時での動作について説明する。図1に示す矢印は、暖房運転時における冷媒の流れを示している。   Next, the operation | movement at the time of the heating operation of air conditioner S1 is demonstrated. The arrow shown in FIG. 1 has shown the flow of the refrigerant | coolant at the time of heating operation.

暖房運転時、電磁流路切替弁40は、第1のピストン側連通口43cが吐出側連通口43aと連通状態となり、第2のピストン側連通口43dが吸入側連通口43bと連通状態となる。   During the heating operation, in the electromagnetic flow path switching valve 40, the first piston-side communication port 43c is in communication with the discharge-side communication port 43a, and the second piston-side communication port 43d is in communication with the suction-side communication port 43b. .

圧縮機10の吐出圧力(高圧)は、吐出側連通口43aから第1のピストン側連通口43cを介して、第1の流路切替機構21aの一方の密閉空間V1a、及び、第2の流路切替機構21bの一方の密閉空間V1bに導かれる。一方、圧縮機10の吸入圧力(低圧)は、吸入側連通口43bから第2のピストン側連通口43dを介して、第1の流路切替機構21aの他方の密閉空間V2a、及び、第2の流路切替機構21bの他方の密閉空間V2bに導かれる。   The discharge pressure (high pressure) of the compressor 10 is changed from the discharge side communication port 43a through the first piston side communication port 43c to one sealed space V1a of the first flow path switching mechanism 21a and the second flow. It is guided to one sealed space V1b of the path switching mechanism 21b. On the other hand, the suction pressure (low pressure) of the compressor 10 is changed from the suction side communication port 43b through the second piston side communication port 43d to the other sealed space V2a of the first flow path switching mechanism 21a and the second To the other sealed space V2b of the flow path switching mechanism 21b.

第1の流路切替機構21aのピストン30a及びピストン31aと、第2の流路切替機構21bのピストン30b及びピストン31bと、に作用する差圧により、ピストン30a及びピストン31aと、ピストン30b及びピストン31bと、は右方向に移動し、連動して弁体29a及び29bも右方向に移動する。   Due to the differential pressure acting on the piston 30a and the piston 31a of the first flow path switching mechanism 21a and the piston 30b and the piston 31b of the second flow path switching mechanism 21b, the piston 30a and the piston 31a, the piston 30b and the piston 31b moves in the right direction, and the valve bodies 29a and 29b move in the right direction in conjunction with the movement.

弁体29a及び29bが右方向に移動することにより、第1の流路切替機構21aは、第1の吐出側接続配管23aと室内熱交換器側接続配管25aとが連通状態となり、第1の吸入側接続配管24aと第1の開閉機構接続配管26aとが連通状態となる。また、第2の流路切替機構21bは、第2の吐出側接続配管23bと第2の開閉機構接続配管26bとが連通状態となり、第2の吸入側接続配管24bと室外熱交換器側接続配管25bとが連通状態となる。   When the valve bodies 29a and 29b move to the right, the first flow path switching mechanism 21a is in communication between the first discharge side connection pipe 23a and the indoor heat exchanger side connection pipe 25a. The suction side connection pipe 24a and the first opening / closing mechanism connection pipe 26a are in communication with each other. In the second flow path switching mechanism 21b, the second discharge side connection pipe 23b and the second opening / closing mechanism connection pipe 26b are in communication with each other, and the second suction side connection pipe 24b and the outdoor heat exchanger side connection are connected. The pipe 25b is in a communication state.

電磁三方弁50は、第1の流路切替機構側連通口53cが吸入側連通口53bと連通状態となっている。したがって、第1の流路切替機構21aの第1の開閉機構接続配管26aは、低圧側接続配管11と連通している。一方、第2の流路切替機構21bの第2の開閉機構接続配管26bは電磁三方弁50において封止されている。   In the electromagnetic three-way valve 50, the first flow path switching mechanism side communication port 53c is in communication with the suction side communication port 53b. Therefore, the first opening / closing mechanism connection pipe 26 a of the first flow path switching mechanism 21 a communicates with the low-pressure side connection pipe 11. On the other hand, the second opening / closing mechanism connecting pipe 26b of the second flow path switching mechanism 21b is sealed by the electromagnetic three-way valve 50.

圧縮機10で圧縮されて高温高圧となったガス冷媒は、第1の流路切替機構21aの第1の吐出側接続配管23a、吐出側内部空間V0a、室内熱交換器側接続配管25aを順に流れ、凝縮器として機能する室内熱交換器80に流入する。室内熱交換器80を流れる高温高圧のガス冷媒は、室内ファン80fにより送られてくる室内空気と熱交換し、凝縮する。   The gas refrigerant compressed to high temperature and high pressure by the compressor 10 sequentially passes through the first discharge-side connection pipe 23a, the discharge-side internal space V0a, and the indoor heat exchanger-side connection pipe 25a of the first flow path switching mechanism 21a. It flows into the indoor heat exchanger 80 that functions as a condenser. The high-temperature and high-pressure gas refrigerant flowing through the indoor heat exchanger 80 exchanges heat with the indoor air sent by the indoor fan 80f and condenses.

凝縮した冷媒は、膨張弁70で減圧されて低温低圧の気液二相冷媒となって、蒸発器として機能する室外熱交換器60に流れる。室外熱交換器60を流れる気液二相冷媒は、室外ファン60fにより送られてくる室外空気と熱交換して蒸発し、低温低圧のガス冷媒となる。   The condensed refrigerant is decompressed by the expansion valve 70 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows to the outdoor heat exchanger 60 that functions as an evaporator. The gas-liquid two-phase refrigerant flowing in the outdoor heat exchanger 60 evaporates by exchanging heat with the outdoor air sent by the outdoor fan 60f, and becomes a low-temperature and low-pressure gas refrigerant.

室外熱交換器60から流出した低温低圧のガス冷媒は、第2の流路切替機構21bの室外熱交換器側接続配管25b、吸入側内部空間V4b、第2の吸入側接続配管24bの順に流れ、圧縮機20に戻る。   The low-temperature and low-pressure gas refrigerant flowing out of the outdoor heat exchanger 60 flows in the order of the outdoor heat exchanger side connection pipe 25b, the suction side internal space V4b, and the second suction side connection pipe 24b of the second flow path switching mechanism 21b. Return to the compressor 20.

次に、本発明の流路切替機構の内部熱損失に関する実験結果を示す。図2は、流路切替機構の暖房運転時の熱交換量の実験結果を示す図である。図3は、実験結果Bに係わる第2の流路切替機構21bである。図4は、実験結果Cに係わる第2の流路切替機構21bである。   Next, the experimental result regarding the internal heat loss of the flow path switching mechanism of the present invention is shown. FIG. 2 is a diagram illustrating an experimental result of the heat exchange amount during the heating operation of the flow path switching mechanism. FIG. 3 shows a second flow path switching mechanism 21b according to the experimental result B. FIG. 4 shows the second flow path switching mechanism 21b related to the experimental result C.

実験結果Aは、従来の流路切替機構20の実験結果であって、流路切替機構20を四方弁1つで構成した場合の実験結果である。   The experimental result A is an experimental result of the conventional flow path switching mechanism 20 and is an experimental result when the flow path switching mechanism 20 is configured by one four-way valve.

実験結果Bは、特許文献1に係わる流路切替機構20の実験結果であって、流路切替機構20を第1の流路切替機構21aと第2の流路切替機構21bの2つで構成し、第2の流路切替機構21bを第2の吐出側接続配管23bよりも上方になるように構成した場合の実験結果である。図3に示すように、ここでの第2の吐出側接続配管23bは下部に位置する。   The experimental result B is an experimental result of the flow path switching mechanism 20 according to Patent Document 1, and the flow path switching mechanism 20 includes two parts, a first flow path switching mechanism 21a and a second flow path switching mechanism 21b. And it is an experimental result at the time of comprising the 2nd flow-path switching mechanism 21b so that it may become above the 2nd discharge side connection piping 23b. As shown in FIG. 3, the 2nd discharge side connection piping 23b here is located in the lower part.

実験結果Cは、本実施形態に係わる流路切替機構20の実験結果であって、流路切替機構20を第1の流路切替機構21aと第2の流路切替機構21bの2つで構成し、第1の流路切替機構21aを第1の吐出側接続配管23aよりも下方になるように構成し、且つ、第2の流路切替機構21bを第2の吐出側接続配管23bよりも下方になるように構成した場合の実験結果である。   The experimental result C is an experimental result of the flow path switching mechanism 20 according to the present embodiment, and the flow path switching mechanism 20 includes two parts, a first flow path switching mechanism 21a and a second flow path switching mechanism 21b. The first flow path switching mechanism 21a is configured to be lower than the first discharge side connection pipe 23a, and the second flow path switching mechanism 21b is configured to be lower than the second discharge side connection pipe 23b. It is an experimental result at the time of comprising so that it may become downward.

実験結果Bに示すとおり、流路切替機構20を第1の流路切替機構21aと第2の流路切替機構21bの2つで構成したとしても、流路切替機構20を四方弁1つで構成した実験結果Aに比べて、流路切替機構20内部での熱損失は低減しない結果となった。   As shown in the experimental result B, even if the flow path switching mechanism 20 is composed of the first flow path switching mechanism 21a and the second flow path switching mechanism 21b, the flow path switching mechanism 20 is composed of one four-way valve. Compared with the configured experiment result A, the heat loss inside the flow path switching mechanism 20 was not reduced.

図3において、暖房運転時、圧縮機10から吐出したガス状態の高温冷媒は、第2の吐出側接続配管23bを介して第2の流路切替機構21bの弁体29bの外側空間V0bに流れる。第2の流路切替機構21bは、弁体29bの内側空間V4bに低温冷媒が流れるため、第2の流路切替機構21bに流れたガス状態の高温冷媒は弁体29bを介して低温冷媒と接触する。すると、ガス状態の高温冷媒は、第2の流路切替機構21bで低温冷媒によって凝縮されて液状態となる。   In FIG. 3, during the heating operation, the high-temperature refrigerant in the gas state discharged from the compressor 10 flows into the outer space V0b of the valve body 29b of the second flow path switching mechanism 21b via the second discharge side connection pipe 23b. . In the second flow path switching mechanism 21b, the low-temperature refrigerant flows into the inner space V4b of the valve body 29b. Contact. Then, the high-temperature refrigerant in the gas state is condensed by the low-temperature refrigerant in the second flow path switching mechanism 21b and becomes a liquid state.

液状態の高温冷媒の密度は、ガス状態の高温冷媒よりも高い。そのため、液状態となった高温冷媒は第2の流路切替機構21bの外側空間V0bから第2の吐出側接続配管23bへ流出し、代わりにガス状態の高温冷媒が第2の流路切替機構21bに流入する。すると、連続的にガス状態の高温冷媒が第2の流路切替機構21bに流入し、高温冷媒の凝縮が連続的に発生する。従って、実験結果Bは、実験結果Aに比べて、高温冷媒と低温冷媒の熱交換を抑制できず、第2の流路切替機構21bでの熱損失は低減しない結果となった。   The density of the high-temperature refrigerant in the liquid state is higher than that of the high-temperature refrigerant in the gas state. Therefore, the high-temperature refrigerant in the liquid state flows out from the outer space V0b of the second flow path switching mechanism 21b to the second discharge-side connection pipe 23b, and the high-temperature refrigerant in the gas state is replaced by the second flow path switching mechanism. It flows into 21b. Then, the high-temperature refrigerant in the gas state continuously flows into the second flow path switching mechanism 21b, and the high-temperature refrigerant is continuously condensed. Therefore, compared with the experimental result A, the experimental result B cannot suppress the heat exchange between the high-temperature refrigerant and the low-temperature refrigerant, and does not reduce the heat loss in the second flow path switching mechanism 21b.

一方、実験結果Cは、実験結果Aに比べて、熱交換量は半分に抑制される結果となった。実験結果Cに係わる第2の流路切替機構21bは第2の吐出側接続配管23bよりも下方に位置するため、ガス状態に比べて密度が高い液状態となった冷媒が第2の流路切替機構21bから第2の吐出側接続配管23bへ流出することはない。運転開始から所定時間は、第2の流路切替機構21bでガス状態の高温冷媒の凝縮が発生するが、運転開始から所定時間経過した後は、図4に示すとおり、液状態となった高温冷媒が第2の流路切替機構21bの外側空間V0b内に溜まる。すると、ガス状態の高温冷媒が第2の流路切替機構21bに流入しなくなり、ガス状態の高温冷媒の凝縮の発生が止まる。   On the other hand, in the experimental result C, the heat exchange amount was suppressed to half compared to the experimental result A. Since the second flow path switching mechanism 21b related to the experimental result C is located below the second discharge-side connection pipe 23b, the refrigerant that is in a liquid state having a higher density than the gas state is the second flow path. It does not flow out from the switching mechanism 21b to the second discharge side connection pipe 23b. For a predetermined time from the start of operation, condensation of the high-temperature refrigerant in the gas state occurs in the second flow path switching mechanism 21b. However, after a predetermined time has elapsed from the start of the operation, as shown in FIG. The refrigerant accumulates in the outer space V0b of the second flow path switching mechanism 21b. Then, the high temperature refrigerant in the gas state does not flow into the second flow path switching mechanism 21b, and the condensation of the high temperature refrigerant in the gas state stops.

従って、高温冷媒の凝縮が連続的に発生するのを防止することができるので、実験結果Cは、実験結果Aに比べて、熱交換量が半分に抑制される結果となった。   Therefore, since the condensation of the high-temperature refrigerant can be prevented from occurring continuously, the experiment result C is a result that the heat exchange amount is suppressed to half compared with the experiment result A.

次に、図5及び図7を用いて空気調和機S1の暖房運転から冷房運転への切り替え時の動作について説明する。図5は、第1実施形態に係る空気調和機の暖房運転から冷房運転への切り替え時の系統図である。図7は、第1実施形態に係る空気調和機の冷房運転時の系統図である。   Next, the operation | movement at the time of switching from heating operation of the air conditioner S1 to cooling operation is demonstrated using FIG.5 and FIG.7. FIG. 5 is a system diagram at the time of switching from the heating operation to the cooling operation of the air conditioner according to the first embodiment. FIG. 7 is a system diagram at the time of cooling operation of the air conditioner according to the first embodiment.

暖房運転から冷房運転への切り替え時、まず、電磁三方弁50は、図1に示す第1の流路切替機構側連通口53cが吸入側連通口53bと接続する状態から、図5に示す第2の流路切替機構側連通口53dが吸入側連通口53bと接続する状態に切り替わる。すると、第2の流路切替機構21bの弁体29bの外側空間V0b(高圧)が低圧側接続配管11(低圧)と連通し、外側空間V0bに滞留した凝縮液Lbが低圧側接続配管11側に排出される。この状態では、キャピラリ54及びキャピラリ56を介して高圧の外側空間V0b(高圧)と低圧の低圧側接続配管11(低圧)とが接続されるため、圧力差が維持されている。   When switching from the heating operation to the cooling operation, first, the electromagnetic three-way valve 50 starts from the state where the first flow path switching mechanism side communication port 53c shown in FIG. 1 is connected to the suction side communication port 53b, as shown in FIG. The second flow path switching mechanism side communication port 53d is switched to a state of being connected to the suction side communication port 53b. Then, the outer space V0b (high pressure) of the valve body 29b of the second flow path switching mechanism 21b communicates with the low pressure side connection pipe 11 (low pressure), and the condensate Lb retained in the outer space V0b is on the low pressure side connection pipe 11 side. To be discharged. In this state, the high pressure outer space V0b (high pressure) and the low pressure low pressure side connection pipe 11 (low pressure) are connected via the capillary 54 and the capillary 56, so the pressure difference is maintained.

次に、外側空間V0b(高圧)の凝縮液が低圧側接続配管11(低圧)に排出される所定時間後に、電磁流路切替弁40は、図5に示す第1のピストン側連通口43cが吐出側連通口43aと接続した状態から、図7に示す第1のピストン側連通口43cが吸入側連通口43bと接続した状態に切り替わる。また、電磁流路切替弁40は、図5に示す第2のピストン側連通口43dが吸入側連通口43bと接続した状態から、図7に示す第2のピストン側連通口43dが吐出側連通口43aと接続した状態に切り替わる。   Next, after a predetermined time when the condensate in the outer space V0b (high pressure) is discharged to the low pressure side connection pipe 11 (low pressure), the electromagnetic flow path switching valve 40 has the first piston side communication port 43c shown in FIG. The state connected to the discharge side communication port 43a is switched to the state where the first piston side communication port 43c shown in FIG. 7 is connected to the suction side communication port 43b. Further, the electromagnetic flow path switching valve 40 has the second piston side communication port 43d shown in FIG. 7 connected to the discharge side communication from the state where the second piston side communication port 43d shown in FIG. 5 is connected to the suction side communication port 43b. The state is switched to the state connected to the mouth 43a.

すると、第1の流路切替機構21aの一方の密閉空間V1a、及び、第2の流路切替機構21bの一方の密閉空間V1bには、圧縮機10の吸入圧力(低圧)が導かれる。また、第1の流路切替機構21aの他方の密閉空間V2a、及び、第2の流路切替機構21bの他方の密閉空間V2bには、圧縮機10の吐出圧力(高圧)が導かれる。その結果、第1の流路切替機構21aのピストン30a及びピストン31aと、第2の流路切替機構21bのピストン30b及びピストン31bと、に作用する圧力差が逆転し、ピストン30a及びピストン31a、ピストン30b及びピストン31bが左方向に移動し、連動して弁体29a及び弁体29bも左に移動する。弁体29a及び弁体29bの移動により、空気調和機S1が暖房運転から冷房運転へ切り替わる。   Then, the suction pressure (low pressure) of the compressor 10 is guided to one sealed space V1a of the first channel switching mechanism 21a and one sealed space V1b of the second channel switching mechanism 21b. Further, the discharge pressure (high pressure) of the compressor 10 is guided to the other sealed space V2a of the first channel switching mechanism 21a and the other sealed space V2b of the second channel switching mechanism 21b. As a result, the pressure difference acting on the piston 30a and the piston 31a of the first flow path switching mechanism 21a and the piston 30b and the piston 31b of the second flow path switching mechanism 21b is reversed, and the piston 30a and the piston 31a, The piston 30b and the piston 31b move to the left, and the valve body 29a and the valve body 29b also move to the left in conjunction. The air conditioner S1 is switched from the heating operation to the cooling operation by the movement of the valve body 29a and the valve body 29b.

以上説明したように、第2の流路切替機構21bの内部に滞留した液冷媒を排出後、第2の流路切替機構21bの切り替えを行うので、第2の流路切替機構21b内の液冷媒滞留による切り替え不良を防止することができる。   As described above, after the liquid refrigerant staying inside the second flow path switching mechanism 21b is discharged, the second flow path switching mechanism 21b is switched, so that the liquid in the second flow path switching mechanism 21b. Switching failure due to refrigerant stagnation can be prevented.

次に、図6に図1の空気調和機S1の第1の流路切替機構21aのピストン30a及びピストン31aと、第2の流路切替機構21bのピストン30b及びピストン31bとが、静止摩擦係数の違い等により同時に移動せず、第1の流路切替機構21aの弁体29aと第2の流路切替機構21bの弁体29bの位置が反対になった場合の系統図を示す。   Next, in FIG. 6, the piston 30a and the piston 31a of the first flow path switching mechanism 21a and the piston 30b and the piston 31b of the second flow path switching mechanism 21b of the air conditioner S1 of FIG. The system diagram when the positions of the valve body 29a of the first flow path switching mechanism 21a and the valve body 29b of the second flow path switching mechanism 21b are not moved at the same time due to the difference or the like is shown.

後述する第2の実施形態に係わる空気調和機においては、第1の流路切替機構21aのピストン30a及びピストン31aと、第2の流路切替機構21bのピストン30b及びピストン31bとが、同時に移動しない場合、高圧側接続配管12と低圧側接続配管11とが連通状態となってしまい、高圧側と低圧側の圧力差を維持できない。そのため、先に移動できなかったピストンは、移動ができなくなる。   In the air conditioner according to the second embodiment to be described later, the piston 30a and the piston 31a of the first flow path switching mechanism 21a and the piston 30b and the piston 31b of the second flow path switching mechanism 21b move simultaneously. Otherwise, the high-pressure side connecting pipe 12 and the low-pressure side connecting pipe 11 are in communication, and the pressure difference between the high-pressure side and the low-pressure side cannot be maintained. Therefore, the piston that cannot move first cannot move.

一方、本実施形態に係わる空気調和機では、ピストンが同時に移動しない場合であっても、低圧側接続配管11と高圧側接続配管12とが連通することはない。具体的には、圧縮機10の高圧側接続配管12は、高圧側接続配管14、第1の流路切替機構21aの第1の吐出側接続配管23a、室内熱交換器側接続配管25a、室内熱交換器80、膨張弁70、室外熱交換器60、第2の流路切替機構21bの室外熱交換器側接続配管25b、第2の吐出側接続配管23b、吐出高圧側接続配管13と連通する。一方、圧縮機10の低圧側接続配管11は、第1の流路切替機構21aの第1の吸入側接続配管24a、第1の開閉機構接続配管26a、第2の流路切替機構21bの第2の吸入側接続配管24b、第2の開閉機構接続配管26bと連通する。   On the other hand, in the air conditioner according to the present embodiment, the low pressure side connection pipe 11 and the high pressure side connection pipe 12 do not communicate with each other even when the pistons do not move simultaneously. Specifically, the high pressure side connection pipe 12 of the compressor 10 includes a high pressure side connection pipe 14, a first discharge side connection pipe 23a of the first flow path switching mechanism 21a, an indoor heat exchanger side connection pipe 25a, an indoor The heat exchanger 80, the expansion valve 70, the outdoor heat exchanger 60, the outdoor heat exchanger side connection pipe 25b of the second flow path switching mechanism 21b, the second discharge side connection pipe 23b, and the discharge high pressure side connection pipe 13 communicate with each other. To do. On the other hand, the low-pressure side connection pipe 11 of the compressor 10 includes a first suction side connection pipe 24a, a first opening / closing mechanism connection pipe 26a, and a second flow path switching mechanism 21b of the first flow path switching mechanism 21a. 2 suction side connection piping 24b and the second opening / closing mechanism connection piping 26b.

つまり、第1の流路切替機構21aの弁体29aと第2の流路切替機構21bの弁体29bの位置が反対になった場合であっても、本実施形態の空気調和機によれば、高圧側と低圧側の圧力差が維持される。そのため、例え第1の流路切替機構21aのピストン30a及びピストン31a、若しくは、第2の流路切替機構21bのピストン30b及びピストン31bのどちらかの移動が遅れた場合であっても、電磁流路切替弁40を介して差圧が働き、最終的には両方のピストンが移動する。   That is, even if the positions of the valve body 29a of the first flow path switching mechanism 21a and the valve body 29b of the second flow path switching mechanism 21b are reversed, according to the air conditioner of the present embodiment. The pressure difference between the high pressure side and the low pressure side is maintained. Therefore, even if movement of either the piston 30a and the piston 31a of the first flow path switching mechanism 21a or the piston 30b and the piston 31b of the second flow path switching mechanism 21b is delayed, the electromagnetic flow A differential pressure works through the path switching valve 40, and finally both pistons move.

次に、図7を用いて冷房運転時の動作を説明する。図7は、第1実施形態に係る空気調和機の冷房運転時の系統図である。図7に示す矢印は、冷房運転時において冷媒が通流する向きを示している。   Next, the operation | movement at the time of air_conditionaing | cooling operation is demonstrated using FIG. FIG. 7 is a system diagram at the time of cooling operation of the air conditioner according to the first embodiment. The arrows shown in FIG. 7 indicate the direction in which the refrigerant flows during the cooling operation.

電磁流路切替弁40及び電磁三方弁50の流路は、上述の暖房運転から冷房運転への切り替え後の流路と同じである。したがって、第1の流路切替機構21aは、第1の吐出側接続配管23aと第1の開閉機構接続配管26aとが連通状態となり、第1の吸入側接続配管24aと室内熱交換器側接続配管25aとが連通状態となる。また、第2の流路切替機構21bは、第2の吐出側接続配管23bと室外熱交換器側接続配管25bとが連通状態となり、第2の吸入側接続配管24bと第2の開閉機構接続配管26bとが連通状態となる。   The flow paths of the electromagnetic flow path switching valve 40 and the electromagnetic three-way valve 50 are the same as the flow paths after switching from the heating operation to the cooling operation described above. Accordingly, in the first flow path switching mechanism 21a, the first discharge side connection pipe 23a and the first opening / closing mechanism connection pipe 26a are in communication with each other, and the first suction side connection pipe 24a and the indoor heat exchanger side connection are connected. The pipe 25a is in communication. In the second flow path switching mechanism 21b, the second discharge side connection pipe 23b and the outdoor heat exchanger side connection pipe 25b are in communication with each other, and the second suction side connection pipe 24b and the second opening / closing mechanism are connected. The pipe 26b is in communication.

また、第2の流路切替機構21bの第2の開閉機構接続配管26bは、低圧側接続配管11と連通している。一方、第1の流路切替機構21aの第2の開閉機構接続配管26bは電磁三方弁50において封止されている。   The second opening / closing mechanism connection pipe 26b of the second flow path switching mechanism 21b communicates with the low-pressure side connection pipe 11. On the other hand, the second opening / closing mechanism connecting pipe 26b of the first flow path switching mechanism 21a is sealed by the electromagnetic three-way valve 50.

圧縮機10で圧縮されて高温高圧となったガス冷媒は、第2の流路切替機構21bの第2の吐出側接続配管23b、吐出側内部空間V0b、室外熱交換器側接続配管25bの順に流れ、凝縮器として機能する室外熱交換器60に流入する。室外熱交換器60を通流する高温高圧のガス冷媒は、室外ファン60fにより送られてくる室外空気と熱交換し、凝縮する。   The gas refrigerant compressed into the high temperature and high pressure by the compressor 10 is in the order of the second discharge side connection pipe 23b, the discharge side internal space V0b, and the outdoor heat exchanger side connection pipe 25b of the second flow path switching mechanism 21b. It flows into the outdoor heat exchanger 60 that functions as a condenser. The high-temperature and high-pressure gas refrigerant flowing through the outdoor heat exchanger 60 exchanges heat with the outdoor air sent by the outdoor fan 60f and condenses.

凝縮した高温冷媒は、膨張弁70で減圧された低温低圧の気液二相冷媒となり、蒸発器として機能する室内熱交換器80に流れる。室内熱交換器80を流れる気液二相冷媒は、室内ファン80fにより送られてくる室内空気と熱交換して蒸発し、低温低圧のガス冷媒となる。   The condensed high-temperature refrigerant becomes a low-temperature low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve 70 and flows to the indoor heat exchanger 80 that functions as an evaporator. The gas-liquid two-phase refrigerant flowing through the indoor heat exchanger 80 evaporates by exchanging heat with the indoor air sent by the indoor fan 80f, and becomes a low-temperature and low-pressure gas refrigerant.

室内熱交換器80から流出した低温低圧のガス冷媒は、第1の流路切替機構21aの室内熱交換器側接続配管25a、吸入側内部空間V4a、第1の吸入側接続配管24aの順に流れ、低圧側接続配管11を介して圧縮機20に戻る。   The low-temperature and low-pressure gas refrigerant flowing out from the indoor heat exchanger 80 flows in the order of the indoor heat exchanger-side connection pipe 25a, the suction-side internal space V4a, and the first suction-side connection pipe 24a of the first flow path switching mechanism 21a. Return to the compressor 20 through the low-pressure side connection pipe 11.

この時、暖房運転時の説明と同様に、第1の流路切替機構21aの弁体29aの外側空間V0aに凝縮液が滞留する。弁体29aの外側が凝縮液で覆われることにより、ガス状態の高温冷媒が第1の流路切替機構21aに流れなくなり、第1の流路切替機構21aで連続的なガス状態の高温冷媒の凝縮が防止される。   At this time, the condensate stays in the outer space V0a of the valve body 29a of the first flow path switching mechanism 21a in the same manner as in the heating operation. When the outside of the valve body 29a is covered with the condensate, the high-temperature refrigerant in the gas state does not flow to the first flow path switching mechanism 21a, and the continuous high-temperature refrigerant in the gas state is stopped by the first flow path switching mechanism 21a. Condensation is prevented.

次に、図8を用いて空気調和機S1の冷房運転から暖房運転への切り替え時の動作について説明する。図8は、第1実施形態に係る空気調和機の冷房運転から暖房運転への切り替え時の系統図である。   Next, the operation at the time of switching from the cooling operation to the heating operation of the air conditioner S1 will be described with reference to FIG. FIG. 8 is a system diagram at the time of switching from the cooling operation to the heating operation of the air conditioner according to the first embodiment.

冷房運転から暖房運転への切り替え時、まず、電磁三方弁50は、図7に示す吸入側連通口53bが第2の流路切替機構側連通口53dと連通する状態から、図8に示す吸入側連通口53bが第1の流路切替機構側連通口53cと連通する状態に切り替わる。   When switching from the cooling operation to the heating operation, first, the electromagnetic three-way valve 50 starts the suction shown in FIG. 8 from the state where the suction side communication port 53b shown in FIG. 7 communicates with the second flow path switching mechanism side communication port 53d. The side communication port 53b is switched to a state of communicating with the first flow path switching mechanism side communication port 53c.

すると、第1の流路切替機構21aの弁体29aの外側空間V0a(高圧)が低圧側接続配管11(低圧)と連通し、外側空間V0aに滞留した凝縮液が低圧側接続配管11に排出される。なお、この時、高圧である外側空間V0aと低圧である低圧側接続配管11はキャピラリ54及びキャピラリ55を介して連通するため、圧力差が維持される。   Then, the outer space V0a (high pressure) of the valve body 29a of the first flow path switching mechanism 21a communicates with the low pressure side connection pipe 11 (low pressure), and the condensate accumulated in the outer space V0a is discharged to the low pressure side connection pipe 11. Is done. At this time, since the high pressure outer space V0a and the low pressure low-pressure side connection pipe 11 communicate with each other via the capillary 54 and the capillary 55, the pressure difference is maintained.

次に、凝縮液が排出される所定時間後に、電磁流路切替弁40は、図8に示す第1のピストン側連通口43cが吸入側連通口43bと連通した状態から、図1に示す第1のピストン側連通口43cが吐出側連通口43aと連通状態した状態に切り替わる。一方、図8に示す第2のピストン側連通口43dが吐出側連通口43aと連通した状態から、図1に示す第2のピストン側連通口43dが吸入側連通口43bと連通した状態に切り替える。   Next, after a predetermined time when the condensate is discharged, the electromagnetic flow path switching valve 40 starts from the state where the first piston side communication port 43c shown in FIG. 8 communicates with the suction side communication port 43b, as shown in FIG. The first piston-side communication port 43c is switched to a state in which it is in communication with the discharge-side communication port 43a. On the other hand, the state is switched from the state where the second piston side communication port 43d shown in FIG. 8 communicates with the discharge side communication port 43a to the state where the second piston side communication port 43d shown in FIG. 1 communicates with the suction side communication port 43b. .

すると、第1の流路切替機構21aの一方の密閉空間V1a、及び、第2の流路切替機構21bの一方の密閉空間V1bには、圧縮機10の吐出圧力(高圧)が導かれ、第1の流路切替機構21aの他方の密閉空間V2a、及び、第2の流路切替機構21bの他方の密閉空間V2bには、圧縮機10の吸入圧力(低圧)が導かれる。そして、第1の流路切替機構21aのピストン30a及びピストン31a、第2の流路切替機構21bのピストン30b及びピストン31bに作用する差圧により、ピストン30a及びピストン31aと、ピストン30b及びピストン31bが右方向に移動し、連動して弁体29a及び29bも右に移動し、空気調和機S1が冷房運転から暖房運転へ切り替わる。   Then, the discharge pressure (high pressure) of the compressor 10 is guided to one sealed space V1a of the first channel switching mechanism 21a and one sealed space V1b of the second channel switching mechanism 21b. The suction pressure (low pressure) of the compressor 10 is guided to the other sealed space V2a of the one channel switching mechanism 21a and the other sealed space V2b of the second channel switching mechanism 21b. Then, the piston 30a and the piston 31a of the first flow path switching mechanism 21a, and the differential pressure acting on the piston 30b and the piston 31b of the second flow path switching mechanism 21b, the piston 30a and the piston 31a, and the piston 30b and the piston 31b. Moves to the right, and the valve bodies 29a and 29b also move to the right, and the air conditioner S1 is switched from the cooling operation to the heating operation.

以上説明したように、第1の流路切替機構21aの内部に滞留した液冷媒を排出後、第1の流路切替機構21aの切り替えを行うので、第1の流路切替機構21a内の液冷媒滞留による切り替え不良を防止することができる。   As described above, since the first flow path switching mechanism 21a is switched after the liquid refrigerant staying inside the first flow path switching mechanism 21a is discharged, the liquid in the first flow path switching mechanism 21a. Switching failure due to refrigerant stagnation can be prevented.

図9は、第2の実施形態に係わる空気調和機の暖房運転時の系統図である。第3の流路切替機構21cでは、第3の吐出側接続配管23cを圧縮機10の高圧側接続配管12に接続し、室内熱交換器側接続配管25cを室内熱交換器80に接続している。第4の吸入側接続配管24dは圧縮機10の低圧側接続配管11に接続され、室外熱交換器側接続配管26dは室外熱交換器60に接続されている。   FIG. 9 is a system diagram at the time of heating operation of the air conditioner according to the second embodiment. In the third flow path switching mechanism 21c, the third discharge side connection pipe 23c is connected to the high pressure side connection pipe 12 of the compressor 10, and the indoor heat exchanger side connection pipe 25c is connected to the indoor heat exchanger 80. Yes. The fourth suction side connection pipe 24 d is connected to the low pressure side connection pipe 11 of the compressor 10, and the outdoor heat exchanger side connection pipe 26 d is connected to the outdoor heat exchanger 60.

室内熱交換器側接続配管25cは、室内熱交換器80に接続されるとともに、高圧側接続配管15を介して室内熱交換器側接続配管25dに接続されている。   The indoor heat exchanger side connection pipe 25 c is connected to the indoor heat exchanger 80 and is connected to the indoor heat exchanger side connection pipe 25 d via the high pressure side connection pipe 15.

室外熱交換器側接続配管26cは吐出側流路切替弁21cを介して第3の吸入側接続配管24cに接続されており、室内熱交換器側接続配管25dは第4の吸入側流路切替機構21dを介して第4の吐出側接続配管23dに接続されている。そして、図9に示すとおり、第4の吐出側接続配管23d及び第3の吸入側接続配管24cは封止されている。   The outdoor heat exchanger side connection pipe 26c is connected to the third suction side connection pipe 24c via the discharge side flow path switching valve 21c, and the indoor heat exchanger side connection pipe 25d is the fourth suction side flow path switching. It is connected to the fourth discharge side connection pipe 23d through the mechanism 21d. As shown in FIG. 9, the fourth discharge side connection pipe 23d and the third suction side connection pipe 24c are sealed.

暖房運転時、高温高圧のガス冷媒は、吐出側流路切替弁21cの吐出側配管23c、吐出側内部空間V0c、室内熱交換器側接続配管25cの順に流れる。一方、低温低圧の液冷媒は、第4の吸入側流路切替機構21dの室外熱交換器側接続配管26d、吸入側内部空間V4d、第4の吸入側接続配管24dの順に流れる。   During the heating operation, the high-temperature and high-pressure gas refrigerant flows in the order of the discharge side pipe 23c of the discharge side flow path switching valve 21c, the discharge side internal space V0c, and the indoor heat exchanger side connection pipe 25c. On the other hand, the low-temperature and low-pressure liquid refrigerant flows in the order of the outdoor heat exchanger-side connection pipe 26d, the suction-side internal space V4d, and the fourth suction-side connection pipe 24d of the fourth suction-side flow path switching mechanism 21d.

図10は、第2の実施形態に係る暖房運転時の第4の流路切替機構の内部状態を説明する図である。図10は、図9の第4の流路切替機構21dの内部状態であって、室内熱交換器側接続配管25dを第4の流路切替機構21dよりも上方にした状態を示している。   FIG. 10 is a diagram illustrating an internal state of the fourth flow path switching mechanism during the heating operation according to the second embodiment. FIG. 10 shows an internal state of the fourth flow path switching mechanism 21d in FIG. 9 and a state in which the indoor heat exchanger side connection pipe 25d is located above the fourth flow path switching mechanism 21d.

弁体29dの内側空間V4dには低温冷媒が流れ、弁体29dの外側空間V0dには室内熱交換器側接続配管25dからガス状態の高温冷媒が流れる。外側空間V0dに流れたガス状態の高温冷媒は弁体29dを介して内側空間V4dの低温冷媒と熱交換し、凝縮する。ここで、第4の吐出側接続配管23dは封止されているため、弁体29dの外側空間V0dで凝縮した高温冷媒は外側空間V0dに滞留する。   The low temperature refrigerant flows into the inner space V4d of the valve body 29d, and the high temperature refrigerant in the gas state flows from the indoor heat exchanger side connection pipe 25d into the outer space V0d of the valve body 29d. The high-temperature refrigerant in the gas state that flows into the outer space V0d exchanges heat with the low-temperature refrigerant in the inner space V4d through the valve body 29d and condenses. Here, since the fourth discharge side connection pipe 23d is sealed, the high-temperature refrigerant condensed in the outer space V0d of the valve body 29d stays in the outer space V0d.

弁体29bの外側空間V0bが凝縮液で覆われると、ガス状態の高温冷媒が弁体29bに直接接触することがなくなるため、凝縮による熱交換が防止され、吐出側流路切替弁21bでの高温冷媒と低温冷媒の熱交換が抑制される。   When the outer space V0b of the valve body 29b is covered with the condensate, the high-temperature refrigerant in the gas state is not in direct contact with the valve body 29b, so heat exchange due to condensation is prevented, and the discharge side flow switching valve 21b Heat exchange between the high-temperature refrigerant and the low-temperature refrigerant is suppressed.

このように、凝縮液を滞留させて吐出側流路切替弁21bの内部熱交換を抑制するため、弁体29bの外側空間V4bが凝縮液で覆われる必要がある。そのためには、室内熱交換器側接続配管25dを第4の流路切替機構21dよりも上方に位置させる必要がある。   Thus, in order to retain the condensate and suppress the internal heat exchange of the discharge side flow path switching valve 21b, the outer space V4b of the valve body 29b needs to be covered with the condensate. For this purpose, the indoor heat exchanger side connection pipe 25d needs to be positioned above the fourth flow path switching mechanism 21d.

S1、S2 空気調和機
10 圧縮機
12,13,14,15 高圧側接続配管
11 低圧側接続配管
20 流路切替機構
21a 第1の流路切替機構
21b 第2の流路切替機構
23a 第1の吐出側接続配管
23b 第2の吐出側接続配管
25a 室内熱交換器側接続配管
25b 室外熱交換器側接続配管
26a 第1の開閉機構接続配管
26b 第2の開閉機構接続配管
40 電磁流路切替弁
50 電磁三方弁
60 室外熱交換器
70 膨張弁
80 室内熱交換器
S1, S2 Air conditioner 10 Compressor 12, 13, 14, 15 High pressure side connection pipe 11 Low pressure side connection pipe 20 Flow path switching mechanism 21a First flow path switching mechanism 21b Second flow path switching mechanism 23a First Discharge side connection pipe 23b Second discharge side connection pipe 25a Indoor heat exchanger side connection pipe 25b Outdoor heat exchanger side connection pipe 26a First opening / closing mechanism connection pipe 26b Second opening / closing mechanism connection pipe 40 Electromagnetic flow path switching valve 50 Electromagnetic three-way valve 60 Outdoor heat exchanger 70 Expansion valve 80 Indoor heat exchanger

Claims (6)

圧縮機と、流路切替機構と、室内熱交換器と、膨張弁と、室外熱交換器と、が高圧側接続配管及び低圧側接続配管によって接続された冷媒回路を備え、
前記流路切替機構は、暖房運転時に前記圧縮機と前記室内熱交換器とを接続する第1の流路切替機構と、暖房運転時に前記室外熱交換器と前記圧縮機とを接続する第2の流路切替機構と、を有し、
前記第1の流路切替機構及び前記第2の流路切替機構は前記冷媒回路の流路を切換える弁体を有し、
前記高圧側接続配管は、前記第2の流路切替機構の前記弁体よりも上方で前記第2の流路切替機構に接続する空気調和機。
A compressor, a flow path switching mechanism, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are provided with a refrigerant circuit connected by a high-pressure side connection pipe and a low-pressure side connection pipe,
The flow path switching mechanism includes a first flow path switching mechanism that connects the compressor and the indoor heat exchanger during heating operation, and a second flow path that connects the outdoor heat exchanger and the compressor during heating operation. A flow path switching mechanism,
The first flow path switching mechanism and the second flow path switching mechanism have a valve body that switches the flow path of the refrigerant circuit,
The high-pressure side connection pipe is an air conditioner connected to the second flow path switching mechanism above the valve body of the second flow path switching mechanism.
前記高圧側接続配管は、前記第1の流路切替機構の前記弁体よりも上方で前記第1の流路切替機構に接続する空気調和機。   The high-pressure side connection pipe is an air conditioner connected to the first flow path switching mechanism above the valve body of the first flow path switching mechanism. 前記流路切替機構は、第1の開閉機構と、第2の開閉機構と、を有し、
暖房運転時に、前記圧縮機は前記第1の流路切替機構を介して前記室内熱交換器に接続され、前記圧縮機は前記第2の流路切替機構を介して前記第2の開閉機構に接続され、且つ、前記第2の開閉機構は閉状態であり、
冷房運転時に、前記圧縮機は前記第1の流路切替機構を介して前記第1の開閉機構に接続され、前記圧縮機は前記第2の流路切替機構を介して前記室外熱交換器に接続され、且つ、前記第1の開閉機構は閉状態であることを特徴とする請求項1又は2に記載の空気調和機。
The flow path switching mechanism includes a first opening / closing mechanism and a second opening / closing mechanism,
During heating operation, the compressor is connected to the indoor heat exchanger via the first flow path switching mechanism, and the compressor is connected to the second opening / closing mechanism via the second flow path switching mechanism. And the second opening / closing mechanism is in a closed state,
During the cooling operation, the compressor is connected to the first opening / closing mechanism via the first flow path switching mechanism, and the compressor is connected to the outdoor heat exchanger via the second flow path switching mechanism. The air conditioner according to claim 1 or 2, wherein the air conditioner is connected and the first opening / closing mechanism is in a closed state.
前記圧縮機が、前記第2の流路切替機構を介して前記第2の開閉機構に接続された状態から、前記第2の流路切替機構を介して前記室外熱交換器に接続された状態に切り替える前に、前記第2の開閉機構を閉状態から開状態に切り替え、
前記圧縮機が、前記第1の流路切替機構を介して前記第1の開閉機構に接続された状態から、前記第1の流路切替機構を介して前記室内熱交換器に接続された状態に切り替える前に、前記第1の開閉機構を閉状態から開状態に切り替えることを特徴とする請求項3に記載の空気調和機。
A state where the compressor is connected to the outdoor heat exchanger via the second flow path switching mechanism from a state where the compressor is connected to the second opening / closing mechanism via the second flow path switching mechanism. Before switching to the second open / close mechanism from the closed state to the open state,
A state where the compressor is connected to the indoor heat exchanger via the first flow path switching mechanism from a state where the compressor is connected to the first opening / closing mechanism via the first flow path switching mechanism. 4. The air conditioner according to claim 3, wherein the first opening / closing mechanism is switched from a closed state to an open state before switching to.
前記第1の開閉機構及び前記第2の開閉機構を有する三方弁を備えることを特徴とする請求項4に記載の空気調和機。   The air conditioner according to claim 4, further comprising a three-way valve having the first opening / closing mechanism and the second opening / closing mechanism. 前記冷媒回路は、
前記第1の流路切替機構と前記第1の開閉機構とを接続する第1の開閉機構接続配管と、
前記第2の流路切替機構と前記第2の開閉機構とを接続する第2の開閉機構接続配管と、を有し、
前記第1の開閉機構接続配管及び前記第2の開閉機構接続配管の径は、前記高圧側接続配管及び前記低圧側接続配管の径より小さいことを特徴とする請求項3に記載の空気調和機。
The refrigerant circuit is
A first opening / closing mechanism connection pipe connecting the first flow path switching mechanism and the first opening / closing mechanism;
A second opening / closing mechanism connecting pipe for connecting the second flow path switching mechanism and the second opening / closing mechanism;
The air conditioner according to claim 3, wherein the diameters of the first opening / closing mechanism connection pipe and the second opening / closing mechanism connection pipe are smaller than the diameters of the high pressure side connection pipe and the low pressure side connection pipe. .
JP2013067830A 2013-03-28 2013-03-28 Air conditioner Active JP6006664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067830A JP6006664B2 (en) 2013-03-28 2013-03-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067830A JP6006664B2 (en) 2013-03-28 2013-03-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014190642A true JP2014190642A (en) 2014-10-06
JP6006664B2 JP6006664B2 (en) 2016-10-12

Family

ID=51837063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067830A Active JP6006664B2 (en) 2013-03-28 2013-03-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP6006664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286891A (en) * 2015-05-15 2017-01-04 浙江盾安人工环境股份有限公司 Combined electromagnetic switching valve and air conditioning system thereof
CN111059319A (en) * 2018-10-17 2020-04-24 广东美芝精密制造有限公司 Three-way valve, compressor assembly, refrigeration device and control method thereof
WO2024016571A1 (en) * 2022-07-21 2024-01-25 青岛海尔空调器有限总公司 One-way shunt device and variable shunt heat exchanger
WO2024016588A1 (en) * 2022-07-21 2024-01-25 青岛海尔空调器有限总公司 One-way flow diverting device and variable flow diverting heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088960U (en) * 1973-12-15 1975-07-28
JPS62173671U (en) * 1986-04-24 1987-11-04
JPH0914790A (en) * 1995-06-27 1997-01-17 Hitachi Ltd Multi-chamber air conditioner
JP2012211688A (en) * 2011-03-24 2012-11-01 Fujitsu General Ltd Four-way valve, and heat pump device with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088960U (en) * 1973-12-15 1975-07-28
JPS62173671U (en) * 1986-04-24 1987-11-04
JPH0914790A (en) * 1995-06-27 1997-01-17 Hitachi Ltd Multi-chamber air conditioner
JP2012211688A (en) * 2011-03-24 2012-11-01 Fujitsu General Ltd Four-way valve, and heat pump device with the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286891A (en) * 2015-05-15 2017-01-04 浙江盾安人工环境股份有限公司 Combined electromagnetic switching valve and air conditioning system thereof
CN106286891B (en) * 2015-05-15 2019-06-11 浙江盾安人工环境股份有限公司 Combined electromagnetic switching valve and its air-conditioning system
CN111059319A (en) * 2018-10-17 2020-04-24 广东美芝精密制造有限公司 Three-way valve, compressor assembly, refrigeration device and control method thereof
CN111059319B (en) * 2018-10-17 2024-05-14 广东美芝精密制造有限公司 Three-way valve, compressor assembly, refrigerating device and control method of refrigerating device
WO2024016571A1 (en) * 2022-07-21 2024-01-25 青岛海尔空调器有限总公司 One-way shunt device and variable shunt heat exchanger
WO2024016588A1 (en) * 2022-07-21 2024-01-25 青岛海尔空调器有限总公司 One-way flow diverting device and variable flow diverting heat exchanger

Also Published As

Publication number Publication date
JP6006664B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
US10443869B2 (en) Air conditioner construction method
TWI342944B (en)
US20110192181A1 (en) Refrigerant system
JP6006664B2 (en) Air conditioner
WO2006003967A1 (en) Air conditioner
JP5936785B1 (en) Air conditioner
JP2008128498A (en) Multi-type air conditioner
WO2020004108A1 (en) Air conditioning system
US20150345842A1 (en) Air conditioner
JP5277854B2 (en) Air conditioner
JP2010048506A (en) Multi-air conditioner
JP6311249B2 (en) Refrigeration equipment
JP2016044777A (en) Flow passage selector valve and refrigeration cycle using the same
JP2011058749A (en) Air conditioner
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
JP5310242B2 (en) Shunt and refrigeration equipment
KR200469716Y1 (en) Airconditioner system
JP7343764B2 (en) air conditioner
AU2019457511B2 (en) Refrigeration cycle device
WO2023012891A1 (en) Refrigeration cycle device
KR101669971B1 (en) Air conditioner
JPWO2016189667A1 (en) Air conditioner and repeater
JP2006145129A (en) Four way valve, and outdoor unit using it
JP2006071148A (en) Refrigerating cycle
WO2015056635A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6006664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250