JP2014020344A - Control device of variable flow-type pump - Google Patents

Control device of variable flow-type pump Download PDF

Info

Publication number
JP2014020344A
JP2014020344A JP2012162806A JP2012162806A JP2014020344A JP 2014020344 A JP2014020344 A JP 2014020344A JP 2012162806 A JP2012162806 A JP 2012162806A JP 2012162806 A JP2012162806 A JP 2012162806A JP 2014020344 A JP2014020344 A JP 2014020344A
Authority
JP
Japan
Prior art keywords
cooling water
discharge amount
variable flow
oxygen concentration
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012162806A
Other languages
Japanese (ja)
Other versions
JP5994450B2 (en
Inventor
Kazunari Yamamoto
和成 山本
Kenji Fujii
謙治 藤井
Nobumasa Ohashi
伸匡 大橋
Yoshinori Yoshimura
美紀 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2012162806A priority Critical patent/JP5994450B2/en
Publication of JP2014020344A publication Critical patent/JP2014020344A/en
Application granted granted Critical
Publication of JP5994450B2 publication Critical patent/JP5994450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To optimally control a cooling water discharge amount without affected by delay in response and failure of a cooling water temperature sensor, with respect to a control device of a variable flow-type pump.SOLUTION: A control device of a variable flow-type pump 14 in which the cooling water discharge amount can be adjusted, includes the cooling water temperature sensor 22 for detecting a cooling water temperature, an oxygen concentration sensor 35 detecting an oxygen concentration in intake air, a cooling water discharge amount control section 51 for increasing and decreasing the cooling water discharge amount of the variable flow-type pump 14 on the basis of a detection value of the cooling water temperature sensor 22, a cooling water temperature sensor failure determining section 53 for determining the failure when the detection value of the cooling water temperature sensor 22 does not rise in decreasing the cooling water discharge amount, and a feedback control section 54 for increasing the cooling water discharge amount of the variable flow-type pump 14 in a case where a detection value of the oxygen concentration sensor 35 is higher than a target oxygen concentration when the cooling water discharge amount is decreased, and the failure of the cooling water temperature sensor 22 is determined.

Description

本発明は、可変流量型ポンプの制御装置に関し、特に、排気の一部を吸気系に再循環する排気再循環装置(以下、EGR装置という)を備えるエンジンの冷却水回路に設けられた可変流量型ポンプの制御装置に関する。   The present invention relates to a control device for a variable flow rate pump, and in particular, a variable flow rate provided in a cooling water circuit of an engine including an exhaust gas recirculation device (hereinafter referred to as an EGR device) that recirculates a part of exhaust gas to an intake system. The present invention relates to a control device for a mold pump.

従来、エンジンの冷却水回路を流れる冷却水の吐出量をエンジンの運転状態に応じて調整可能な可変流量型ポンプが知られている。例えば、特許文献1には、冷却水温センサの検出値が所定値以上になると、冷却水吐出量を増加させる可変流量型ポンプの制御装置が開示されている。   2. Description of the Related Art Conventionally, there is known a variable flow type pump that can adjust a discharge amount of cooling water flowing through a cooling water circuit of an engine according to an engine operating state. For example, Patent Literature 1 discloses a control device for a variable flow rate pump that increases a cooling water discharge amount when a detected value of a cooling water temperature sensor becomes a predetermined value or more.

特開平8−86284号公報JP-A-8-86284

ところで、従来例の可変流量型ポンプの制御装置では、冷却水温センサの検出値に基づいて可変流量型ポンプの冷却水吐出量を増減させているため、冷却水温センサに故障や応答遅れが生じた場合にその吐出量を最適に制御できなくなる虞がある。   By the way, in the control device for the variable flow rate pump of the conventional example, the cooling water discharge amount of the variable flow rate pump is increased or decreased based on the detection value of the cooling water temperature sensor. In such a case, there is a possibility that the discharge amount cannot be optimally controlled.

特に、再循環排気(以下、EGRガスという)と冷却水との熱交換を行うEGRクーラは高温の排気にさらされるため、エンジン構成部品の中でも単位時間当たりにおける冷却水温の上昇幅が大きい。そのため、冷却水温センサの故障等により可変流量型ポンプが適切に制御されず、冷却水吐出量を減少させた状態が長時間継続すると、EGRクーラの冷却効率が低下してEGRクーラ内の冷却水温を大幅に上昇させる。その結果、キャビテーション現象等により冷却水流路が破損して、排気ガス通路内に冷却水が漏出することで、エンジンの破損を招く可能性もある。   In particular, since an EGR cooler that performs heat exchange between recirculated exhaust (hereinafter referred to as EGR gas) and cooling water is exposed to high-temperature exhaust, the engine coolant has a large increase in cooling water per unit time. For this reason, if the variable flow rate pump is not properly controlled due to a failure of the cooling water temperature sensor or the like, and the state in which the cooling water discharge amount is reduced continues for a long time, the cooling efficiency of the EGR cooler decreases and the cooling water temperature in the EGR cooler Significantly increase. As a result, the cooling water flow path is damaged due to a cavitation phenomenon or the like, and the cooling water leaks into the exhaust gas passage, which may cause engine damage.

本発明はこのような点に鑑みてなされたもので、その目的は、冷却水温センサの応答遅れや故障の影響を受けることなく、可変流量型ポンプの冷却水吐出量をエンジンの運転状態に応じて最適に制御することにある。   The present invention has been made in view of the above points, and its object is to respond to the operating state of the engine with the cooling water discharge amount of the variable flow pump without being affected by the response delay or failure of the cooling water temperature sensor. Is to control it optimally.

上記目的を達成するため、本発明の可変流量型ポンプの制御装置は、排気の一部を吸気系に再循環する排気再循環装置を備えるエンジンの冷却水回路に設けられ、該冷却水回路を流れる冷却水の吐出量を調整可能な可変流量型ポンプの制御装置であって、前記冷却水の温度を検出する冷却水温センサと、前記エンジンに供給される吸気中の酸素濃度を検出する酸素濃度センサと、前記冷却水温センサの検出値を含む前記エンジンの運転状態に基づいて、前記可変流量型ポンプの冷却水吐出量を増減させる第1の吐出量制御部と、冷却水吐出量が減少された際に、前記冷却水温センサの検出値が上昇しない場合は、該冷却水温センサを故障と判定する故障判定部と、冷却水吐出量が減少され、且つ前記冷却水温センサが故障と判定された際に、前記酸素濃度センサの検出値が前記エンジンの運転状態に応じて予め定めた目標酸素濃度よりも高い場合は、前記可変流量型ポンプの冷却水吐出量を増加させる第2の吐出量制御部とを備えることを特徴とする。   In order to achieve the above object, a control device for a variable flow rate pump according to the present invention is provided in an engine coolant circuit including an exhaust gas recirculation device that recirculates a part of exhaust gas to an intake system. A control device for a variable flow rate pump capable of adjusting a discharge amount of flowing cooling water, a cooling water temperature sensor for detecting a temperature of the cooling water, and an oxygen concentration for detecting an oxygen concentration in intake air supplied to the engine A first discharge amount control unit for increasing or decreasing a cooling water discharge amount of the variable flow pump, and a cooling water discharge amount based on an operating state of the engine including a detection value of the sensor and the cooling water temperature sensor; When the detected value of the cooling water temperature sensor does not increase, a failure determination unit that determines that the cooling water temperature sensor is failed, a cooling water discharge amount is decreased, and the cooling water temperature sensor is determined to be failed. When A second discharge amount control unit configured to increase a cooling water discharge amount of the variable flow rate pump when the detected value of the oxygen concentration sensor is higher than a target oxygen concentration determined in advance according to the operating state of the engine; It is characterized by providing.

また、前記第2の吐出量制御部は、前記可変流量型ポンプの冷却水吐出量を増加させる際に、前記酸素濃度センサの検出値が前記目標酸素濃度となるように前記可変流量型ポンプの冷却水吐出量をフィードバック制御してもよい。   In addition, the second discharge amount control unit may increase the cooling water discharge amount of the variable flow pump so that the detection value of the oxygen concentration sensor becomes the target oxygen concentration. The cooling water discharge amount may be feedback controlled.

また、前記排気再循環装置は、流通させる冷却水と吸気との熱交換を行う熱交換機を含み、前記冷却水温センサは、該熱交換機に流入する冷却水の温度を検出するものであってもよい。   The exhaust gas recirculation device may include a heat exchanger that exchanges heat between the circulating cooling water and the intake air, and the cooling water temperature sensor may detect the temperature of the cooling water flowing into the heat exchanger. Good.

本発明の可変流量型ポンプの制御装置によれば、冷却水温センサの応答遅れや故障の影響を受けることなく、可変流量型ポンプの冷却水吐出量をエンジンの運転状態に応じて最適に制御することができる。   According to the control apparatus for a variable flow rate pump of the present invention, the coolant discharge amount of the variable flow rate pump is optimally controlled according to the operating state of the engine without being affected by a response delay or failure of the coolant temperature sensor. be able to.

本発明の一実施形態に係る冷却水回路を示す模式的な全体構成図である。It is a typical whole lineblock diagram showing the cooling water circuit concerning one embodiment of the present invention. 本発明の一実施形態に係るエンジンの吸排気系を示す模式的な全体構成図である。1 is a schematic overall configuration diagram showing an intake / exhaust system of an engine according to an embodiment of the present invention. 本発明の一実施形態に係る電子制御ユニット(ECU)を示す機能構成図である。It is a functional lineblock diagram showing an electronic control unit (ECU) concerning one embodiment of the present invention. 本発明の一実施形態に係る可変流量型ポンプの制御装置による制御内容を示すフローチャートである。It is a flowchart which shows the control content by the control apparatus of the variable flow type pump which concerns on one Embodiment of this invention.

以下、図面により、本発明の一実施形態に係る可変流量型ポンプの制御装置について説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, a variable flow pump control apparatus according to an embodiment of the present invention will be described with reference to the drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

まず、図1に基づいて、本実施形態の可変流量型ポンプの制御装置が適用されるディーゼルエンジン(以下、単にエンジンという)10の冷却水回路から説明する。   First, a cooling water circuit of a diesel engine (hereinafter simply referred to as an engine) 10 to which the control device for a variable flow pump according to this embodiment is applied will be described with reference to FIG.

本実施形態の冷却水回路は、シリンダブロック11内の下部に形成されたオイルクーラ12と、シリンダブロック11内の上部に形成されたウォータジャケット13と、オイルクーラ12の冷却水入口側に設けられた可変流量型ポンプ14と、冷却水と外気との熱交換を行うラジエータ15と、ウォータジャケット13とラジエータ15とを連結するラジエータ上流側流路16と、ラジエータ15と可変流量型ポンプ14とを連結するラジエータ下流側流路17と、オイルクーラ12と詳細を後述するEGRクーラ43とを連結するEGR上流側流路18と、EGRクーラ43と可変流量型ポンプ14とを連結するEGR下流側流路19と、冷却水を貯留する冷却水タンク23とを備えている。   The cooling water circuit of this embodiment is provided on the cooling water inlet side of the oil cooler 12, the oil cooler 12 formed in the lower part in the cylinder block 11, the water jacket 13 formed in the upper part in the cylinder block 11, and the oil blocker 11. The variable flow pump 14, the radiator 15 that exchanges heat between the cooling water and the outside air, the radiator upstream flow path 16 that connects the water jacket 13 and the radiator 15, the radiator 15, and the variable flow pump 14. A radiator downstream flow path 17 to be connected, an EGR upstream flow path 18 that connects an oil cooler 12 and an EGR cooler 43, which will be described in detail later, and an EGR downstream flow that connects the EGR cooler 43 and the variable flow pump 14. A path 19 and a cooling water tank 23 for storing cooling water are provided.

ラジエータ上流側流路16とEGR下流側流路19との分岐部20には、公知のサーモスタット21が設けられている。このサーモスタット21は、暖機完了時など冷却水温が所定温度(例えば70℃)よりも高くなると開弁して、冷却水をラジエータ上流側流路16に流通させる。   A known thermostat 21 is provided at a branching portion 20 between the radiator upstream channel 16 and the EGR downstream channel 19. The thermostat 21 opens when the cooling water temperature becomes higher than a predetermined temperature (for example, 70 ° C.) such as when the warm-up is completed, and causes the cooling water to flow through the radiator upstream flow path 16.

可変流量型ポンプ14は、公知の構造であって、エンジン10の図示しないクランクシャフトと機械的に接続されている。この可変流量型ポンプ14による冷却水吐出量は、詳細を後述する電子制御ユニット(以下、ECUという)50から入力される指示信号に応じて調整可能に構成されている。   The variable flow pump 14 has a known structure and is mechanically connected to a crankshaft (not shown) of the engine 10. The cooling water discharge amount by the variable flow pump 14 is configured to be adjustable according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50 which will be described in detail later.

冷却水温センサ22は、例えば公知の熱電対であって、EGRクーラ43に流入する冷却水の温度を検出する。このため、冷却水温センサ22は、EGRクーラ43の冷却水入口側近傍に位置するEGR上流側流路18の下流端に設けられている。この冷却水温センサ22の検出値(以下、冷却水温TC)は、電気的に接続されたECU50に入力される。 The cooling water temperature sensor 22 is a known thermocouple, for example, and detects the temperature of the cooling water flowing into the EGR cooler 43. For this reason, the cooling water temperature sensor 22 is provided at the downstream end of the EGR upstream channel 18 located in the vicinity of the cooling water inlet side of the EGR cooler 43. The detection value of the cooling water temperature sensor 22 (hereinafter, cooling water temperature T C ) is input to the electrically connected ECU 50.

次に、図2に基づいて、本実施形態に係るエンジン10の吸排気系の構成を説明する。   Next, based on FIG. 2, the structure of the intake / exhaust system of the engine 10 according to this embodiment will be described.

エンジン10の吸気マニホールド10aには吸気通路30が接続され、排気マニホールド10bには排気通路31が接続されている。吸気通路30には上流側から順に、過給機32のコンプレッサ32aと、インタークーラ33とが設けられ、排気通路31には過給機32のタービン32bが設けられている。また、コンプレッサ32aよりも上流側の吸気通路30には吸気流量センサ34が設けられ、コンプレッサ32aよりも下流側の吸気通路30には酸素濃度センサ35が設けられている。これら吸気流量センサ34の検出値(以下、吸気流量IF)及び、酸素濃度センサ35の検出値(以下、酸素濃度O2)は、電気的に接続されたECU50に入力される。 An intake passage 30 is connected to the intake manifold 10a of the engine 10, and an exhaust passage 31 is connected to the exhaust manifold 10b. A compressor 32 a of the supercharger 32 and an intercooler 33 are provided in the intake passage 30 sequentially from the upstream side, and a turbine 32 b of the supercharger 32 is provided in the exhaust passage 31. An intake flow rate sensor 34 is provided in the intake passage 30 upstream of the compressor 32a, and an oxygen concentration sensor 35 is provided in the intake passage 30 downstream of the compressor 32a. The detected value of the intake flow sensor 34 (hereinafter referred to as intake flow I F ) and the detected value of the oxygen concentration sensor 35 (hereinafter referred to as oxygen concentration O 2 ) are input to the electrically connected ECU 50.

EGR装置40は、タービン32bよりも排気上流側の排気通路31とコンプレッサ32aよりも吸気下流側の吸気通路30とを連通するEGR通路41と、EGRガスの流量を調整するEGRバルブ42と、EGRガスを冷却するEGRクーラ(熱交換機)43とを備えている。このEGR装置40によるEGRガスの流量は、ECU50から入力される指示信号に応じてEGRバルブ42の開度が制御されることで調整される。   The EGR device 40 includes an EGR passage 41 that connects the exhaust passage 31 upstream of the turbine 32b and the intake passage 30 downstream of the compressor 32a, an EGR valve 42 that adjusts the flow rate of EGR gas, and EGR. And an EGR cooler (heat exchanger) 43 for cooling the gas. The flow rate of EGR gas by the EGR device 40 is adjusted by controlling the opening degree of the EGR valve 42 in accordance with an instruction signal input from the ECU 50.

エンジン回転センサ36は、エンジン10の図示しないクランクシャフトの回転数を検出するもので、検出値(以下、エンジン回転数N)は電気的に接続されたECU50に入力される。アクセルポジションセンサ37は、ドライバによる図示しないアクセルペダルの操作量を検出するもので、検出された操作量は電気的に接続されたECU50に入力される。   The engine rotation sensor 36 detects the rotation speed of a crankshaft (not shown) of the engine 10, and a detection value (hereinafter referred to as engine rotation speed N) is input to the electrically connected ECU 50. The accelerator position sensor 37 detects an operation amount of an accelerator pedal (not shown) by a driver, and the detected operation amount is input to an electrically connected ECU 50.

次に、図3に基づいて、本実施形態のECU50について説明する。   Next, the ECU 50 of the present embodiment will be described based on FIG.

ECU50は、エンジン10の燃料噴射等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備え構成されている。この各種制御を行うため、ECU50には、エンジン回転センサ36、アクセルポジションセンサ37、冷却水温センサ22、吸気流量センサ34、酸素濃度センサ35等の各種センサ類の出力信号が入力される。   The ECU 50 performs various controls such as fuel injection of the engine 10, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, output signals from various sensors such as the engine rotation sensor 36, the accelerator position sensor 37, the cooling water temperature sensor 22, the intake flow rate sensor 34, and the oxygen concentration sensor 35 are input to the ECU 50.

また、ECU50は、冷却水吐出量制御部(第1の吐出量制御部)51と、EGR制御部52と、冷却水温センサ故障判定部53と、フィードバック制御部(第2の吐出量制御部)54とを一部の機能要素として有する。これら各機能要素は、本実施形態では一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。   The ECU 50 also includes a cooling water discharge amount control unit (first discharge amount control unit) 51, an EGR control unit 52, a cooling water temperature sensor failure determination unit 53, and a feedback control unit (second discharge amount control unit). 54 as a part of functional elements. In the present embodiment, these functional elements are described as being included in the ECU 50, which is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.

冷却水吐出量制御部51は、エンジン回転数N、アクセルペダルの操作量から換算した燃料噴射量Q、冷却水温TC、吸気流量IF等の各種センサからの入力値に基づいて可変流量型ポンプ14の冷却水吐出量を制御する。例えば、冷却水吐出量制御部51は、高負荷運転により冷却水温TCが上限温度TL(例えば70℃)まで上昇すると、冷却水温TCがこの上限温度TLよりも低くなるまで、可変流量型ポンプ14に冷却水吐出量を増加させる指示信号を出力する。また、冷却水吐出量制御部51は、低負荷運転により冷却水温TCが上限温度TLよりも低いときは、エンジン10のフリクションを低減すべく、可変流量型ポンプ14に冷却水吐出量を減少させる指示信号を出力する。 Cooling water discharge amount control unit 51, variable flow-type on the basis of the engine rotational speed N, fuel consumption amount converted from the amount of operation of an accelerator pedal Q, the cooling water temperature T C, the input value from the various sensors such as the intake air flow rate I F The cooling water discharge amount of the pump 14 is controlled. For example, when the cooling water temperature T C rises to the upper limit temperature T L (for example, 70 ° C.) due to high load operation, the cooling water discharge amount control unit 51 is variable until the cooling water temperature T C becomes lower than the upper limit temperature T L. An instruction signal for increasing the coolant discharge amount is output to the flow rate pump 14. In addition, when the cooling water temperature T C is lower than the upper limit temperature T L due to low load operation, the cooling water discharge amount control unit 51 sets the cooling water discharge amount to the variable flow rate pump 14 in order to reduce the friction of the engine 10. An instruction signal to be decreased is output.

EGR制御部52は、エンジン10の運転状態に応じて、EGRバルブ42の開度を制御する。より詳しくは、ECU50には、エンジン回転数Nと燃料噴射量Qとをパラメータとするエンジン10への目標吸気流量IFTを定めた吸気流量マップ(不図示)が記憶されている。EGR制御部52は、吸気流量マップからその時のエンジン回転数Nと燃料噴射量Qとに対応する目標吸気流量IFTを読み取ると共に、吸気流量センサ34から入力される吸気流量IF(新気+EGRガス)が目標吸気流量IFTとなるようにEGRバルブ42の開度を制御する。 The EGR control unit 52 controls the opening degree of the EGR valve 42 according to the operating state of the engine 10. More specifically, the ECU 50 stores an intake air flow rate map (not shown) that defines a target intake air flow rate I FT to the engine 10 using the engine speed N and the fuel injection amount Q as parameters. The EGR control unit 52 reads the target intake flow rate I FT corresponding to the engine speed N and the fuel injection amount Q at that time from the intake flow rate map, and also receives the intake flow rate I F (fresh air + EGR) input from the intake flow rate sensor 34. The opening degree of the EGR valve 42 is controlled so that the gas) becomes the target intake flow rate IFT .

冷却水温センサ故障判定部53は、冷却水温センサ22の検出値に基づいて冷却水温センサ22の故障を判定する。なお、ここでいう故障には、冷却水温センサ22が温度を正確に検出できない場合のみならず、断線等によりセンサ値がECU50に入力されない場合も含まれる。可変流量型ポンプ14の冷却水吐出量が減少すると冷却水温度は上昇するため、冷却水温センサ22が正常な場合はその検出値も追従して上昇する。冷却水温センサ故障判定部53は、可変流量型ポンプ14の冷却水吐出量が減少した際に、冷却水温センサ22から入力される冷却水温TCが上昇しない場合は故障と判定する。 The coolant temperature sensor failure determination unit 53 determines failure of the coolant temperature sensor 22 based on the detection value of the coolant temperature sensor 22. The failure mentioned here includes not only the case where the coolant temperature sensor 22 cannot accurately detect the temperature but also the case where the sensor value is not input to the ECU 50 due to disconnection or the like. When the cooling water discharge amount of the variable flow rate pump 14 decreases, the cooling water temperature rises. Therefore, when the cooling water temperature sensor 22 is normal, the detected value also follows up. The cooling water temperature sensor failure determination unit 53 determines that a failure has occurred when the cooling water temperature T C input from the cooling water temperature sensor 22 does not increase when the cooling water discharge amount of the variable flow pump 14 decreases.

酸素濃度フィードバック制御部54は、冷却水温センサ22が故障と判定された場合に、酸素濃度センサ35から入力される酸素濃度O2に基づいて可変流量型ポンプ14の冷却水吐出量をフィードバック制御する。より詳しくは、ECU50には、エンジン回転数Nと燃料噴射量Qとをパラメータとするエンジン10への目標吸気酸素濃度O2Tを定めた酸素濃度マップ(不図示)が記憶されている。酸素濃度フィードバック制御部54は、冷却水温センサ22が故障した場合に、酸素濃度マップからその時のエンジン回転数Nと燃料噴射量Qとに対応する目標吸気酸素濃度O2Tを読み取る。そして、酸素濃度センサ34から入力される酸素濃度O2が目標吸気酸素濃度O2Tよりも低い場合(O2<O2T)、酸素濃度フィードバック制御部54は、酸素濃度センサ35の検出値が目標吸気酸素濃度O2Tとなるように可変流量型ポンプ14の冷却水吐出量をフィードバック制御する。 The oxygen concentration feedback control unit 54 feedback-controls the cooling water discharge amount of the variable flow rate pump 14 based on the oxygen concentration O 2 input from the oxygen concentration sensor 35 when it is determined that the cooling water temperature sensor 22 has failed. . More specifically, the ECU 50 stores an oxygen concentration map (not shown) that defines the target intake oxygen concentration O 2T to the engine 10 using the engine speed N and the fuel injection amount Q as parameters. When the cooling water temperature sensor 22 fails, the oxygen concentration feedback control unit 54 reads the target intake oxygen concentration O 2T corresponding to the engine speed N and the fuel injection amount Q at that time from the oxygen concentration map. When the oxygen concentration O 2 input from the oxygen concentration sensor 34 is lower than the target intake oxygen concentration O 2T (O 2 <O 2T ), the oxygen concentration feedback control unit 54 determines that the detected value of the oxygen concentration sensor 35 is the target. The cooling water discharge amount of the variable flow pump 14 is feedback controlled so that the intake oxygen concentration is O 2T .

なお、本実施形態において、冷却水温センサ22の故障時に酸素濃度センサ35を用いる目的は以下の理由による。可変流量型ポンプ14の吐出量を減少させると、特に高温の排気にさらされるEGRクーラ43では冷却水温が大幅に上昇する。そして、EGRクーラ43の冷却効率が低下して、新気と高温状態のEGRガスとが合流することで、EGRガスの密度は小さくなる。そのため、必要な吸気量を確保するために、EGRバルブ42の開度は小さく制御され、結果としてEGRガス流量の減少により吸気中の酸素濃度が上昇することになる。すなわち、冷却水の吐出量減少時は、冷却水温の上昇と吸気酸素濃度の上昇との間に相関関係があり、冷却水温センサ22の故障時は酸素濃度センサ35を代用するこが可能と考えられるためである。   In this embodiment, the purpose of using the oxygen concentration sensor 35 when the cooling water temperature sensor 22 fails is as follows. When the discharge amount of the variable flow pump 14 is reduced, the cooling water temperature rises significantly in the EGR cooler 43 that is exposed to particularly high-temperature exhaust. And the cooling efficiency of EGR cooler 43 falls and the density of EGR gas becomes small because fresh air and EGR gas in a high temperature state merge. Therefore, in order to secure a necessary intake amount, the opening degree of the EGR valve 42 is controlled to be small, and as a result, the oxygen concentration in the intake air increases due to the decrease in the EGR gas flow rate. That is, when the cooling water discharge amount is decreased, there is a correlation between the increase of the cooling water temperature and the increase of the intake oxygen concentration, and it is considered that the oxygen concentration sensor 35 can be substituted when the cooling water temperature sensor 22 fails. Because it is.

次に、図4に基づいて、本実施形態の可変流量型ポンプの制御装置による制御フローを説明する。なお、本制御はエンジン10の始動(イグニッションスイッチのキースイッチON)と同時にスタートする。   Next, based on FIG. 4, the control flow by the control apparatus of the variable flow type pump of this embodiment is demonstrated. This control starts simultaneously with the start of the engine 10 (key switch ON of the ignition switch).

ステップ(以下、ステップを単にSと記載する)100では、冷却水吐出量制御部51により、可変流量型ポンプ14の冷却水吐出量が減少されたか否かが確認される。可変流量型ポンプ14の冷却水吐出量が減少されている場合はS110に進む。一方、可変流量型ポンプ14の冷却水吐出量が減少されていない場合(増加、又は一定の場合)はリターンされる。   In step (hereinafter, simply referred to as “S”) 100, the cooling water discharge amount control unit 51 confirms whether or not the cooling water discharge amount of the variable flow rate pump 14 has been reduced. When the cooling water discharge amount of the variable flow pump 14 is decreased, the process proceeds to S110. On the other hand, when the cooling water discharge amount of the variable flow pump 14 is not decreased (increase or constant), the process returns.

S110では、冷却水温センサ故障判定部53により冷却水温センサ22の故障の有無が判定される。冷却水温センサ22から入力される冷却水温TCが上昇しない場合は故障と判定されてS120に進む一方、冷却水温センサ22から入力される冷却水温TCが上昇している場合は正常と判定されてS140に進む。 In S110, the cooling water temperature sensor failure determination unit 53 determines whether or not the cooling water temperature sensor 22 has failed. If the cooling water temperature T C input from the cooling water temperature sensor 22 does not increase, it is determined as a failure and the process proceeds to S120. On the other hand, if the cooling water temperature T C input from the cooling water temperature sensor 22 increases, it is determined to be normal. The process proceeds to S140.

S120では、酸素濃度マップからその時のエンジン回転数Nと燃料噴射量Qとに対応する目標吸気酸素濃度O2Tが読み取れると共に、酸素濃度センサ35から入力される酸素濃度O2と目標吸気酸素濃度O2Tとが比較される。酸素濃度O2が目標吸気酸素濃度O2Tよりも低い場合(O2<O2T)は、S130に進む一方、酸素濃度O2が目標吸気酸素濃度O2T以上の場合(O2≧O2T)はリターンされる。 In S120, the target intake oxygen concentration O 2T corresponding to the engine speed N and the fuel injection amount Q at that time can be read from the oxygen concentration map, and the oxygen concentration O 2 and the target intake oxygen concentration O input from the oxygen concentration sensor 35 are read. 2T is compared. When the oxygen concentration O 2 is lower than the target intake oxygen concentration O 2T (O 2 <O 2T ), the process proceeds to S130, while when the oxygen concentration O 2 is equal to or higher than the target intake oxygen concentration O 2T (O 2 ≧ O 2T ). Will be returned.

S130では、酸素濃度フィードバック制御部54により、酸素濃度センサ35から入力される酸素濃度O2が目標吸気酸素濃度O2Tとなるように可変流量型ポンプ14の冷却水吐出量を増加させるフィードバック制御が行われて本制御はリターンされる。 In S130, the oxygen concentration feedback control unit 54 performs feedback control to increase the cooling water discharge amount of the variable flow rate pump 14 so that the oxygen concentration O 2 input from the oxygen concentration sensor 35 becomes the target intake oxygen concentration O 2T. Once this control is performed, the control is returned.

一方、前述のS110からS140に進んだ場合は、冷却水温センサ22から入力される冷却水温TCが上限温度TLを超えているか否かが確認される。冷却水温TCが上限温度TLを超えていない場合(TC≦TL)はリターンされる。一方、冷却水温TCが上限温度TLを超えている場合(TC>TL)は、S150で、冷却水温TCが上限温度TLよりも低くなるまで可変流量型ポンプ14の冷却水吐出量が増加されてリターンされる。その後、上述の制御フローは、エンジン10の停止(イグニッションスイッチのキースイッチOFF)まで繰り返し実行される。 On the other hand, when the process proceeds from S110 to S140, it is confirmed whether or not the cooling water temperature T C input from the cooling water temperature sensor 22 exceeds the upper limit temperature T L. When the cooling water temperature T C does not exceed the upper limit temperature T L (T C ≦ T L ), the process is returned. On the other hand, when the cooling water temperature T C exceeds the upper limit temperature T L (T C > T L ), the cooling water of the variable flow rate pump 14 is cooled until the cooling water temperature T C becomes lower than the upper limit temperature T L in S150. The discharge amount is increased and returned. Thereafter, the control flow described above is repeatedly executed until the engine 10 is stopped (ignition switch key switch OFF).

次に、本実施形態に係る可変流量型ポンプの制御装置による作用効果を説明する。   Next, functions and effects of the variable flow rate pump control device according to this embodiment will be described.

従来の可変流量型ポンプの制御装置では、冷却水温センサの検出値に基づいて、センサ値が所定値以上になると可変流量型ポンプの吐出量を増加させている。そのため、冷却水温センサが故障した場合には、可変流量型ポンプの吐出量を最適に制御できなくなる虞がある。   In a conventional variable flow rate pump control device, the discharge amount of the variable flow rate pump is increased when the sensor value exceeds a predetermined value based on the detection value of the cooling water temperature sensor. Therefore, when the cooling water temperature sensor fails, there is a possibility that the discharge amount of the variable flow pump cannot be optimally controlled.

特に、EGRクーラは高温の排気にさらされるため、冷却水温センサの故障等により冷却水吐出量を減少させた状態が長時間継続すると、EGRクーラの冷却効率が低下して、EGRクーラ内の冷却水温を上昇させる。その結果、キャビテーション現象等により冷却水流路が破損して、排気ガス通路内に冷却水が漏出することで、エンジンの破損を招く可能性もある。   In particular, since the EGR cooler is exposed to high-temperature exhaust gas, if the cooling water discharge amount is reduced due to a failure of the cooling water temperature sensor or the like for a long time, the cooling efficiency of the EGR cooler decreases, and the cooling inside the EGR cooler decreases. Increase water temperature. As a result, the cooling water flow path is damaged due to a cavitation phenomenon or the like, and the cooling water leaks into the exhaust gas passage, which may cause engine damage.

また、EGRクーラの冷却効率低下によりEGRガスの温度が上昇すると、新気は高温のEGRガスと接して密度が小さくなるため、必要な吸気量を確保するためにEGRバルブの開度は小さく制御される。その結果、EGRガス密度が小さくなることと相まってEGRガス流量は減少し、吸気(新気+EGRガス)中の酸素濃度上昇により、排ガス性能の悪化を招く可能性もある。   In addition, when the temperature of the EGR gas rises due to a decrease in the cooling efficiency of the EGR cooler, the fresh air comes into contact with the hot EGR gas and the density decreases. Is done. As a result, the EGR gas flow rate decreases in combination with the decrease in the EGR gas density, and the exhaust gas performance may be deteriorated due to an increase in oxygen concentration in the intake air (fresh air + EGR gas).

これに対して、本実施形態の可変流量型ポンプの制御装置では、冷却水温センサ22が故障した場合は、酸素濃度センサ35の検出値に基づいて可変流量型ポンプ14の冷却水吐出量をエンジン10の運転状態に応じて制御している。   On the other hand, in the control device for the variable flow rate pump of the present embodiment, when the cooling water temperature sensor 22 fails, the coolant discharge amount of the variable flow rate pump 14 is determined based on the detected value of the oxygen concentration sensor 35. Control is performed according to 10 operating states.

したがって、本実施形態の可変流量型ポンプの制御装置によれば、冷却水温センサ22が故障した場合においても、可変流量型ポンプ14の冷却水吐出量を安全に制御することが可能になり、EGRクーラ43やエンジン10の破損を防止することができると共に、排ガス悪化を効果的に抑制することもできる。   Therefore, according to the control device for the variable flow rate pump of the present embodiment, it becomes possible to safely control the cooling water discharge amount of the variable flow rate pump 14 even when the cooling water temperature sensor 22 breaks down. Damage to the cooler 43 and the engine 10 can be prevented, and exhaust gas deterioration can be effectively suppressed.

なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   In addition, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the meaning of this invention, it can change suitably and can implement.

例えば、冷却水温センサ22は、EGRクーラ43に流入する冷却水温度を検出するものとして説明したが、ラジエータ15に流入する冷却水温度を検出するもの等、エンジン10の他の部位に設けられる冷却水温センサ(不図示)に適用することも可能である。この場合も、上述の実施形態と同様の作用効果を奏することができる。また、EGR装置40のEGR通路41は、タービン32bよりも排気下流側の排気通路31とコンプレッサ32aよりも吸気上流側の吸気通路30とを連通するものであってもよい。   For example, although the cooling water temperature sensor 22 has been described as detecting the temperature of the cooling water flowing into the EGR cooler 43, the cooling water temperature sensor 22 detects cooling water temperature flowing into the radiator 15, etc. It is also possible to apply to a water temperature sensor (not shown). Also in this case, the same effect as the above-described embodiment can be obtained. Further, the EGR passage 41 of the EGR device 40 may communicate the exhaust passage 31 on the exhaust downstream side of the turbine 32b and the intake passage 30 on the intake upstream side of the compressor 32a.

10 エンジン
14 可変流量型ポンプ
22 冷却水温センサ
35 酸素濃度センサ
40 EGR装置(排気再循環装置)
43 EGRクーラ(熱交換機)
50 ECU
51 冷却水吐出量制御部(第1の吐出量制御部)
53 冷却水温センサ故障判定部(故障判定部)
54 フィードバック制御部(第2の吐出量制御部)
DESCRIPTION OF SYMBOLS 10 Engine 14 Variable flow type pump 22 Cooling water temperature sensor 35 Oxygen concentration sensor 40 EGR apparatus (exhaust gas recirculation apparatus)
43 EGR cooler (heat exchanger)
50 ECU
51 Cooling water discharge amount control unit (first discharge amount control unit)
53 Cooling water temperature sensor failure determination unit (failure determination unit)
54 Feedback control unit (second discharge amount control unit)

Claims (3)

排気の一部を吸気系に再循環する排気再循環装置を備えるエンジンの冷却水回路に設けられ、該冷却水回路を流れる冷却水の吐出量を調整可能な可変流量型ポンプの制御装置であって、
前記冷却水の温度を検出する冷却水温センサと、
前記エンジンに供給される吸気中の酸素濃度を検出する酸素濃度センサと、
前記冷却水温センサの検出値を含む前記エンジンの運転状態に基づいて、前記可変流量型ポンプの冷却水吐出量を増減させる第1の吐出量制御部と、
冷却水吐出量が減少された際に、前記冷却水温センサの検出値が上昇しない場合は、該冷却水温センサを故障と判定する故障判定部と、
冷却水吐出量が減少され、且つ前記冷却水温センサが故障と判定された際に、前記酸素濃度センサの検出値が前記エンジンの運転状態に応じて予め定めた目標酸素濃度よりも高い場合は、前記可変流量型ポンプの冷却水吐出量を増加させる第2の吐出量制御部とを、備えることを特徴とする可変流量型ポンプの制御装置。
A control device for a variable flow rate pump that is provided in an engine cooling water circuit including an exhaust gas recirculation device that recirculates a part of exhaust gas to an intake system, and that can adjust the discharge amount of the cooling water flowing through the cooling water circuit. And
A cooling water temperature sensor for detecting the temperature of the cooling water;
An oxygen concentration sensor for detecting the oxygen concentration in the intake air supplied to the engine;
A first discharge amount control unit for increasing or decreasing a coolant discharge amount of the variable flow rate pump based on an operating state of the engine including a detection value of the coolant temperature sensor;
When the cooling water discharge amount is reduced, if the detection value of the cooling water temperature sensor does not increase, a failure determination unit that determines that the cooling water temperature sensor is a failure,
When the cooling water discharge amount is decreased and the detected value of the oxygen concentration sensor is higher than the target oxygen concentration determined in advance according to the operating state of the engine when the cooling water temperature sensor is determined to be malfunctioning, A control device for a variable flow rate pump, comprising: a second discharge rate control unit that increases a coolant discharge rate of the variable flow rate pump.
前記第2の吐出量制御部は、前記可変流量型ポンプの冷却水吐出量を増加させる際に、前記酸素濃度センサの検出値が前記目標酸素濃度となるように前記可変流量型ポンプの冷却水吐出量をフィードバック制御する請求項1に記載の可変流量型ポンプの制御装置。   The second discharge amount control unit is configured to increase the cooling water discharge amount of the variable flow pump so that the detected value of the oxygen concentration sensor becomes the target oxygen concentration. The control apparatus for a variable flow rate pump according to claim 1, wherein the discharge amount is feedback-controlled. 前記排気再循環装置は、流通させる冷却水と吸気との熱交換を行う熱交換機を含み、前記冷却水温センサは、該熱交換機に流入する冷却水の温度を検出する請求項1又は2に記載の可変流量型ポンプの制御装置。   The said exhaust gas recirculation apparatus contains the heat exchanger which performs heat exchange with the cooling water and the intake air which are distribute | circulated, The said cooling water temperature sensor detects the temperature of the cooling water which flows in into this heat exchanger. The control device of the variable flow type pump.
JP2012162806A 2012-07-23 2012-07-23 Control device for variable flow pump Expired - Fee Related JP5994450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162806A JP5994450B2 (en) 2012-07-23 2012-07-23 Control device for variable flow pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162806A JP5994450B2 (en) 2012-07-23 2012-07-23 Control device for variable flow pump

Publications (2)

Publication Number Publication Date
JP2014020344A true JP2014020344A (en) 2014-02-03
JP5994450B2 JP5994450B2 (en) 2016-09-21

Family

ID=50195521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162806A Expired - Fee Related JP5994450B2 (en) 2012-07-23 2012-07-23 Control device for variable flow pump

Country Status (1)

Country Link
JP (1) JP5994450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076360A (en) * 2018-11-07 2020-05-21 トヨタ自動車株式会社 Cooling device of vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106368858A (en) * 2016-08-29 2017-02-01 潍柴动力股份有限公司 Engine, opening degree control method of EGR cooler and opening degree control system of EGR cooler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242617A (en) * 1996-03-05 1997-09-16 Isuzu Motors Ltd Fuel injection amount controller for diesel engine
US6178928B1 (en) * 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
JP2007211594A (en) * 2006-02-07 2007-08-23 Toyota Motor Corp Engine
JP2011047394A (en) * 2009-08-28 2011-03-10 Hyundai Motor Co Ltd Clutch water pump, and device and method for controlling the same
JP2012102687A (en) * 2010-11-11 2012-05-31 Toyota Motor Corp Water temperature sensor abnormality determination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242617A (en) * 1996-03-05 1997-09-16 Isuzu Motors Ltd Fuel injection amount controller for diesel engine
US6178928B1 (en) * 1998-06-17 2001-01-30 Siemens Canada Limited Internal combustion engine total cooling control system
JP2007211594A (en) * 2006-02-07 2007-08-23 Toyota Motor Corp Engine
JP2011047394A (en) * 2009-08-28 2011-03-10 Hyundai Motor Co Ltd Clutch water pump, and device and method for controlling the same
JP2012102687A (en) * 2010-11-11 2012-05-31 Toyota Motor Corp Water temperature sensor abnormality determination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076360A (en) * 2018-11-07 2020-05-21 トヨタ自動車株式会社 Cooling device of vehicle
JP7192417B2 (en) 2018-11-07 2022-12-20 トヨタ自動車株式会社 vehicle cooling system

Also Published As

Publication number Publication date
JP5994450B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US10473063B2 (en) EGR system for internal-combustion engine
JP5962534B2 (en) Intercooler temperature controller
US9903259B2 (en) Cooling apparatus for internal combustion engine
JP5288046B2 (en) Control device for internal combustion engine
US9995199B2 (en) Control device for internal combustion engine
JP2011047305A (en) Internal combustion engine
US20180298853A1 (en) Egr cooling apparatus
JP2007100638A (en) Cooling water control device for internal combustion engine
JP2012149575A (en) Cooling apparatus of internal combustion engine
US10590829B2 (en) Control device for internal combustion engine and control method for cooling device
JP2010090773A (en) Control device for engine
JP2017036695A (en) Control device of diesel engine
JP2014148957A (en) Egr gas cooling device
JP2014001703A (en) Cooling system of internal combustion engine
JP2018105189A (en) Control device of internal combustion engine
JP2010229878A (en) Cooling system of internal combustion engine
JP5994450B2 (en) Control device for variable flow pump
US20190085753A1 (en) Internal combustion engine cooling system
US20160305309A1 (en) Cooling apparatus for internal combustion engine
JP2009121393A (en) Exhaust recirculating device for internal combustion engine
US10066557B2 (en) Control device for internal combustion engine
JP2011017296A (en) Exhaust gas recirculation device of internal combustion engine
JP2011127614A (en) Cooling water control device for internal combustion engine
JP5880325B2 (en) Control device for internal combustion engine
WO2019138582A1 (en) Cooling system and cooling system control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5994450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees