JP2007100638A - Cooling water control device for internal combustion engine - Google Patents

Cooling water control device for internal combustion engine Download PDF

Info

Publication number
JP2007100638A
JP2007100638A JP2005293752A JP2005293752A JP2007100638A JP 2007100638 A JP2007100638 A JP 2007100638A JP 2005293752 A JP2005293752 A JP 2005293752A JP 2005293752 A JP2005293752 A JP 2005293752A JP 2007100638 A JP2007100638 A JP 2007100638A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
cooling water
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005293752A
Other languages
Japanese (ja)
Other versions
JP4821247B2 (en
Inventor
Yoshiyuki Yamashita
嘉之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005293752A priority Critical patent/JP4821247B2/en
Publication of JP2007100638A publication Critical patent/JP2007100638A/en
Application granted granted Critical
Publication of JP4821247B2 publication Critical patent/JP4821247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling water control device for an internal combustion engine capable of controlling cooling water temperature of an internal combustion engine to optimal water temperature. <P>SOLUTION: This cooling water control device for the internal combustion engine controls cooling water temperature of the internal combustion engine by using a valve opening adjusting means capable of electronically adjusting valve opening, is provided with cooling water optimal value estimation means S2, S3 estimating optimal value of cooling water temperature with using operation condition until present time of the internal combustion engine, and valve opening of the valve opening adjusting means is adjusted based on estimation value of cooling water temperature at an inlet of the internal combustion engine in future and the estimated optimal value of cooling water temperature (S8, S9, S10, S11, S12, S13). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の冷却水制御装置に関する。   The present invention relates to a cooling water control device for an internal combustion engine.

特開2003−172141号公報(特許文献1)には、エンジンを循環する冷却水の温度を目標温度に調節するために行われる冷却水温度制御の応答性を向上させるエンジン冷却装置が開示されている。同装置は、エンジンの冷却水循環経路中に設けられたラジエータを通過する冷却水の流量を調整する流量調整弁と、エンジン出口水温度が所要の目標温度となるように流量調整弁の開度を制御するECUとを備え、ECUは、エンジンの運転状態に基づいてフィードフォワード項としての基本開度を設定し、エンジン出口水温度が目標温度となるように増減されるフィードバック項としてのF/B定数と、上記基本開度とから最終開度を算出し、その最終開度に基づいて流量調整弁の開度をフィードバック制御する。   Japanese Patent Application Laid-Open No. 2003-172141 (Patent Document 1) discloses an engine cooling device that improves the responsiveness of cooling water temperature control performed to adjust the temperature of cooling water circulating through the engine to a target temperature. Yes. The device adjusts the flow rate adjustment valve that adjusts the flow rate of cooling water that passes through the radiator provided in the cooling water circulation path of the engine, and the opening degree of the flow rate adjustment valve so that the engine outlet water temperature becomes the required target temperature. An ECU for controlling, and the ECU sets a basic opening as a feedforward term based on the operating state of the engine, and F / B as a feedback term that is increased or decreased so that the engine outlet water temperature becomes the target temperature. The final opening is calculated from the constant and the basic opening, and the opening of the flow rate adjusting valve is feedback controlled based on the final opening.

特開2003−172141号公報JP 2003-172141 A 特開平5−231148号公報JP-A-5-231148

上記特許文献1の技術におけるフィードフォワード制御は、単に、ある時点でのエンジンの運転状態に基づいて流量調整弁の開度を設定するだけで、その時点よりも前の運転状態は考慮されない。このことから、例えば、エンジンの運転状態が全開で運転された後に“ある運転状態”になったときも、アイドル状態の後に“ある運転状態”になったときも、流量調整弁の開度設定は同じになる。しかしながら、その“ある運転状態”になる以前の運転状態により、エンジン保持熱量(エンジン各部温、エンジン内水温)は異なるため、フィードフォワード制御において、流量調整弁の開度が同じに設定された場合には、上記ある時点からのエンジン水温の推移(エンジン水温制御状況)が異なってくる(制御誤差が大きくなる)虞がある。   The feedforward control in the technique of Patent Document 1 simply sets the opening of the flow rate adjustment valve based on the operating state of the engine at a certain point in time, and does not consider the operating state before that point. For this reason, for example, when the engine is in a certain operating state after the engine is fully opened, or when the engine is in a certain operating state after the idling state, the opening of the flow rate adjustment valve is set. Will be the same. However, the engine holding heat amount (engine temperature, engine water temperature) differs depending on the operating state before the “certain operating state”, so the flow adjustment valve opening is set to be the same in feedforward control. There is a risk that the transition of the engine water temperature (engine water temperature control status) from a certain point in time will be different (the control error will increase).

本発明は、より最適な水温に内燃機関の冷却水の水温を制御することが可能な内燃機関の冷却水制御装置を提供することである。
本発明の他の目的は、最適水温に対する内燃機関の冷却水の水温の制御応答性を向上させることが可能な内燃機関の冷却水制御装置を提供することである。
An object of the present invention is to provide a cooling water control device for an internal combustion engine that can control the water temperature of the cooling water for the internal combustion engine to a more optimal water temperature.
Another object of the present invention is to provide a cooling water control device for an internal combustion engine capable of improving the control response of the cooling water temperature of the internal combustion engine with respect to the optimum water temperature.

本発明の内燃機関の冷却水制御装置は、電子的に弁開度を調整可能な弁開度調整手段を用いて内燃機関の冷却水の水温を制御する内燃機関の冷却水制御装置であって、前記内燃機関の現在までの運転条件に基づいて前記冷却水の水温の最適値を推定する冷却水最適値推定手段を備え、将来の前記内燃機関の入口での冷却水の水温の推定値と、前記推定された冷却水の水温の最適値に基づいて、前記弁開度調整手段の前記弁開度を調整することを特徴としている。   The cooling water control device for an internal combustion engine of the present invention is a cooling water control device for an internal combustion engine that controls a coolant temperature of the internal combustion engine using a valve opening adjusting means that can electronically adjust the valve opening. Cooling water optimum value estimating means for estimating an optimum value of the cooling water temperature based on the operating conditions of the internal combustion engine up to the present time, and an estimated value of the cooling water temperature at the inlet of the internal combustion engine in the future, The valve opening degree of the valve opening degree adjusting means is adjusted based on the estimated optimum value of the coolant temperature.

本発明の内燃機関の冷却水制御装置において、前記冷却水最適値推定手段は、前記内燃機関の現在までの運転条件に基づいて、前記内燃機関の現在の燃焼室壁温を推定し、前記現在の燃焼室壁温の推定値に基づいて、前記冷却水の水温の最適値を推定することを特徴としている。   In the cooling water control apparatus for an internal combustion engine of the present invention, the cooling water optimum value estimation means estimates the current combustion chamber wall temperature of the internal combustion engine based on the current operating conditions of the internal combustion engine, and The optimum value of the coolant temperature is estimated based on the estimated value of the combustion chamber wall temperature.

本発明の内燃機関の冷却水制御装置において、前記冷却水最適値推定手段は、前記現在の燃焼室壁温の推定値と現在の前記内燃機関の運転条件に基づいて、将来の前記燃焼室壁温を推定し、前記将来の燃焼室壁温の推定値に基づいて、前記冷却水の水温の最適値を推定することを特徴としている。   In the cooling water control apparatus for an internal combustion engine according to the present invention, the cooling water optimum value estimation means may determine the future combustion chamber wall based on the estimated value of the current combustion chamber wall temperature and the current operating condition of the internal combustion engine. The temperature is estimated, and the optimum value of the coolant temperature is estimated based on the estimated value of the future combustion chamber wall temperature.

本発明の内燃機関の冷却水制御装置は、内燃機関の冷却水の水温を制御する内燃機関の冷却水制御装置であって、将来の前記内燃機関の入口での冷却水の水温の推定値と、制御目標値とに基づいて、前記内燃機関に入る冷却水の水温をフィードフォワード制御することを特徴としている。ここで、前記制御目標値は、推定された前記冷却水の水温の最適値であることができる。   The cooling water control device for an internal combustion engine of the present invention is a cooling water control device for an internal combustion engine that controls the temperature of the cooling water of the internal combustion engine, and an estimated value of the coolant temperature at the inlet of the internal combustion engine in the future, Based on the control target value, the water temperature of the cooling water entering the internal combustion engine is feedforward controlled. Here, the control target value may be an optimum value of the estimated coolant temperature.

本発明の内燃機関の冷却水制御装置は、内燃機関の冷却水の水温を制御する内燃機関の冷却水制御装置であって、現在の前記内燃機関の燃焼室壁温と、現在の前記内燃機関の運転条件とに基づいて、将来の前記燃焼室壁温を推定し、前記将来の燃焼室壁温の推定値に基づいて、前記冷却水の水温の最適値を推定し、前記冷却水の水温の最適値の推定値に基づいて、前記冷却水の水温をフィードフォワード制御することを特徴としている。   The cooling water control apparatus for an internal combustion engine according to the present invention is a cooling water control apparatus for an internal combustion engine that controls the temperature of the cooling water for the internal combustion engine, the current combustion chamber wall temperature of the internal combustion engine, and the current internal combustion engine. The future combustion chamber wall temperature is estimated on the basis of the operating conditions, and the optimum value of the cooling water temperature is estimated on the basis of the estimated value of the future combustion chamber wall temperature. The water temperature of the cooling water is feedforward controlled based on the estimated value of the optimum value.

本発明の内燃機関の冷却水制御装置において、前記内燃機関の現在の運転条件に基づいて発熱量を算出し、現在の前記内燃機関の入口での冷却水の水温と、前記発熱量とに基づいて、将来の前記内燃機関の出口での冷却水の水温を推定し、前記将来の内燃機関の出口での冷却水の水温の推定値と、ラジエターの冷却能力とに基づいて将来の前記ラジエターの出口での冷却水の水温を推定し、前記将来の内燃機関の出口での冷却水の水温の推定値と、前記将来のラジエターの出口での冷却水の水温の推定値とに基づいて、前記将来の内燃機関の入口での冷却水の水温の推定値が求められることを特徴としている。   In the cooling water control apparatus for an internal combustion engine according to the present invention, a calorific value is calculated based on a current operating condition of the internal combustion engine, and based on a current coolant water temperature at the inlet of the internal combustion engine and the calorific value. The temperature of the cooling water at the outlet of the internal combustion engine in the future is estimated, and the future temperature of the radiator is estimated based on the estimated value of the temperature of the cooling water at the outlet of the future internal combustion engine and the cooling capacity of the radiator. Estimating the coolant temperature at the outlet, based on the estimated value of the coolant temperature at the outlet of the future internal combustion engine and the estimated value of the coolant temperature at the outlet of the future radiator, It is characterized in that an estimated value of the coolant temperature at the inlet of a future internal combustion engine is obtained.

本発明によれば、より最適な水温に内燃機関の冷却水の水温を制御することが可能となる。   According to the present invention, it is possible to control the coolant temperature of the internal combustion engine to a more optimal water temperature.

以下、本発明の一実施形態につき図面を参照しつつ詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1から図6を参照して、内燃機関の冷却水制御装置の一実施形態について説明する。   An embodiment of a cooling water control apparatus for an internal combustion engine will be described with reference to FIGS.

本実施形態は、内燃機関のエンジン水温を制御するサーモスタットを電子化し、負荷に応じて最適水温制御を行うシステムにおいて、燃焼室壁温と現運転条件各値より将来のエンジン入口水温を推定し、最適水温に向けて電子サーモスタットの開度を迅速にフィードフォワード(先読み)制御することで、水温の制御応答性を向上させ、ノッキングの回避精度の向上及び燃費の向上を図るものである。   In the present embodiment, a thermostat that controls the engine water temperature of the internal combustion engine is computerized, and in an optimal water temperature control according to the load, the future engine inlet water temperature is estimated from the combustion chamber wall temperature and the current operating condition values, By quickly feedforward (prefetching) controlling the opening of the electronic thermostat toward the optimum water temperature, the control response of the water temperature is improved, the knocking avoidance accuracy is improved, and the fuel consumption is improved.

図1は、本実施形態の内燃機関の冷却水制御装置のシステム構成図である。同図において、符号1はエンジン、符号2はエアクリーナ、符号3はスロットル、符号4はサージタンク、符号5はインテークマニホルド、符号6はエキゾーストマニホルド、符号7は排気管である。これらのエンジンの基本システム構成の冷却系として、ウォーターアウトレット(W/O)パイプ8と、ラジエター9と、ウォーターインレット(W/I)パイプ10と、ウォーターバイパス(W/B)パイプ11とがある。W/Iパイプ10とW/Bパイプ11との接続部には、電子サーモスタット12が設けられている。   FIG. 1 is a system configuration diagram of a cooling water control device for an internal combustion engine according to the present embodiment. In the figure, reference numeral 1 is an engine, reference numeral 2 is an air cleaner, reference numeral 3 is a throttle, reference numeral 4 is a surge tank, reference numeral 5 is an intake manifold, reference numeral 6 is an exhaust manifold, and reference numeral 7 is an exhaust pipe. As a cooling system of the basic system configuration of these engines, there are a water outlet (W / O) pipe 8, a radiator 9, a water inlet (W / I) pipe 10, and a water bypass (W / B) pipe 11. . An electronic thermostat 12 is provided at a connection portion between the W / I pipe 10 and the W / B pipe 11.

電子サーモスタット12は、ウォータポンプ13によりエンジン1の内部に送られる冷却水の通路経路の開度制御を行う。図2に示すように、電子サーモスタット12は、通路切り替えバルブ12aを用いて、エンジン1に入る冷却水において、ラジエター9を経てW/Iパイプ10経由で流れる低温の冷却水の流量と、ラジエター9を経ることなくW/Bパイプ11経由で流れる高温の冷却水の流量の割合を制御して、最適な水温に調整された冷却水がエンジン1に入るようにする。   The electronic thermostat 12 controls the opening degree of the passage path of the cooling water sent to the inside of the engine 1 by the water pump 13. As shown in FIG. 2, the electronic thermostat 12 uses a passage switching valve 12 a to change the flow rate of low-temperature cooling water flowing through the radiator 9 and the W / I pipe 10 in the cooling water entering the engine 1, and the radiator 9. The flow rate of the high-temperature cooling water flowing through the W / B pipe 11 without passing through is controlled so that the cooling water adjusted to the optimum water temperature enters the engine 1.

図1に示すように、W/Iパイプ10において電子サーモスタット12よりもエンジン1側には、水温センサ(エンジン入口)15が設けられている。同様に、W/Oパイプ8においてエンジン1側には、水温センサ(エンジン出口)16が設けられている。ECU14には、トランスミッションの出力軸に設けられた車速センサ(図示せず)によって検出された車速を示す信号(車速信号)17と、外気温を示す信号と、エンジン入口の水温センサ15及びエンジン出口の水温センサ16のそれぞれにより検出された水温を示す信号と、エンジン回転数(NE)センサ18により検出されたエンジン回転数を示す信号と、スロットルポジションセンサ19により検出されたスロットル開度を示す信号とが入力される。ECU14は、以下に述べるように、これらの入力された信号に基づいて、エンジン水温の最適値を求め、電子サーモスタット12の通路切り替えバルブ12aを制御する。   As shown in FIG. 1, a water temperature sensor (engine inlet) 15 is provided on the W / I pipe 10 closer to the engine 1 than the electronic thermostat 12. Similarly, a water temperature sensor (engine outlet) 16 is provided on the W / O pipe 8 on the engine 1 side. The ECU 14 includes a signal (vehicle speed signal) 17 indicating a vehicle speed detected by a vehicle speed sensor (not shown) provided on the output shaft of the transmission, a signal indicating the outside air temperature, a water temperature sensor 15 at the engine inlet, and an engine outlet. A signal indicating the water temperature detected by each of the water temperature sensors 16, a signal indicating the engine speed detected by the engine speed (NE) sensor 18, and a signal indicating the throttle opening detected by the throttle position sensor 19. Are entered. As described below, the ECU 14 obtains the optimum value of the engine water temperature based on these input signals and controls the passage switching valve 12a of the electronic thermostat 12.

次に、図3を参照して、本実施形態の動作について説明する。   Next, the operation of the present embodiment will be described with reference to FIG.

[ステップS1及びステップS2]
本実施形態によるエンジン冷却水の制御は、エンジン1が運転中であるときにECU14により実行される(ステップS1、ステップS11)。エンジン1が運転中である場合(ステップS1−Y、ステップS11−Y)には、ステップS2において、現時点のエンジン運転条件(スロットル開度とエンジン回転数)及び現時点までのエンジン運転条件に基づいて、現時点のエンジン1の燃焼室の壁温の推定値が求められ、その現時点のエンジン1の燃焼室の壁温の推定値と、現時点のエンジンの運転条件に基づいて、将来的な燃焼室の壁温の推移が算出(推定)される。
[Step S1 and Step S2]
The control of the engine coolant according to the present embodiment is executed by the ECU 14 when the engine 1 is in operation (Step S1, Step S11). When the engine 1 is in operation (steps S1-Y and S11-Y), based on the current engine operating conditions (throttle opening and engine speed) and the engine operating conditions up to the present time in step S2. An estimated value of the wall temperature of the combustion chamber of the engine 1 at the present time is obtained, and based on the estimated value of the wall temperature of the combustion chamber of the engine 1 at the present time and the current operating condition of the engine, The transition of the wall temperature is calculated (estimated).

上記のように、ステップS2では、まず、現時点のエンジン1の燃焼室の壁温の推定値が求められる。現時点のエンジン1の燃焼室の壁温は、現時点のエンジン1の運転状態のみによって決まるのではなく、エンジン1の始動後から現時点までのエンジン1の運転状態によって変わる値である。そのため、現時点のエンジン運転条件に基づくのみならず、エンジン1の始動後から現時点までのエンジン運転条件の積算値に基づいて、現時点のエンジン1の燃焼室の壁温が推定される。現時点のエンジン1の燃焼室の壁温の推定値には、エンジン保持熱量(エンジン各部温、エンジン内水温)が実質的に反映されている。   As described above, in step S2, first, an estimated value of the wall temperature of the combustion chamber of the engine 1 at the present time is obtained. The wall temperature of the combustion chamber of the engine 1 at this time is not determined only by the current operating state of the engine 1, but is a value that changes depending on the operating state of the engine 1 from the start of the engine 1 to the current time. Therefore, the current wall temperature of the combustion chamber of the engine 1 is estimated not only based on the current engine operating conditions but also based on the integrated value of the engine operating conditions from the start of the engine 1 to the current time. The estimated value of the wall temperature of the combustion chamber of the engine 1 at this time substantially reflects the amount of heat retained by the engine (the temperature of each part of the engine and the water temperature in the engine).

ノッキング、異常燃焼などのような燃焼の現象は、燃焼室の壁温に影響を受け易いため、ステップS2では、燃焼室の壁温が推定される。燃焼室の壁温の推定に際しては、上記のスロットル開度(負荷)とエンジン回転数に加えて、エンジン1の入口の水温値に基づいて推定されることもできる。   Since combustion phenomena such as knocking and abnormal combustion are easily affected by the wall temperature of the combustion chamber, the wall temperature of the combustion chamber is estimated in step S2. The wall temperature of the combustion chamber can be estimated based on the water temperature value at the inlet of the engine 1 in addition to the throttle opening (load) and the engine speed.

また、ステップS2において、将来的な燃焼室の壁温の推移は、仮に現時点のエンジンの運転条件が今後も続いた場合に、現時点のエンジン1の燃焼室の壁温の推定値が、将来的にどのように変化(推移)するのかという観点から求められる。次回の制御サイクルにて、現時点のエンジンの運転条件が変化した場合には、将来的な燃焼室の壁温の推移には、その変化後の(更新された)運転条件による修正が加えられる。   In addition, in step S2, the future transition of the wall temperature of the combustion chamber is based on the assumption that the current estimated temperature of the combustion chamber wall of the engine 1 will be It is required from the viewpoint of how it changes (changes). In the next control cycle, if the current engine operating conditions change, the future change in the combustion chamber wall temperature is corrected by the updated (updated) operating conditions.

[ステップS3]
次いで、ステップS3では、上記ステップS2で求められた将来的な燃焼室壁温の推移(推定値)に基づいて、エンジン水温の最適値が算出される。このエンジン水温の最適値は、性能及び燃費の面から、燃焼室壁温に適した値が求められる。
[Step S3]
Next, in step S3, the optimum value of the engine water temperature is calculated based on the future transition (estimated value) of the combustion chamber wall temperature obtained in step S2. As the optimum value of the engine water temperature, a value suitable for the combustion chamber wall temperature is required in terms of performance and fuel consumption.

図4は、現在の燃焼室壁温(推定値)及び将来的な燃焼室壁温の推移(推定値)と、エンジン水温の最適値との関係の一例を示したものである。同図に示すように、現在から将来に向かって燃焼室壁温が上昇すると推定される場合、エンジン水温の最適値は下降するように求められ、ステップS3では、制御タイミングに設定された時点t1での値がエンジン水温の最適値として算出される。   FIG. 4 shows an example of the relationship between the current combustion chamber wall temperature (estimated value) and the future transition (estimated value) of the combustion chamber wall temperature and the optimum value of the engine water temperature. As shown in the figure, when it is estimated that the combustion chamber wall temperature will increase from the present to the future, the optimum value of the engine water temperature is determined to decrease. In step S3, the time t1 set at the control timing is obtained. The value at is calculated as the optimum value of the engine water temperature.

[ステップS4]
次に、ステップS4では、現在のエンジンの運転条件に基づいて、エンジン1の発熱量が算出され、その発熱量と、エンジン入口の水温センサ15により計測された現在の冷却水の水温とに基づいて、将来のエンジン1の出口水温の到達点が推定される。ステップS4において算出されるエンジン1の単位時間当たりの発熱量は、図5に示すように、エンジン回転数(NE)とスロットル開度のマップにより求められることができる。同図に示すように、エンジン回転数が大きいほど、また、スロットル開度が大きいほど、エンジン1の発熱量は大きな値に算出される。
[Step S4]
Next, in step S4, the heat generation amount of the engine 1 is calculated based on the current engine operating conditions, and based on the heat generation amount and the current coolant temperature measured by the water temperature sensor 15 at the engine inlet. Thus, the arrival point of the outlet water temperature of the engine 1 in the future is estimated. The amount of heat generated per unit time of the engine 1 calculated in step S4 can be obtained from a map of engine speed (NE) and throttle opening as shown in FIG. As shown in the figure, the heat value of the engine 1 is calculated to be larger as the engine speed is larger and the throttle opening is larger.

[ステップS5]
次いで、ステップS5では、車速(車速信号17)及び外気温に基づいて、現在のラジエター9の冷却能力が算出される。ステップS5において算出されるラジエター9の冷却能力は、図6に示すように、車速と外気温のマップにより求められることができる。同図に示すように、車速が高いほど、また、外気温が低いほど、ラジエター9の冷却能力は大きな値に算出される。
[Step S5]
Next, in step S5, the current cooling capacity of the radiator 9 is calculated based on the vehicle speed (vehicle speed signal 17) and the outside air temperature. The cooling capacity of the radiator 9 calculated in step S5 can be obtained from a map of vehicle speed and outside air temperature as shown in FIG. As shown in the figure, the higher the vehicle speed and the lower the outside air temperature, the larger the cooling capacity of the radiator 9 is calculated.

[ステップS6]
次に、ステップS6では、上記ステップS4において推定されたエンジン1の出口水温と、NEセンサ18により検出された現在のエンジン回転数(ウォータポンプ13の流量)と、電子サーモスタット12の通路切り替えバルブ12aの現在の開度と、上記ステップS5で算出されたラジエター9の現在の冷却能力とに基づいて、将来のラジエター9の出口水温が推定される。
[Step S6]
Next, in step S6, the outlet water temperature of the engine 1 estimated in step S4, the current engine speed (flow rate of the water pump 13) detected by the NE sensor 18, and the passage switching valve 12a of the electronic thermostat 12 are displayed. The future outlet water temperature of the radiator 9 is estimated on the basis of the current opening of the radiator 9 and the current cooling capacity of the radiator 9 calculated in step S5.

[ステップS7]
次いで、ステップS7では、上記ステップS4で推定されたエンジン1の将来の出口水温と、上記ステップS6で推定されたラジエター9の将来の出口水温と、電子サーモスタット12の現在の通路切り替えバルブ12aの開度とに基づいて、エンジン1の将来の入口水温を推定する。
[Step S7]
Next, in step S7, the future outlet water temperature of the engine 1 estimated in step S4, the future outlet water temperature of the radiator 9 estimated in step S6, and the current passage switching valve 12a of the electronic thermostat 12 are opened. The future inlet water temperature of the engine 1 is estimated based on the degree.

[ステップS8〜ステップS13]
次に、ステップS8では、上記ステップS7で推定されたエンジン1の将来の入口水温が、上記ステップS3で算出されたエンジン水温の最適値よりも高いか否かが判定される。その判定の結果、エンジン1の推定入口水温が最適水温値よりも高い場合には、電子サーモスタット12の通路切り替えバルブ12aがラジエター9側に全開であるか否かが判定され(ステップS9)、全開ではない場合にはラジエター9からの冷却水を予め設定された一定量多く流す(W/Iパイプ10側の通路を大きくする)ように通路切り替えバルブ12aを制御する(ステップS10)。一方、ステップS8の判定の結果、エンジン1の推定入口水温が最適水温値よりも高くない場合には、電子サーモスタット12の通路切り替えバルブ12aがW/Bパイプ11側に全開であるか否かが判定され(ステップS12)、全開ではない場合にはラジエター9からの冷却水を予め設定された一定量少なく流す(W/Bパイプ11側の通路を大きくする)ように通路切り替えバルブ12aを制御する(ステップS13)。ステップS9又はステップS12で肯定的に判定された場合、及びステップS10又はステップS13の次には、ステップS11に進み、エンジン1が運転中であればステップS2に戻り、運転中はない場合には本制御は終了する。
[Step S8 to Step S13]
Next, in step S8, it is determined whether or not the future inlet water temperature of the engine 1 estimated in step S7 is higher than the optimum value of the engine water temperature calculated in step S3. As a result of the determination, if the estimated inlet water temperature of the engine 1 is higher than the optimum water temperature value, it is determined whether or not the passage switching valve 12a of the electronic thermostat 12 is fully open to the radiator 9 side (step S9). If not, the passage switching valve 12a is controlled so as to flow a predetermined amount of cooling water from the radiator 9 (increase the passage on the W / I pipe 10 side) (step S10). On the other hand, as a result of the determination in step S8, if the estimated inlet water temperature of the engine 1 is not higher than the optimum water temperature value, whether or not the passage switching valve 12a of the electronic thermostat 12 is fully opened to the W / B pipe 11 side is determined. If it is determined (step S12) and it is not fully opened, the passage switching valve 12a is controlled so that the cooling water from the radiator 9 flows in a predetermined amount less (a passage on the W / B pipe 11 side is enlarged). (Step S13). If the determination in step S9 or step S12 is affirmative, and after step S10 or step S13, the process proceeds to step S11. If the engine 1 is in operation, the process returns to step S2, and if not in operation. This control ends.

以上に述べたように、本実施形態は、エンジン水温コントロールを行うサーモスタットを電子制御化したシステムにおいて、設定水温に対する制御性を、単なるエンジン運転状態によるフィードフォワード制御や、電子サーモスタットの出口の水温によるフィードバック制御に頼っていない。即ち、本実施形態では、エンジン水温の最適値を設定するための判断指標として、まず、現時点の燃焼室の壁温(推定値)を設定し、その現在の燃焼室の壁温に現在のエンジン運転状態を加味して将来的な燃焼室壁温を設定する(ステップS2)。その将来的な燃焼室壁温からエンジン水温の最適値を求め(ステップS3)、そのエンジン水温の最適値を狙ったフィードフォワード制御を行うことで、ノッキングの回避精度の向上及び燃費の向上を図ることとしている。   As described above, in this embodiment, in the system in which the thermostat for controlling the engine water temperature is electronically controlled, the controllability with respect to the set water temperature is based on the feedforward control based on the mere engine operating state or the water temperature at the outlet of the electronic thermostat. Do not rely on feedback control. That is, in this embodiment, as a determination index for setting the optimum value of the engine water temperature, first, the wall temperature (estimated value) of the current combustion chamber is set, and the current engine temperature is set to the current combustion chamber wall temperature. A future combustion chamber wall temperature is set in consideration of the operation state (step S2). The optimum value of the engine water temperature is obtained from the future combustion chamber wall temperature (step S3), and feedforward control aiming at the optimum value of the engine water temperature is performed to improve knocking avoidance accuracy and improve fuel efficiency. I am going to do that.

本実施形態では、現在の運転条件の各種数値(エンジン回転数、スロットル開度、エンジン入口水温、車速、外気温、電子サーモスタット12の通路切り替えバルブ12aの開度)に基づいて、エンジン入口水温(将来値)を推定し(ステップS7)、電子サーモスタット12の通路切り替えバルブ12aに対して先読み制御(フィードフォワード制御)を行う(ステップS8〜ステップS13)ことで、燃焼室壁温(推定値)から求められるエンジン水温の最適値への制御性を向上させようとするものである。ノッキングが発生しない燃焼室壁温(低中負荷)の条件の時には、エンジン水温を速やかに高くすることで、燃費を向上(冷損低減)させ、ノッキングが発生するような燃焼室壁温(高負荷)の条件の時には、エンジン水温を速やかに下げることでノッキングをより発生し難くし、性能を向上させることが可能となる。   In the present embodiment, the engine inlet water temperature (the engine rotational speed, the throttle opening, the engine inlet water temperature, the vehicle speed, the outside air temperature, the opening of the passage switching valve 12a of the electronic thermostat 12) based on the current operating conditions. (Future value) is estimated (step S7), and pre-reading control (feed forward control) is performed on the passage switching valve 12a of the electronic thermostat 12 (step S8 to step S13), thereby determining the combustion chamber wall temperature (estimated value). It is intended to improve the controllability to the optimum value of the required engine water temperature. When the combustion chamber wall temperature (low / medium load) does not cause knocking, the engine water temperature is quickly increased to improve fuel efficiency (reduction in cooling loss) and the combustion chamber wall temperature (high) that causes knocking. Under the condition of (load), the engine water temperature is quickly lowered, so that knocking is less likely to occur and the performance can be improved.

即ち、本実施形態では、ある一時点でのエンジンの運転状態に基づいてではなく、エンジン始動後から現在までのエンジンの運転状態が反映される燃焼室壁温(推定値)に基づいて、ノッキングが発生しそうな状態か、燃費向上を狙える状態かを判定しており、それに基づいてエンジン水温を制御する。   In other words, in the present embodiment, knocking is not based on the combustion chamber wall temperature (estimated value) reflecting the engine operating state from the start of the engine to the present, but based on the engine operating state at a certain point in time. Whether the fuel is likely to occur or a state where fuel efficiency can be improved is determined, and the engine water temperature is controlled based on the determination.

更に、本実施形態では、現状の、エンジン水温の最適値を制御目標とするフィードバック制御だけではなく、迅速なフィードフォワード(先読み)制御を行うことにより、エンジン水温の追従性の向上だけではなく、エンジン水温の制御の収束性も向上する(エンジン水温のハンチング等が発生し難くなる、制御の目標値が安定し易くなる)。フィードバック制御及びフィードフォワード制御の両側から電子サーモスタット12の通路切り替えバルブ12aの開度が設定されるためである。   Furthermore, in the present embodiment, not only the feedback control with the optimum value of the engine water temperature as a control target, but also the rapid feedforward (prefetch) control, not only the improvement of the followability of the engine water temperature, The convergence of the engine water temperature control is also improved (engine water temperature hunting is less likely to occur, and the control target value is easily stabilized). This is because the opening degree of the passage switching valve 12a of the electronic thermostat 12 is set from both sides of the feedback control and the feedforward control.

本発明の内燃機関の冷却水制御装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the cooling water control apparatus of the internal combustion engine of this invention. 本発明の内燃機関の冷却水制御装置の一実施形態の電子サーモスタットを説明するための図である。It is a figure for demonstrating the electronic thermostat of one Embodiment of the cooling water control apparatus of the internal combustion engine of this invention. 本発明の内燃機関の冷却水制御装置の一実施形態の動作を示すフローチャートである。It is a flowchart which shows operation | movement of one Embodiment of the cooling water control apparatus of the internal combustion engine of this invention. 本発明の内燃機関の冷却水制御装置の一実施形態において、燃焼室壁温と最適水温値との関係を示す図である。It is a figure which shows the relationship between combustion chamber wall temperature and optimal water temperature value in one Embodiment of the cooling water control apparatus of the internal combustion engine of this invention. 本発明の内燃機関の冷却水制御装置の一実施形態において、発熱量の求め方を説明するための図である。It is a figure for demonstrating the calculation method of the emitted-heat amount in one Embodiment of the cooling water control apparatus of the internal combustion engine of this invention. 本発明の内燃機関の冷却水制御装置の一実施形態において、ラジエターの冷却能力を説明するための図である。It is a figure for demonstrating the cooling capacity of a radiator in one Embodiment of the cooling water control apparatus of the internal combustion engine of this invention.

符号の説明Explanation of symbols

1 エンジン
2 エアクリーナ
3 スロットル
4 サージタンク
5 インテークマニホルド
6 エキゾーストマニホルド
7 排気管
8 ウォーターアウトレット(W/O)パイプ
9 ラジエター
10 ウォーターインレット(W/I)パイプ
11 ウォーターバイパス(W/B)パイプ
12 電子サーモスタット
12a 通路切り替えバルブ
13 ウォータポンプ
14 ECU
15 水温センサ(エンジン入口)
16 水温センサ(エンジン出口)
17 車速信号
18 NEセンサ
1 Engine 2 Air Cleaner 3 Throttle 4 Surge Tank 5 Intake Manifold 6 Exhaust Manifold 7 Exhaust Pipe 8 Water Outlet (W / O) Pipe 9 Radiator 10 Water Inlet (W / I) Pipe 11 Water Bypass (W / B) Pipe 12 Electronic Thermostat 12a Passage switching valve 13 Water pump 14 ECU
15 Water temperature sensor (engine inlet)
16 Water temperature sensor (engine outlet)
17 Vehicle speed signal 18 NE sensor

Claims (6)

電子的に弁開度を調整可能な弁開度調整手段を用いて内燃機関の冷却水の水温を制御する内燃機関の冷却水制御装置であって、
前記内燃機関の現在までの運転条件に基づいて前記冷却水の水温の最適値を推定する冷却水最適値推定手段を備え、
将来の前記内燃機関の入口での冷却水の水温の推定値と、前記推定された冷却水の水温の最適値に基づいて、前記弁開度調整手段の前記弁開度を調整する
ことを特徴とする内燃機関の冷却水制御装置。
A cooling water control device for an internal combustion engine that controls the temperature of the cooling water for the internal combustion engine using a valve opening adjustment means capable of electronically adjusting the valve opening,
A cooling water optimum value estimating means for estimating an optimum value of the temperature of the cooling water based on the current operating conditions of the internal combustion engine;
The valve opening of the valve opening adjusting means is adjusted based on an estimated value of the coolant temperature at the inlet of the internal combustion engine in the future and an optimum value of the estimated coolant temperature. A cooling water control device for an internal combustion engine.
請求項1記載の内燃機関の冷却水制御装置において、
前記冷却水最適値推定手段は、前記内燃機関の現在までの運転条件に基づいて、前記内燃機関の現在の燃焼室壁温を推定し、前記現在の燃焼室壁温の推定値に基づいて、前記冷却水の水温の最適値を推定する
ことを特徴とする内燃機関の冷却水制御装置。
The cooling water control apparatus for an internal combustion engine according to claim 1,
The cooling water optimum value estimation means estimates the current combustion chamber wall temperature of the internal combustion engine based on the current operating conditions of the internal combustion engine, and based on the estimated value of the current combustion chamber wall temperature, An optimum value of the coolant temperature is estimated. A coolant control device for an internal combustion engine.
請求項2記載の内燃機関の冷却水制御装置において、
前記冷却水最適値推定手段は、前記現在の燃焼室壁温の推定値と現在の前記内燃機関の運転条件に基づいて、将来の前記燃焼室壁温を推定し、前記将来の燃焼室壁温の推定値に基づいて、前記冷却水の水温の最適値を推定する
ことを特徴とする内燃機関の冷却水制御装置。
The cooling water control device for an internal combustion engine according to claim 2,
The cooling water optimum value estimation means estimates the future combustion chamber wall temperature based on the estimated value of the current combustion chamber wall temperature and the current operating condition of the internal combustion engine, and the future combustion chamber wall temperature. An optimum value of the coolant temperature is estimated based on the estimated value of the coolant.
内燃機関の冷却水の水温を制御する内燃機関の冷却水制御装置であって、
将来の前記内燃機関の入口での冷却水の水温の推定値と、推定された前記冷却水の水温の最適値とに基づいて、前記内燃機関に入る冷却水の水温をフィードフォワード制御する
ことを特徴とする内燃機関の冷却水制御装置。
A cooling water control device for an internal combustion engine for controlling a coolant temperature of the internal combustion engine,
A feedforward control of the coolant temperature entering the internal combustion engine based on an estimated value of the coolant temperature at the inlet of the internal combustion engine in the future and an optimum value of the estimated coolant temperature; An internal combustion engine cooling water control device.
内燃機関の冷却水の水温を制御する内燃機関の冷却水制御装置であって、
現在の前記内燃機関の燃焼室壁温と、現在の前記内燃機関の運転条件とに基づいて、将来の前記燃焼室壁温を推定し、前記将来の燃焼室壁温の推定値に基づいて、前記冷却水の水温の最適値を推定し、前記冷却水の水温の最適値の推定値に基づいて、前記冷却水の水温をフィードフォワード制御する
ことを特徴とする内燃機関の冷却水制御装置。
A cooling water control device for an internal combustion engine for controlling a coolant temperature of the internal combustion engine,
Based on the current combustion chamber wall temperature of the internal combustion engine and the current operating conditions of the internal combustion engine, the future combustion chamber wall temperature is estimated, and based on the estimated value of the future combustion chamber wall temperature, An optimum value of the coolant temperature is estimated, and the coolant temperature is feedforward controlled based on the optimum value of the coolant temperature.
請求項1から5のいずれか1項に記載の内燃機関の冷却水制御装置において、
前記内燃機関の現在の運転条件に基づいて発熱量を算出し、現在の前記内燃機関の入口での冷却水の水温と、前記発熱量とに基づいて、将来の前記内燃機関の出口での冷却水の水温を推定し、前記将来の内燃機関の出口での冷却水の水温の推定値と、ラジエターの冷却能力とに基づいて将来の前記ラジエターの出口での冷却水の水温を推定し、前記将来の内燃機関の出口での冷却水の水温の推定値と、前記将来のラジエターの出口での冷却水の水温の推定値とに基づいて、前記将来の内燃機関の入口での冷却水の水温の推定値が求められる
ことを特徴とする内燃機関の冷却水制御装置。
The cooling water control apparatus for an internal combustion engine according to any one of claims 1 to 5,
A calorific value is calculated based on the current operating conditions of the internal combustion engine, and a future cooling at the outlet of the internal combustion engine based on the current coolant temperature at the inlet of the internal combustion engine and the calorific value. Estimating the water temperature of the water, estimating the water temperature of the cooling water at the outlet of the future internal combustion engine, and estimating the water temperature of the cooling water at the outlet of the radiator based on the cooling capacity of the radiator, Based on the estimated value of the coolant temperature at the outlet of the future internal combustion engine and the estimated value of the coolant temperature at the outlet of the future radiator, the coolant temperature at the inlet of the future internal combustion engine A cooling water control apparatus for an internal combustion engine, characterized in that an estimated value is obtained.
JP2005293752A 2005-10-06 2005-10-06 Cooling water control device for internal combustion engine Expired - Fee Related JP4821247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293752A JP4821247B2 (en) 2005-10-06 2005-10-06 Cooling water control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293752A JP4821247B2 (en) 2005-10-06 2005-10-06 Cooling water control device for internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011070857A Division JP5168379B2 (en) 2011-03-28 2011-03-28 Cooling water control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007100638A true JP2007100638A (en) 2007-04-19
JP4821247B2 JP4821247B2 (en) 2011-11-24

Family

ID=38027821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293752A Expired - Fee Related JP4821247B2 (en) 2005-10-06 2005-10-06 Cooling water control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4821247B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274771A (en) * 2007-04-25 2008-11-13 Toyota Motor Corp Internal combustion engine cooling system and internal combustion engine
JP2011127904A (en) * 2009-12-15 2011-06-30 A & D Co Ltd Engine bench
JP2011214564A (en) * 2010-04-02 2011-10-27 Toyota Motor Corp Control device for internal combustion engine
JP2011220156A (en) * 2010-04-07 2011-11-04 Suzuki Motor Corp Control device of cooling system
WO2012147202A1 (en) 2011-04-28 2012-11-01 トヨタ自動車株式会社 Coolant temperature control apparatus for internal combustion engine
GB2501699A (en) * 2012-04-30 2013-11-06 Gm Global Tech Operations Inc Refining electric thermostat duty cycle by estimating engine inlet temperature
JPWO2013105126A1 (en) * 2012-01-10 2015-05-11 トヨタ自動車株式会社 Method for estimating power consumption of blower, vehicle control method using vehicle power consumption estimation method, and vehicle control device
JP2017503112A (en) * 2014-01-15 2017-01-26 ルノー エス.ア.エス. Method for estimating coolant temperature and system for cooling an automotive drive engine
JP2017125419A (en) * 2016-01-12 2017-07-20 株式会社デンソー Water temperature control device and water temperature estimation method
JP2019060247A (en) * 2017-09-25 2019-04-18 トヨタ自動車株式会社 Engine cooling device
CN113085538A (en) * 2021-04-16 2021-07-09 烟台职业学院 Cooling control method and device of automobile power device based on artificial intelligence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137981A (en) * 2002-10-18 2004-05-13 Nippon Thermostat Co Ltd Control method of electronically controlled thermostat
JP2004156490A (en) * 2002-11-05 2004-06-03 Denso Corp Cooling controller for internal combustion engine
JP2005194895A (en) * 2003-12-26 2005-07-21 Mitsubishi Heavy Ind Ltd Internal combustion engine with cylinder cooling water temperature controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137981A (en) * 2002-10-18 2004-05-13 Nippon Thermostat Co Ltd Control method of electronically controlled thermostat
JP2004156490A (en) * 2002-11-05 2004-06-03 Denso Corp Cooling controller for internal combustion engine
JP2005194895A (en) * 2003-12-26 2005-07-21 Mitsubishi Heavy Ind Ltd Internal combustion engine with cylinder cooling water temperature controller

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274771A (en) * 2007-04-25 2008-11-13 Toyota Motor Corp Internal combustion engine cooling system and internal combustion engine
JP2011127904A (en) * 2009-12-15 2011-06-30 A & D Co Ltd Engine bench
JP2011214564A (en) * 2010-04-02 2011-10-27 Toyota Motor Corp Control device for internal combustion engine
JP2011220156A (en) * 2010-04-07 2011-11-04 Suzuki Motor Corp Control device of cooling system
WO2012147202A1 (en) 2011-04-28 2012-11-01 トヨタ自動車株式会社 Coolant temperature control apparatus for internal combustion engine
JPWO2013105126A1 (en) * 2012-01-10 2015-05-11 トヨタ自動車株式会社 Method for estimating power consumption of blower, vehicle control method using vehicle power consumption estimation method, and vehicle control device
GB2501699A (en) * 2012-04-30 2013-11-06 Gm Global Tech Operations Inc Refining electric thermostat duty cycle by estimating engine inlet temperature
GB2501699B (en) * 2012-04-30 2017-06-07 Gm Global Tech Operations Llc Controlling a duty cycle on an electric thermostat
JP2017503112A (en) * 2014-01-15 2017-01-26 ルノー エス.ア.エス. Method for estimating coolant temperature and system for cooling an automotive drive engine
JP2017125419A (en) * 2016-01-12 2017-07-20 株式会社デンソー Water temperature control device and water temperature estimation method
JP2019060247A (en) * 2017-09-25 2019-04-18 トヨタ自動車株式会社 Engine cooling device
US10619554B2 (en) 2017-09-25 2020-04-14 Toyota Jidosha Kabushiki Kaisha Engine cooling apparatus
CN113085538A (en) * 2021-04-16 2021-07-09 烟台职业学院 Cooling control method and device of automobile power device based on artificial intelligence
CN113085538B (en) * 2021-04-16 2022-06-03 烟台职业学院 Cooling control method and device of automobile power device based on artificial intelligence

Also Published As

Publication number Publication date
JP4821247B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4821247B2 (en) Cooling water control device for internal combustion engine
JP4512070B2 (en) Fuel injection amount control device for internal combustion engine
US8201525B2 (en) Cooling device for engine
JP2003239742A (en) Cooling device for internal combustion engine
US6568356B1 (en) Cooling water flow control system for internal combustion engine
JP4315192B2 (en) Throttle valve control device for internal combustion engine
JP5168379B2 (en) Cooling water control device for internal combustion engine
JP5618945B2 (en) Cooling control device for internal combustion engine
JP5423817B2 (en) Control device for internal combustion engine
JP6222161B2 (en) Cooling device for internal combustion engine
JPH0783052A (en) Cooling device for internal combustion engine
JP3723105B2 (en) Cooling device for internal combustion engine
JP2003172141A (en) Engine cooling device
US20120035829A1 (en) Control device for internal combustion engine
JP2003049700A (en) Heater control system for exhaust gas sensor
JP2010242525A (en) Control device for water pump
JP5270260B2 (en) EGR control method for internal combustion engine
JP5994450B2 (en) Control device for variable flow pump
KR101816359B1 (en) A method for controlling temperature of catalyst for cda engine and an apparatus therefor
JP6390511B2 (en) Water pump control device
JP6225887B2 (en) Control device for internal combustion engine
JP7444740B2 (en) engine cooling system
JP5182139B2 (en) Control device for internal combustion engine
JP2016102414A (en) Cooling device
JP2007071047A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R151 Written notification of patent or utility model registration

Ref document number: 4821247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees