JP2014019814A - Strength estimation method of formed coke - Google Patents

Strength estimation method of formed coke Download PDF

Info

Publication number
JP2014019814A
JP2014019814A JP2012161120A JP2012161120A JP2014019814A JP 2014019814 A JP2014019814 A JP 2014019814A JP 2012161120 A JP2012161120 A JP 2012161120A JP 2012161120 A JP2012161120 A JP 2012161120A JP 2014019814 A JP2014019814 A JP 2014019814A
Authority
JP
Japan
Prior art keywords
coal
expansion
specific volume
test
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012161120A
Other languages
Japanese (ja)
Other versions
JP5846064B2 (en
Inventor
Munehiro Uchida
宗宏 内田
Asayuki Nakagawa
朝之 中川
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012161120A priority Critical patent/JP5846064B2/en
Publication of JP2014019814A publication Critical patent/JP2014019814A/en
Application granted granted Critical
Publication of JP5846064B2 publication Critical patent/JP5846064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which when poor quality bony coal is used to produce formed coke, coke strength of the formed coke can be estimated beforehand to obtain stable quality formed coke.SOLUTION: In a method, expansion testings by at least two temperature raising conditions are executed beforehand to two or more kinds of testing bony coals, correlation between expansion specific volumes of the testing bony coals and coke strengths of testing formed cokes obtained from respective testing bony coals is obtained, and coke strength of a formed coke obtained using a bony coal is estimated from an expansion specific volume of the bony coal used for actual production on the basis of a correlation equation thereof.

Description

本発明は、成形コークスの強度推定方法に関し、詳しくは、劣質炭と称される石炭を用いて得られる成形コークスのコークス強度を推定する方法に関する。   The present invention relates to a method for estimating the strength of a formed coke, and more particularly to a method for estimating the coke strength of a formed coke obtained using coal called inferior coal.

高炉操業に必要なコークスを製造するにあたり、重要な品質のひとつにコークス強度がある。これまでに室炉式コークス炉で製造したコークス強度を推定する方法は多数報告されている。例えば、下記の式で定義される石炭軟化時の空隙充填度を用いて、石炭軟化時の空隙充填度とコークスの表面破壊強度との関係を求めておき、実製造に使用する石炭の石炭軟化時の比容積とコークス炉装入時の石炭の嵩密度から、コークスの表面破壊強度を推定する方法が知られている(特許文献1参照)。
石炭軟化時の空隙充填度(-)=石炭軟化時の比容積(cm3/g)×コークス炉装入時の石炭の嵩密度(g/cm3)
One of the important qualities in producing coke necessary for blast furnace operation is coke strength. Many methods have been reported so far for estimating the strength of coke produced in a chamber-type coke oven. For example, using the degree of void filling during coal softening defined by the following formula, the relationship between the degree of void filling during coal softening and the surface fracture strength of coke is obtained, and the coal softening of coal used in actual production A method for estimating the surface fracture strength of coke from the specific volume at the time and the bulk density of the coal when charged in the coke oven is known (see Patent Document 1).
Void filling degree during coal softening (-) = specific volume during coal softening (cm 3 / g) × coal bulk density of the coke RoSo Nyutoki (g / cm 3)

しかしながら、上記のようなコークス強度の推定方法は、非微粘結炭(非粘結炭及び微粘結炭)やそれよりも石炭化度の高い石炭の使用を前提にしたものである。すなわち、特許文献1の方法においては、JIS M 8801の膨張性試験方法(ディラートメーター法)で測定された石炭の膨張率(%)をもとに、石炭の最大膨脹時体積(cm3)と石炭装入量(g)との比から石炭軟化時の比容積を算出しており、JIS M 8801で規定される膨張性試験で膨張性を示さないような、いわゆる劣質炭と称される石炭を使用する場合には、適用することができない。 However, the method for estimating the coke strength as described above is based on the premise of using non-caking coal (non-caking coal and caking coal) or coal having a higher degree of coalification. That is, in the method of Patent Document 1, the maximum expansion volume (cm 3 ) of coal based on the coefficient of expansion (%) of coal measured by the expansibility test method (dilatometer method) of JIS M 8801 The so-called inferior coal, whose specific volume at the time of softening the coal is calculated from the ratio with the amount of coal charged (g) and does not show expansibility in the expansibility test specified in JIS M8801 When using, it is not applicable.

特開2002−121565号公報JP 2002-121565 A

近年の世界レベルでの鉄鋼需要の高まりにより、コークス用の原料石炭の価格が高騰している。特に、良質な石炭の価格高騰は今後しばらく続き、それより品質の劣る劣質炭との値差はますます拡大していくものと予想される。そのため、比較的価格の安い石炭を使ってコークスを製造する技術を確立することは急務である。そのひとつに、成形炭を乾留して成形コークスを製造する方法があり、これによれば原料石炭を事前に成形するため、比較的粘結性に劣る石炭を利用することができる。   Due to the recent increase in steel demand at the world level, the price of raw coal for coke has soared. In particular, the price increase of good quality coal will continue for some time, and the price difference with inferior quality coal is expected to increase further. Therefore, it is urgent to establish a technology for producing coke using relatively inexpensive coal. One of them is a method of producing carbonized coke by carbonizing carbonized coal. According to this method, raw material coal is formed in advance, so that coal having relatively poor caking properties can be used.

従来検討されてきた成形コークスでは、専ら高炉内での通気性を確保できるように割れや亀裂を防ぐことを目標としており、高い強度を持つ成形コークスを得るために、粘結炭や非微粘結炭のような粘結性を有する石炭をある一定以上の割合で配合しているが、近時の原料石炭の価格高騰を鑑みると、成形コークスの製造において良質の石炭の使用をできるだけ抑えるようにするのが望ましい。しかしながら、これまでに膨張性を示さないとされてきた劣質炭を用いた成形コークスの製造は十分に確立されているとは言えず、そのコークス強度を事前に推定する方法にいたってはほとんど検討がなされていない。   Molded coke, which has been studied in the past, is aimed exclusively at preventing cracks and cracks so that air permeability in the blast furnace can be ensured. Coal that has caking properties such as caking is blended at a certain ratio or more, but considering the recent rise in the price of raw coal, the use of good quality coal in the production of molded coke is to be suppressed as much as possible. It is desirable to make it. However, it cannot be said that the production of formed coke using inferior coal, which has been considered to have no expansibility, has been well established, and almost no consideration has been given to methods for estimating the coke strength in advance. Has not been made.

そこで、本発明の目的は、品質の劣る劣質炭を用いて成形コークスを製造する上で、安定した品質の成形コークスが得られるように、事前に成形コークスのコークス強度を推定することができる方法を提供することにある。   Accordingly, an object of the present invention is a method capable of estimating the coke strength of a formed coke in advance so as to obtain a formed coke having a stable quality when producing formed coke using inferior quality coal having inferior quality. Is to provide.

本発明者らは、これらの課題を解決するために鋭意検討を行った結果、JIS M 8801のディラートメーター法で規定されている3.0±0.1℃/minよりも昇温速度を速めた膨張性試験によって劣質炭の膨張性を検出することができ、それによって求められた劣質炭の銘柄毎の膨張比容積とコークス強度との間に相関性があることを新たに見出した。そして、この相関性に基づけば、成形コークスのコークス強度を推定することが可能であることから、本発明を完成させた。   As a result of intensive studies to solve these problems, the present inventors have increased the rate of temperature rise from 3.0 ± 0.1 ° C./min specified by the dilatometer method of JIS M8801. It was newly found that the expansibility of the inferior coal can be detected by the expansibility test, and there is a correlation between the expansion specific volume for each brand of the inferior coal and the coke strength. Based on this correlation, the coke strength of the formed coke can be estimated, and the present invention has been completed.

すなわち、本発明の要旨は次のとおりである。
(1) 劣質炭を用いて成形コークスを製造する際に、予め複数種の試験用劣質炭の膨張比容積とそれぞれの試験用劣質炭から得られる試験成形コークスのコークス強度との相関性を求めておき、その相関式に基づいて、実製造に使用する劣質炭の膨張比容積からその劣質炭を用いて得られる成形コークスのコークス強度を推定する方法であって、
前記膨張比容積は、細管内に充填した劣質炭の微粉末試料にピストンを載せて所定の昇温速度で加熱し、ピストン変位の最高点を求める膨張性試験で得られた劣質炭微粉末試料の最大膨張時体積Vと劣質炭微粉末試料の充填質量Wとの比(V/W)であり、
先ず、試験用劣質炭が少なくとも400℃に達した時点から500℃に達するまでの間の平均昇温速度H.R.400-500を3℃/min超にする第1の昇温条件による膨張性試験で膨張比容積を測定し、その膨張比容積がコークス強度との間で相関性を示す第1の試験劣質炭群の相関式を求め、
次いで、前記平均昇温速度H.R.400-500を第1の昇温条件よりも速めた第2の昇温条件による膨張性試験で膨張比容積を測定し、第1の試験劣質炭群以外の試験用劣質炭の膨張比容積とコークス強度との相関性から第2の試験劣質炭群の相関式を求めることを特徴とする成形コークスの強度推定方法。
(2) 実製造に使用する劣質炭の膨張比容積を第1の昇温条件による膨張性試験で測定して、該膨張比容積が、ピストン変位がゼロの場合の基準膨張比容積a1に対して1.1倍以上(≧1.1×a1)であれば、第1の試験劣質炭群から求められた相関式を用いてコークス強度を推定し、
該膨張比容積が基準膨張比容積a1に対して1.1倍未満(<1.1×a1)であれば、第2の昇温条件による膨張性試験で膨張比容積を測定し、該膨張比容積が、ピストン変位がゼロの場合の基準膨張比容積a2に対して1.1倍以上(≧1.1×a2)の場合には、第2の試験劣質炭群から求められた相関式を用いてコークス強度を推定することを特徴とする(1)に記載の成形コークスの強度推定方法。
That is, the gist of the present invention is as follows.
(1) When producing formed coke using inferior coal, the correlation between the expansion specific volume of multiple types of test inferior coal and the coke strength of test formed coke obtained from each of the inferior coals for testing is obtained. A method for estimating the coke strength of the formed coke obtained using the inferior coal from the expansion specific volume of the inferior coal used for actual production based on the correlation equation,
The expansion specific volume is obtained by an inferior coal fine powder sample obtained by an expansibility test in which a piston is placed on a fine powder sample of inferior coal filled in a thin tube and heated at a predetermined temperature rise rate to obtain the highest point of piston displacement. Is the ratio (V / W) between the maximum expansion volume V and the filling mass W of the inferior quality coal fine powder sample,
First, the expansion under the first temperature rise condition in which the average temperature rise rate HR 400-500 is over 3 ° C./min from when the test inferior coal reaches at least 400 ° C. to 500 ° C. The expansion specific volume is measured in the property test, and the correlation equation of the first test poor coal group in which the expansion specific volume has a correlation with the coke strength is obtained,
Subsequently, the expansion specific volume was measured by an expansion test under a second temperature increase condition in which the average temperature increase rate HR 400-500 was made faster than the first temperature increase condition, and the first test poor coal group A method for estimating the strength of a formed coke, wherein a correlation equation of the second test poor coal group is obtained from the correlation between the expansion specific volume of the test poor coal other than the above and the coke strength.
(2) The expansion specific volume of the inferior coal used in the actual production is measured by the expansion test under the first temperature rise condition, and the expansion specific volume becomes the reference expansion specific volume a 1 when the piston displacement is zero. If it is 1.1 times or more (≧ 1.1 × a 1 ), the coke strength is estimated using the correlation equation obtained from the first test poor coal group,
If the expansion specific volume is less than 1.1 times (<1.1 × a 1 ) with respect to the reference expansion specific volume a 1 , the expansion specific volume is measured by an expansion test under the second temperature rise condition, and the expansion When the specific volume is 1.1 times or more (≧ 1.1 × a 2 ) with respect to the reference expansion specific volume a 2 when the piston displacement is zero, the correlation formula obtained from the second test poor coal group The coke strength estimation method according to (1), wherein the coke strength is estimated using

本発明によれば、従来のディラートメーター法では検出できなかった劣質炭の膨張性に基づいて、劣質炭の銘柄毎にコークス強度の発現力を差別化でき、事前に成形コークスのコークス強度を推定することが可能になる。そのため、劣質炭を用いて成形コークスを製造する際に、得られる成形コークスのコークス強度が所望の値になるような劣質炭を選定することができ、安定した品質の成形コークスが得られるようになる。また、成形コークスの製造における操業の効率化が図れ、しかも、比較的安価な劣質炭を用いて高炉操業に資するコークスが製造できるようになることから、原料石炭の価格高騰や資源枯渇の問題等を同時に解決できる。   According to the present invention, based on the expansibility of inferior coal that could not be detected by the conventional dilatometer method, the ability to develop coke strength can be differentiated for each brand of inferior coal, and the coke strength of the formed coke is estimated in advance. It becomes possible to do. Therefore, when producing formed coke using inferior quality coal, it is possible to select the inferior quality coal so that the coke strength of the obtained shaped coke becomes a desired value, so that stable quality shaped coke can be obtained. Become. In addition, the efficiency of operations in the production of formed coke can be improved, and coke that contributes to blast furnace operation can be produced using relatively inexpensive inferior coal. Can be solved at the same time.

図1は、本発明に係る膨張性試験に用いた装置の概要を示す説明図である。FIG. 1 is an explanatory diagram showing an outline of an apparatus used for an expansibility test according to the present invention. 図2は、平均昇温速度H.R.400-500=12℃/minの膨張性試験で得られた試験用劣質炭の膨張比容積とそのコークス強度とをグラフにしたものである。FIG. 2 is a graph showing the expansion specific volume and the coke strength of the test poor coal obtained in the expansibility test at an average heating rate of HR 400-500 = 12 ° C./min. 図3は、平均昇温速度H.R.400-500=100℃/minの膨張性試験で得られた試験用劣質炭の膨張比容積とそのコークス強度とをグラフにしたものである。FIG. 3 is a graph showing the expansion specific volume of test poor coal obtained in the expansibility test at an average heating rate of HR 400-500 = 100 ° C./min and its coke strength.

以下、本発明について詳細に説明する。
先ず、本発明において使用する劣質炭とは、非微粘結炭等よりも粘結性を有さない極低膨張率炭であって、瀝青炭のなかで劣質炭として分類される石炭である。具体的には、JIS M 8801の膨張性試験方法により測定される全膨張率が5%以下の石炭、好適には全膨張率がほぼ0%の石炭であって、室炉式コークス炉では塊コークスにならないような石炭を対象とする。このような劣質炭から、直ちに室炉コークス並みのコークス強度を得ることは期待できないが、高炉周辺部に装入されて、主に還元材としての役割をする小塊コークスであれば、そこまでの強度は要求されない。
Hereinafter, the present invention will be described in detail.
First, the inferior coal used in the present invention is an extremely low expansion rate coal that has less caking properties than non-slightly caking coal and the like, and is classified as inferior coal among bituminous coals. Specifically, coal having a total expansion rate of 5% or less, preferably coal having a total expansion rate of approximately 0%, measured by the expansibility test method of JIS M8801, The target is coal that does not turn into coke. Although it is not expected to obtain coke strength at the same level as blast furnace coke from such inferior coal, if it is a small coke that is charged around the blast furnace and mainly serves as a reductant, it will The strength of is not required.

ここで、劣質炭を加圧成形して成形炭を作製し、試験炉で乾留して得た成形コークスの表面破壊強度DI150 6を測定した例を表1に示す。なお、試験炉による乾留条件は、A炭〜I炭のすべての劣質炭について、成形炭の中心温度における平均昇温速度を6℃/minで1000℃まで昇温して、成形コークスを得た。 Here, Table 1 shows an example in which the surface fracture strength DI 150 6 of the formed coke obtained by pressure-molding inferior coal to produce formed coal and dry-distilling in a test furnace is shown. The dry distillation conditions in the test furnace were as follows. For all the inferior coals of Coal A to Coal I, the average temperature increase rate at the center temperature of the formed coal was increased to 1000 ° C. at 6 ° C./min to obtain formed coke. .

劣質炭を加圧成形して作製した成形炭を、乾留して成形コークスを得る場合、400〜500℃の温度域における成形炭の中心温度の平均昇温速度を6〜30℃/minの範囲の所定の昇温速度に設定して、1000℃程度まで加熱することが好ましい。その理由は、劣質炭を加圧成形して得られた成形炭を用いてコークスを実機で製造する場合に、実施可能な条件であるためである。   When carbonized coal produced by pressure-molding inferior coal is obtained by dry distillation, the average temperature rising rate of the center temperature of the coal in the temperature range of 400-500 ° C is in the range of 6-30 ° C / min. It is preferable to heat to about 1000 ° C. by setting the predetermined temperature increase rate. The reason is that it is a condition that can be carried out when coke is produced with an actual machine using a coal obtained by pressure-molding inferior coal.

表1では、劣質炭の銘柄毎に単味の成形炭を得て、成形コークスを製造している。すなわち、劣質炭の成形コークスは、銘柄毎にコークス強度が大きく異なることが分かる。表1中の全膨張率(%)は、JIS M 8801に規定された膨張性試験方法で求めた値であり、膨張率測定装置(ディラートメーター)に装入された劣質炭が300〜550℃の温度範囲で3.0±0.1℃/minの加熱速度で昇温されたものである。ところが、いずれも全膨張率0%であって、劣質炭の銘柄毎にコークス強度の発現力を評価する(差別化する)ことはできない。   In Table 1, simple coking coal is obtained for each brand of inferior quality coal to produce formed coke. That is, it can be seen that the coke strength of the inferior coal molded coke varies greatly from brand to brand. The total expansion rate (%) in Table 1 is a value determined by the expansibility test method specified in JIS M 8801, and the inferior quality coal charged in the expansion rate measuring device (dilatometer) is 300 to 550 ° C. In this temperature range, the temperature was raised at a heating rate of 3.0 ± 0.1 ° C./min. However, all of them have a total expansion rate of 0%, and the ability to develop coke strength cannot be evaluated (differentiated) for each brand of inferior coal.

Figure 2014019814
Figure 2014019814

一般に、石炭は400℃前後の温度で軟化し始めてその後に膨張し、500℃前後の温度で再固化すると考えられる。そこで、劣質炭が400℃に達した時点から500℃に達するまでの間の平均昇温速度H.R.400-500をディラートメーター法の場合より速めていくと、劣質炭の膨張性が確認できることが分かった。このような劣質炭が示す膨張性について、本発明者らは、JIS M 8801のディラートメーター法とは異なる膨張性試験によって評価するようにした。 In general, it is believed that coal begins to soften at temperatures around 400 ° C., then expands and resolidifies at temperatures around 500 ° C. Therefore, if the average heating rate HR 400-500 from the time when the inferior coal reaches 400 ° C to the time when it reaches 500 ° C is increased faster than in the case of the dilatometer method, the expansibility of the inferior coal is confirmed. I understood that I could do it. About the expansibility which such inferior charcoal shows, the present inventors evaluated by the expansibility test different from the dilatometer method of JISM8801.

すなわち、ディラートメーター法のように棒状の試料体(ペンシル)を用いるのではなく、図1に示したように、劣質炭の微粉末試料を細管内に充填して、その細管内の劣質炭微粉末試料上にピストンを挿入し、所定の昇温速度で加熱して、その際のピストンの上下変位を測定する。そして、ピストン変位の最高点を読んで劣質炭微粉末試料の最大膨張時体積Vを求め、劣質炭微粉末試料の充填質量Wとの比(V/W)から劣質炭の膨張比容積を得るようにする。このような方法は特開平5−60707号公報に記載されており、当該文献ではディラートメーター法と同じく3.0±0.1℃/minの昇温速度で石炭の膨張比容積を測定しているが、本発明では、少なくとも劣質炭が400℃に達した時点から500℃に達するまでの間の平均昇温速度H.R.400-500をそれよりも速めた条件にして(3℃/min超にして)、劣質炭の膨張性を評価する点が相違している。なお、図1に示した膨張性試験装置においては、充填した劣質炭粉末試料が最大に膨張したときのピストン高さをh1とすれば、膨張比容積は、以下の式(Z)から算出することができる。
膨張比容積(cm3/g)=最大膨張時体積(cm3)/劣質炭微粉末試料の充填質量(g)={π×(0.8/2)2×h1}/2.413 ……(Z)
That is, instead of using a rod-shaped sample body (pencil) as in the dilatometer method, as shown in FIG. 1, a fine powder sample of inferior coal is filled into a thin tube, and the inferior coal fine in the thin tube is filled. A piston is inserted on the powder sample, heated at a predetermined temperature increase rate, and the vertical displacement of the piston at that time is measured. Then, by reading the highest point of the piston displacement, the maximum expansion volume V of the inferior coal fine powder sample is obtained, and the expansion specific volume of the inferior coal is obtained from the ratio (V / W) with the filling mass W of the inferior coal fine powder sample. Like that. Such a method is described in Japanese Patent Application Laid-Open No. 5-60707. In this document, the expansion specific volume of coal is measured at a temperature rising rate of 3.0 ± 0.1 ° C./min as in the case of the dilatometer method. However, in the present invention, at least the average temperature rising rate HR 400-500 from the time when the inferior coal reaches 400 ° C. to the time when it reaches 500 ° C. is set to be higher (3 ° C. / The difference is that the expansibility of inferior coal is evaluated. In the expansibility test apparatus shown in FIG. 1, the expansion specific volume is calculated from the following equation (Z), assuming that the piston height when the filled inferior carbon powder sample expands to the maximum is h 1. can do.
Expansion specific volume (cm 3 / g) = maximum expansion volume (cm 3 ) / filling mass of inferior coal fine powder sample (g) = {π × (0.8 / 2) 2 × h 1 } /2.413 ...... (Z)

表1には、平均昇温速度H.R.400-500=12℃/minとして300℃から550℃まで加熱した膨張性試験で劣質炭の銘柄毎の膨張比容積を測定した例と、平均昇温速度H.R.400-500=100℃/minとして300℃から550℃まで加熱した膨張性試験で膨張比容積を測定した例とを示している。そして、これらの結果について、劣質炭の膨張比容積(x)とそれぞれの劣質炭から得られた成形コークスのコークス強度(y)との関係をまとめると、平均昇温速度H.R.400-500=12℃/minとして300℃から550℃まで加熱した場合は図2に示したグラフのようになり、平均昇温速度H.R.400-500=100℃/minとして300℃から550℃まで加熱した場合は図3に示したグラフのようになる。 Table 1 shows an example in which the expansion specific volume for each grade of inferior coal was measured in an expansibility test heated from 300 ° C. to 550 ° C. with an average heating rate HR 400-500 = 12 ° C./min, and the average It shows an example in which the expansion specific volume was measured in an expansibility test heated from 300 ° C. to 550 ° C. at a rate of temperature increase HR 400-500 = 100 ° C./min. Then, for these results, summarized the relation between the expansion ratio volume of the low-quality coal (x) and the coke strength of a molded coke obtained from each low-quality coal (y), the average heating rate H. R. 400- When heating from 300 ° C. to 550 ° C. with 500 = 12 ° C./min, the graph shown in FIG. 2 is obtained, and the average heating rate HR 400-500 = 100 ° C./min with 300 ° C. to 550 ° C. When heated up to, the graph shown in FIG. 3 is obtained.

すなわち、図2のグラフによれば、膨張比容積の増加に伴いコークス強度が向上する関係を示すグループ(A炭〜D炭)と、x−yの一次関数が傾きを持たずに膨張比容積では劣質炭のコークス強度発現力を差別化することができないグループ(E炭〜I炭)とに選別されることが分かる。また、図3のグラフでは、図2で後者のグループに分類された劣質炭(E炭〜I炭)が膨張比容積の増加に伴いコークス強度が向上する関係を示すことが分かる。一方で、前者のグループの劣質炭(A炭〜D炭)については、膨張比容積の差が少なくなり、膨張比容積によって劣質炭を差別化するのが難くなった。   That is, according to the graph of FIG. 2, the group (A charcoal to D charcoal) showing the relationship in which the coke strength improves as the expansion specific volume increases, and the xy linear function has no inclination and the expansion specific volume. Then, it turns out that it classify | categorizes into the group (E coal-I coal) which cannot differentiate the coke strength expression power of inferior quality coal. Moreover, in the graph of FIG. 3, it turns out that the inferior quality coal (E charcoal-I charcoal) classified into the latter group in FIG. 2 shows the relationship which coke intensity | strength improves with the increase in expansion specific volume. On the other hand, for the former group of inferior coals (A coal to D coal), the difference in the expansion specific volume was reduced, and it was difficult to differentiate the inferior coal by the expansion specific volume.

これらの知見をもとに、本発明では、予め複数種の試験用劣質炭を用意し、上述した膨張性試験の2以上の昇温条件によってそれら膨張比容積を測定するようにする。試験用劣質炭の選定にあたっては、単味の成形コークスのコークス強度を事前に測定しておき、コークス強度が大小ばらつくような種々の銘柄の劣質炭を用意するのが好適である。その際、少なくとも1つの昇温条件による膨張性試験において、膨張比容積から劣質炭を差別化することができるグループとそうでないグループとに属する劣質炭が、それぞれ2種以上、好ましくは3種以上含まれるようにするのがよい。勿論、それらの数が増えれば強度推定値の精度は向上するため特に制限はないが、いずれのグループもそれに含まれる試験用劣質炭の数が5種あれば、実製造によって得られる成形コークスの強度を事前に把握する上で十分である。なお、コークス強度は、一般にはJIS K 2151で規定されたドラム試験方法によるドラム強度指数DIが用いられるが、このようなJIS規定のドラム強度指数のほか、ASTM及びJIS規定のタンブラー強度指数、ISO規定、NF規定及びDIN規格のマイカム強度指数、NF規定及びISO規定のイルシッド強度指数等を用いるようにしてもよい。   Based on these findings, in the present invention, a plurality of types of test inferior coals are prepared in advance, and their expansion specific volumes are measured according to two or more temperature rise conditions in the above-described expansion test. When selecting the test inferior coal, it is preferable to measure the coke strength of a simple formed coke in advance and prepare various brands of inferior coal with varying coke strength. In that case, in the expansibility test under at least one temperature rise condition, there are 2 or more, preferably 3 or more, each of the inferior coals belonging to the group that can differentiate the inferior coals from the expansion specific volume and the group that is not. It should be included. Of course, if the number of them increases, the accuracy of the strength estimation value will improve, so there is no particular limitation. However, if any group contains five types of test inferior coal, It is enough to grasp the strength in advance. The coke strength is generally the drum strength index DI according to the drum test method defined in JIS K 2151. In addition to the drum strength index defined by JIS, the tumbler strength index defined by ASTM and JIS, ISO You may make it use the Mycom strength index of regulation, NF regulation and DIN standard, the irsid strength index of NF regulation and ISO regulation, etc.

そして、先ず、試験用劣質炭の平均昇温速度H.R.400-500を3℃/min超にする第1の昇温条件の膨張性試験で膨張比容積を測定し、その膨張比容積がコークス強度との間で相関性を示す第1の試験劣質炭群(膨張比容積で試験用劣質炭が差別化できるグループ)の相関式を求めるようにする。この第1の昇温条件で採用する平均昇温速度H.R.400-500は、JIS M 8801のディラートメーター法の昇温速度よりも速めて、試験用劣質炭の一部から膨張比容積とコークス強度との間で相関性が認められるものであればよい。具体的なH.R.400-500については、試験用劣質炭を構成する劣質炭の種類(銘柄)や数によって適宜設定すればよいが、その設定の目安として、好ましくは6℃/min以上100℃/min未満の範囲内にするのがよく、より好ましくは12℃/min以上50℃/min以下の範囲内にするのがよい。H.R.400-500が6℃/min以上であれば、2以上の銘柄の劣質炭について、実際に第1の試験劣質炭群に分類できるような膨張性が充分に発現できるため、好適である。ちなみに、H.R.400-500が100℃/min以上になると、それらの銘柄の劣質炭について、第1の試験劣質炭群に分類される相関性を有意に導き出すのが難しくなる可能性が高くなるため、100℃/min未満、より好ましくは50℃/min以下の範囲内にすることが好適である。 First, the expansion specific volume was measured in the expansibility test under the first temperature rising condition in which the average heating rate HR 400-500 of the test poor coal was over 3 ° C./min. The correlation equation of the first test poor coal group (group in which the test poor coal can be differentiated by the expansion specific volume) showing a correlation with the coke strength is obtained. The average heating rate HR 400-500 employed in the first heating condition is higher than the heating rate of the dilatometer method of JIS M 8801, so that the expansion specific volume from a part of the test poor coal is increased. As long as a correlation is recognized between the coke strength and the coke strength. The specific HR 400-500 may be set as appropriate depending on the type (brand) and number of the inferior coal constituting the test inferior coal, but preferably 6 ° C / min or more as a guideline for the setting. It is good to make it within a range of less than 100 ° C./min, more preferably within a range of 12 ° C./min to 50 ° C./min. If H.R. 400-500 is 6 ° C / min or more, it is preferable because two or more brands of poor quality coal can sufficiently exhibit expansibility that can be classified into the first test poor quality coal group. It is. By the way, when H.R. 400-500 is 100 ° C / min or higher, it may be difficult to significantly derive the correlation classified into the first test inferior coal group for these brands of inferior coals. Since it becomes high, it is suitable to set it within the range of less than 100 ° C./min, more preferably 50 ° C./min or less.

次いで、平均昇温速度H.R.400-500を第1の昇温条件よりも速めた第2の昇温条件の膨張性試験で試験用劣質炭の膨張比容積を測定し、先に第1の試験劣質炭群に分類されたもの以外の試験用劣質炭の膨張比容積とコークス強度との相関性から、その第2の試験劣質炭群(膨張比容積で試験用劣質炭が差別化できるグループ)の相関式を求める。この第2の昇温条件で採用する平均昇温速度H.R.400-500は、第1の昇温条件の膨張性試験では膨張比容積とコークス強度との相関性が得られなかった試験用劣質炭について、膨張比容積で差別化できるようにする必要があることから、第1の昇温条件よりも速いものにする。具体的なH.R.400-500については、第1の昇温条件の場合と同様に適宜設定すればよいが、その設定の目安として、好ましくは第1の昇温条件の平均昇温速度の2倍以上にするのがよく、より好ましくは第1の平均昇温速度の昇温条件の5倍以上にするのがよい。また、平均昇温速度の上限値については第1の昇温条件にもよるため、特に規定されるものではないが、実際に実施できる範囲としては、好ましくは100倍以下、より好ましくは10倍以下が例示できる。ちなみに、H.R.400-500が第1の昇温条件の平均昇温速度の8倍以上において、第1の昇温条件のような比較的低速のH.R.400-500では相関性を示さなかった試験用劣質炭について、その膨張比容積とコークス強度との間に有意な関係を充分に認めることができるようになることを確認しているため、より好適な昇温速度として例示できる。 Next, the expansion specific volume of the test inferior coal was measured in the expansibility test under the second temperature rise condition in which the average temperature rise rate HR 400-500 was made faster than the first temperature rise condition. From the correlation between the expansion specific volume of test poor coals other than those classified into the test poor coal group of 1 and the coke strength, the second test poor coal group (the test poor coal differentiated by the expansion specific volume) The correlation formula of the group that can do this is obtained. The average heating rate HR 400-500 employed in the second temperature raising condition is a test in which the correlation between the expansion specific volume and the coke strength was not obtained in the expansion test under the first temperature raising condition. Since it is necessary for the inferior quality coal to be differentiated by the expansion specific volume, it is faster than the first temperature raising condition. Specific HR 400-500 may be set as appropriate as in the case of the first temperature rise condition, but as an indication of the setting, preferably the average temperature rise rate of the first temperature rise condition 2 times or more, more preferably 5 times or more of the temperature increase condition of the first average temperature increase rate. Further, the upper limit value of the average temperature rising rate is not particularly defined because it depends on the first temperature raising condition, but the actual practicable range is preferably 100 times or less, more preferably 10 times. The following can be illustrated. By the way, when HR 400-500 is more than 8 times the average rate of temperature increase under the first temperature rise condition, the correlation with HR 400-500 , which is relatively slow like the first temperature rise condition, is correlated. It is confirmed that a significant relationship between the expansion specific volume and the coke strength can be sufficiently recognized for the test inferior coal that did not show the it can.

先の表1に示した例では、H.R.400-500=12℃/minの第1の昇温条件による膨張性試験で比較的高い膨張比容積を示した劣質炭は、膨張比容積により差別化できて第1の試験劣質炭群に分類され、この第1の試験劣質炭群から相関式(1)を算出することができる。一方、膨張比容積が比較的低い値を示した残りの劣質炭については、H.R.400-500=100℃/minの第2の昇温条件による膨張性試験で求められた膨張比容積により差別化でき、その第2の試験劣質炭群から相関式(2)を算出することができる。そのため、これらによって得られた相関式(1)及び(2)を用いれば、実製造に使用する劣質炭の膨張比容積からその劣質炭を用いて得られる成形コークスのコークス強度を推定することができる。この表1の例において更なる必要性がある場合や、或いは、第1、2の昇温条件による膨張性試験では全ての試験用劣質炭について膨張比容積による差別化が十分でない場合には、勿論、第2の昇温条件よりもH.R.400-500を速めた第3の昇温条件による膨張性試験を実施したり、第4以降の昇温条件によって膨張性試験を実施するようにしてもよい。 In the example shown in Table 1 above, inferior coal that showed a relatively high expansion specific volume in the expansion test under the first temperature rise condition of HR 400-500 = 12 ° C./min is the expansion specific volume. And is classified into the first test poor coal group, and the correlation equation (1) can be calculated from the first test poor coal group. On the other hand, for the remaining inferior coal whose expansion specific volume showed a relatively low value, the expansion specific volume determined by the expansion test under the second temperature rise condition of HR 400-500 = 100 ° C./min. The correlation equation (2) can be calculated from the second test poor coal group. Therefore, if the correlation equations (1) and (2) obtained by these are used, the coke strength of the formed coke obtained using the inferior coal can be estimated from the expansion specific volume of the inferior coal used in actual production. it can. When there is a further need in the example of Table 1 or when the differentiation by the expansion specific volume is not sufficient for all the test poor coals in the expansibility test under the first and second heating conditions, Of course, an expansibility test is carried out under the third temperature rise condition, which is HR 400-500 faster than the second temperature rise condition, and an expansibility test is carried out under the fourth and subsequent temperature rise conditions. It may be.

そして、実製造に使用する劣質炭について、その成形コークスのコークス強度を推定するにあたっては、予め、上述したようにして2以上の昇温条件による膨張性試験を実施して、試験用劣質炭の膨張比容積とそれぞれの試験用劣質炭から得られる試験成形コークスのコークス強度との相関性から、少なくとも相関式(1)及び(2)を求めておく。   And, when estimating the coke strength of the formed coke for the inferior coal used in actual production, an expansibility test is performed in advance under two or more temperature rising conditions as described above, and At least correlation equations (1) and (2) are obtained from the correlation between the expansion specific volume and the coke strength of the test molded coke obtained from the respective test inferior coals.

次に、実製造に使用する劣質炭について、上記の相関式(1)を求めた場合と同様にした第1の昇温条件による膨張性試験でその膨張比容積を測定する。得られた膨張比容積Iが以下の条件〈1-i〉を満たせば、その膨張比容積をもとに、第1の試験劣質炭群から求められた相関式(1)を用いて、事前にその劣質炭を成形して得られる成形コークスのコークス強度を推定する。もし、得られた膨張比容積Iが以下の条件〈1-ii〉に該当する場合には、上記の相関式(2)を求めた場合と同様にした第2の昇温条件による膨張性試験を実施して、膨張比容積IIを測定するようにする。
膨張比容積I≧1.1×a1 ……〈1-i〉
膨張比容積I<1.1×a1 ……〈1-ii〉
(ここで、a1は、第1の昇温条件による膨張性試験で劣質炭の微粉末試料を充填した細管内のピストン変位がゼロの場合の基準膨張比容積を表す。)
Next, about the inferior quality coal used for an actual manufacture, the expansion specific volume is measured by the expansibility test by the 1st temperature rising condition similar to the case where said correlation Formula (1) is calculated | required. If the obtained expansion specific volume I satisfies the following condition <1-i>, using the correlation equation (1) obtained from the first test poor coal group based on the expansion specific volume, The coke strength of the formed coke obtained by molding the inferior coal is estimated. If the obtained expansion specific volume I corresponds to the following condition <1-ii>, the expansibility test under the second temperature rise condition similar to the case of obtaining the above correlation equation (2) To measure the expansion specific volume II.
Expansion specific volume I ≧ 1.1 × a 1 ...... <1-i>
Expansion specific volume I <1.1 × a 1 ...... <1-ii>
(Here, a 1 represents the reference expansion specific volume when the piston displacement in the narrow tube filled with the fine powder sample of inferior coal is zero in the expansion test under the first temperature rise condition.)

そして、再度得られた膨張比容積IIが以下の条件〈2-i〉を満たせば、その膨張比容積IIをもとに、第2の試験劣質炭群から求められた相関式(2)を用いてコークス強度を推定する。もし、再度得られた膨張比容積IIが以下の条件〈2-ii〉に該当する場合には、予め第3以降の昇温条件による膨張性試験を実施して相関式(3)、(4)、・・・、(n)を求めておき、上記の〈1-i〉、〈2-i〉と同様にして求められる条件〈3-i〉、〈4-i〉、・・・、〈n-i〉を満足するまでこれを繰り返す。或いは、直近の膨張性試験における膨張比容積からある程度予想されるコークス強度を見計らい、例えば表面破壊強度DI150 6が予め定めた品質管理値に達しないことが予想されるような場合には、時宜を得て条件〈n-ii〉に該当したところで、その劣質炭は成形コークスの製造に適さないと判断するようにしてもよい。
膨張比容積II≧1.1×a2 ……〈2-i〉
膨張比容積II<1.1×a2 ……〈2-ii〉
膨張比容積n≧1.1×an ……〈n-i〉
膨張比容積n<1.1×an ……〈n-ii〉
〔ここで、a2は、第2の昇温条件による膨張性試験で劣質炭の微粉末試料を充填した細管内のピストン変位がゼロの場合の基準膨張比容積を表す。また、膨張比容積nは、第nの昇温条件による膨張性試験で測定された膨張比容積であり、anは、その膨張性試験で劣質炭の微粉末試料を充填した細管内のピストン変位がゼロの場合の基準膨張比容積を表す(nは自然数)。〕
If the expansion specific volume II obtained again satisfies the following condition <2-i>, the correlation equation (2) obtained from the second test poor coal group is obtained based on the expansion specific volume II. To estimate the coke strength. If the expansion specific volume II obtained again satisfies the following condition <2-ii>, an expansibility test is performed in advance under the third and subsequent temperature rise conditions, and correlation equations (3), (4 ),..., (N), and conditions <3-i>, <4-i>,... Obtained in the same manner as <1-i> and <2-i> above. This is repeated until <ni> is satisfied. Alternatively, if the coke strength expected to some extent is estimated from the expansion specific volume in the most recent expansibility test, for example, it is expected that the surface fracture strength DI 150 6 is not expected to reach a predetermined quality control value. When the condition <n-ii> is satisfied, it may be determined that the poor quality coal is not suitable for the production of formed coke.
Expansion specific volume II ≧ 1.1 × a 2 ...... <2-i>
Expansion specific volume II <1.1 × a 2 ...... <2-ii>
Expansion specific volume n ≧ 1.1 × a n ...... <ni>
Expansion ratio volume n <1.1 × a n ...... < n-ii>
[Here, a 2 represents the reference expansion specific volume when the piston displacement in the narrow tube filled with the fine powder sample of inferior coal is zero in the expansion test under the second temperature rise condition. Further, the expansion ratio volume n is an expansion ratio volume measured by the expansion test according to the temperature-raising condition of the n, a n, the piston in the tubules filled with fine powder sample of low-quality coal in its expanded test The reference expansion specific volume when the displacement is zero is represented (n is a natural number). ]

これらの条件〈n-i〉、〈n-ii〉を得るにあたり、本発明者らは、ある劣質炭(石炭X)について、図1に示した膨張性試験装置を用いて下記の表2に示す条件でH.R.400-500=12℃/minによる膨張性試験を行って膨張比容積を測定した。そして、そのサンプル数を5にして膨張比容積の標準偏差σを求めたところ、3σ=0.123であった。3σであれば、ばらつきの範囲ではなく、確実に膨張していると考えられる。ちなみに、この膨張性試験の場合、表2の条件によれば細管内のピストン変位がゼロのとき、すなわち先に示した膨張比容積を求める式(Z)でh1の代わりに初期高さh0=60mmを代入すれば、石炭Xが全く膨れないとしたときの基準膨張比容積は1.25となる。したがって、この3σを勘案すると、膨張性試験後の膨張比容積は、1.250+0.123=1.375となるが、この値は、基準膨張比容積である1.250に対して、ほぼ1.1倍であることが分かった。また、この傾向は、種々の劣質炭についても、ほぼ同様であった。 In obtaining these conditions <ni> and <n-ii>, the present inventors used the expansibility test apparatus shown in FIG. The expansion specific volume was measured by conducting an expansibility test at HR 400-500 = 12 ° C./min. When the number of samples was set to 5 and the standard deviation σ of the expansion specific volume was determined, it was 3σ = 0.123. If it is 3σ, it is considered that it is surely expanded rather than in the range of variation. Incidentally, in the case of this expansibility test, according to the conditions in Table 2, when the piston displacement in the narrow tube is zero, that is, the initial height h instead of h 1 in the equation (Z) for obtaining the expansion specific volume shown above. If 0 = 60 mm is substituted, the standard expansion ratio volume when coal X is not expanded at all is 1.25. Therefore, taking this 3σ into consideration, the expansion specific volume after the expansibility test is 1.250 + 0.123 = 1.375, but this value is approximately 1 with respect to the reference expansion specific volume of 1.250. It turns out that it is 1 time. This tendency was almost the same for various inferior coals.

この知見に基き、本発明では、膨張性試験で測定された膨張比容積が基準膨張比容積anに対して1.1倍以上であれば、その劣質炭の膨張性が確認できたと判断して、当該膨張性試験で得られた相関式を使ってコークス強度を推定することとした。もし、1.1倍未満であれば、その劣質炭の膨張性は確認できないと判断し、平均昇温速度の速い他の膨張性試験からそのコークス強度を推定するようにする。 Based on this finding, the present invention, as long as 1.1 times or more with respect to the measured expansion ratio volume of the reference expansion ratio volume a n in the expansion test, it is determined that the expansion of the low-quality coal can be confirmed Thus, the coke strength was estimated using the correlation equation obtained in the expansibility test. If it is less than 1.1 times, it is judged that the inferiority of the inferior coal cannot be confirmed, and the coke strength is estimated from another expansibility test having a high average heating rate.

Figure 2014019814
Figure 2014019814

本発明における強度推定方法は、劣質炭を単味で成形して成形コークスを製造する際にそのコークス強度を推定するほか、劣質炭を複数種配合して成形コークスを製造する場合にも利用することができる。劣質炭を複数種配合する場合には、それぞれの劣質炭について本発明に係る膨張性試験で膨張比容積を測定して、配合比で加重平均することで、得られる成形コークスのコークス強度を推定することができる。また、劣質炭以外に非微粘結炭や粘結性を示す他の石炭を含めて成形コークスを製造する場合にも適用することができる。その場合には、非微粘結炭等に関する公知の強度推定方法を組み合わせるようにすればよい。   The strength estimation method according to the present invention is used to estimate the coke strength when molding inferior quality coal to produce shaped coke, and also to produce shaped coke by blending multiple types of inferior quality coal. be able to. When blending multiple types of inferior charcoal, the coke strength of the resulting coke is estimated by measuring the expansion specific volume for each inferior coal in the expansibility test according to the present invention and weighted average with the blending ratio. can do. Moreover, it can apply also when manufacturing a shaping | molding coke including the other coal which shows non-caking coal and caking property other than inferior coal. In that case, what is necessary is just to make it combine the well-known intensity | strength estimation method regarding non-slightly caking coal.

以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例の内容に制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not restrict | limited to the content of the following Examples.

表1に示した性状を有する9種類の劣質炭(A炭〜I炭)を用意し、これらを試験用劣質炭とした。これらはいずれもJIS M 8801に規定される膨張性試験方法で求めた全膨張率が0%であった。この9種類の試験用劣質炭について、以下のようにしてそれぞれ単味の成形炭を準備した。   Nine types of inferior charcoal (A charcoal to I charcoal) having the properties shown in Table 1 were prepared and used as test inferior charcoal. As for these, the total expansion rate calculated | required by the expansibility test method prescribed | regulated to JISM8801 was 0%. With respect to these nine types of test poor coals, plain coals were prepared as follows.

先ず、1.5mm以下が100%になるように各劣質炭を粉砕し、後に添加するバインダーの偏在を防ぐために、粉砕した劣質炭にそれぞれ熱水を1000cc/30kg-coal加えて加温しながら、バインダーとしてSOP(軟ピッチ)を外数で8質量%添加して、混練機(レディゲミキサー、550mmφ×670mmL)で180秒間混練し、各劣質炭を混練炭とした。次いで、得られた混練炭を縦65mm×横45mm×厚み30mmのカップサイズを有したダブルロールプレス式成形機を用いて線圧3t/cmの圧力で成形し、それぞれ容積56ccのピロー型の成形炭とした。   First, each inferior coal is pulverized so that 1.5 mm or less becomes 100%, and hot water is added to the pulverized inferior coal in an amount of 1000 cc / 30 kg-coal and heated in order to prevent uneven distribution of the binder added later. Then, SOP (soft pitch) was added in an external number of 8% by mass as a binder and kneaded for 180 seconds with a kneading machine (Laidge mixer, 550 mmφ × 670 mmL) to make each inferior charcoal a kneaded charcoal. Next, the obtained kneaded charcoal was molded at a linear pressure of 3 t / cm using a double roll press molding machine having a cup size of 65 mm in length, 45 mm in width, and 30 mm in thickness. Charcoal was used.

次に、上記で得られた各成形炭について、直接乾留炉を用いて1000℃まで加熱し、試験成形コークスを得た。その際、成形炭の中心部の温度が400℃に達した時点から500℃に達するまでの間の平均昇温速度が6℃/minとなる昇温パターンで乾留するために、昇温開始から1000℃まで、平均昇温速度が6℃/minで加熱した。得られた各試験成形コークスについて、それぞれ約500gを開口径25mmの篩いで手篩により篩分けし、篩上を測定用試料としてJIS K2151法に基づきドラム試験機により各試験成形コークスの表面破壊強度DI150 6(−)を測定した。結果は表1に示したとおりである。 Next, each of the obtained coals was heated to 1000 ° C. using a direct distillation furnace to obtain a test molded coke. At that time, in order to dry-distill in a temperature rising pattern in which the average temperature rising rate from the time when the temperature of the central part of the forming coal reaches 400 ° C. to 500 ° C. is 6 ° C./min, The sample was heated to 1000 ° C. at an average rate of temperature increase of 6 ° C./min. About 500 g of each of the obtained test molded cokes, about 500 g is screened by a hand sieve with a sieve having an opening diameter of 25 mm, and the surface fracture strength of each test molded coke is measured by a drum tester based on JIS K2151 using the sieve top as a measurement sample. DI 150 6 (−) was measured. The results are as shown in Table 1.

また、上記9種類の試験用劣質炭について、図1に示した膨張性試験装置を用いて、それぞれ以下のようにして膨張比容積を測定した。
先ず、1.5mm以下が100%になるように粉砕して各試験用劣質炭の微粉末試料を用意して、内径φ8mm×高さ372mmのSUS310S製測定管(細管)に装入し、測定管内の上部側にピストンを載せて試験用劣質炭の微粉末試料の高さが60mmになるようにした。また、測定管内に装入する試験用劣質炭の微粉末試料は、いずれも無水ベースの質量で2.413gとなるようにし、その際の充填密度(嵩密度)は0.8g/cm3とした。
Moreover, the expansion specific volume was measured as follows using the expansibility test apparatus shown in FIG.
First, pulverize so that 1.5 mm or less becomes 100%, prepare a fine powder sample of inferior charcoal for each test, and insert into a measuring tube (fine tube) made of SUS310S having an inner diameter of 8 mm × height of 372 mm. A piston was placed on the upper side in the tube so that the height of the test inferior coal fine powder sample was 60 mm. In addition, each of the test inferior coal fine powder samples charged in the measuring tube had a mass of anhydrous base of 2.413 g, and the packing density (bulk density) at that time was 0.8 g / cm 3 . did.

次いで、予め300℃に加熱した電気炉内に測定管を入れて、測定管内に充填された試験用劣質炭の微粉末試料を300℃から550℃まで加熱した。その際、測定管内の微粉末試料が400℃に達した時点から500℃に達するまでの間の平均昇温速度H.R.400-500が12℃/minになる第1の昇温条件の昇温パターンと、平均昇温速度H.R.400-500が100℃/minになる第2の昇温条件の昇温パターンとで各試験用劣質炭を加熱するようにし、それぞれ2つの膨張性試験を実施した。これらの膨張性試験中は、測定管内で膨張する微粉末試料の高さをピストンに接続した図示外のレーザー変位計によって計測し、ピストン変位が最大になった時点で最大膨張時体積Vを求め、先の式(Z)から膨張比容積を算出した。各結果は表1に示したとおりである。なお、H.R.400-500=100℃/minの昇温条件を得る際には、使用した電気炉の出力の都合上、本実施例では予め電気炉を550℃まで昇温させておき、これに測定管を入れて7分間保持するようにして実施した。 Subsequently, the measuring tube was put in an electric furnace preheated to 300 ° C., and a fine powder sample of test poor coal filled in the measuring tube was heated from 300 ° C. to 550 ° C. At that time, the first temperature rise condition in which the average temperature rise rate HR 400-500 from the time when the fine powder sample in the measuring tube reaches 400 ° C. until it reaches 500 ° C. is 12 ° C./min. Each test inferior charcoal is heated with a temperature rising pattern and a temperature rising pattern under the second temperature rising condition where the average temperature rising rate HR 400-500 is 100 ° C./min, and each of the two expansions is expanded. A sex test was performed. During these expansibility tests, the height of the fine powder sample that expands in the measuring tube is measured by a laser displacement meter (not shown) connected to the piston, and the maximum expansion volume V is obtained when the piston displacement reaches the maximum. The expansion specific volume was calculated from the previous equation (Z). Each result is as shown in Table 1. When obtaining the temperature increase condition of HR 400-500 = 100 ° C./min, the temperature of the electric furnace is raised to 550 ° C. in advance in this embodiment for the convenience of the output of the electric furnace used. The measurement tube was put into this and held for 7 minutes.

そして、上記で求められた各試験用劣質炭の膨張比容積(cm3/g)と先に求めたそれぞれの試験用劣質炭から得られる試験成形コークスのコークス強度DI150 6(−)との関係を昇温条件の異なる膨張性試験毎にまとめると図2、図3のグラフのようになる。このうち、図2に示したH.R.400-500=12℃/minの膨張性試験によれば、A炭、B炭、C炭、及びD炭については、膨張比容積(x)の増加に伴いコークス強度DI150 6(y)が向上する関係を有し、これらA炭〜D炭からなる第1の試験劣質炭群の相関性は“y=12.832x+54.175”の相関式(1)で表すことができる。一方、図3に示したH.R.400-500=100℃/minの膨張性試験では、図2のグラフではx−yの一次関数が傾きを持たずに膨張比容積とコークス強度DI150 6との相関性が認められないE炭、F炭、G炭、H炭、及びI炭が、膨張比容積(x)の増加に伴いコークス強度(y)が向上する関係を示し、これらE炭〜I炭からなる第2の試験劣質炭群の相関性は“y=−7/(x−1.15)+80”の相関式(2)で表すことができる。 Then, the expansion specific volume (cm 3 / g) of each test inferior coal obtained above and the coke strength DI 150 6 (−) of the test molded coke obtained from each test inferior coal obtained previously. The relationship is summarized for each of the expansibility tests with different temperature rising conditions as shown in the graphs of FIGS. Among these, according to the expansion test of HR 400-500 = 12 ° C./min shown in FIG. 2, the expansion specific volume (x) of Coal A, Coal B, Coal C, and Coal D is As the coke strength DI 150 6 (y) increases, the correlation of the first test inferior coal group consisting of coals A to D is “y = 12.832x + 54.175”. It can be represented by (1). On the other hand, in the expansibility test of HR 400-500 = 100 ° C./min shown in FIG. 3, in the graph of FIG. 2, the xy linear function has no inclination, and the expansion specific volume and coke strength DI 150. E charcoal, F charcoal, G charcoal, H charcoal, and I charcoal that do not correlate with 6 show a relationship in which the coke strength (y) increases as the expansion specific volume (x) increases. The correlation of the second test inferior coal group consisting of charcoal to I charcoal can be represented by the correlation equation (2) of “y = −7 / (x−1.15) +80”.

これらの相関式(1)及び(2)によれば、用意した全ての試験用劣質炭について膨張比容積とコークス強度との相関性を把握できたことになる。そこで、実製造に使用する劣質炭について上記と同様にして膨張性試験を行って膨張比容積を求め、これらの相関式を用いて、成形コークスにした場合のコークス強度を推定することができる。そこで、表3に示したように、新たに入荷されてコークス強度が未知であり、JIS M 8801の膨張性試験方法で測定した全膨張率が0%の劣質炭j及びkについて、以下のようにしてコークス強度を推定しながら成形コークスを製造した。   According to these correlation equations (1) and (2), the correlation between the expansion specific volume and the coke strength can be grasped for all prepared test poor coals. Thus, the inferior coal used for actual production is subjected to an expansibility test in the same manner as described above to obtain an expansion specific volume, and using these correlation equations, the coke strength when formed into coke can be estimated. Therefore, as shown in Table 3, for the inferior coals j and k that are newly received and the coke strength is unknown and the total expansion rate measured by the expansion test method of JIS M 8801 is 0%, The formed coke was manufactured while estimating the coke strength.

Figure 2014019814
Figure 2014019814

先ず、劣質炭jを1.5mm以下が100%になるように粉砕して微粉末試料とし、先の場合と同様にしてSUS310S製測定管に装入して、平均昇温速度H.R.400-500が12℃/minになる第1の昇温条件の膨張性試験で膨張比容積Iを測定した。このときの基準膨張比容積a1は1.25であり、実際に測定された膨張比容積Iは1.60であったことから、膨張比容積I≧1.1×1.25の条件を満たすことになる。そこで、上記相関式(1)を用いて、測定された膨張比容積Iからこの劣質炭jを成形コークスにした場合のコークス強度を求めると、表面破壊強度DI150 6(−)=74.71と推定された。 First, inferior charcoal j is pulverized so that 1.5 mm or less becomes 100% to obtain a fine powder sample, which is charged into a measuring tube made of SUS310S in the same manner as the previous case, and the average heating rate H.R. The expansion specific volume I was measured in the expansibility test under the first temperature raising condition where 400-500 was 12 ° C./min. Since the reference expansion specific volume a 1 at this time was 1.25 and the actually measured expansion specific volume I was 1.60, the condition of expansion specific volume I ≧ 1.1 × 1.25 was satisfied. Will meet. Therefore, using the above correlation equation (1), the surface fracture strength DI 150 6 (−) = 74.71 is obtained when the coke strength when the inferior coal j is formed into formed coke from the measured expansion specific volume I. It was estimated.

次いで、上記で試験成形コークスにした場合と同様にして、この劣質炭jから容積56ccのピロー型成形炭を作製し、直接乾留炉を用いて成形炭の中心部の温度が400℃に達した時点から500℃に達するまでの間の平均昇温速度が6℃/minとするために、昇温開始から1000℃まで、平均昇温速度が6℃/minで加熱して乾留し、劣質炭j単味の成形コークスを製造した。この劣質炭jの成形コークスを先の手順と同様にして、JIS K2151法に基づきドラム試験機で表面破壊強度DI150 6(−)を測定したところ、実測の表面破壊強度DI150 6(−)は75.0であった。この値は推定した表面破壊強度DI150 6(−)と良く一致する結果であった。 Next, in the same manner as in the case of the test-formed coke described above, a pillow-type formed coal having a volume of 56 cc was produced from this inferior coal j, and the temperature of the central portion of the formed coal reached 400 ° C. using a direct carbonization furnace. In order to set the average temperature rising rate from the time to 500 ° C. to 6 ° C./min, heating is performed from the start of temperature rising to 1000 ° C. at an average temperature rising rate of 6 ° C./min. j Simple molded coke was produced. The molded coke this poor quality coal j in the same manner as in the previous step, the surface fracture strength DI 0.99 6 a drum tester based on JIS K2151 method (-) was measured, the surface fracture strength of the measured DI 0.99 6 (-) Was 75.0. This value was in good agreement with the estimated surface fracture strength DI 150 6 (−).

一方の劣質炭kについては、平均昇温速度H.R.400-500が12℃/minの第1の昇温条件の膨張性試験で測定された膨張比容積IIは1.31であり、膨張比容積I<1.1×1.25の条件に該当した。そこで、平均昇温速度H.R.400-500が100℃/minの第2の昇温条件による膨張性試験を実施し、劣質炭kの膨張比容積IIを測定したところ、1.38であった。この値は膨張比容積II≧1.1×1.25の条件を満たすことから、上記で得られた相関式(2)を用いて、この劣質炭kの膨張比容積IIから成形コークスにした場合のコークス強度を求めると、表面破壊強度DI150 6(−)=49.57と推定された。 On the other hand, for the inferior coal k, the expansion specific volume II measured in the expansibility test under the first temperature increase condition with an average temperature increase rate HR 400-500 of 12 ° C./min is 1.31; The condition of the expansion specific volume I <1.1 × 1.25 was met. Therefore, an expansion test was performed under the second temperature increase condition with an average temperature increase rate HR 400-500 of 100 ° C./min, and the expansion specific volume II of the poor quality coal k was measured to be 1.38. there were. Since this value satisfies the condition of expansion specific volume II ≧ 1.1 × 1.25, using the correlation equation (2) obtained above, the expansion specific volume II of this inferior coal k was formed into coke. When the coke strength in this case was determined, it was estimated that the surface fracture strength DI 150 6 (−) = 49.57.

そして、この劣質炭kについても上記と同様にして容積56ccのピロー型成形炭を作製して、劣質炭k単味の成形コークスを得た。この劣質炭kの成形コークスの表面破壊強度DI150 6(−)を実測したところ、表面破壊強度DI150 6(−)は50であり、上記で推定した表面破壊強度DI150 6(−)と良く一致する結果であった。 Then, for this inferior charcoal k, a pillow type coal with a volume of 56 cc was produced in the same manner as described above to obtain an inferior charcoal k simple shaped coke. When the surface fracture strength DI 150 6 (−) of the formed coke of this inferior coal k was measured, the surface fracture strength DI 150 6 (−) was 50, and the surface fracture strength DI 150 6 (−) estimated above was The results were in good agreement.

上記のようにしてコークス強度を推定しながら製造した劣質炭j及びkの成形コークスは、いずれも高炉周辺部に装入される小塊コークスとして十分な表面破壊強度DI150 6(−)を有するものである。そのため、実際に劣質炭j及びkを単味の成形コークスとしたり、或いは他の石炭と配合した成形コークスなどとして利用できると考えられる。 The formed coke of inferior coals j and k produced while estimating the coke strength as described above has sufficient surface fracture strength DI 150 6 (−) as a small coke charged in the periphery of the blast furnace. Is. Therefore, it is considered that the inferior quality coals j and k can be used as simple formed coke, or formed coke mixed with other coal.

なお、上記の実施例では、第1の昇温条件の膨張性試験をH.R.400-500=12℃/minとし、第2の昇温条件の膨張性試験をH.R.400-500=100℃/minとして実施しているが、これら以外のH.R.400-500を採用できることは勿論である。また、上記実施例では2つの昇温条件を採用した膨張性試験を行っているが、更に平均昇温速度を変えた昇温条件で膨張性試験を行ってもよい。すなわち、用意した試験用劣質炭の種類や数に応じて、それらが膨張比容積とコークス強度との間に所定の相関性を示すように平均昇温速度を適宜選択すればよく、また、用意した全ての試験用劣質炭がこれらの有意な相関性を示すように、昇温条件の数を設定して膨張性試験を行うことができる。 In the above embodiment, the expansibility test under the first temperature rise condition is HR 400-500 = 12 ° C./min, and the expansibility test under the second temperature rise condition is HR 400- Although 500 = 100 ° C./min, it is a matter of course that HR 400-500 other than these can be adopted. Moreover, in the said Example, although the expansibility test which employ | adopted two temperature rising conditions is performed, you may perform an expansibility test on the temperature rising conditions which changed the average temperature rising rate further. That is, depending on the type and number of test poor coals prepared, the average heating rate may be appropriately selected so that they exhibit a predetermined correlation between the expansion specific volume and coke strength. The expansibility test can be performed by setting the number of temperature raising conditions so that all the test poor coals exhibit these significant correlations.

Claims (2)

劣質炭を用いて成形コークスを製造する際に、予め複数種の試験用劣質炭の膨張比容積とそれぞれの試験用劣質炭から得られる試験成形コークスのコークス強度との相関性を求めておき、その相関式に基づいて、実製造に使用する劣質炭の膨張比容積からその劣質炭を用いて得られる成形コークスのコークス強度を推定する方法であって、
前記膨張比容積は、細管内に充填した劣質炭の微粉末試料にピストンを載せて所定の昇温速度で加熱し、ピストン変位の最高点を求める膨張性試験で得られた劣質炭微粉末試料の最大膨張時体積Vと劣質炭微粉末試料の充填質量Wとの比(V/W)であり、
先ず、試験用劣質炭が少なくとも400℃に達した時点から500℃に達するまでの間の平均昇温速度H.R.400-500を3℃/min超にする第1の昇温条件による膨張性試験で膨張比容積を測定し、その膨張比容積がコークス強度との間で相関性を示す第1の試験劣質炭群の相関式を求め、
次いで、前記平均昇温速度H.R.400-500を第1の昇温条件よりも速めた第2の昇温条件による膨張性試験で膨張比容積を測定し、第1の試験劣質炭群以外の試験用劣質炭の膨張比容積とコークス強度との相関性から第2の試験劣質炭群の相関式を求めることを特徴とする成形コークスの強度推定方法。
When producing formed coke using inferior coal, the correlation between the expansion specific volume of multiple types of test inferior coal and the coke strength of test formed coke obtained from each of the inferior coals for testing is obtained in advance. Based on the correlation equation, it is a method for estimating the coke strength of the formed coke obtained using the inferior coal from the expansion specific volume of the inferior coal used in actual production,
The expansion specific volume is obtained by an inferior coal fine powder sample obtained by an expansibility test in which a piston is placed on a fine powder sample of inferior coal filled in a thin tube and heated at a predetermined temperature rise rate to obtain the highest point of piston displacement. Is the ratio (V / W) between the maximum expansion volume V and the filling mass W of the inferior quality coal fine powder sample,
First, the expansion under the first temperature rise condition in which the average temperature rise rate HR 400-500 is over 3 ° C./min from when the test inferior coal reaches at least 400 ° C. to 500 ° C. The expansion specific volume is measured in the property test, and the correlation equation of the first test poor coal group in which the expansion specific volume has a correlation with the coke strength is obtained,
Subsequently, the expansion specific volume was measured by an expansion test under a second temperature increase condition in which the average temperature increase rate HR 400-500 was made faster than the first temperature increase condition, and the first test poor coal group A method for estimating the strength of a formed coke, wherein a correlation equation of the second test poor coal group is obtained from the correlation between the expansion specific volume of the test poor coal other than the above and the coke strength.
実製造に使用する劣質炭の膨張比容積を第1の昇温条件による膨張性試験で測定して、該膨張比容積が、ピストン変位がゼロの場合の基準膨張比容積a1に対して1.1倍以上(≧1.1×a1)であれば、第1の試験劣質炭群から求められた相関式を用いてコークス強度を推定し、
該膨張比容積が基準膨張比容積a1に対して1.1倍未満(<1.1×a1)であれば、第2の昇温条件による膨張性試験で膨張比容積を測定し、該膨張比容積が、ピストン変位がゼロの場合の基準膨張比容積a2に対して1.1倍以上(≧1.1×a2)の場合には、第2の試験劣質炭群から求められた相関式を用いてコークス強度を推定することを特徴とする請求項1に記載の成形コークスの強度推定方法。
The expansion specific volume of the inferior coal used in actual production is measured by an expansion test under the first temperature rise condition, and the expansion specific volume is 1 with respect to the reference expansion specific volume a 1 when the piston displacement is zero. .1 or more (≧ 1.1 × a 1 ), the coke strength is estimated using the correlation equation obtained from the first test poor coal group,
If the expansion specific volume is less than 1.1 times (<1.1 × a 1 ) with respect to the reference expansion specific volume a 1 , the expansion specific volume is measured by an expansion test under the second temperature rise condition, and the expansion When the specific volume is 1.1 times or more (≧ 1.1 × a 2 ) with respect to the reference expansion specific volume a 2 when the piston displacement is zero, the correlation formula obtained from the second test poor coal group The coke strength estimation method according to claim 1, wherein the coke strength is estimated by using.
JP2012161120A 2012-07-20 2012-07-20 Method for estimating strength of formed coke Active JP5846064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161120A JP5846064B2 (en) 2012-07-20 2012-07-20 Method for estimating strength of formed coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161120A JP5846064B2 (en) 2012-07-20 2012-07-20 Method for estimating strength of formed coke

Publications (2)

Publication Number Publication Date
JP2014019814A true JP2014019814A (en) 2014-02-03
JP5846064B2 JP5846064B2 (en) 2016-01-20

Family

ID=50195087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161120A Active JP5846064B2 (en) 2012-07-20 2012-07-20 Method for estimating strength of formed coke

Country Status (1)

Country Link
JP (1) JP5846064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048297A (en) * 2016-09-14 2018-03-29 新日鐵住金株式会社 Estimation method of coke strength
JP2018169199A (en) * 2017-03-29 2018-11-01 宇部興産株式会社 Evaluation method of coal degradation
CN113376351A (en) * 2020-03-09 2021-09-10 日本碍子株式会社 Method for inspecting columnar honeycomb formed body before or after firing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263764A (en) * 1996-03-28 1997-10-07 Nippon Steel Corp Method for estimating coke strength
WO2010103828A1 (en) * 2009-03-10 2010-09-16 新日本製鐵株式会社 Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
JP2012219235A (en) * 2011-04-13 2012-11-12 Nippon Steel Corp Method of estimating strength of formed coke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09263764A (en) * 1996-03-28 1997-10-07 Nippon Steel Corp Method for estimating coke strength
WO2010103828A1 (en) * 2009-03-10 2010-09-16 新日本製鐵株式会社 Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
JP2012219235A (en) * 2011-04-13 2012-11-12 Nippon Steel Corp Method of estimating strength of formed coke

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048297A (en) * 2016-09-14 2018-03-29 新日鐵住金株式会社 Estimation method of coke strength
JP2018169199A (en) * 2017-03-29 2018-11-01 宇部興産株式会社 Evaluation method of coal degradation
CN113376351A (en) * 2020-03-09 2021-09-10 日本碍子株式会社 Method for inspecting columnar honeycomb formed body before or after firing
CN113376351B (en) * 2020-03-09 2023-08-08 日本碍子株式会社 Method for inspecting columnar honeycomb molded body before or after firing

Also Published As

Publication number Publication date
JP5846064B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
CN102348977B (en) Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
JP5846064B2 (en) Method for estimating strength of formed coke
CN108883995A (en) The manufacturing method of artificial graphite electrode
JP7180544B2 (en) Method for estimating post-hot reaction strength of coke and method for producing coke
JP2010043196A (en) Method for preparing high strength coke
JP6680163B2 (en) Coke particle size estimation method
JP5655684B2 (en) Method for estimating strength of formed coke
JP4309780B2 (en) Method for estimating strength after hot coke reaction and method for producing coke
JP7067226B2 (en) How to evaluate coke strength
JP6308157B2 (en) Method for preparing blended coal and method for producing coke
TWI608092B (en) Coal evaluation method and coke production method
JP3971563B2 (en) Method for estimating surface fracture strength of coke
CN112521965A (en) Rapid coal blending method
JP5747776B2 (en) Method for producing molded coke
JP7070228B2 (en) Estimating method of surface fracture strength of coke
JP4464835B2 (en) Coke production method
JP6146109B2 (en) Method for selecting caking filler and method for producing high strength coke using the same
JP5581630B2 (en) Coke cake extrudability estimation method
JP6308158B2 (en) Coke production method
JP2016164546A (en) Method of evaluating coal and method of producing coke
JP2001133379A (en) Method for estimating maximum fluidity of coal blend added with caking additive
JP2013006953A (en) Method for estimating surface fracture strength of coke, and method for manufacturing coke using the same
JP5714165B1 (en) Method for producing coking coal and method for producing coke
JP6874487B2 (en) Method of adjusting compound coal and method of manufacturing coke
JP2021042378A (en) Method for estimating coal inert factor coefficient and method for estimating coke surface fracture strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R151 Written notification of patent or utility model registration

Ref document number: 5846064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350